

Junos Security

Junos Security

Rob Cameron, Brad Woodberg, Patricio Giecco,
Tim Eberhard, and James Quinn

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

Junos Security
by Rob Cameron, Brad Woodberg, Patricio Giecco, Tim Eberhard, and James Quinn

Copyright © 2010 Rob Cameron, Brad Woodberg, Patricio Giecco, Tim Eberhard, and James Quinn.
All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Development Editor: Patrick Ames
Production Editor: Teresa Elsey
Copyeditor: Audrey Doyle

Production Services: Newgen North America, Inc.
Indexer: John Bickelhaupt
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
August 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Junos Security, the image of a European night heron, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-38171-4

[M]

1281711139

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Foreword . xv

Preface . xvii

1. Introduction to the SRX . 1
Evolving into the SRX 1

ScreenOS to Junos 2
The SRX Series Platform 5

Built for Services 5
Deployment Solutions 6

Small Branch 7
Medium Branch 8
Large Branch 9
Data Center 10
Data Center Edge 10
Data Center Services Tier 13
Service Provider 15
Mobile Carriers 16
Cloud Networks 19
The Junos Enterprise Services Reference Network 21

SRX Series Product Lines 26
Branch SRX Series 27

Branch-Specific Features 27
SRX100 30
SRX200 32
SRX600 36
AX411 39
CX111 42
Branch SRX Series Hardware Overview 42
Licensing 44
Branch Summary 45

v

Data Center SRX Series 46
Data Center SRX-Specific Features 46
SPC 48
NPU 49
Data Center SRX Series Session Setup 51
Data Center SRX Series Hardware Overview 55
SRX3000 57
SRX5000 61

Summary 68
Chapter Review Questions 68
Chapter Review Answers 69

2. What Makes Junos So Special? . 71
OS Basics 72

FreeBSD 73
Process Separation 74
Development Model 75
Adding New Features 77
Data Plane 78
Junos Is Junos Except When It’s Junos 79

Coming from Other Products 79
ScreenOS 80
IOS and PIX OS 82
Check Point 83

Summary 84
Chapter Review Questions 85
Chapter Review Answers 85

3. Hands-On Junos . 87
Introduction 87
Driving the Command Line 88
Operational Mode 89

Variable Length Output 90
Passing Through the Pipe 90
Seeking Immediate Help 91

Configuration Mode 94
Commit Model 100
Restarting Processes 106
Junos Automation 108
Junos Configuration Essentials 109

System Settings 109
Interfaces 113
Switching (Branch) 115

vi | Table of Contents

Zones 118
Summary 122
Chapter Review Questions 122
Chapter Review Answers 123

4. Security Policy . 125
Security Policy Overview 125
SRX Policy Processing 128
Viewing SRX Policy Tables 130
Viewing Policy Statistics 133
Viewing Session Flows 135
Policy Structure 137

Security Zones 137
Service Configuration 139
Blocking Unwanted Traffic 143

Policy Logging 145
Troubleshooting Security Policy and Traffic Flows 149

Troubleshooting Sample 150
Troubleshooting Output 152
Turning Off Traceoptions 159

Application Layer Gateway Services 160
How to Configure an ALG 163

Policy Schedulers 168
One-Time Schedulers 170

Web and Proxy Authentication 172
Web Authentication 172
Pass-Through Authentication 174

Case Study 4-1 176
Case Study 4-2 184
Converters and Scripts 188
Summary 189
Chapter Review Questions 190
Chapter Review Answers 190

5. Network Address Translation . 193
How the SRX Processes NAT 193
Source NAT 195

Interface NAT 197
Address Pools 208
Removing PAT 216
Proxy ARP 219
Persistent NAT 223
Case Study 5-1: ISP Redundancy via PAT 227

Table of Contents | vii

Conclusion 231
Destination NAT 231

Implementing Destination NAT 232
Viewing Destination NAT 234
Tracing Destination NAT Flows 236
Case Study 5-2: Virtual IP NAT 238

Static NAT 240
Case Study 5-3: Double NAT 243

Summary 245
Chapter Review Questions 245
Chapter Review Answers 246

6. IPsec VPN . 247
VPN Architecture Overview 248

Site-to-Site IPsec VPNs 248
Hub and Spoke IPsec VPNs 249
Full Mesh VPNs 250
Multipoint VPNs 250
Remote Access VPNs 251

IPsec VPN Concepts Overview 253
IPsec Encryption Algorithms 254
IPsec Authentication Algorithms 254
IKE Version 1 Overview 255
IPSec VPN Protocol 257
IPsec VPN Mode 258
IPsec Manual Keys 258

Phase 1 IKE Negotiations 259
IKE Authentication 259
IKE Identities 260
Phase 1 IKE Negotiation Modes 261

Phase 2 IKE Negotiations 262
Perfect Forward Secrecy 263
Quick Mode 263
Proxy ID Negotiation 263

Flow Processing and IPsec VPNs 264
SRX VPN Types 264

Policy-Based VPNs 265
Route-Based VPNs 265

Other SRX VPN Components 268
Dead Peer Detection 268
VPN Monitoring 269
XAuth 269
NAT Traversal 270

viii | Table of Contents

Anti-Replay Protection 270
Fragmentation 271
Differentiated Services Code Point 272
IKE Key Lifetimes 272
Network Time Protocol 273
Certificate Validation 273
Simple Certificate Enrollment Protocol 274
Group VPN 274
Dynamic VPN 275

Selecting the Appropriate VPN Configuration 275
IPsec VPN Configuration 279

Configuring NTP 279
Certificate Preconfiguration Tasks 279
Phase 1 IKE Configuration 282
Phase 2 IKE Configuration 293
Configuring Manual Key IPsec VPNs 303
Dynamic VPN 305

VPN Verification and Troubleshooting 309
Useful VPN Commands 310
VPN Tracing and Debugging 312

Case Studies 326
Case Study 6-1: Site-to-Site VPN 326
Case Study 6-2: Remote Access VPN 335

Summary 337
Chapter Review Questions 337
Chapter Review Answers 338

7. High-Performance Attack Mitigation . 341
Network Protection Tools Overview 342

Firewall Filters 342
Screens 345
Security Policy 347
IPS and AppDoS 348

Protecting Against Network Reconnaissance 349
Firewall Filtering 350
Screening 350
Port Scan Screening 352
Summary 353

Protecting Against Basic IP Attacks 354
Basic IP Protections 354
Basic ICMP Protections 356
Basic TCP Protections 357

Basic Denial-of-Service Screens 358

Table of Contents | ix

Advanced Denial-of-Service and Distributed Denial-of-Service Protection 361
ICMP Floods 363
UDP Floods 364
SYN/TCP Floods 365
SYN Cookies 370

SYN-ACK-ACK Proxies 371
Session Limitation 372
AppDoS 377
Application Protection 377

SIP 378
MGCP 378
SCCP 380

Protecting the SRX 381
Summary 385
Chapter Review Questions 386
Chapter Review Answers 386

8. Intrusion Prevention . 389
The Need for IPS 389

How Does IPS Work? 391
IPS Packet Processing on the SRX 396
Attack Object Types 404
IPS Policy Components 408
Security Packages 416
Sensor Attributes 418
SSL Inspection 421
AppDDoS Protection 423
Custom Attack Groups and Objects 427

Configuring IPS Features on the SRX 432
Getting Started with IPS on the SRX 432

Deploying and Tuning IPS 454
First Steps to Deploying IPS 454
Building the Policy 454
Testing Your Policy 455
Actual Deployment 456
Day-to-Day IPS Management 456

Troubleshooting IPS 457
Checking IPS Status 457
Checking Security Package Version 458
IPS Attack Table 458
Application Statistics 459
IPS Counters 460
IP Action Table 461

x | Table of Contents

AppDDoS Useful Commands 462
Troubleshooting the Commit/Compilation Process 463

Case Study 8-1 466
Summary 484
Chapter Review Questions 484
Chapter Review Answers 485

9. Unified Threat Management . 487
What Is UTM? 487

Application Proxy 488
Web Filtering 489
Antivirus 498
Notifications 506
Viewing the UTM Logs 508
Controlling What to Do When Things Go Wrong 514
Content Filtering 516
Antispam 521

UTM Monitoring 523
Licensing 527
Tracing UTM Sessions 528

Case Study 9-1: Small Branch Office 530
Security Policies 533
UTM Policies and Profiles 534

Summary 537
Chapter Review Questions 537
Chapter Review Answers 537

10. High Availability . 539
Understanding High Availability in the SRX 540

Chassis Cluster 540
The Control Plane 542
The Data Plane 543
Junos High Availability Concepts 545
Deployment Concepts 548

Configuration 554
Differences from Standalone 554
Activating JSRPD (Juniper Services Redundancy Protocol) 555
Managing Cluster Members 557
Configuring the Control Ports 558
Configuring the Fabric Links 563
Node-Specific Information 567
Configuring Heartbeat Timers 570
Redundancy Groups 571

Table of Contents | xi

Configuring Interfaces 577
Integrating Dynamic Routing 583
Upgrading the Cluster 584

Fault Monitoring 586
Interface Monitoring 586
IP Monitoring 591
Manual Failover 595
Hardware Monitoring 599
Software Monitoring 604
Preserving the Control Plane 605
Using Junos Automation 605

Troubleshooting the Cluster 606
First Steps 606
Checking Interfaces 610
Verifying the Data Plane 611
Core Dumps 615
The Dreaded Priority Zero 615
When All Else Fails 617

Summary 618
Chapter Review Questions 618
Chapter Review Answers 619

11. Routing . 621
How the SRX “Routes” IP Packets 622

Forwarding Tables 622
IP Routing 623
Asymmetric Routing 625
Address Resolution Protocol (ARP) 626

Static Routing 626
Creating a Static Route 627
Verifying a Static Route 629

Dynamic Routing 631
Configuring OSPF Routing 632
Case Study 11-1: Securing OSPF Adjacencies 646
Case Study 11-2: Redundant Paths and Routing Metrics 648
Growing OSPF Networks 651

Routing Policy 664
Case Study 11-3: Equal Cost Multipath (ECMP) 670

Internet Peering 672
Configuring BGP Peerings 674
BGP Routing Tables 682
Case Study 11-4: Internet Redundancy 683

Routing Instances 688

xii | Table of Contents

Configuring Routing Instances 689
Filter-Based Forwarding 693

Configuring Filter-Based Forwarding 694
Case Study 11-5: Dynamic Traffic Engineering 697

Summary 705
Chapter Review Questions 706
Chapter Review Answers 706

12. Transparent Mode . 709
Transparent Mode Overview 709

Why Use Transparent Mode? 710
MAC Address Learning 712
Transparent Mode and Bridge Loops, Spanning Tree Protocol 712
Transparent Mode Limitations 713
Transparent Mode Components 714
Interface Modes in Transparent Mode 715
Bridge Domains 715
IRB Interfaces 716
Transparent Mode Zones 716
Transparent Mode Security Policy 717
Transparent Mode Specific Options 717
QoS in Transparent Mode 718
VLAN Rewriting 718
High Availability with Transparent Mode 718
Transparent Mode Flow Process 721

Configuring Transparent Mode 724
Configuring Transparent Mode Basics 725
Configuring Integrated Routing and Bridging 729
Configuring Transparent Mode Security Zones 731
Configuring Transparent Mode Security Policies 732
Configuring Bridging Options 736
Configuring Transparent Mode QoS 736
Configuring VLAN Rewriting 738

Transparent Mode Commands and Troubleshooting 740
The show bridge domain Command 740
The show bridge mac-table Command 741
The show l2-learning global-information Command 741
The show l2-learning global-mac-count Command 742
The show l2-learning interface Command 742
Transparent Mode Troubleshooting Steps 743

Case Study 12-1 745
Summary 752
Chapter Review Questions 752

Table of Contents | xiii

Chapter Review Answers 753

13. SRX Management . 755
The Management Infrastructure 755

Operational Mode 756
Configuration Mode 758

J-Web 761
NSM and Junos Space 761
NETCONF 763
Scripting and Automation 766

Commit Scripts 767
Creating a Configuration Template 774
Operational Scripts 777
Event Scripts 783

Keeping Your Scripts Up-to-Date 789
Case Studies 790

Case Study 13-1: Displaying the Interface and Zone Information 791
Case Study 13-2: Zone Groups 791
Case Study 13-3: Showing the Security Policies in a Compact Format 792
Case Study 13-4: Track-IP Functionality to Trigger a Cluster Failover 793
Case Study 13-5: Track-IP Using RPM Probes 794
Case Study 13-6: Top Talkers 796
Case Study 13-7: Destination NAT on Interfaces with Dynamic IP Ad-
dresses 798
Case Study 13-8: High-End SRX Monitor 800

Summary 801
Chapter Review Questions 801
Chapter Review Answers 801

Index . 803

xiv | Table of Contents

Foreword

In early 2004, when I was the product manager for Firewall VPN systems at NetScreen
Technologies, I remember saying to a coworker, “Juniper Networks should acquire us.
It just makes sense. They could take advantage of our security expertise, and we could
get access to their great routing technologies. And they’ve got some great chassis tech-
nology that we could take advantage of in our next-generation security systems … It
would be a real win-win.”

Little did I realize that discussions of the pending acquisition were already well under-
way. Within months, the acquisition of NetScreen Technologies by Juniper Networks
was completed, and the combined teams were forging ahead on a plan to build a next-
generation security system worthy of the pedigree of the two companies: NetScreen’s
award-winning, high-performance security systems and Juniper Networks’ market-
leading, high-performance carrier-class routers.

But in order to combine these technologies in an optimal manner, it was crucial to
understand the environments into which these systems would be deployed. And we
did exactly that. We went into the field and worked, and listened, and polled and tested,
until we felt confident in our ability to deliver high levels of security, massive
performance and scale, rock-solid high availability, and the robustness of the best
carrier-class routing systems. The result of these efforts was the Juniper Networks SRX
Series Services Gateways.

Having worked with hundreds of network designers, administrators, and operators
over the intervening years, it’s become apparent to me that no two networks are the
same. There’s truth to the saying, “Networks are like snowflakes; every one is different.”
Even comparing the network requirements and deployments of two similar companies
(such as mid-sized manufacturing companies) consistently illustrates to me how dif-
ferently various equipment and technologies can be deployed. So when I’m out in the
field, the ever-present question remains: how do you build a successful, secure, high-
performance network without following some vendor’s cookie-cutter methodology?
And my unswerving answer over the many years has never changed: by understanding
the requirements of the network—capacity, performance, traffic types, and intercon-
nects—and by understanding the equipment to be deployed, even if that takes some

xv

level of testing and qualification. In other words, you have to work at understanding
what you really need, and what fits, and I think this book will help you to do that.

You also really need to follow best practices to ensure that the network deployment is
successful. Any scale of network design and implementation is not an easy task, but to
understand what is required and what equipment and technologies are available to
satisfy those requirements, a methodical, carefully managed design process must be
followed to ensure complete success. It’s worth the time invested because following
established best practices will secure your network. That’s why in this book, from basic
introduction, to policy management, to NAT, IPS, and much more, the authors strive
to explain not only how these products work, but also how to get the most from them
in various network deployments using best practices.

Junos Security discusses and clarifies the practical side of planning, configuring, de-
ploying, and managing these advanced state-of-the-art Junos® security systems in real,
actual networks. The authors have drawn upon their many man-years of experience
deploying thousands of security systems in networks around the world, in industries
as diverse as financial services and manufacturing, to the largest wireless carrier net-
works in the world. It’s been a time-intensive, hard-fought battle to document what
they know, and what they do, but having worked alongside them, and having read what
they have written, I can tell you that you are in for a delightful surprise. This book rocks.

—Glen Gibson
Product Line Manager, High Performance Security Systems, Juniper Networks

July 2010

xvi | Foreword

Preface

Juniper Networks built the SRX Series as an answer to the network and security chal-
lenges of today that would be ready to scale and adapt to the inevitably larger and more
complex demands of tomorrow. Security remains a huge and still growing challenge
for any organization grappling with modern communication networks. Whether it is
the explosion in traffic (good and bad), the growing complexity of data centers and
cloud computing, or the menacing evolution of threats to that infrastructure, the days
of the simple firewall are over. Something radically new was needed, and the SRX is
leading the charge into a more secure future.

Junos Security is your guide to this brighter future. It readily answers the questions you
have, will have, or may even hope to have. The SRX is one awesome beast that is up to
matching your challenges whether they are firewalling, routing, NAT, deep inspection,
encryption, or the mitigation of nearly any form of network attack.

How do you write about such a thing? Once upon a time, there were firewall books,
or routing books, or even data center deployment books. But today, this one book is
here to illuminate the elaborate hybrid workings of this next-gen networking marvel.
Add to that the fact that the SRX platform has multiple models across two quite distinct
device classes covering everything from the smallest networks in the world to the very
largest, along with the huge and legendary heritage of the Junos operating system, and
you have more than enough material to fill many volumes of books.

Writing a book of this magnitude was no easy task to undertake. In fact,
it took five of the best SRX engineers in the world to accomplish it,
collaborating for almost a year. Together they have many times more
man-years of experience working with the SRX than the device has even
existed, so they bring a real-world approach in this book that you can
take away to your own work immediately.

Ultimately, this book is about Junos and the SRX, and how to deploy, configure, and
maintain your Juniper Networks investment with the goal of protecting and efficiently
operating your network. Enjoy!

xvii

This Book’s Assumptions About You
We, the authors, are assuming a certain level of knowledge from you, the reader. Sorry,
but if you are not familiar with any of the following assumptions, this book will occa-
sionally veer over your head. Please read this carefully.

First, Chapter 1’s overview of the SRX platform has no assumptions; it’s meant for all
audiences and includes basic information that you can read right now. From Chap-
ter 1 onward, the book will assume that you followed the documentation, got the SRX
out of its shipping box or pallet, installed it in its rack or location, and made the nec-
essary network and power connections. This book also assumes that you know how
to operate networking equipment using a command-line interface (CLI).

Chapters 2 and 3 will help familiarize you with the Junos operating system. If you are
migrating from an IOS-driven firewall, or from the former ScreenOS product line, these
chapters are probably critical review, because all of the other chapters assume that you
can follow the Junos CLI examples and tutorials at an intermediate level of expertise.

The Junos documentation suite is a great place to start if you need help with Junos. It’s
thorough, well written, and free (http://www.juniper.net/techpubs). There are also
booklets available at Juniper, the Day One series, that are brief, to the point, and meant
to get you up and running in one day (http://www.juniper.net/dayone), and they cover
a variety of topics, including the SRX, the Junos CLI, and more.

We are also assuming you are familiar with and have a general working knowledge of:

OSI model and networking concepts
This includes Layers 1 through 7, switching, routing, applications, the client-to-
server model, and so on.

Firewall and security concepts
A high-level understanding of firewall and security concepts is helpful. We will go
into detail about best practices and how these can be implemented on the SRX.

Routing
This includes basic knowledge of routing protocols and dynamic routing
principles.

Point-to-point links
These network segments are often thought of as WAN links in that they do not
contain any end users. Often these links are used to connect routers together in
disparate geographical areas. Possible encapsulations used on these links include
ATM, Frame Relay, PPP, and HDLC.

IP addressing and subnetting
Hosts using IP to communicate with each other use 32-bit addresses. Humans often
use a dotted decimal format to represent this address. This address notation
includes a network portion and a host portion which is normally displayed as
192.168.1.1/24.

xviii | Preface

http://www.juniper.net/techpubs
http://www.juniper.net/dayone

TCP and UDP
These Layer 4 protocols define methods for communicating between hosts. TCP
provides for connection-oriented communications while UDP uses a connection-
less paradigm. Other benefits of using TCP include flow control, windowing/
buffering, and explicit acknowledgments.

ICMP
This protocol is used by network engineers to troubleshoot and operate networks
as it is the core protocol used by the ping and traceroute (on some platforms)
programs. In addition, ICMP is used to signal error and other messages between
hosts in an IP-based network.

What’s In This Book?
This book was written to be the definitive and most complete source of information
for working with the SRX platforms. It is divided into 13 chapters. Each chapter is
written by one of the authors from our authoring pool of five. While we tried to review
each other’s work, you’ll be able to tell different voices in the writing styles, and we
hope that this is generally refreshing rather than a hindrance.

Here is a detailed accounting of what’s in this book:

Chapter 1, Introduction to the SRX
The SRX is Juniper Networks’ next-generation services platform. The devices
combine the advanced Junos operating system with the existing security offerings
on a high-speed feature-rich platform. This chapter is designed to give you an un-
derstanding of the physical devices as well as their architecture. Then it walks you
through common deployment scenarios and use cases. The enriching explanation
provides a clear vision into the platforms and strategies that are available when
using the SRX platforms.

Chapter 2, What Makes Junos So Special?
Junos is one of the industry’s most well-respected network operating systems. Over
its 10-plus-year history, Junos has grown into a feature-rich platform. Because Ju-
nos and its capabilities are so large, it’s important to build a strong base of knowl-
edge of what Junos is all about. In this chapter, the design of the Junos operating
system, its fundamental concepts, and its history are discussed. Also, for readers
who are coming from other platforms, a comparison between other major firewall
platforms is drawn to Junos on the SRX.

Chapter 3, Hands-On Junos
Using Junos requires the use of hands on a keyboard. This chapter gets you hands-
on with Junos. The CLI is the premier management tool for the SRX, and it’s best
to learn the fundamentals of how it works. The goal of this chapter is to provide
you with a basic understanding of how to get around the CLI. It covers the use of

Preface | xix

operational mode, configuration mode, and some of the more advanced options
of the system.

Chapter 4, Security Policy
This chapter provides an in-depth overview of the security policies on the SRX
platform, and how they are handled in the flow process. It details how to configure
interfaces, zones, address books, and applications, and how those items tie into
security policies. It also covers customizing security policies to fit your network,
some best practices and gotchas to watch out for, and how to tie in policy sched-
ulers as well as inline authentication to improve the overall security model of the
network.

Chapter 5, Network Address Translation
This chapter covers the Network Address Translation (NAT) features of the SRX.
It dives into hands-on configuration of source, destination, and static NAT, illus-
trates operational troubleshooting, and vividly draws out real-world examples of
organizations grappling with IPv4 address exhaustion, network integration, and
distributing services load in the data center.

Chapter 6, IPsec VPN
Securing remote networks and hosts is a core tenet of contemporary networking.
IPsec VPNs enable this secure communication to happen and are a core function-
ality of the SRX platform. This chapter covers the ins and outs of IPsec VPNs—
from a fundamental perspective for newcomers, all the way through configuration,
diagnostics, and troubleshooting so that all network administrators will have the
tools they need to manage a VPN implementation on the SRX platform.

Chapter 7, High-Performance Attack Mitigation
Threats of denial-of-service (DoS) and distributed denial-of-service (DDoS) attacks
on everyday networks are increasing, so it’s critical to protect both the network
and the network’s users from these attacks. This chapter covers Juniper’s built-in
features, such as screens, firewall filters, and self-protection mechanisms, to protect
the network and the SRX from attacks. Included are best-practice tips to harden
and lock down the SRX.

Chapter 8, Intrusion Prevention
Intrusion Detection and Prevention (IDP) is one of the most powerful tools in a
network administrator’s arsenal to protect the network infrastructure at large
against both client-to-server and server-to-client attacks. The SRX consolidates the
power of the Intrusion Prevention System (IPS) and stateful firewalls/VPNs into a
single platform. This chapter not only explains how to configure the SRX to
leverage the IPS services, but also goes in-depth into IPS concepts, deployment
strategies, and how to customize your IPS deployment to suit your organization’s
needs.

Chapter 9, Unified Threat Management
At the top of the protocol stack, application layer traffic imposes some challenges
on network devices trying to inspect it. The UTM feature set supported on branch

xx | Preface

SRX Series devices was designed to overcome some of these challenges, allowing
administrators to protect the network against malicious content by using a variety
of inspection techniques. This chapter explains how to configure and monitor the
different application layer inspection features available on the SRX platforms.

Chapter 10, High Availability
Failure is not an option in today’s real-time always-on expectation of information
accessibility. Networks and the services they provide must always be available.
This chapter explains all of the capabilities for high availability (HA) on the SRX.
It walks you through the capabilities of the HA infrastructure and some sample
design topologies. Then it takes you through setting up a cluster and all of its
configuration options. By the end of the chapter, you will be well versed in the SRX
and how to utilize HA within your network.

Chapter 11, Routing
This chapter covers the gamut of Junos IP routing technology for the SRX in an
extraordinarily concise space. It digs into real-world configuration, troubleshoot-
ing, and case study deployment examples. It explores the building blocks of static
and dynamic IP routing integration and then walks you through the process of
connecting the SRX to the global Internet, before going a step beyond the usual
and covering the more advanced virtualization and traffic engineering topics of
routing instances and filter-based forwarding.

Chapter 12, Transparent Mode
Transparent mode is an extremely powerful mechanism to ease the deployment of
firewalls and IPS into networks by relieving the burdens of network re-architectures
or dealing with complex routing environments. This chapter goes in-depth to cover
all of the concepts, deployment best practices, and configuration of transparent
mode so that your deployment goes smoothly and successfully.

Chapter 13, SRX Management
Managing modern networks, from small to large, requires not only an understand-
ing of how the network works, but also an understanding of the management pro-
tocols used to communicate to the devices. This chapter introduces the different
protocols and mechanisms that are central to the management and automation of
SRX devices.

Juniper Networks Technical Certification Program (JNTCP)
This book doubles as a study guide for the JNTCP security certification tracks. Use it
to prepare and study for the security certification exams. For the most current infor-
mation on Juniper Networks’ security certification tracks, visit the JNTCP website at
http://www.juniper.net/certification.

Preface | xxi

http://www.juniper.net/certification

Topology for This Book
Figure P-1 displays the topology for Junos Security that appears beginning in Chapter 3.

The topology for this book was designed to blend the deployment scenarios of four of
the most common types of networks: branch deployment, enterprise data center, cam-
pus backbone, and service provider. This architecture enables us to examine how each
deployment challenge can be met with the different SRX platforms, and how all of the
features of the SRX platform can be leveraged to accomplish this goal. The network
consists of both branch devices and the data center SRX platforms to accomplish the
goals of the network administrator.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
or the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xxii | Preface

Figure P-1. This book’s topology

Preface | xxiii

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your own configuration and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the material. For
example, deploying a network based on actual configurations from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of sample con-
figurations or operational output from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Junos Security, by Rob Cameron, Brad
Woodberg, Patricio Giecco, Tim Eberhard, and James Quinn. Copyright 2010, Rob
Cameron, Brad Woodberg, Patricio Giecco, Tim Eberhard, and James Quinn,
978-1-449-38171-4.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You/How to Contact Us/Comments and
Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9781449381714

or:

http://cubednetworks.com

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xxiv | Preface

mailto:permissions@oreilly.com
http://oreilly.com/catalog/9781449381714
http://cubednetworks.com
mailto:bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search more than 7,500 technology and creative reference books and vid-
eos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

About the Tech Reviewers
Barny Sanchez (JNCIE FW/VPN #1, JNCIS-SSL, JNCIS-ER, JNCIS-M, JNCIS-SEC,
JNCIA-IDP, JNCIA-AC, JNCIA-EX, JNCIA-WX, JNCIA-DX, JCNA, JNCI) holds a
bachelor’s degree in information systems security from Westwood College, completed
advanced studies in electronics engineering at the Instituto Tecnologico de Costa Rica,
and is currently pursuing a master’s degree in information assurance and security at
Capella University. He is a consulting engineer at Juniper Networks, specializing in
security products and solutions. Prior to this role, he worked as a senior systems engi-
neer supporting Juniper Networks’ strategic partners, and before that, he spent more
than two years as a senior instructor, teaching most of Juniper’s products. Before join-
ing Juniper, he held management positions at different technical support organizations
for Intel Corporation and Cisco Systems, as well as spent several years designing and
implementing multivendor networks for customers around the globe.

Vairavan Subramanian holds a bachelor’s degree in computer engineering from the
University of Madras and a master’s degree in electrical and computer engineering from
Carnegie Mellon University. He is currently a technical marketing engineer at Juniper
Networks. Prior to this role, he spent four years in the design and development of the
SRX Series of products. His interests lie in network infrastructure and security.

Preface | xxv

http://www.oreilly.com
http://my.safaribooksonline.com/?portal=oreilly

Acknowledgments
We five authors generally agreed on few things, except for the many people who came
together to help us create this book. We acknowledge most of our peers, our editors,
and our advisors over the many, many months it took to write this book. After what
must be hundreds of emails, conference calls, lunches, dinners, and late-night writing
sessions, we gratefully acknowledge our coworkers who picked up our slack, our edi-
tors who picked up words and made them into intelligible sentences, and our families
who picked up our spirits and told us to go get it done.

First, we must thank Patrick Ames, Juniper Networks’ editor-in-chief for its technical
book program. He taught us many things, and like a coach, he pestered us until we
resigned ourselves to finish the book. Our copy editor at O’Reilly, Audrey Doyle, was
the second person to read this whole book and she made it easier for all subsequent
readers to understand the chapters. Thank you, Audrey! To our technical reviewers,
Barny Sanchez and Vairavan Subramanian, thank you for your volunteer efforts and
many to-the-point comments and suggestions. The others at O’Reilly, Mike Loukides,
Marlowe Shaeffer, Robert Romano, Sumita Mukherji, Teresa Elsey, and countless oth-
ers, helped to create a book that really reflects on the next-generation technology of
the SRX. Thank you all.

We would also like to thank Juniper Networks, the employer of four of the five authors,
which has been solidly behind this writing project and supplied many of the resources,
not to mention expertise, that have made the book such a success; Glen Gibson, not
only for volunteering to write the wonderful Foreword introducing the SRX, but also
for his years of cheerful persistence and good humor in persuading Juniper and the
world that it needed a big honking firewall; and all of Juniper’s brilliant development
teams for creating the fantastic and wicked fast gear that we are so proud to be pre-
senting to the world in this book.

From Rob Cameron
I am extremely appreciative of all of those people who have supported my efforts
through the creation of this tome of knowledge. First and foremost, I would like to
thank my wife, Katie, for the many nights that she had to endure my constant banging
on the keyboard to write this book. Her support, love, respect, and admiration fueled
each word that I wrote and helped energize me for my next projects. I would like to
also thank all of the coauthors for helping realize my dream of completing an O’Reilly
book. Without their help, this would not have been possible to achieve. After reading
70-plus O’Reilly books, it’s nice to finally write one.

Many people at Juniper have helped to enable me to work with such an amazing product
as the SRX. To Gregory Lebovitz, Brian Lazear, Douglas Murray, and Lior Cohen:
without you challenging me, I wouldn’t have expanded my horizons. Lastly, I want to
thank an important team of people who I worked with on a very inspirational SRX

xxvi | Preface

deployment. Kevin Dineen, Steve Bryk, Joe Merchak, and Geoff Peterson, you brought
to me one of my greatest design challenges. It was a rewarding and fun experience to
work with you.

From Tim Eberhard
I would like to thank all of the friends and family who have supported me and my
workaholic ways over the years. I’d like to thank my coworkers and mentors at both
Sprint and Clearwire for teaching me, and for putting up with my personality. It wasn’t
always easy, but it was fun, most of the time. I’d like to give a big thanks to my coau-
thors, editors, peers, and friends at Juniper for their support in writing this book and
their assistance on the various networks that I’ve worked on during my career. Finally
and most importantly, I have to thank my fantastic wife, Elizabeth. She is my every-
thing. Without her support as my partner over the years, none of this would have ever
been possible.

From Patricio Giecco
I would like to thank my wife, Professor Nancy Lape, who has been challenged with
the difficult task of dealing with her bad-tempered husband. She, in turn, would like
to thank the fantastic Branch Solutions Business Unit team at Juniper. Without them,
my anger would invariably have ended up directed toward her. I would also like to
thank my parents, Isabel and Alberto, and my siblings, Adrian and Paula, who, fol-
lowing the trend, also thank Nancy for taking me with her to the United States.

From Glen Gibson
I would like to interrupt for a moment and extend my heartfelt thanks to the hundreds
of people who have worked so hard to develop and support the SRX family of products.
Without them, the SRX never would have seen the light of day. It’s amazing what a
couple hundred of your closest friends can do when you all envision the future.

From James Quinn
I am grateful to everyone who has taken the time to share in my life. I have been ex-
traordinarily lucky in my friends—personal, professional, and in between. You’re the
ones who make this life worthwhile. I’m thankful to all the folks at Juniper and O’Reilly.
They are class acts and the best in our business. My coauthors, Tim, Rob, Brad, and
Patricio, and our excellent editor, Patrick Ames, are gems cut from the rough. It is only
because they believed in this book that it is now in your hands. Thank you all.

And last, I’d like to thank my mom, Judith Quinn, whose sudden death came just seven
days after we had sat together with the last of my writing for this book. In one person,
she gave me more than I could ever deserve. Her mind was vivid, awake, and engaged

Preface | xxvii

with the world. She found the beauty in life, and she made life beautiful. She shaped
me in careful and thoughtful ways that I can only hope one day to comprehend when
I have my own children. Her love was the single greatest miracle of my life.

All that is good in me is because of her.

From Brad Woodberg
I would like to personally thank all of the people in my life who have inspired, taught,
and helped me get to this moment today. Above all, I would like to thank my lovely
wife, Tarah, whose support and encouragement make all of my aspirations possible,
and who also puts up with all of my hobbies and nerdy endeavors. Next, I would like
to thank my family and friends, most notably my parents, Bonnie and Larry, whose
dedication and patience in raising me far outpace any technical effort I have ever made.
Finally, I would like to thank everyone at Juniper and O’Reilly for making this project
not only possible, but also a success: my manager, Rob Cameron, who is a continuous
source of inspiration and knowledge; Patrick Ames, whose efforts to make this project
a success cannot be overstated; the whole Juniper development team, who are abso-
lutely brilliant and whose help was invaluable; and everyone involved in this book, who
worked together as a team on their own time to make this possible!

xxviii | Preface

CHAPTER 1

Introduction to the SRX

Firewalls are a staple of almost every network in the world. The firewall protects nearly
every network-based transaction that occurs, and even the end user understands its
metaphoric name, meant to imply keeping out the bad stuff. But firewalls have had to
change. Whether it’s the growth of networks or the growth of network usage, they have
had to move beyond the simple devices that only require protection from inbound
connections. A firewall now has to transcend its own title, the one end users are so
familiar with, into a whole new type of device and service. This new class of device is
a services gateway. And it needs to provide much more than just a firewall—it needs
to look deeper into the packet and use the contained data in new ways that are advan-
tageous to the network for which it is deployed. Can you tell if an egg is good or not
by just looking at its shell? And once you break it open, isn’t it best to use all of its
contents? Deep inspection from a services gateway is the new firewall of the future.

Deep inspection isn’t a new concept, nor is it something that Juniper Networks inven-
ted. What Juniper did do, however, is start from the ground up to solve the technical
problems of peering deeply. With the Juniper Networks SRX Series Services Gateways,
Juniper built a new platform to answer today’s problems while scaling the platform’s
features to solve the anticipated problems of tomorrow. It’s a huge challenge, especially
with the rapid growth of enterprise networks. How do you not only solve the needs of
your network today, but also anticipate the needs for tomorrow?

Juniper spent an enormous amount of effort to create a platform that can grow over
time. The scalability is built into the features, performance, and multifunction capa-
bility of the SRX Series. This chapter introduces what solutions the SRX Series can
provide for your organization today, while detailing its architecture to help you
anticipate and solve your problems of tomorrow.

Evolving into the SRX
The predecessors to the SRX Series products are the legacy ScreenOS products. They
really raised the bar when they were introduced to the market, first by NetScreen and

1

then by Juniper Networks. Many features might be remembered as notable, but the
most important was the migration of a split firewall software and operating system (OS)
model. Firewalls at the time of their introduction consisted of a base OS and then
firewall software loaded on top. This was flexible for the organization, since it could
choose the underlying OS it was comfortable with, but when any sort of troubleshoot-
ing occurred, it led to all sorts of finger-pointing among vendors. ScreenOS provided
an appliance-based approach by combining the underling OS and the features it
provided.

The integrated approach of ScreenOS transformed the market. Today, most vendors
have migrated to an appliance-based firewall model, but it has been more than 10 years
since the founding of NetScreen Technologies and its ScreenOS approach. So, when
Juniper began to plan for a totally new approach to firewall products, it did not have
to look far to see its next-generation choice for an operating system: Junos became the
base for the new product line called the SRX Series.

ScreenOS to Junos
Juniper Networks’ flagship operating system is Junos. The Junos operating system has
been a mainstay of Juniper and it runs on the majority of its products. Junos was created
in the mid-1990s as an offshoot of the FreeBSD Unix-like operating system. The goal
was to provide a robust core OS that could control the underlying chassis hardware.
At that time, FreeBSD was a great choice on which to base Junos, because it provided
all of the important components, including storage support, a memory controller, a
kernel, and a task scheduler. The BSD license also allowed anyone to modify the source
code without having to return the new code. This allowed Juniper to modify the code
as it saw fit.

Junos has evolved greatly from its initial days as a spin-off of BSD. It
contains millions of lines of code and an extremely strong feature set.
You can learn more details about Junos in Chapter 2.

The ScreenOS operating system aged gracefully over time, but it hit some important
limits that prevented it from being the choice for the next-generation SRX Series prod-
ucts. First, ScreenOS cannot separate the running of tasks from the kernel. All processes
effectively run with the same privileges. Because of this, if any part of ScreenOS were
to crash or fail, the entire OS would end up crashing or failing. Second, the modular
architecture of Junos allows for the addition of new services, since this was the initial
intention of Junos and the history of its release train. ScreenOS could not compare.

Finally, there’s a concept called One Junos. Junos is one system, designed to completely
rethink the way the network works. Its operating system helps to reduce the amount
of time and effort required to plan, deploy, and operate network infrastructure. The
one release train provides stable delivery of new functionality in a time-tested cadence.

2 | Chapter 1: Introduction to the SRX

And its one modular software architecture provides highly available and scalable soft-
ware that keeps up with changing needs. As you will see in this book, Junos opened up
enormous possibilities and network functionality from one device.

Inherited ScreenOS features

Although the next-generation SRX Series devices were destined to use the well-
developed and long-running Junos operating system, that didn’t mean the familiar
features of ScreenOS were going away. For example, ScreenOS introduced the concept
of zones to the firewall world. A zone is a logical entity that interfaces are bound to,
and zones are used in security policy creation, allowing the specification of an ingress
and egress zone in the security policy. Creating ingress and egress zones means the
specified traffic can only pass in a specific direction. It also increases the overall speed
of policy lookup, and since multiple zones are always used in a firewall, it separates the
overall firewall rule base into many subsets of zone groupings. We cover zones further
in Chapter 4.

The virtual router (VR) is an example of another important feature developed in
ScreenOS and embraced by the new generation of SRX Series products. A VR allows
for the creation of multiple routing tables inside the same device, providing the ad-
ministrator with the ability to segregate traffic and virtualize the firewall.

Table 1-1 elaborates on the list of popular ScreenOS features that were added to Junos
for the SRX Series. Although some of the features do not have a one-to-one naming
parity, the functionality of these features is generally replicated on the Junos platform.

Table 1-1. Screen OS-to-Junos major feature comparisons

Feature ScreenOS Junos

Zones Yes Yes

Virtual routers (VRs) VRs Yes as routing instances

Screens Yes Yes

Deep packet inspection Yes Yes as full intrusion prevention

Network Address Translation (NAT) Yes as NAT objects Yes as NAT policies

Unified Threat Management (UTM) Yes Yes

IPsec virtual private network (VPN) Yes Yes

Dynamic routing Yes Yes

High availability (HA) NetScreen Redundancy Protocol (NSRP) Chassis cluster

Device management

Junos has evolved since it was first deployed in service provider networks. Over the
years, many lessons were learned regarding how to best use the device running the OS.
These practices have been integrated into the SRX Series and are shared throughout
this book, specifically in how to use the command-line interface (CLI).

Evolving into the SRX | 3

For the most part, Junos users traditionally tend to utilize the CLI for managing the
platform. As strange as it may sound, even very large organizations use the CLI to
manage their devices. The CLI was designed to be easy to utilize and navigate through,
and once you are familiar with it, even large configurations are completely manageable
through a simple terminal window. Throughout this book, we will show you various
ways to navigate and configure the SRX Series products using the CLI.

In Junos, the CLI extends beyond just a simple set of commands. The
CLI is actually implemented as an Extensible Markup Language (XML)
interface to the operating system. This XML interface is called Juno-
script and is even implemented as an open standard called NETCONF.
Third-party applications can integrate with Junoscript or a user may
even use it on the device. Juniper Networks provides extensive training
and documentation covering this feature; an example is its Day One
Automation Series (see http://www.juniper.net/dayone).

Sometimes, getting started with such a rich platform is a daunting task, if only because
thousands of commands can be used in the Junos operating system. To ease this task
and get started quickly, the SRX Series of products provides a web interface called
J-Web. The J-Web tool is automatically installed on the SRX Series (on some other
Junos platforms it is an optional package), and it is enabled by default. The interface
is intuitive and covers most of the important tasks for configuring a device. We will
cover both J-Web and the CLI in more depth in Chapter 2.

For large networks with many devices, we all know mass efficiency is required. It may
be feasible to use the CLI, but it’s hard to beat a policy-driven management system.
Juniper provides two tools to accomplish efficient management. The first tool is called
Network and Security Manager (NSM). This is the legacy tool that you can use to
manage networks. It was originally designed to manage ScreenOS products, and over
time, it evolved to manage most of Juniper’s products. However, the architecture of
the product is getting old, and it’s becoming difficult to implement new features. Al-
though it is still a viable platform for management, just like the evolution of ScreenOS
to Junos, a newly architected platform is available.

This new platform is called Junos Space, and it is designed from the ground up to be a
modular platform that can integrate easily with a multitude of devices, and even other
management systems. The goal for Junos Space is to allow for the simplified provi-
sioning of a network.

To provide this simplified provisioning, three important things must be accomplished:

• Integrate with a heterogeneous network environment.

• Integrate with many different types of management platforms.

• Provide this within an easy-to-use web interface.

4 | Chapter 1: Introduction to the SRX

http://www.juniper.net/dayone

By accomplishing these tasks, Junos Space will take network management to a new
level of productivity and efficiency for an organization.

At the time of this writing, Junos Space was still being finalized. Nonetheless, readers
of this book will learn about the capabilities of the SRX Series using the Junos CLI from
the ground up, and will be ready to apply it within Junos Space anytime they deem
appropriate.

The SRX Series Platform
The SRX Series hardware platform is a next-generation departure from the previous
ScreenOS platforms, built from the ground up to provide scalable services. Now, the
question that begs to be answered is: what exactly is a service?

A service is an action or actions that are applied to the network traffic passing through
the SRX Series of products. Two examples of services are stateful firewalling and in-
trusion prevention.

The ScreenOS products were designed primarily to provide three services: stateful fire-
walling, NAT, and VPN. When ScreenOS was originally designed, these were the core
value propositions for a firewall in a network. In today’s network, these services are
still important, but they need to be provided on a larger scale since the number of
Internet Protocol (IP) devices in a network has grown significantly, and each of them
relies on the Internet for access to information they need in order to run. Since the SRX
is going to be processing this traffic, it is critical that it provides as many services as
possible on the traffic in one single pass.

Built for Services
So, the SRX provides services on the passing traffic, but it must also provide scalable
services. This is an important concept to review. Scale is the ability to provide the ap-
propriate level of processing based on the required workload, and it’s a concept that is
often lost when judging firewalls because you have to think about the actual processing
capability of a device and how it works. Although all devices have a maximum compute
capability, or the maximum level at which they can process information, it’s very im-
portant to understand how a firewall processes this load. This allows the administrator
to better judge how the device scales under such load.

Scaling under load is based on the services a device is attempting to provide and the
scale it needs to achieve. The traditional device required to do all this is either a branch
device, or the new, high-end data center firewall. A branch firewall needs to provide a
plethora of services at a performance level typical of the available WAN speeds. These
services include the traditional stateful firewall, VPN, and NAT, as well as more
security-focused services such as UTM and intrusion prevention.

The SRX Series Platform | 5

A data center firewall, on the other hand, needs to provide highly scalable performance.
When a firewall is placed in the core of a data center it cannot impede the performance
of the entire network. Each transaction in the data center contains a considerable
amount of value to the organization, and any packet loss or delay can cause financial
implications. A data center firewall requires extreme stateful firewall speeds, a high
session capacity, and very fast new sessions per second.

In response to these varied requirements, Juniper Networks created two product lines:
the branch SRX Series and the data center SRX Series. Each is targeted at its specific
market segments and the network needs of the device in those segments.

SRX Series Common Features: Junos
No matter which SRX Series platform you use, or plan to use, each has a common core.
It’s the One Junos discussed earlier.

One of the most powerful aspects of the Junos operating system is that only a single
source code train, or pool of source code, is used to build a release of the network
software. This provides great efficiency when it comes to integrating features and pro-
viding quality assurance testing. As new products such as those in the SRX Series are
created, it is easier to take previous features, such as the Junos implementation of rout-
ing, and bring them to the new platform.

The same idea is implemented across the SRX Series. Where it makes sense, common
features and code are shared. There are challenges to this mantra, such as the imple-
mentation of features in what is known as the Packet Forwarding Engine (PFE). That’s
because this is the location that actually processes the packets and provides services on
the network traffic. The PFE in each SRX Series platform typically contains different
components, creating the largest barrier for feature parity across the platforms. But as
stated before, the products are designed to meet the needs of the deployment, using
Junos to provide commonality.

Deployment Solutions
Networking products are created to solve problems and increase efficiencies. Before
diving into the products that comprise the SRX Series, let’s look at some of the problems
these products solve in the two central locations in which they are deployed:

• The branch SRX Series products are designed for small to large office locations
consisting of anywhere from a few individuals to hundreds of employees, repre-
senting either a small, single device requirement or a reasonably sized infrastruc-
ture. In these locations, the firewall is typically deployed at the edge of the network,
separating the users from the Internet.

• The data center SRX Series products are Juniper’s flagship high-end firewalls. These
products are targeted at the data center and the service provider. They are designed

6 | Chapter 1: Introduction to the SRX

to provide services to scale. Data center and service provider deployments are as
differentiated as branch locations.

Let’s look at examples of various deployments and what type of services the SRX Series
products provide. We will look at the small branch first, then larger branches, data
centers, service providers, and mobile carriers, and finally all the way up (literally) to
cloud networks.

Small Branch
A small branch location is defined as a network with no more than a dozen hosts.
Typically, a small branch has a few servers or, most often, connects to a larger office.
The requirements for a firewall device are to provide not only connectivity to an Internet
source, or larger office connection, but also connectivity to all of the devices in the
office. The branch firewall also needs to provide switching, and in some cases, wireless
connectivity, to the network.

Figure 1-1 depicts a small branch location. Here a Juniper Networks SRX210 Services
Gateway is utilized. It enables several hosts to the SRX210 and connects to an upstream
device that provides Internet connectivity. In this deployment, the device consolidates
a firewall, switch, and DSL router.

The small-location deployment keeps the footprint to one small device, and keeps
branch management to one device—if the device were to fail, it’s simple to replace and
get the branch up and running using a backup of the current configuration. Finally,
you should note that all of the network hosts are directly connected to the branch.

Figure 1-1. An example of a small branch network

Deployment Solutions | 7

Medium Branch
In medium to large branch offices, the network has to provide more to the location
because there are 20 or more users—our network example contains about 50 client
devices—so here the solution is the Juniper Networks SRX240 Services Gateway
branch device. Figure 1-2 shows the deployment of the SRX240 placed at the Internet
edge. It utilizes a WAN port to connect directly to the Internet service provider (ISP).
For this medium branch, it contains several services and Internet-accessible services.

Note that the servers are connected directly to the SRX240 to provide maximum per-
formance and security. Since this branch provides email and web-hosting services to
the Internet, security must be provided. Not only can the SRX240 provide stateful
firewalling, but it can also offer intrusion protection services (IPS) for the web and email
services, including antivirus services for the email. The branch can be supported by a
mix of both wired and wireless connections.

The SRX240 has sixteen 1-gigabit ports which can accommodate the four branch office
servers and provide coverage for the client’s two Juniper Networks AX411 Wireless
LAN Access Points, adequately covering the large office area. The AX411 access points
are easy to deploy since they connect directly to the Power over Ethernet (PoE) network
ports on the SRX240. This leaves ten 1-gigabit Ethernet ports that can be used to ac-
commodate any other client systems that need high-speed access to the servers.

Figure 1-2. An example of a medium branch network

8 | Chapter 1: Introduction to the SRX

Large Branch
The last branch deployment to review is the large branch. For our example, the large
branch has 250 clients. This network requires significantly more equipment than was
used in the preceding branch examples. Note that for this network, the Juniper Net-
works EX Series Ethernet Switches were reutilized to provide client access to the net-
work. Figure 1-3 depicts our large branch topology.

Our example branch network needs to provide Ethernet access for 250 clients, so to
realistically depict this, six groupings of two EX4200 switches are deployed. Each
switch provides 48 tri-speed Ethernet ports. To simplify management, all of the
switches are connected using Juniper’s virtual chassis technology.

Figure 1-3. An example of a large branch network

For more details on how the EX Series switches and the virtual chassis
technology operates, as well as how the EX switches can be deployed
and serve various enterprise networks, see Junos Enterprise Switching by
Harry Reynolds and Doug Marschke (O’Reilly).

The SRX Series platform of choice for the large branch is the Juniper Networks SRX650
Services Gateway. The SRX650 is the largest of the branch SRX Series products and its
performance capabilities actually exceed those of the branch, allowing for future adop-
tion of features in the branch. Just as was done in the previous deployment, the local
servers will sit off of an arm of the SRX650, but note that in this deployment, HA was
utilized, so the servers must sit off of their own switch (here the Juniper Networks
EX3200 switch).

Deployment Solutions | 9

http://oreilly.com/catalog/9780596153984/

The HA deployment of the SRX650 products means two devices are used, allowing the
second SRX650 to take over in the event of a failure on the primary device. The SRX650
HA model provides an extreme amount of flexibility for deploying a firewall, and we
detail its capabilities in Chapter 9.

Data Center
What truly is a data center has blurred in recent times. The traditional concept of a
data center is a physical location that contains servers that provide services to clients.
The data center does not contain client hosts (a few machines here and there to ad-
minister the servers don’t count), or clear bounds of ingress and egress to the network.
Ingress points may be Internet or WAN connections, but each type of ingress point
requires different levels of security.

The new data center of today seems to be any network that contains services, and these
networks may even span multiple physical locations. In the past, a data center and its
tiers were limited to a single physical location because there were some underlying
technologies that were hard to stretch. But today it’s much easier to provide the same
Layer 2 network across two or more physical locations, thus expanding the possibilities
of creating a data center. With the popularization of MPLS and virtual private LAN
service (VPLS) technologies, data centers can be built in new and creative ways.

The traditional data center design consists of a two- or three-tier switching model.
Figure 1-4 shows both a two-tier and a three-tier switching design. Both are funda-
mentally the same, except that between the two is the addition of the aggregation
switching tier. The aggregation tier compensates for the lack of port density at the core
(only in the largest switched networks should a distribution tier be required).

Note that the edge tier is unchanged in both models. This is where the servers connect
into the network, and the number of edge switches (and their configuration) is driven
by the density of the servers. Most progressively designed data centers are using virtu-
alization technologies which allow multiple servers to run on the same bit of hardware,
reducing the overall footprint, energy consumption, and rack space.

Neither this book nor this chapter is designed to be a comprehensive primer on data
centers. Design considerations for a data center are enormous and can easily comprise
several volumes of text. The point here is to give a little familiarity to the next few
deployment scenarios and to show how the various SRX Series platforms scale to the
needs of those deployments.

Data Center Edge
As discussed in the previous section, a data center needs to have an ingress point to
allow clients to access the data center’s services. The most common service is ingress
Internet traffic, and as you can imagine, the ingress point is a very important area to
secure. This area needs to allow access to the servers, yet in a limited and secure fashion,

10 | Chapter 1: Introduction to the SRX

and because the data center services are typically high-profile, they may be the target
of denial-of-service (DoS), distributed denial-of-service (DDoS), and botnet attacks. It
is a fact of network life that must be taken into consideration when building a data
center network.

An SRX Series product deployed at the edge of the network must handle all of these
tasks, as well as handle the transactional load of the servers. Most connections into
applications for a data center are quick to be created and torn down, and during the
connection, only a small amount of data is sent. An example of this is accessing a web
application. Many small components are actually delivered to the web browser on the
client, and most of them are delivered asynchronously, so the components may not be
returned in the order they were accessed. This leads to many small data exchanges or
transactions, which differs greatly from the model of large continual streams of data
transfer.

Figure 1-5 illustrates where the SRX Series would be deployed in our example topology.
The products of choice are the Juniper Networks SRX3000 line, because they can meet
the needs identified in the preceding paragraph. Figure 1-5 might look familiar to you
as it is part of what we discussed regarding the data center tier in Figure 1-4. The data
center is modeled after that two-tier design, with the edge being placed at the top of

Figure 1-4. Two- and three-tier switching design

Deployment Solutions | 11

the diagram. The SRX3000 line of products do not have WAN interfaces, so upstream
routers are used. The WAN routers consolidate the various network connections and
then connect to the SRX3000 products. For connecting into the data center itself, the
SRX3000 line uses its 10-gigabit Ethernet to connect to the data center core and WAN
routers.

A data center relies on availability—all systems must be deployed to ensure that there
is no single point of failure. This includes the SRX Series. The SRX3000 line provides
a robust set of HA features. In Figure 1-5, both SRX3000 line products are deployed in
what is traditionally called an active/active deployment. This means both firewalls can
pass traffic simultaneously. When a product in the SRX3000 line operates in a cluster,

Figure 1-5. The data center edge with the SRX3000 line

12 | Chapter 1: Introduction to the SRX

the two boxes operate as though they are one unit. This simplifies HA deployment
because management operations are reduced. Also, traffic can enter and exit any port
on either chassis. This model is flexible compared to the traditional model of forcing
traffic to only go through an active member.

Data Center Services Tier
The data center core is the network’s epicenter for all server communications, and most
connections in a data center flow through it. A firewall at the data center core needs to
maintain many concurrent sessions. Although servers may maintain long-lived con-
nections, they are more likely to have connectivity bursts that last a short period of
time. This, coupled with the density of running systems, increases the required number
of concurrent connections, but at the rate of new connections per second. If a firewall
fails to create sessions quickly enough, or falls behind in allowing the creation of new
sessions, transactions are lost.

For this example, the Juniper Networks SRX5800 Services Gateway is a platform that
can meet these needs. The SRX5800 is the largest member of the SRX5000 line, and is
well suited for the data center environment. It can meet the scaling needs of today as
well as those of tomorrow. Placing a firewall inside the data center core is always chal-
lenging, and typically the overall needs of the data center dictate the placement of the
firewall. However, there is a perfect location for the deployment of our SRX5800, as
shown in Figure 1-6, which builds upon the example shown as part of the two-tier data
center in Figure 1-4.

This location in the data center network is called the services tier, and it is where services
are provided to the data center servers on the network traffic. This includes services
provided by the SRX5800, such as stateful firewalling, IPS, Application Denial of
Service (AppDoS) prevention, and server load balancing. This allows the creation of a
pool of resources that can be shared among the various servers. It is also possible to
deploy multiple firewalls and distribute the load across all of them, but that increases
complexity and management costs. The trend over the past five years has been to move
toward consolidation for all the financial and managerial reasons you can imagine.

Deployment Solutions | 13

In the data center core, AppDoS and IPS are two key services to include in the data
center services tier design. The AppDoS feature allows the SRX5800 to look for attack
patterns unlike other security products. AppDoS looks for DoS and DDoS patterns
against a server, the application context (such as the URL), and connection rates from
individual clients. By combining and triangulating the knowledge of these three items,
the newer style of botnet attacks can finally be stopped.

A separate SRX Series specialty is IPS. The IPS feature differs from AppDoS as it looks
for specific attacks through the streams of data. When an attack is identified, it’s pos-
sible to block, log, or ignore the threat. Since all of the connections to the critical servers
will pass through the SRX5800, adding the additional protection of the IPS technology
provides a great deal of value, not to mention additional security for the services tier.

Figure 1-6. An SRX5800 in the data center core

14 | Chapter 1: Introduction to the SRX

Service Provider
Although most administrators are more likely to use the services of a service provider
than they are to run one, looking at the use case of a service provider can be quite
interesting. Providing connectivity to millions of hosts in a highly available and scalable
method is an extremely tough proposition. Accomplishing this task requires a Hercu-
lean effort of thousands of people. Extending a service provider network to include
stateful security is just as difficult. Traditionally, a service provider processes traffic in
a stateless manner, meaning that each packet is treated independently of any other.
Although scaling stateless packet processing isn’t inexpensive, or simple by any means,
it does require less computing power than stateful processing.

In a stateful processing device, each packet is matched as part of a new or existing flow.
Each packet must be processed to ensure that it is part of an existing session, or a new
session must be created. All of the fields of each packet must be validated to ensure
that they correctly match the values of the existing flow. For example, in TCP, this
would include TCP sequencing numbers and TCP session state. Scaling a device to do
this is, well, extremely challenging.

A firewall can be placed in many locations in a service provider’s network. Here we’ll
discuss two specific examples: in the first the firewall provides a managed service, and
in the second the service provider protects its own services.

Starting with the managed service provider (MSP) environment, Figure 1-7 shows a
common MSP deployment. On the left, several customers are shown, and depending
on the service provider environment, this may be several dozen to several thousand (for
the purposes of explanation only a handful are needed). The connections from these
customers are aggregated to a Layer 2 and Layer 3 routing switch, in this case a Juniper
Networks MX960 3D Universal Edge Router. Then the MX Series router connects to
an SRX5800. The SRX5800 is logically broken down into smaller firewalls for each
customer so that each customer gains the services of a firewall while the provider con-
solidates all of these “devices” into a single hardware unit. The service provider can
minimize its operational costs and maximize the density of customers on a single device.

Our second scenario for service providers involves protecting the services that they
provide. Although a service provider provides access to other networks, such as the
Internet, it also has its own hosted services. These include, but are not limited to,
Domain Name System (DNS), email, and web hosting. Because these services are pub-
lic, it’s important for the service provider to ensure their availability, as any lack of
availability can become a front-page story or at least cause a flurry of angry customers.
For these services, firewalls are typically deployed, as shown in our example topology
in Figure 1-8.

Deployment Solutions | 15

Figure 1-7. MSP SRX5800 deployment

Several attack vectors are available to service providers’ public services, including DoS,
DDoS, and service exploits. They are all the critical types of attacks that the provider
needs to be aware of and defend. The data center SRX products can protect against
both DDoS and the traditional DoS attack. In the case of a traditional DoS attack, the
screen feature can be utilized.

A screen is a mechanism that is used to stop more simplistic attacks such as SYN and
UDP floods (note that although these types of attacks are “simple” in nature, they can
quickly overrun a server or even a firewall). Screens allow the administrator of an SRX
Series product to set up specific thresholds for TCP and UDP sessions. Once these
thresholds have been exceeded, protection mechanisms are enacted to minimize the
threat of these attacks. We will discuss the screen feature in detail in Chapter 6.

Mobile Carriers
The phones of today are more than the computers of yesterday; they are fully fledged
modern computers in a hand-held format, and almost all of a person’s daily tasks can
be performed through them. Although a small screen doesn’t lend itself to managing
1,000-line spreadsheets, the devices can easily handle the job of sharing information

16 | Chapter 1: Introduction to the SRX

through email or web browsing. More and more people who would typically not use
the Internet are now accessing the Internet through these mobile devices, which means
that access to the public network is advancing in staggering demographic numbers.

This explosion of usage has brought a new challenge to mobile operators: how to pro-
vide a resilient data network to every person in the world. Such a mobile network, when
broken down into smaller, easy-to-manage areas, provides a perfect example of how
an SRX Series firewall can be utilized to secure such a network.

For mobile carrier networks, an SRX5800 is the right choice, for a few specific reasons:
its high session capacity and its high connections-per-second rate. In the network lo-
cations where this device is placed, connection rates can quickly vary from a few thou-
sand to several hundred thousand. A quick flood of new emails or everyone scrambling
to see a breaking news event can strain any well-designed network. And as mentioned
in the preceding service provider example, it’s difficult to provide firewall services in a
carrier network.

Figure 1-8. Service provider public services

Deployment Solutions | 17

Figure 1-9 shows a simplified example of a mobile operator network. It’s simplified in
order to focus more on the firewalls and less on the many layers of the wireless carrier’s
network. For the purposes of this discussion, the way in which IP traffic is tunneled to
the firewalls isn’t relevant.

In Figure 1-9, the handsets are depicted on the far left, and their radio connections, or
cell connections, are terminated into the provider’s network. Then, at the edge of the
provider’s network, when the actual data requests are terminated, the IP-based packet
is ready for transport to the Internet, or to the provider’s services.

An SRX5800 at the location depicted in Figure 1-9 is designed to protect the carrier’s
network, ensuring that its infrastructure is secure. By protecting the network, it ensures
that its availability and the service that customers spend money on each month con-
tinues. If the protection of the handsets is the responsibility of the handset provider in
conjunction with the carrier, the same goes for the cellular or 3G Internet services that
can be utilized by consumers using cellular or 3G modems. These devices allow users
to access the Internet directly from anywhere in a carrier’s wireless coverage network
—these computers need to employ personal firewalls for the best possible protection.

For any service provider, mobile carriers included, the provided services need to be
available to the consumers. As shown in Figure 1-9, the SRX5800 devices are deployed
in a highly available design. If one SRX5800 experiences a hardware failure, the second
SRX5800 can completely take over for the primary. Of course, this failover is trans-
parent to the end user for uninterrupted service and network uptime that reaches to
the five, six, or even seven 9s, or 99.99999% of the time. As competitive as the mobile
market is these days, the mobile carrier’s networks need to be a competitive advantage.

Figure 1-9. The SRX5800 in a mobile carrier network

18 | Chapter 1: Introduction to the SRX

Cloud Networks
It seems like cloud computing is on everyone’s mind today. The idea of providing any
service to anyone at any time to any scale with complete resilience is a dream that is
becoming a reality for many organizations. Both cloud computing vendors and large
enterprises are providing their own private clouds.

Although each cloud network has its own specific design needs, the SRX Series can and
should play an important role.

That’s because a cloud network must scale in many directions to really be a cloud. It
must scale in the number of running operating systems it can provide. It must scale in
the number of physical servers that can run these operating systems. And it must scale
in the available number of networking ports that the network provides to the servers.
The SRX Series must be able to scale to secure all of this traffic, and in some cases, it
must be able to be bypassed for other services. Figure 1-10 depicts this scale in a sample
cloud network that is meant to merely show the various components and how they
might scale.

Figure 1-10. Cloud computing scaling

The logical items are easier to scale than the physical items, meaning it’s easy to make
10 copies of an operating system run congruently, since they are easily instantiated, but
the challenge is in ensuring that enough processing power can be provided by the servers
since they are a physical entity and it takes time to get more of them installed. The same
goes for the network. A network in a cloud environment will be divided into many
virtual LANs (VLANs) and many routing domains. It is simple to provide more VLANs

Deployment Solutions | 19

in the network, but it is hard to ensure that the network has the capacity to handle the
needs of the servers. The same goes for the SRX Series firewalls.

For the SRX Series in particular, the needs of the cloud computing environment must
be well planned. As we discussed in regard to service providers, the demands of a
stateful device are enormous when processing large amounts of traffic. Since the SRX
Series device is one of the few stateful devices in the cloud network, it needs to be
deployed to scale. As Figure 1-10 shows, the SRX5800 is chosen for this environment
because it can be deployed in many different configurations based on the needs of the
deployment. (The scaling capabilities of the SRX5800 are discussed in detail in
“SRX5000” on page 61.)

Because of the dynamic nature of cloud computing, infrastructure provisioning of
services must be done seamlessly. This goes for every component in the network, in-
cluding the servers, the network, and the firewalls. Juniper Networks provides several
options for managing all of its devices, as shown in Figure 1-11, which illustrates the
management paradigm for the devices.

Figure 1-11. Juniper Networks management paradigm

Just as the provisioning model scales for the needs of any organization, so does the
cloud computing model. On the far left, direct hands-on or user device management
is shown. This is the device management done by an administrator through the CLI or
web management system (J-Web). The next example is the command of the device by
way of its native API (either Junos automation or NETCONF, both of which we will
discuss in Chapter 2), where either a client or a script would need to act as the controller
that would use the API to provision the device.

20 | Chapter 1: Introduction to the SRX

The remaining management examples are similar to the first two examples of the pro-
visioning model, except they utilize a central management console provided by Juniper
Networks. Model three shows a user interacting with the default client provided by the
Juniper Networks Network and Security Manager (NSM) or Junos Space. In this case,
the NSM uses the native API to talk to the devices.

Lastly, in management option six is the most layered and scalable approach. It shows
a custom-written application controlling the NSM directly with its own API, and then
controlling the devices with its own API.

Although this approach seems highly layered, it provides many advantages in an envi-
ronment where scaling is required. First, it allows for the creation of a custom appli-
cation to provide network-wide provisioning in a case where a single management
product is not available to manage all of the devices on the network. Second, the native
Juniper application is developed specifically around the Juniper devices, thus taking
advantage of the inherent health checks and services without having to integrate them.

The Junos Enterprise Services Reference Network
To simplify the SRX Series learning process, this book consistently uses a single
topology which contains a number of SRX Series devices and covers all of the scenarios,
many of the tutorials, and all of the case studies in the book. A single reference network
allows the reader to follow along and only have to reference one network map.

This book’s reference network is primarily focused on branch topologies
since the majority of readers have access to those units. For readers who
are interested in or are using the data center SRX products, these are
discussed as well, but the larger devices are not the focus for most of the
scenarios. Where differences exist, they will be noted.

Figure 1-12 shows this book’s reference network. The network consists of three branch
deployments, two data center firewall deployments, and remote VPN users. Five of the
topologies represent HA clusters with only a single location that specifies a non-HA
deployment. The Internet is the network that provides connectivity between all of the
SRX Series deployments. Although the reference network is not the perfect “real-world”
network, it does provide the perfect topology to cover all of the features in the SRX
Series.

Although three of the locations are called branches, they could also rep-
resent standalone offices without a relationship to any other location.

Deployment Solutions | 21

Figure 1-12. Reference network

22 | Chapter 1: Introduction to the SRX

The first location to review is the South Branch location. The South Branch location is
a typical small branch, utilizing a single SRX210 device. This device is a small, low-cost
appliance that can provide a wide range of features for a location with 2 to 10 users and
perhaps a wireless access point, as shown in the close-up view in Figure 1-13. The
remote users at this location can access both the Internet and other locations over an
IPsec VPN connection. Security is provided by using a combination of stateful fire-
walling, IPS, and UTM. The hosts on the branch network can talk to each other over
the local switch on the SRX210 or over the optional wireless AX411 access point.

The West Branch, shown in Figure 1-14, is a larger remote branch location. The West
Branch location utilizes two SRX240 firewalls. These firewalls are larger in capacity
than the SRX210 devices in terms of ports, throughput, and concurrent sessions. They
are designed for a network with more than 10 users or where greater throughputs are
needed. Because this branch has more local users, HA is required to prevent loss of
productivity due to loss of access to the Internet or the corporate network.

Figure 1-13. South Branch reference network

Figure 1-14. West Branch reference network

The East Branch location uses the largest branch firewall, the SRX650. This deployment
represents both a large branch and a typical office environment where support for
hundreds of users and several gigabits per second of throughput is needed. The detailed
view of the East Branch is shown in Figure 1-15. This deployment, much like that of
the West Branch, utilizes HA. Just as with the other branch SRX Series devices, the
SRX650 devices can also use IPS, UTM, stateful firewalling, NAT, and many other

Deployment Solutions | 23

security features. The SRX650 provides the highest possible throughput for these fea-
tures compared to any other branch product line.

Deployment of the campus core firewalls of our reference network will be our first
exploration into the high-end or data center SRX Series devices. These are the largest
firewalls of the Juniper Networks firewall product line (at the time of this book’s pub-
lication). The deployment uses SRX5800 products, and more than 98% of the data
center SRX Series firewalls sold are deployed in a highly available deployment, as rep-
resented here. These firewalls secure the largest network in the reference design, and
Figure 1-16 illustrates a detailed view of the campus core.

Figure 1-16. Campus core detailed view

Figure 1-15. East Branch reference network

24 | Chapter 1: Introduction to the SRX

Our campus core example network shows three networks; in a “real-world” deploy-
ment this could be hundreds or thousands of networks, but to show the fundamentals
of the design and to fit on the printed page, only three are used: Department-A, De-
partment-B, and the Internal Servers networks. These are separated by the SRX5800
HA cluster. Each network has a simple switch to allow multiple hosts to talk to each
other. Off the campus core firewalls is a DMZ or demilitarized zone SRX Series firewall
cluster, as shown in Figure 1-17.

The DMZ SRX Series devices’ firewall deployment uses an SRX3600 firewall cluster.
The SRX3600 firewalls are perfect for providing interface density with high capacity
and performance. In the DMZ network, several important servers are deployed. These
servers provide critical services to the network and need to be secured to ensure service
continuity.

Figure 1-17. DMZ firewalls detailed view

This DMZ deployment is unique compared to the other network deployments because
it is the only one that highlights transparent mode deployment, which allows the firewall
to act as a bridge. Instead of routing packets like a Layer 3 firewall would, it routes
packets to a destination host using its Media Access Control (MAC) address. This
allows the firewall to act as a transparent device, hence the term.

Finally, you might note that the remote VPN users are an example use case of two
different types of IPsec access to the SRX Series firewalls. The first is the dynamic VPN
client, which is a dynamically downloaded client that allows client VPN access into the
branch networks. The second client type highlighted is a third-party client, which is
not provided by Juniper but is recommended when a customer wants to utilize a stand-
alone software client. We will cover both use cases in Chapter 5.

Deployment Solutions | 25

The reference network contains the most common deployments for the SRX Series
products, allowing you to see the full breadth of topologies within which the SRX Series
is deployed. The depicted topologies show all the features of the SRX Series in ways in
which actual customers use the products. The authors of this book intend for real
administrators to sit down and understand how the SRX Series is used and learn how
to configure it. We have seen the majority of SRX Series deployments in the world and
boiled them down to our reference network.

SRX Series Product Lines
So far, this chapter has focused on SRX Series examples and concepts more than any-
thing, and hopefully this approach has allowed you to readily identify the SRX Series
products and their typical uses. For the remainder of the chapter, we will take a deep
dive into the products so that you can link the specific features of each to a realistic
view of its capabilities. We will begin with what is common to the entire SRX Series,
and then, as before, we’ll divide the product line into branch and data center categories.

Before the deep dive into each SRX Series product, we must note that each SRX Series
platform has a core set of features that are shared across the other platforms. And some
of the platforms have different features that are not shared. This might lead to some
confusion, because feature parity is not the same across all of the platforms, but the
two product lines were designed with different purposes and the underlying architec-
tures vary between the branch and the data center.

The branch SRX Series was designed for small and wide needs, meaning that the devices
offer a wide set of features that can solve a variety of problems. This does not mean
performance is poor, but rather that the products provide a lot of features.

The data center SRX Series was designed for scale and speed. This means these firewalls
can scale from a smaller deployment up to huge performance numbers, all while keep-
ing performance metrics to scale linearly. So, when configuring the modular data center
SRX Series device, the designer is able to easily determine how much hardware is re-
quired. Over time, product-line-specific features are likely to merge between the two
platforms, as shown in Figure 1-18, which is a diagram of that merging model.

Figure 1-18. SRX Series feature merging model

26 | Chapter 1: Introduction to the SRX

Branch SRX Series
The majority of SRX Series firewalls sold and deployed are from within the branch SRX
Series, designed primarily for average firewall deployment. A branch SRX Series prod-
uct can be identified by its three-digit product number. The first digit represents the
series and the last two digits specify the specific model number. The number is used
simply to identify the product, and doesn’t represent performance or the number of
ports, or have any other special meaning.

When a branch product is deployed in a small office, as either a remote office location
or a company’s main firewall, it needs to provide many different features to secure the
network and its users. This means it has to be a jack-of-all-trades, and in many cases,
it is an organization’s sole source of security.

Branch-Specific Features
Minimizing the number of pieces of network equipment is important in a remote or
small office location, as that reduces the need to maintain several different types of
equipment, their troubleshooting, and of course, their cost. One key to all of this con-
solidation is the network switch, and all of the branch SRX Series products provide full
switching support. This includes support for spanning tree and line rate blind switch-
ing. Table 1-2 is a matrix of the possible number of supported interfaces per platform.

Table 1-2. Branch port matrix

 SRX100 SRX210 SRX240 SRX650

10/100 8 6 0 0

10/100/1000 0 2 20 52

10/100/1000 PoE 0 4 16 48

As of Junos 10.2, the data center SRX Series firewalls do not support
blind switching. Although the goal is to provide this feature in the future,
it is more cost-effective to utilize a Juniper Networks EX Series Ethernet
Switch to provide line rate switching and then create an aggregate link
back to a data center SRX Series product to provide secure routing be-
tween VLANs. In the future, Juniper may add this feature to its data
center SRX Series products.

In most branch locations, SRX Series products are deployed as the only source of se-
curity. Because of this, some of the services that are typically distributed can be con-
solidated into the SRX, such as antivirus. Antivirus is a feature that the branch SRX
Series can offer to its local network when applied to the following protocols: Simple
Mail Transfer Protocol (SMTP), Post Office Protocol 3 (POP3), Internet Message Ac-
cess Protocol (IMAP), Hyper Text Transfer Protocol (HTTP), and File Transfer

Branch SRX Series | 27

Protocol (FTP). The SRX Series scans for viruses silently as the data is passed through
the network, allowing it to stop viruses on the protocols where viruses are most com-
monly found.

The data center SRX Series does not support the antivirus feature as of
Junos 10.2. In organizations that deploy a data center SRX Series prod-
uct, the antivirus feature set is typically decentralized for increased
security as well as enabling antivirus scanning while maintaining the
required performance for a data center. A bigger focus for security is
utilizing IPS to secure connections into servers in a data center. This is
a more common requirement than antivirus. The IPS feature is suppor-
ted on both the high-end and branch SRX Series product lines.

Antispam is another UTM feature set that aids in consolidation of services on the
branch SRX Series. Today it’s reported that almost 95% of the email in the world is
spam. And this affects productivity. In addition, although some messages are harmless,
offering general-use products, others contain vulgar images, sexual overtures, or illicit
offers. These messages can be offensive, a general nuisance, and a distraction.

The antispam technology included on the SRX Series can prevent such spam from being
received, and it removes the need to use antispam software on another server.

Much like antivirus, the data center SRX Series does not provide anti-
spam services. In data center locations where mail services are intended
for thousands of users, a larger solution is needed, one that is distributed
on mail proxies or on the mail servers.

Controlling access to what a user can or can’t see on the Internet is called universal
resource locator (URL) filtering. URL filtering allows the administrator to limit what
categories of websites can be accessed. Sites that contain pornographic material may
seem like the most logical to block, but other types of sites are common too, such as
social networking sites that can be time sinks for employees. There are also a class of
sites that company policy blocks or temporarily allows access to—for instance, during
lunch hour. In any case, all of this is possible on the branch SRX Series products.

For the data center SRX Series product line, URL filtering is not currently
integrated. In many large data centers where servers are protected, URL
filtering is not needed or is delegated to other products.

Because branch tends to mean small locations all over the world, these branches typi-
cally require access to the local LAN for desktop maintenance or to securely access
other resources. To provide a low-cost and effective solution, Juniper has introduced
the dynamic VPN client. This IPsec client allows for dynamic access to the branch

28 | Chapter 1: Introduction to the SRX

without any preinstalled software on the client station, a very helpful feature to have
in the branch so that remote access is simple to set up and requires very little
maintenance.

Dynamic VPN is not available on the data center SRX devices. Juniper
Networks recommends the use of its SA Series SSL VPN Appliances,
allowing for the scaling of tens of thousands of users while providing a
rich set of features that go beyond just network access.

When the need for cost-saving consolidation is strong in certain branch scenarios,
adding wireless, both cellular and WiFi, can provide interesting challenges. Part of the
challenge concerns consolidating these capabilities into a device while not providing
radio frequency (RF) interference; the other part concerns providing a device that can
be centrally placed and still receive or send enough wireless power to provide value.

All electronic devices give off some sort of RF interference, and all electronic devices
state this clearly on their packaging and/or labels. Although this may be minor inter-
ference in the big scheme of things, it can also be extremely detrimental to wireless
technologies such as cellular Internet access or WiFi—therefore, extreme care is re-
quired when integrating these features into any product. Some of the branch SRX Series
products have the capability to attach a cellular Internet card or USB dongle directly
to them, which can make sense in some small branch locations because typically, cel-
lular signals are fairly strong throughout most buildings.

But what if the device is placed in the basement where it’s not very effective at receiving
these cellular signals? Because of this and other office scenarios, Juniper Networks
provides a product that can be placed anywhere and is both powered and managed by
the SRX Series: the Juniper Networks CX111 Cellular Broadband Data Bridge and
CX411 Cellular Broadband Data Bridge.

The same challenge carries over for WiFi. If an SRX Series product is placed in a back
room or basement, an integrated WiFi access point may not be very relevant, so Juniper
took the same approach and provides an external access point (AP) called the AX411
Wireless LAN Access Point. This AP is managed and powered by any of the branch
SRX Series products.

As you might guess, although the wireless features are very compelling
for the branch, they aren’t very useful in a data center. Juniper has ab-
stained from bringing wireless features to the data center SRX Series
products, but because the two products contain the same codebase, it’s
easy to port the feature to the data center SRX Series if the relevance for
the feature makes its case.

Branch SRX Series | 29

The first Junos products for the enterprise market were the Juniper Networks J Series
Services Routers and the first iteration of the J Series was a packet-based device. This
means the device acts on each packet individually without any concern for the next
packet—typical of how a traditional router operates. Over time, Juniper moved the
J Series products toward the capabilities of a flow-based device, and this is where the
SRX Series devices evolved from.

Although a flow-based device has many merits, it’s unwise to move away from being
able to provide packet services, so the SRX Series can run in packet mode as well as
flow. It’s even possible to run both modes simultaneously! This allows the SRX Series
to act as traditional packet-based routers and to run advanced services such as MPLS.

MPLS as a technology is not new—carrier networks have been using it for years. Many
enterprise networks have used MPLS, but typically it has been done transparently to
the enterprise. Now, with the SRX Series, the enterprise has a low-cost solution, so it
can create its own MPLS network, bringing the power back to the enterprise from the
service providers, and saving money on MPLS as a managed service. On the flip side,
it allows the service providers to offer a low-cost service that can provide security and
MPLS in a single platform.

The last feature common to the branch SRX Series products is their ability to utilize
many types of WAN interfaces. We will detail these interface types as we drill down
into each SRX Series platform.

The data center SRX Series products, as of Junos 10.2, only utilize
Ethernet interfaces. These are the most common interfaces used in the
locations where these products are deployed, and where a data center
SRX Series product is deployed they are typically paired with a Juniper
Networks MX Series 3D Universal Edge Router, which can provide
WAN interfaces.

SRX100
The SRX100, as of Junos 10.2, is the only product in the SRX100 line (if you remember
from the SRX numbering scheme, the 1 is the series number and the 00 is the product
number inside that series). The SRX100 Services Gateway is shown in Figure 1-19, and
it is a fixed form factor, meaning no additional modules or changes can be made to the
product after it is purchased. As you can see in the figure, the SRX100 has a total of
eight 10/100 Ethernet ports, and perhaps more difficult to see, but clearly onboard, are
a serial console port and a USB port.

The eight Ethernet ports can be configured in many different ways. They may be con-
figured in the traditional manner, in which each port has a single IP address, or they
can be configured in any combination as an Ethernet switch. The same switching ca-
pabilities of the EX Series switches have been combined into the SRX100 so that the
SRX100 not only supports line rate blind switching but also supports several variants

30 | Chapter 1: Introduction to the SRX

of the spanning tree protocols; therefore, if the network is expanded in the future, an
errant configuration won’t lead to a network loop. The SRX100 can also provide a
default gateway on its local switch by using a VLAN interface, as well as a Dynamic
Host Configuration Protocol (DHCP) server.

Although the SRX100 is a small, desktop-sized device, it’s also a high-performing plat-
form. It certainly stands out by providing up to 650 Mbps of throughput. This may
seem like an exorbitant amount of throughput for a branch platform, but it’s warranted
where security is needed between two local network devices. For such a WAN con-
nection, 650 Mbps is far more than what would be needed in a location that would use
this type of device, but small offices have a way of growing.

Speaking of performance, the SRX100 supports high rates of VPN, IPS, and antivirus
as well if the need to use these features arises in locations where the SRX100 is deployed.
The SRX100 also supports a session ramp-up rate of 2,000 new connections per second
(CPS), or the number of new TCP-based sessions that can be created per second. UDP
sessions are also supported, but this new-session-per-second metric is rated with TCP
since it takes three times the number of packets per second to process than it would
UDP to set up a session (see Table 1-3).

Table 1-3. SRX100 capacities

Type Capacity

CPS 2,000

Maximum firewall throughput 650 Mbps

Maximum IPS throughput 60 Mbps

Maximum VPN throughput 65 Mbps

Maximum antivirus throughput 25 Mbps

Maximum concurrent sessions 16K (512 MB of RAM) 32K (1 GB of RAM)

Maximum firewall policies 384

Maximum concurrent users Unlimited

Figure 1-19. The SRX100

Branch SRX Series | 31

Although 2,000 new connections per second seems like overkill, it isn’t. Many appli-
cations today are written in such a way that they may attempt to grab 100 or more data
streams simultaneously. If the local firewall device is unable to handle this rate of new
connections, these applications may fail to complete their transactions, leading to user
complaints and, ultimately, the cost or loss of time in troubleshooting the network.

Also, because users may require many concurrent sessions, the SRX100 can support
up to 32,000 sessions. A session is a current connection that is monitored between two
peers, and can be of the more common protocols of TCP and UDP, or of other protocols
such as Encapsulating Security Payload (ESP) or Generic Route Encapsulation (GRE).

The SRX100 has two separate memory options: low-memory and high-memory ver-
sions. They don’t require a change of hardware, but simply the addition of a license
key to activate access to the additional memory. The base memory version uses 512
MB of memory and the high-memory version uses 1 GB of memory. When the license
key is added, and after a reboot, the new SRX Series flow daemon is brought online.
The new flow daemon is designed to access the entire 1 GB of memory.

Activating the 1 GB of memory does more than just enable twice the number of sessions;
it is required to utilize UTM. If any of the UTM features are activated, the total number
of sessions are cut back to the number of low-memory sessions. Reducing the number
of sessions allows the UTM processes to run. The administrator can choose whether
sessions or the UTM features are the more important option.

The SRX100 can be placed in one of four different options. The default placement is
on any flat surface. The other three require additional hardware to be ordered: vertically
on a desktop, in a network equipment rack, or mounted on a wall. The wall mount kit
can accommodate a single SRX100, and the rack mount kit can accommodate up to
two SRX100 units in a single rack unit.

SRX200
The SRX200 line is the next step up in the branch SRX Series. The goal of the SRX200
line is to provide modular solutions to branch environments. This modularity comes
through the use of various interface modules that allow the SRX200 line to connect to
a variety of media types such as T1. Furthermore, the modules can be shared among
all of the devices in the line.

The first device in the line is the SRX210. It is similar to the SRX100, except that it has
additional expansion capabilities and extended throughput. The SRX210 has eight
Ethernet ports, like the SRX100 does, but it also includes two 10/100/100 tri-speed
Ethernet ports, allowing high-speed devices such as switches or servers to be connected.
In addition, the SRX210 can be optionally ordered with built-in PoE ports. If this option
is selected, the first four ports on the device can provide up to 15.4W of power to
devices, be they VoIP phones or Juniper’s AX and CX wireless devices.

32 | Chapter 1: Introduction to the SRX

Figure 1-20 shows the SRX210. Note in the top right the large slot where the mini-PIM
is inserted. The front panel includes the eight Ethernet ports. Similar to the SRX100,
the SRX210 includes a serial console port and, in this case, two USB ports. The eight
Ethernet ports can be used (just like the SRX100) to provide line rate blind switching
and/or a traditional Layer 3 interface.

The rear of the box contains a surprise. In the rear left, as depicted in Figure 1-21, an
express card slot is shown. This express card slot can utilize 3G or cellular modem cards
to provide access to the Internet, which is useful for dial backup or the new concept of
a zero-day branch. In the past, when an organization wanted to roll out branches rap-
idly, it required the provisioning of a private circuit or a form of Internet access. It may
take weeks or months to get this service installed. With the use of a 3G card, a branch
can be installed the same day, allowing organizations and operations to move quickly
to reach new markets or emergency locations. Once a permanent circuit is deployed,
the 3G card can be used for dial backup or moved to a new location.

Figure 1-20. The front of the SRX210

Figure 1-21. The back of the SRX210

The performance of the SRX210 is within the range of the SRX100, but it is a higher
level of performance than the SRX100 across all of its various capabilities. As you can
see in Table 1-4, the overall throughput increased from 650 Mbps on the SRX100 to

Branch SRX Series | 33

750 Mbps on the SRX210. The same goes for the IPS, VPN, and antivirus throughputs.
They each increased by about 10% over the SRX100. A significant change is the fact
that the total number of sessions doubles, for both the low-memory and high-memory
versions. That is a significant advantage in addition to the modularity of the platform.

Table 1-4. SRX210 capacities

Type Capacity

CPS 2,000

Maximum firewall throughput 750 Mbps

Maximum IPS throughput 80 Mbps

Maximum VPN throughput 75 Mbps

Maximum antivirus throughput 30 Mbps

Maximum concurrent sessions 32K (512 MB of RAM) 64K (1 GB of RAM)

Maximum firewall policies 512

Maximum concurrent users Unlimited

The SRX210 consists of three hardware models: the base memory model, the high-
memory model, and the PoE with high-memory model (it isn’t possible to purchase a
base memory model and PoE). Unlike the SRX100, the memory models are actually
fixed and cannot be upgraded with a license key, so when planning for a rollout with
the SRX210, it’s best to plan ahead in terms of what you think the device will need.
The SRX210 also has a few hardware accessories: it can be ordered with a desktop
stand, a rack mount kit, or a wall mount kit. The rack mount kit can accommodate
one SRX210 in a single rack unit.

The SRX240 is the first departure from the small desktop form factor, as it is designed
to be mounted in a single rack unit. It also can be placed on the top of a desk and is
about the size of a pizza box. The SRX240, unlike the other members of the SRX200
line, includes sixteen 10/100/1000 Ethernet ports, but like the other two platforms,
line rate switching can be achieved between all of the ports that are configured in the
same VLAN. It’s also possible to configure interfaces as a standard Layer 3 interface,
and each interface can also contain multiple subinterfaces. Each subinterface is on its
own separate VLAN. This is a capability that is shared across all of the SRX product
lines, but it’s typically used on the SRX240 since the SRX240 is deployed on larger
networks.

Figure 1-22 shows the SRX240, and you should be able to see the sixteen 10/100/1000
Ethernet ports across the bottom front of the device. There’s the standard fare of one
serial console port and two USB ports, and on the top of the front panel of the SRX240
are the four mini-PIM slots. These slots can be used for any combination of supported
mini-PIM cards.

34 | Chapter 1: Introduction to the SRX

The performance of the SRX240 is double that of the other platforms. It’s designed for
mid-range to large branch location and can handle more than eight times the connec-
tions per second, for up to 9,000 CPS. Not only is this good for outbound traffic, but
it is also great for hosting small to medium-size services behind the device—including
web, DNS, and email services, which are typical services for a branch network. The
throughput for the device is enough for a small network, as it can secure more than
1 gigabit per second of traffic. This actually allows several servers to sit behind it and
for the traffic to them from both the internal and external networks to be secured. The
device can also provide for some high IPS throughput, which is great for inspecting
traffic as it goes through the device from untrusted hosts.

Again, Table 1-5 shows that the total number of sessions on the device has doubled
from the lower models. The maximum rate of 128,000 sessions is considerably large
for most networks. Just as you saw on the SRX210, the SRX240 provides three different
hardware models: the base memory model that includes 512 MB of memory (it’s unable
to run UTM and runs with half the number of sessions); the high-memory version which
has twice the amount of memory on the device (it’s able to run UTM with an additional
license); and the high-memory with PoE model that can provide PoE to all 16 of its
built-in Ethernet ports.

Table 1-5. SRX240 capacities

Type Capacity

CPS 9,000

Maximum firewall throughput 1.5 Gbps

Maximum IPS throughput 250 Mbps

Maximum VPN throughput 250 Mbps

Maximum antivirus throughput 85 Mbps

Maximum concurrent sessions 64K (512 MB of RAM) 128K (1 GB of RAM)

Maximum firewall policies 4,096

Maximum concurrent users Unlimited

Figure 1-22. The SRX240

Branch SRX Series | 35

Interface modules for the SRX200 line

The SRX200 Series Services Gateways currently support six different types of mini-
PIMs, as shown in Table 1-6. On the SRX240 these can be mixed and matched to
support any combination that the administrator chooses, offering great flexibility if
there is a need to have several different types of WAN interfaces. The administrator
can also add up to a total of four SFP mini-PIM modules on the SRX240, giving it a
total of 20 gigabit Ethernet ports. The SFP ports can be either a fiber optic connection
or a copper twisted pair link. The SRX210 can only accept one card at a time, so there
isn’t a capability to mix and match cards, although as stated, the SRX210 can accept
any of the cards. Though the SRX210 is not capable of inspecting gigabit speeds of
traffic, a fiber connection may be required in the event that a long haul fiber is used to
connect the SRX210 to the network.

Table 1-6. Mini-PIMs

Type Description

ADSL 1-port ADSL2+ mini-PIM supporting ADSL/ADSL2/ADSL2+ Annex A

ADSL 1-port ADSL2+ mini-PIM supporting ADSL/ADSL2/ADSL2+ Annex B

G.SHDSL 8-wire (4-pair) G.SHDSL mini-PIM

Serial 1-port Sync Serial mini-PIM

SFP 1-port SFP mini-PIM

T1/E1 1-port T1/E1 mini-PIM

The ADSL cards support all of the modern standards for DSL and work with most
major carriers. The G.SHDSL standard is much newer than the older ADSL, and it is
a higher-speed version of DSL that is provided over traditional twisted pair lines.
Among the three types of cards, all common forms of ADSL are available to the SRX200
line.

The SRX200 line also supports the use of the tried-and-true serial port connection. This
allows for connection to an external serial port and is the least commonly used interface
card. A more commonly used interface card is the T1/E1 card, which is typical for WAN
connection to the SRX200 line. Although a T1/E1 connection may be slow by today’s
standards, compared to the average home broadband connection, it is still commonly
used in remote branch offices.

SRX600
The SRX600 line is the most different from the others in the branch SRX Series. This
line is extremely modular and offers very high performance for a device that is catego-
rized as a branch solution.

The only model in the SRX600 line (at the time of this writing) is the SRX650. The
SRX650 comes with four onboard 10/100/1000 ports. All the remaining components

36 | Chapter 1: Introduction to the SRX

are modules. The base system comes with the chassis and a component called the
Services and Routing Engine or SRE. The SRE provides the processing and management
capabilities for the platform. It has the same architecture as the other branch platforms,
but this time the component for processing is modular.

Figure 1-23 shows the front of the SRX650 chassis, and the four onboard 10/100/1000
ports are found on the front left. The other items to notice are the eight modular slots,
which are different here than in the other SRX platforms. Here the eight slots are called
G-PIM slots, but it is also possible to utilize another card type called an X-PIM which
utilizes multiple G-PIM slots.

On the back of the SRX650 is where the SRE is placed. There are two slots that fit the
SRE into the chassis, but note that as of the Junos 10.2 release, only the bottom slot
can be used. In the future, the SRX650 may support a new double-height SRE, or even
multiple SREs. On the SRE there are several ports: first the standard serial console port
and then a secondary serial auxiliary port, shown in the product illustration in
Figure 1-24. Also, the SRE has two USB ports.

Figure 1-23. The front of the SRX650

Figure 1-24. The back of the SRX650

New to this model is the inclusion of a secondary compact flash port. This port allows
for expanded storage for logs or software images. The SRX650 also supports up to two
power supplies for redundancy.

Branch SRX Series | 37

The crown jewel feature of the SRX650 is its performance capabilities. The SRX650 is
more than enough for most branch office locations, allowing for growth in the branch
office. As shown in Table 1-7, it can provide up to 30,000 new connections per second,
which is ample for a fair bit of servers that can be hosted behind the firewall. It also
accounts for a large number of users that can be hosted behind the SRX. The total
number of concurrent sessions is four times higher than on the SRX240, with a maxi-
mum of 500,000 sessions. Only 250,000 sessions are available when UTM is enabled;
the other available memory is shifted for the UTM features to utilize.

Table 1-7. SRX650 capacities

Type Capacity

CPS 30,000

Maximum firewall throughput 7 Gbps

Maximum IPS throughput 1.5 Gbps

Maximum VPN throughput 1.5 Gbps

Maximum antivirus throughput 350 Mbps

Maximum concurrent sessions 512K (2 GB of RAM)

Maximum firewall policies 8,192

Maximum concurrent users Unlimited

The SRX650 can provide more than enough throughput on the device, and it can pro-
vide local switching as well. The maximum total throughput is 7 gigabits per second.
This represents a fair bit of secure inspection of traffic in this platform. Also, for the
available UTM services it provides, it is extremely fast. IPS performance exceeds
1 gigabit as well as VPN. The lowest performing value is the inline antivirus, and al-
though 350 Mbps is far lower than the maximum throughput, it is very fast considering
the amount of inspection that is needed to scan files for viruses.

Interface modules for the SRX600 line

The SRX650 has lots of different interface options that are not available on any other
platform today. This makes the SRX650 fairly unique as a platform compared to the
rest of the branch SRX Series. The SRX650 can use two different types of modules: the
G-PIM and the X-PIM. The G-PIM occupies only one of the possible eight slots, whereas
an X-PIM takes a minimum of two slots, and some X-PIMs take a maximum of four
slots. Table 1-8 lists the different interface cards.

38 | Chapter 1: Introduction to the SRX

Table 1-8. SRX600 interface matrix

Type Description Slots

Dual T1/E1 Dual T1/E1, two ports with integrated CSU/DSU – G-PIM. Single G-PIM slot. 1

Quad T1/E1 Quad T1/E1, four ports with integrated CSU/DSU – G-PIM. Single G-PIM slot. 1

16-port 10/100/1000 Ethernet switch 16-port 10/100/1000-baseT X-PIM. 2

16-port 10/100/1000 PoE Ethernet switch 16-port 10/100/1000-baseT X-PIM with PoE. 2

24-port 10/100/1000 plus four SFP
ports

Ethernet Switch 24-port 10/100/1000-baseT X-PIM. Includes four SFP slots. 4

24-port 10/100/1000 PoE plus four
SFP ports

PoE Ethernet switch 24-port 10/100/1000-baseT X-PIM. Includes four SFP slots. 4

Two different types of G-PIM cards provide T1/E1 ports. One provides two T1/E1
ports and the other provides a total of four ports. These cards can go in any of the slots
on the SRX650 chassis, up to the maximum of eight slots.

The next type of card is the dual-slot X-PIM. These cards provide sixteen 10/100/1000
ports and come in the PoE or non-PoE variety. Using this card takes up two of the eight
slots. They can only be installed in the right side of the chassis, with a maximum of two
cards in the chassis.

The third type of card is the quad-slot X-PIM. This card has twenty-four 10/100/1000
ports and four SFP ports and comes in a PoE and non-PoE version. The SFP ports can
use either fiber or twisted-pair SFP transceivers. Figure 1-25 shows the possible loca-
tions of each type of card.

Local switching can be achieved at line rate for ports on the same card, meaning that
on each card, switching must be done on that card to achieve line rate. It is not possible
to configure switching across cards. All traffic that passes between cards must be in-
spected by the firewall, and the throughput is limited to the firewall’s maximum in-
spection. Administrators who deploy the SRX should be aware of this limitation.

AX411
The AX411 Wireless LAN Access Point is not an SRX device, but more of an accessory
to the branch SRX Series product line. The AX411 cannot operate on its own without
an SRX Series appliance. To use the AX411 device, simply plug it into an SRX device
that has DHCP enabled and an AX411 license installed. The access point will get an IP
address from the SRX and register with the device, and the configuration for the AX411
will be pushed down from the SRX to the AX411. Then queries can be sent from the
SRX to the AX411 to get status on the device and its associated clients. Firmware up-
dates and remote reboots are also handled by the SRX product.

Branch SRX Series | 39

Figure 1-25. SRX650 PIM card diagram

40 | Chapter 1: Introduction to the SRX

The AX411 is designed to be placed wherever it’s needed: on a desktop, mounted on
a wall, or inside a drop ceiling. As shown in Figure 1-26, the AX411 has three antennas
and one Ethernet port. It also has a console port, which is not user-accessible.

Figure 1-26. The AX411 WLAN Access Point

The AX411 has impressive wireless capabilities, as it supports 802.11a/b/g/n wireless
networking. The three antennas provide multiple input-multiple output (MIMO) for
maximum throughput. The device features two separate radios, one at the 2.4 GHz
range and the other at the 5 GHz range. For the small branch, it meets all of the re-
quirements of an access point. The AX411 is not meant to provide wireless access for
a large campus network, so administrators should not expect to be able to deploy doz-
ens of AX411 products in conjunction; the AX411 is not designed for this purpose.

Each SRX device in the branch SRX Series is only capable of managing a limited number
of AX411 appliances, and Table 1-9 shows the number of access points per platform
that can be managed. The SRX100 can manage up to two AX411 devices. From there,
each platform doubles the total number of access points that can be managed, going
all the way up to 16 access points on the SRX650.

Table 1-9. Access points per platform

Platform Number of access points

SRX100 2

SRX210 4

SRX240 8

SRX650 16

Branch SRX Series | 41

CX111
The CX111 Cellular Broadband Data Bridge (see Figure 1-27) can be used in conjunc-
tion with the branch SRX Series products. The CX111 is designed to accept a 3G (or
cellular) modem and then provide access to the Internet via a wireless carrier. The
CX111 supports about 40 different manufacturers of these wireless cards and up to
three USB wireless cards and one express card. Access to the various wireless providers
can be always-on or dial-on-demand.

Figure 1-27. The CX111

There aren’t any specific hooks between the CX111 bridge and the SRX products. The
CX111 can be utilized in combination with any branch product to act as a wireless
bridge. The biggest benefit is that the CX111 can be placed anywhere that a wireless
signal can be best reached, so the CX111 can be powered by using PoE or a separate
power supply. This way, the SRX device can be placed in a back closet or under a
counter, and the CX111 can be placed by a window.

Branch SRX Series Hardware Overview
Although the branch SRX Series varies greatly in terms of form factors and capabilities,
the underlying hardware architecture remains the same. Figure 1-28 may be highly
simplified, but it is meant to illustrate how the platforms have a common architecture.
It also provides a certain clarity to how the data center SRX Series looks when compared
to the branch SRX Series.

In the center of the diagram is the shared compute resource or processor. This processor
is specifically designed for processing network traffic and is intended for scaling and to
provide parallel processing. With parallel processing, more than one task can be exe-
cuted at a time. In this case, parallel processing is achieved by having multiple hardware
cores running separate threads of execution. See “Parallel Processing” on page 43.

42 | Chapter 1: Introduction to the SRX

Connected off of this processor are the serial console and the USB ports. This allows
the user to access the running system directly off of the serial console and any attached
storage off of the USB ports.

Lastly in the overview are the interfaces. The interfaces connect off of the processor,
and all of the onboard ports from each platform are connected as a local Ethernet
switch. This is the same for all of the SRX products. Each WAN card is treated as a
separate link back to the processor, and in the case of the SRX650, each Ethernet card
is its own switch and then connects back to the processor. Although oversimplified,
this should provide a simple understanding of what is happening inside the sheet metal.

Parallel Processing
The majority of the SRX products utilize dense processors. These processors have mul-
tiple cores, or the capability to run multiple simultaneous threads. Since there are many
terms floating around, a little cleanup is in order. A process is an instance of a running
program. It has its own memory space. On a CPU, only a single process can run at any
given time.

A process can contain one or more threads of execution. A thread is a series of tasks that
are being run in the CPU within. To scale processing, tasks are broken up into individual
threads. Much like when a user uses a GUI, all of the elements seem to work simulta-
neously, even though the computer may run only one at a time.

To utilize all of the processor capabilities, a process would need to run multiple
threads or spawn off child processes. When a process spawns off a child process, the
child process is born and receives a copy of the parent’s process memory. At this point,
if the parent process adds or removes anything from its memory, only the parent process
is aware of it. The child process is running as its own atomic unit. If the parent process
wants to notify the child process of a change, it has to use interprocess communication
to send data.

Figure 1-28. Branch SRX Series hardware overview

Branch SRX Series | 43

Sending data across processes is slow in terms of processing. Scaling this level of com-
munication and messaging can also be difficult. There are many good use cases for this,
such as scaling a web server. A web server may run many processes to serve multiple
clients. The processes may need to communicate, but the speed at which they com-
municate may be within several milliseconds. This is completely reasonable, as other
processes, such as running a script or serving an image, will be slower.

In a firewall, the interprocess communication model is best avoided because adding
several milliseconds to process traffic may not be acceptable. Of course, it depends on
the device. Although in a branch device several additional milliseconds of latency may
be fine, in the data center this must be avoided at all costs.

The SRX Series utilizes the thread methods for processing firewall flow data. The thread
model uses a single process, but utilizes multiple threads. Each thread is run on a pro-
cessor core or individual hardware thread. All of the threads can execute simultaneously
and process network traffic very quickly. By being part of a process, they can all share
the same memory space. This allows threads to work on the same streams of informa-
tion without having to pass information between them. This reduces latency and in-
creases traffic processing efficiency.

Although this may seem like the best thing since sliced bread, it’s very difficult to do.
The application must be programmed to be thread-safe. Since all of the memory is
shared, several conditions can occur where the process will crash, lock, or run infinitely
without processing data. Avoiding these conditions has been one of the biggest chal-
lenges in programming over the past 40 years, and although there are several ways to
solve the problem, it requires a huge amount of planning and expertise.

Licensing
The branch SRX Series supports numerous built-in features, including firewalling,
routing, VPN, and NAT. However, some of the features require licensing to activate.
This section is meant to clarify the licensing portion of the SRX products. Table 1-10
breaks out all of the possible licenses by vendor, description, and terms.

In regard to Table 1-10, please note the following:

• You can purchase a single license for all of the UTM features, including the anti-
virus, antispam, intrusion protection, and web filtering features.

• Dynamic VPN is sold as a per-seat license which counts the number of active users
utilizing the features. This feature is only supported on the SRX100, SRX210, and
SRX240.

• The SRX650 can support the ability to act as a BGP route reflector. This is effec-
tively a route server that can share routes to other BGP hosts. This is licensed as a
separate feature and is only applicable to the SRX650.

• To manage an AX411 access point a license is required. Two licenses are included
with the purchase of the AX411; additional licenses can be purchased separately.

44 | Chapter 1: Introduction to the SRX

Table 1-10. Licensing options

Type Vendor Description Terms

Antivirus Juniper-Kaspersky Antivirus updates 1-, 3-, or 5-year

Antispam Juniper-Sophos Antispam updates 1-, 3-, or 5-year

Intrusion protection Juniper Attack updates 1-, 3-, or 5-year

Web filtering Websense Category updates 1-, 3-, or 5-year

Combined set All of the above All of the above 1-, 3-, or 5-year

Dynamic VPN client Juniper Concurrent users for dynamic VPN

SRX100, SRX210, and SRX240 only

5, 10, 25, or 50 users, permanent

BGP router reflector Juniper Route reflector capability, SRX650 only Permanent

AX411 access point Juniper License to run AX411 Included with access point

Branch Summary
The branch SRX Series product line is extremely well rounded. In fact, it is the most
fully featured, lowest-cost Junos platform that Juniper Networks offers. (This is great
news for anyone who wants to learn how to use Junos and build a small lab.)

The branch SRX Series has both flow and packet modes, allowing anyone to test flow-
based firewalling and packet-based routing. It features the same routing protocol sup-
port as all Junos-based devices, from Border Gateway Protocol (BGP) to Intermediate
System-to-Intermediate System (IS-IS). It has the majority of the EX Series switching
features with the same configuration set. Most importantly for study, it also supports
MPLS and VPLS. No other router platform supports these features at such an attractive
price point.

In terms of the hardware in the branch SRX Series, the underlying device is fairly simple.
It does not utilize any of the routing application-specific integrated circuits (ASICs)
from the high-end routers or data center SRX Series products. Some behaviors on these
features may vary across platforms, so it is not feasible to try to make a sub-$1,000
platform and have the exact same silicon as a million-dollar device. Those behaviors
are noted in the documentation and throughout this book where applicable.

The branch SRX Series product line is the most accessible platform for a majority of
this book’s readers. And because of its lower cost, there will be many more branch SRX
Series products in the field.

Where differences exist between these SRX platforms, they will be noted so that you
can learn these discrepancies and take them to the field, but note that many features
are shared, so there will not be large differences across platforms. Zones and firewall
policies remain the same across platforms, so you will see few differences when this
book delves into this material.

Branch SRX Series | 45

Data Center SRX Series
The data center SRX Series product line is designed to be scalable and fast for data
center environments where high performance is required. Unlike the branch products,
the data center SRX Series devices are highly modular—a case in point is the base chassis
for any of the products, which does not provide any processing power to process traffic
because the devices are designed to scale in performance as cards are added. (It also
reduces the total amount of investment that is required for an initial deployment.)

There are two lines of products in the data center SRX Series: the SRX3000 line and
the SRX5000 line. Each uses almost identical components, which is great because any
testing done on one platform can carry over to the other. It’s also easier to have feature
parity between the two product lines since the data center SRX Series has specific ASICs
and processors that cannot be shared unless they exist on both platforms. Where dif-
ferences do exist, trust that they will be noted.

The SRX3000 line is the smaller of the two, designed for small to medium-size data
centers and Internet edge applications. The SRX5000 line is the largest services gateway
that Juniper offers. It is designed for medium to very large data centers and it can scale
from a moderate to an extreme performance level.

Both platforms are open for flexible configuration, allowing the network architect to
essentially create a device for his own needs. Since processing and interfaces are both
modular, it’s possible to create a customized device such as one with more IPS with
high inspection and lower throughput. Here, the administrator would add fewer in-
terface cards but more processing cards, allowing only a relatively small amount of
traffic to enter the device but providing an extreme amount of inspection. Alternatively,
the administrator can create a data center SRX with many physical interfaces but limited
processors for inspection. All of this is possible with the data center SRX Series.

Data Center SRX-Specific Features
The data center SRX Series products are built to meet the specific needs of today’s data
centers. They share certain features that require the same underlying hardware to work
as well as the need for such features—it’s important to be focused on meeting the needs
of the platform.

The first such feature is transparent mode. Transparent mode is the ability for the
firewall to act as a transparent bridge. As a transparent bridge, the firewall routes pack-
ets by destination MAC address. Firewall policies are still enforced, as would be ex-
pected. The benefit of such a transparent firewall feature is that the firewall can easily
be placed anywhere in the network.

46 | Chapter 1: Introduction to the SRX

As of Junos 10.2, transparent mode is not available for the branch SRX
Series products.

In the data center, IPS is extremely important in securing services, and the data center
SRX Series devices have several features for IPS that are currently not available for the
branch SRX Series devices. Inline tap mode is one such feature for the data-center-
specific SRX platform, allowing the SRX to copy any off sessions as they go through
the device. The SRX will continue to process the traffic in Intrusion Detection and
Prevention (IDP), as well as passing the traffic out of the SRX, but now it will alert (or
log) when an attack is detected, reducing the risk of encountering a false positive and
dropping legitimate traffic.

Because most data centers have a large amount of hardware at their disposal, most have
the capability to decrypt SSL traffic for inspection. On the SRX, the organization’s
private SSL key can be loaded and the SRX can then decrypt the SSL traffic in real time
and inspect for attacks. This provides an additional layer of security by eliminating
attacks that could simply slip through in encrypted streams.

The branch SRX Series products do not have SSL decryption capability,
mostly because of the horsepower needed to drive it.

Another specific feature that is common to the data center SRX Series is that they can
be configured in what is known as dedicated mode. The data center SRX Series firewalls
have dense and powerful processors, allowing flexibility in terms of how they can be
configured. And much like adding additional processing cards, the SRX processors
themselves can be tuned. Dedicated mode allows the SRX processing to be focused on
IDP, and the overall throughput for IDP increases, as do the maximum session counts.

Because the branch SRX Series products utilize different processors, it
is not possible to tune them for dedicated mode.

Another specific data center feature of note is the AppDoS feature. When the SRX is
deployed in a data center it is designed to protect servers, and one of the most common
attacks of the modern Internet era is the DDoS attack. It is extremely difficult to detect
and stop these types of attacks, but using IDP technology it’s possible to set thresholds
and secure against these attacks. The AppDoS feature uses a series of thresholds to
detects attacks and then stop only the attacking clients and not the valid devices.

Data Center SRX Series | 47

Because the branch SRX Series isn’t focused on protecting services, the
AppDoS feature was not made available for that platform (as of Junos
10.2).

We cover many of these features, and others, throughout this book in various chapters
and sections. Use the index at the end of the book as a useful cross-reference to these
and other data center SRX Series features.

SPC
The element that provides all of the processing on the SRX Series is called the Services
Processing Card (SPC). An SPC contains one or more Services Processing Units (SPUs).
The SPU is the processor that handles all of the services on the data center SRX Series
firewalls, from firewalling, NAT, and VPN to session setup and anything else the fire-
wall does.

Each SPU provides extreme multiprocessing and can run 32 parallel tasks simultane-
ously. A task is run as a separate hardware thread (see “Parallel Process-
ing” on page 43 for an explanation of hardware threads). This equates to an extreme
amount of parallelism. An SPC can operate in four modes: full central point, small
central point, half central point, and full flow. SPUs that operate in both central point
and flow mode are said to be in combo mode. Based on the mode, the number of hard-
ware threads will be divided differently.

The SPU can operate in up to four different distributions of threads, which breaks down
to two different functions that it can provide: the central point and the flow processor.
The central point (CP) is designed as the master session controller. The CP maintains
a table for all of the sessions that are active on the SRX—if a packet is ever received on
the SRX that is not matched as part of an existing session, it is sent to the CP. The CP
can then check against its session table and see if there is an existing session that matches
it. (We will discuss the new session setup process in more detail shortly, once all of the
required components are explained.)

The CP has three different settings so that users can scale the SRX appropriately. The
CP is used as part of the new session setup process or new CPS. The process is distrib-
uted across multiple components in the system. It would not make sense to dedicate a
processor to provide maximum CPS if there were not enough of the other components
to provide this. So, to provide a balanced performance, the CP is automatically tuned
to provide CPS capabilities to the rest of the platform. The extra hardware threads that
are remaining go back into processing network traffic. At any one time, only one pro-
cessor is acting as the CP, hence the term central point.

The remaining SPUs in the SRX are dedicated to process traffic for services. These
processors are distributed to traffic as part of the new session setup process. Because
each SPU eventually reaches a finite amount of processing, as does any computing

48 | Chapter 1: Introduction to the SRX

device, an SPU will share any available computing power it has among the services. If
additional processing power is required, more SPUs can be added. Adding more SPUs
provides near-linear scaling for performance, so if a feature is turned on that cuts the
required performance in half, simply adding another SPU will bring performance back
to where it was.

The SPU’s linear scaling makes it easier to plan a network. If needed, a minimal number
of SPUs can be purchased upfront, and then, over time, additional SPUs can be added
to grow with the needs of the data center. To give you an indication of the processing
capabilities per SPU, Table 1-11 shows off the horsepower available.

Table 1-11. SPU processing capabilities

Item Capability

Packets per second 1,100,000

New CPS 50,000

Firewall throughput 10 Gbps

IPS throughput 2.5 Gbps

VPN throughput 2.5 Gbps

Each SPC in the SRX5000 line has two SPUs and each SPC in the SRX3000 line has a
single SPU. As more processing cards are added, the SRX gains the additional capabil-
ities listed in Table 1-11, so when additional services such as logging and NAT are
turned on and the capacity per processor decreases slightly, additional processors can
be added to offset the performance lost by adding new services.

NPU
The NPU or Network Processing Unit is similar in concept to the SPU, whereby the
NPU resides on either an input/output card (IOC) or its own Network Processing Card
(NPC) based on the SRX platform type (in the SRX5000 line the NPU sits on the IOC
and in the SRX3000 line it is on a separate card).

When traffic enters an interface card it has to pass through an NPU before it can be
sent on for processing. The physical interfaces and NPCs sit on the same interface card,
so each interface or interface module has its own NPU. In the SRX3000 line, each
interface card is bound to one of the NPUs in the chassis, so when the SRX3000 line
appliances boot, each interface is bound to an NPU in a round-robin fashion until each
interface has an NPU. It is also possible to manually bind the interfaces to the NPUs
through this configuration.

The biggest difference in the design of the SRX3000 and SRX5000 lines’ usage of NPUs
concerns providing a lower-cost platform to the customer. Separating the physical in-
terfaces from the NPU reduces the overall cost of the cards.

Data Center SRX Series | 49

The NPU is used as a part of the session setup process to balance packets as they enter
the system. The NPU takes each packet and balances it to the correct SPU that is han-
dling that session. In the event that there is not a matching session on the NPU, it
forwards the packet to the CP to figure out what to do with it.

Each NPU can process about 6.5 million packets per second inbound and about 16
million packets outbound. This applies across the entire data center SRX Series plat-
form. The method the NPU uses to match a packet to a session is based on matching
the packet to its wing table; a wing is half of a session and one part of the bidirectional
flow. Figure 1-29 depicts an explanation of a wing in relation to a flow.

Figure 1-29. Sessions and wings

The card to which the NPU is assigned determines how much memory it will have to
store wings (some cards have more memory, since there are fewer components on
them). Table 1-12 lists the number of wings per NPU. Each wing has a five-minute
keepalive. If five minutes pass and a packet matching the wing hasn’t passed, the wing
is deleted.

Table 1-12. Number of wings per NPU

Card type NPUs per card Wings per NPU

4x10G SRX5000 4 2 million

40x1G SRX5000 4 2 million

Flex I/O SRX5000 2 4 million

NPC SRX3000 1 4 million

It is possible that the wing table on a single SPU can fill up, and it is a possibility in the
SRX5000 line since the total number of sessions exceeds the total number of possible
wings on a single NPU. To get around this, Juniper introduced a feature called NPU
bundling in Junos 9.6, allowing two or more NPUs to be bundled together. The first
NPU is used as a load balancer to balance packets to the other NPUs, and then the
remaining NPUs in the bundle are able to process packets. This benefits not only the
total number of wings, but also the maximum number of ingress packets per second.

50 | Chapter 1: Introduction to the SRX

NPUs can be bundled on or across cards with up to 16 NPUs to be used in a single
bundle, and up to eight different bundles can be created.

The NPU also provides other functions, such as a majority of the screening functions.
A screen is an intrusion detection function. These functions typically relate to single
packet matching or counting specific packet types. Examples of this are matching land
attacks or counting the rate of TCP SYN packets. The NPU also provides some QoS
functions.

Data Center SRX Series Session Setup
We discussed pieces of the session setup process in the preceding two sections, so here
let’s put the entire puzzle together. It’s an important topic to discuss, since it is key to
how the SRX balances traffic across its chassis. Figure 1-30 shows the setup we will use
for our explanation.

Figure 1-30. Hardware setup

Figure 1-30 depicts two NPUs: one NPU will be used for ingress traffic and the other
will be used for egress traffic. The figure also shows the CP. For this example, the
processor handling the CP function will be dedicated to that purpose. The last com-
ponent shown is the flow SPU, which will be used to process the traffic flow.

Figure 1-31 shows the initial packet coming into the SRX. For this explanation, a TCP
session will be created. This packet is first sent to the ingress NPU, where the ingress
NPU checks against its existing wings. Since there are no existing wings, the NPU then
must forward the packet to the CP, where the CP checks against its master session table
to see if the packet matches an existing flow. Since this is the first packet into the SRX,
and no sessions exist, the CP recognizes this as a potential new session.

Data Center SRX Series | 51

The packet is then sent to one of the flow SPUs in the system using the weighted round-
robin algorithm.

Each SPU is weighted. A full SPU is given a weight of 100, a combo-
mode SPU is given a weight of 60 if it’s a majority flow and a small CP,
and a half-CP and half-flow SPU is given a weight of 50. This way, when
the CP is distributing new sessions, the sessions are evenly distributed
across the processors.

In Figure 1-31 there is only a single SPU, so the packet is sent there.

The SPU does a basic sanity check on the packet and then sets up an embryonic session.
This session lasts for up to 20 seconds. The CP is notified of this embryonic session.
The remaining SYN-ACK and ACK packets must be received before the session will be
fully established. Before the session is completely established, the NPUs will forward
the SYN-ACK and ACK packets to the CP and the CP then must forward them to the
correct SPU, which it does here because the SPU has the embryonic session in its session
table.

In Figure 1-32, the session has been established. The three steps in the three-way hand-
shake have completed. Once the SPU has seen the final ACK packet, it completes the
session establishment in the box, first sending a message to the CP to turn the embry-
onic session into a complete session, and then starting the session timer at the full
timeout for the protocol. Next, the SPU notifies the ingress NPU. Once the ingress NPU
receives a message, it installs a wing. This wing identifies this session and then specifies
which SPU is responsible for the session. When the ACK packet that validated the
establishment of the session is sent out of the SRX, a message is tacked onto it. The

Figure 1-31. The first packet

52 | Chapter 1: Introduction to the SRX

egress NPU interprets this message and then installs the wing into its local cache, which
is similar to the ingress wing except that some elements are reversed. This wing is
matching the destination talking to the source (see Figure 1-29 for a representation of
the wing).

Now that the session is established the data portion of the session begins, as shown in
Figure 1-33 where a data packet is sent and received by the NPU. The NPU checks its
local wing table and sees that it has a match, and then forwards the packet to the SPU.
The SPU then validates the packet, matching the packet against the session table to
ensure that it is the next expected packet in the data flow. The SPU then forwards the
packet out the egress NPU. (The egress NPU does not check the packet against its wing
table; a packet is only checked upon ingress to the NPU.) When the egress NPU receives
a return packet, it is being sent from the destination back to the source. This packet is
matched against its local wing table and then processed through the system as was just
done for the first data packet.

Lastly, when the session has completed its purpose, the client will start to end the
session. In this case, a four-way FIN close is used. The sender starts the process and
the four closing packets are treated the same as packets for the existing session. What
happens next is important, as shown in Figure 1-34. Once the SPU has processed the
closing process, it shuts down the session on the SRX, sending a message to the ingress
and egress NPUs to delete their wings. The SPU also sends a close message to the CP.
The CP and SPU wait about eight seconds to complete the session close to ensure that
everything was closed properly.

Although this seems like a complex process, it also allows the SRX to scale. As more
and more SPUs and NPUs are added into the system, this defined process allows the

Figure 1-32. Session established

Data Center SRX Series | 53

SRX to balance traffic across the available resources. Over time, session distribution is
almost always nearly even across all of the processors, a fact proven across many SRX
customer deployments. Some have had concerns that a single processor would be
overwhelmed by all of the sessions, but that has not happened and cannot happen using
this balancing mechanism. In the future, if needed, Juniper could implement a least-
connections model or least-utilization model for balancing traffic, but it has not had to
as of Junos 10.2.

Figure 1-33. Existing session

Figure 1-34. Session teardown

54 | Chapter 1: Introduction to the SRX

Data Center SRX Series Hardware Overview
So far we’ve talked about the components of the data center SRX Series, so let’s start
putting the components into the chassis. The data center SRX Series consists of two
different lines and four different products. Although they all utilize the same funda-
mental components, they are designed to scale performance for where they are going
to be deployed. And that isn’t easy. The challenge is that a single processor can only
be so fast and it can only have so many simultaneous threads of execution. To truly
scale to increased performance within a single device, a series of processors and bal-
ancing mechanisms must be utilized.

Since the initial design goal of the SRX was to do all of this scaling in a single product,
and allow customers to choose how they wanted (and how much) to scale the device,
it should be clear that the SPUs and the NPUs are the points to scale (especially if you
just finished reading the preceding section).

The NPUs allow traffic to come into the SRX, and the SPUs allow for traffic processing.
Adding NPUs allows for more packets to get into the device, and adding SPUs allows
for linear scaling. Of course, each platform needs to get packets into the device, which
is done by using interface cards, and each section on the data center SRX Series will
discuss the interface modules available per platform.

What Is Performance?
A very hot firewall topic centers on performance. Is performance the maximum
throughput? Is it based on the Internet Mix (IMIX) standard? What does performance
really mean? Although the answers to these questions vary among people and organi-
zations, let’s dive to find some common ground.

The first item to examine is the throughput of the firewall. At first, it would seem like
an equitable item by which to compare devices, but there is no standard regarding what
packet size should be used when testing a firewall. Throughput is the result of the packet
rate multiplied by the packet size. When a vendor typically tests, it does so with the
maximum-sized frame for an Ethernet network, typically 1,514 bytes. If the vendor
tests with packets, it is doing the testing without the Ethernet header, but it only makes
sense to count the Ethernet header since it has to go into the device so that the packet
can ride on top of it.

There is a 20-byte gap between packets, consisting of an 8-byte preamble and a mini-
mum of 12 bytes of packet gap. So, when testing a firewall, this is added to the overall
throughput. This additional 20 bytes is not a matter of cheating, but it has to be counted
since it takes up space on the wire. Add these 20 bytes to the 1,514-byte packet and it
becomes 1,534 bytes. And at the end of the packet is a 4-byte CRC, making the packet
1,538 bytes.

Now, again, this may seem insignificant, but it is often overlooked when a customer
looks at the performance of a firewall. It’s often thought that if 1 Gbps of data is being
transferred on the wire, that is actually 1 gigabit of data per second. In fact, for every
1,538 bytes on the wire frame, only 1,460 bytes of it can be data.

Data Center SRX Series | 55

Let’s also consider performance definitions when using TCP. For TCP to be a reliable
protocol, it has to send acknowledgments after it receives a certain amount of data. By
default, this is one ACK packet for every four full data packets. So, if the data rate is at
millions of packets per second, that’s lots of empty packets that the device has to process
that do not contain any data. So, when thinking about throughput with TCP, there is
a greater chance to get less-than-expected throughput.

Sometimes using large packets is good because it shows the maximum possible
throughput of the device, and it’s good to know the total capacity of the device. But
then the question comes up: how will the device perform in a real-world network? The
best way to determine the average packet size on a network is to use analysis tools or
look at switch-packet counters. One number that is often thrown around is the IMIX
number. The IMIX average packet size is 386 bytes, which was determined based on
the average packet size on the Internet back in 2001. A lot has changed since then, but
it is still common for vendors and customers to refer to this number.

At the root of all of these performance numbers is the actual packet rate that can go
through a device, which is the maximum number of packets per second that a device
can handle. To test this, an engineer would generate 64-byte packets, being the smallest
possible valid packet size, and then, based on the determined packet rate multiplied by
the maximum packet size, the total maximum throughput could be calculated. So, it’s
always best to ask a firewall vendor how to achieve the maximum possible rates on its
device.

This is so important because any network device can only process so many packets per
second. Think of this as the number of workloads per second that the device can com-
pute. Any network device is nothing more than a computer, and for each packet that
it receives, it needs to execute a series of tasks on it. The longer it takes to execute these
tasks, the higher the latency. The more operations it has to process, the fewer packets
it can process. A firewall has to validate that it has the correct attributes and that the
packet is in state, and if it matches an existing session it has to name a few of those
operations it has to perform. To put that in simple terms, this is how a firewall device
operates. So, firewall customers should come to the purchasing table with all of the
correct data from their network and then work with the vendor to best determine the
capabilities of the vendor’s platform.

Before leaving this sidebar, in regard to throughput testing let’s talk briefly about the
concept of the jumbo frame. A jumbo frame is a frame that is larger than the standard
1,514-byte frame, typically around 9,000 bytes. It is used more commonly in super-
computer environments and not on a common LAN, but it’s actually good for a vendor
to test using jumbo frames. It allows the vendor to demonstrate the maximum through-
put of the device by reducing the number of packets the device has to process by nearly
a factor of six, and just focus on the maximum throughput. One point to be aware of
is when vendors state that throughput is tested with jumbo frames. This may hint at a
limitation in terms of its packet rate.

CPS is another topic that is often discussed, because for each new TCP connection
created, three packets must be processed. This is just to establish the session, which is
magnitudes more difficult than passing packets from an existing session, because a

56 | Chapter 1: Introduction to the SRX

firewall has many more things to check when establishing a session. When looking at
a firewall and its maximum CPS rate, think about that rate and multiply it by three.
That is the maximum number of packets the device can process for establishing
sessions.

And the other side of the new session CPS is the sustained CPS rate, or how many
sessions can be opened and closed per second. This metric isn’t often discussed, per-
haps because it is much more intensive. It requires the processing of up to nine packets
per session per second. Three packets are required to open the session, another for the
data, another for acknowledgment of the data, and then up to four packets to close the
session. That is a total of nine packets times the total sustained CPS. It’s a tough number
for a product to sustain.

A network architect who can think about a firewall device like this holds a lot of pow-
erful questions when talking to the vendor. These are the core concepts when talking
about performance on a flow-based device. And it’s information that will be helpful for
the rest of chapter as we look individually at the capabilities of the data center SRX
Series firewalls.

SRX3000
The SRX3000 line is the smaller of the two data center SRX Series lines. It is designed
for the Internet edge, or small to medium-size data center environments. The SRX3000
products are extremely modular. The base chassis comes with a route engine (RE), a
switch fabric board (SFB), and the minimum required power supplies. The RE is a
computer that runs the management functions for the chassis, controlling and activat-
ing the other components in the device. All configuration management is also done
from the RE.

The reason it is called a route engine is because it runs the routing protocols on it, and
on other Junos device platforms such as the M Series, T Series, and MX Series, the RE
is, of course, a major part of the device. However, although SRX devices do have ex-
cellent routing support, most customers do not use this feature extensively.

The SFB contains several important components for the system: the data plane fabric,
the control plane Ethernet network, and built-in Ethernet data ports. The SFB has eight
10/100/1000 ports and four SFPs. It also has a USB port that connects into the RE and
a serial console port. All products in the SRX3000 line contain the SFB. In fact, the
SRX3000 is the only data center line that contains built-in ports (the SRX5000 line
is truly modular, as it contains no built-in I/O ports). The SFB also contains an
out-of-band network management port, which is not connected to the data plane: the
preferred way to manage the SRX3000 line.

The SRX3400 is the base product in the SRX3000 line. It has seven FPC or flexible PIC
concentrator slots (a PIC is a physical interface card, with four slots in the front of the
chassis and three in the rear). The slots enable network architects to mix and match

Data Center SRX Series | 57

the cards, allowing them to decide how the firewall is to be configured. The three types
of cards that the SRX3400 can use are interface cards, NPCs, and SPCs, and
Table 1-13 lists the minimum and maximum number of cards per chassis by type.

Table 1-13. SRX3400 FPC numbers

Type Minimum Maximum Install location

I/O card 0 4 Front slots

SPC 1 4 Any

NPC 1 2 Rear three

The SRX3400 is three rack units high and a full 25.5 inches deep. That’s the full depth
of a standard four-post rack. Figure 1-35 shows the front and back of the SRX3400 in
which the SFB can be seen as the wide card that is in the top front of the chassis on the
left, the FPC slots in both the front and rear of the chassis, and the two slots in the rear
of the chassis for the REs. As of Junos 10.2, only one RE is supported in the left slot.

Figure 1-35. The front and back of the SRX3400

Performance on the SRX3400 is impressive, and Table 1-14 lists the maximum per-
formance. The SRX3400 is a modular platform which includes the use of four SPCs,
two NPCs, and one IOC. So, it’s no wonder that the SRX3400 can provide up to 175,000
new connections per second, even though this is a huge number and may dwarf the
performance of the branch series. The average customer may not need such rates on a
continuous basis, but it’s great to have the horsepower in the event that traffic begins
to flood through the device.

The SRX3400 can pass a maximum of 20 Gbps of firewall throughput. This limitation
comes from two components: the maximum number of NPCs, and interfaces, which
limits the overall throughout. As discussed before, each NPC can take a maximum

58 | Chapter 1: Introduction to the SRX

number of 6.5 million packets per second inbound, and in the maximum throughput
configuration, one interface card and the onboard interfaces are used. With a total of
20 Gbps ingress, it isn’t possible to get more traffic into the box.

Table 1-14. SRX3400 capacities

Type Capacity

CPS 175,000

Maximum firewall throughput 20 Gbps

Maximum IPS throughput 6 Gbps

Maximum VPN throughput 6 Gbps

Maximum concurrent sessions 2.25 million

Maximum firewall policies 40,000

Maximum concurrent users Unlimited

As shown in Table 1-14, the SRX3400 can also provide several other services, such as
both IPS and VPN up to 6 Gbps. Each number is mutually exclusive (each SPU has a
limited amount of computing power). The SRX3400 can also have a maximum of 2.25
million sessions as of Junos 10.2. In today’s growing environment, a single host can
demand dozens of sessions at a time, so 2.25 million sessions may not be a high enough
number, especially for larger-scale environments.

If more performance is required, it’s common to move up to the SRX3600. This plat-
form is nearly identical to the SRX3400, except that it adds more capacity by increasing
the total number of FPC slots in the chassis. The SRX3600 has a total of 14 FPC slots,
doubling the capacity of the SRX3400. This does make the chassis’ height increase to
five rack units (the depth remains the same). Table 1-15 lists the minimum and maxi-
mum number of cards by type per chassis.

Table 1-15. SRX3600 FPC numbers

Type Minimum Maximum Install location

I/O card 0 6 Front slots

SPC 1 7 Any

NPC 1 3 Last rear three

As mentioned, the SRX3600 chassis is nearly identical to the SRX3400, except for the
additional FPC slots. But two other items are different between the two chassis, as you
can see in Figure 1-36, where the SRX3600 has an additional card slot above the SFB.
Although it currently does not provide any additional functionality, a double-height
SFB could be placed in that location in the future. And in the rear of the chassis, the
number of power supplies has doubled to four, to support the chassis’ additional power

Data Center SRX Series | 59

needs. A minimum of two power supplies are required to power the chassis, but to
provide full redundancy, all four should be utilized.

Figure 1-36. The SRX3600

Table 1-16 lists the maximum performance of the SRX3600. These numbers are tested
with a configuration of two 10G I/O cards, three NPCs, and seven SPCs. This config-
uration provides additional throughput. The firewall capabilities rise to a maximum of
30 Gbps, primarily because of the inclusion of an additional interface module and NPC.
The VPN and IPS numbers also rise to 10 Gbps, while the CPS and session maximums
remain the same. The SRX3000 line utilizes a combo-mode CP processor, where half
of the processor is dedicated to processing traffic and the other to setup sessions. The
SRX5000 line has the capability of providing a full CP processor.

Table 1-16. SRX3600 capacities

Type Capacity

CPS 175,000

Maximum firewall throughput 30 Gbps

Maximum IPS throughput 10 Gbps

Maximum VPN throughput 10 Gbps

Maximum concurrent sessions 2.25 million

Maximum firewall policies 40,000

Maximum concurrent users Unlimited

60 | Chapter 1: Introduction to the SRX

IOC modules

In addition to the built-in SFP interface ports, you can use three additional types of
interface modules with the SRX3000 line, and Table 1-17 lists them by type. Each
interface module is oversubscribed, with the goal of providing port density rather than
line rate cards. The capacity and oversubscription ratings are also listed.

Table 1-17. SRX3000 I/O module summary

Type Description

10/100/1000 copper 16-port 10/100/1000 copper with 1.6:1 oversubscription

1G SFP 16-port SPF with 1.6:1 oversubscription

10G XFP 2 × 10G XFP with 2:1 oversubscription

Table 1-17 lists two types of 1G interface card, and both contain 16 1G interface slots.
The media type is the only difference between the modules, and one has 16 1G
10/100/1000 copper interfaces and the other contains 16 SFP ports. The benefit of the
16 SFP interfaces is that a mix of fiber and copper interfaces can be used as opposed to
the fixed-copper-only card. Both of the cards are oversubscribed to a ratio of 1.6:1.

The remaining card listed in Table 1-17 is a 2 × 10G XFP card. This card provides two
10G interfaces and is oversubscribed by a ratio of 2:1. Although the card is oversub-
scribed by two times, the port density is its greatest value because providing more ports
allows for additional connectivity into the network. Most customers will not require
all of the ports on the device to operate at line rate speeds, and if more are required,
the SRX5000 line can provide these capabilities.

Each module has a 10G full duplex connection into the fabric. This means 10 gigabits
of traffic per second can enter and exit the module simultaneously, providing a total of
20 gigabits of traffic per second that could traverse the card at the same time.

SRX5000
The SRX5000 line of firewalls are the big iron in the SRX Series, true in both size and
capacity. The SRX5000 line provides maximum modularity in the number of interface
cards and SPCs the device can utilize, for a “build your own services gateway” approach
while allowing for expansion over time.

The SRX5000 line currently comes in two different models: the SRX5600 and the
SRX5800. Fundamentally, both platforms are the same. They share the same major
components, except for the chassis and how many slots are available, dictating the
performance of these two platforms.

The first device to review is the SRX5600. This chassis is the smaller of the two, con-
taining a total of eight slots. The bottom two slots are for the switch control boards
(SCBs), an important component in the SRX5000 line as they contain three key items:

Data Center SRX Series | 61

a slot to place the RE; the switch fabric for the device; and one of the control plane
networks.

The RE in the SRX5000 line is the same concept as in the SRX3000 line, providing all
of the chassis and configuration management functions. It also runs the processes that
run the routing protocols (if the user chooses to configure them). The RE is required
to run the chassis and it has a serial port, an auxiliary console port, a USB port, and an
out-of-band management Ethernet port. The USB port can be used for loading new
firmware on the device, while the out-of-band Ethernet port is the suggested port for
managing the SRX.

The switch fabric is used to connect the interface cards and the SPCs together, and all
traffic that passes through the switch fabric is considered to be part of the data plane.
The control plane network provides the connectivity between all of the components in
the chassis. This gigabit Ethernet network is used for the RE to talk to all of the line
cards. It also allows for management traffic to come back to the RE from the data plane.
And if the RE was to send traffic, it goes from the control plane and is inserted into the
data plane.

Only one SCB is required to run the SRX5600; a second SCB can be used for redun-
dancy. (Note that if just one SCB is utilized, unfortunately the remaining slot cannot
be used for an interface card or an SPC.) The SRX5600 can utilize up to two REs, one
to manage the SRX and the other to create dual control links in HA.

On the front of the SRX5600, as shown in Figure 1-37, is what is called a craft port.
This is the series of buttons that are labeled on the top front of the chassis, allowing
you to enable and disable the individual cards. The SRX5600, unlike the SRX5800, can
use 120v power which may be beneficial in environments where 220v power is not
available, or without rewiring certain locations. The SRX5600 is eight rack units tall
and 23.8 inches deep.

The SRX5000 line is quite flexible in its configuration, with each chassis requiring a
minimum of one interface module and one SPC. Traffic must be able to enter the device
and be processed; hence these two cards are required. The remaining slots in the chassis
are the network administrator’s choice. This offers several important options.

The SRX5000 line has a relatively low barrier of entry because just a chassis and a few
interface cards are required. In fact, choosing between the SRX5600 and the SRX5800
comes down to space, power, and long-term expansion.

For space considerations, the SRX5600 is physically half the size of the SRX5800, a
significant fact considering that these devices are often deployed in pairs, and that two
SRX5800s take up two-thirds of a physical rack. In terms of power, the SRX5600 can
run on 110v, while the SRX5800 needs 220v.

The last significant option between the SRX5600 and the SRX5800 data center devices
is their long-term expansion capabilities. Table 1-18 lists the FPC slot capacities in the
SRX5600. As stated, the minimum is two cards, one interface card and one SPC, leaving

62 | Chapter 1: Introduction to the SRX

four slots that can be mixed and matched among cards. Because of the high-end fabric
in the SRX5600, placement of the cards versus their performance is irrelevant. This
means the cards can be placed in any slots and the throughput is the same, which is
important to note since in some vendors’ products, maximum throughput will drop
when attempting to go across the back plane.

Figure 1-37. The SRX5600

Data Center SRX Series | 63

Table 1-18. SRX5600 FPC numbers

Type Minimum Maximum Install location

FPC slots used 1 (SCB) 8 All slots are FPCs

I/O card 1 5 Any

SPC 1 5 Any

SCB 1 2 Bottom slots

In the SRX5800, the requirements are similar. One interface card and one SPC are
required for the minimum configuration, and the 10 remaining slots can be used for
any additional combination of cards. Even if the initial deployment only requires the
minimum number of cards, it still makes sense to look at the SRX5800 chassis. It’s
always a great idea to get investment protection out of the purchase. Table 1-19 lists
the FPC capacity numbers for the SRX5800.

Table 1-19. SRX5800 FPC numbers

Type Minimum Maximum Install location

FPC slots used 2 (SCBs) 14 All slots are FPCs

I/O card 1 11 Any

SPC 1 11 Any

SCB 2 3 Center slots

The SRX5800 has a total of 14 slots, and in this chassis, the two center slots must
contain SCBs, which doubles the capacity of the chassis. Since it has twice the number
of slots, it needs two times the fabric. Even though two fabric cards are utilized, there
isn’t a performance limitation for going between any of the ports or cards on the fabric
(this is important to remember, as some chassis-based products do have this limitation).
Optionally, a third SCB can be used, allowing for redundancy in case one of the other
two SCBs fails.

Figure 1-38 illustrates the SRX5800. The chassis is similar to the SRX5600, except the
cards are positioned perpendicular to the ground, which allows for front-to-back cool-
ing and a higher density of cards within a 19-inch rack. At the top of the chassis, the
same craft interface can be seen. The two fan trays for the chassis are front-accessible
above and below the FPCs.

In the rear of the chassis there are four power supply slots. In an AC electrical deploy-
ment, three power supplies are required, with the fourth for redundancy. In a DC power
deployment, the redundancy is 2+2, or two active supplies and two supplies for re-
dundancy. Check with the latest hardware manuals for the most up-to-date
information.

The performance metrics for the SRX5000 line are very impressive, as listed in
Table 1-20. The CPS rate maxes out at 350,000, which is the maximum number of

64 | Chapter 1: Introduction to the SRX

packets per second that can be processed by the central point processor. This is three
per CPS multiplied by 350,000, or 1.05 million packets per second, and subsequently
is about the maximum number of packets per second per SPU. Although this many
connections per second is not required for most environments, at a mobile services
provider, a large data center, or a full cloud network—or any environment where there
are tens of thousands of servers and hundreds of thousands of inbound clients—this
rate of connections per second may be just right.

Table 1-20. SRX5000 line capacities

Type SRX5600 capacity SRX5800 capacity

CPS 350,000 350,000

Maximum firewall throughput 60 Gbps 120 Gbps

Maximum IPS throughput 15 Gbps 30 Gbps

Maximum VPN throughput 15 Gbps 30 Gbps

Maximum concurrent sessions 9 million 10 million

Maximum firewall policies 80,000 80,000

Maximum concurrent users Unlimited Unlimited

Figure 1-38. The SRX5800

Data Center SRX Series | 65

For the various throughput numbers shown in Table 1-20, each metric is doubled from
the SRX5600 to the SRX5800, so the maximum firewall throughput number is 60 Gbps
on the SRX5600 and 120 Gbps on the SRX5800. This number is achieved utilizing
HTTP large gets to create large stateful packet transfers; the number could be larger if
UDP streams are used, but that is less valuable to customers, so the stateful HTTP
numbers are utilized. The IPS and VPN throughputs follow the same patterns. These
numbers are 15 Gbps and 30 Gbps for each of these service types on the SRX5600 and
SRX5800, respectively.

The IPS throughput numbers are achieved using the older, NSS 4.2.1 testing standard.
Note that this is not the same test that is used to test the maximum firewall throughput.
The NSS test accounts for about half of the possible throughput of the large HTTP
transfers, so if a similar test were done with IPS, about double the amount of throughput
would be achieved.

These performance numbers were achieved using two interface cards and four SPCs on
the SRX5600. On the SRX5800, four interface cards and eight SPCs were used. As
discussed throughout this section, it’s possible to mix and match modules on the SRX
platforms, so if additional processing is required, more SPCs can be added.
Table 1-21 lists several examples of this “more is merrier” theme.

Table 1-21. Example SRX5800 line configurations

Example network IOCs SPCs Goal

Mobile provider 1 6 Max sessions and CPS

Financial network 2 10 Max PPS

Data center IPS 1 11 Maximum IPS inspection

Maximum connectivity 8 flex IOCs 4 64 10G interfaces for customer connectivity

A full matrix and example use cases for the modular data center SRX Series could fill
an entire chapter in a how-to data center book. Table 1-21 highlights only a few, the
first for a mobile provider. A mobile provider needs to have the highest number of
sessions and the highest possible CPS, which could be achieved with six SPCs. In most
environments, the total throughput for a mobile provider is low, so a single IOC should
provide enough throughput.

In a financial network, the packets-per-second rate, or PPS, is the most important met-
ric. To provide these rates, two SPCs are used, each configured using NPU bundling
to allow for 10 Gbps ingress of small 64-byte packets. The 10 SPCs are used to provide
packet processing and security for these small packets.

In a data center environment, an SRX may be deployed for IPS capabilities only, so here
the SRX would need only one IOC to have traffic come into the SRX. The remaining
11 slots would be used to provide IPS processing, allowing for a total of 45 Gbps IPS
inspection in a single SRX. That is an incredible amount of inspection in a single chassis.

66 | Chapter 1: Introduction to the SRX

The last example in Table 1-21 is for maximum connectivity. This example offers 64
10G Ethernet ports. These ports are oversubscribed at a ratio of 4:1, but again the idea
here is connectivity. The remaining four slots are dedicated to SPCs. Although the
number of SPCs is low, this configuration still provides up to 70 Gbps of firewall
throughput. Each 10G port could use 1.1 Gbps of throughput simultaneously.

IOC modules

The SRX5000 line has three types of IOCs, two of which provide line rate throughput
while the remaining is oversubscribed. Figure 1-39 illustrates an example of the inter-
face complex of the SRX5000 line. The image on the left is the PHY, or physical chip,
that handles the physical media. Next is the NPU or network processor. And the last
component is the fabric chip. Together, these components make up the interface com-
plex. Each complex can provide 10 gigabits per second in both ingress and egress di-
rections, representing 20 gigabits per second full duplex of throughput.

Figure 1-39. Interface complex of the SRX5000 line

Each type of card has a different number of interface complexes on it, with
Table 1-22 listing the number of interface complexes per I/O type. Each complex is
directly connected to the fabric, meaning there’s no benefit to passing traffic between
the complexes on the same card. It’s a huge advantage of the SRX product line because
you can place any cards you add anywhere you want in the chassis.

Table 1-22. Complexes per line card type

Type Complexes

4 × 10G 4

40 × 1G 4

Flex IOC 2

The most popular IOC for the SRX is the four-port 10 gigabit card. The 10 gigabit ports
utilize the XFP optical transceivers. Each 10G port has its own complex providing 20
Gbps full duplex of throughput, which puts the maximum ingress on a 4 × 10G IOC
at 40 Gbps and the maximum egress at 40 Gbps.

The second card listed in Table 1-22 is the 41 gigabit SFP IOC. This blade has four
complexes, just as the four-port 10 gigabit card has, but instead of four 10G ports, it

Data Center SRX Series | 67

has 10 1G ports. The blade offers the same 40 Gbps ingress and 40 Gbps egress metrics
of the four-port 10 gigabit card, but this card also supports the ability to mix both
copper and fiber SFPs.

The last card in Table 1-22 is the modular or Flex IOC. This card has two complexes
on it, with each complex connected to a modular slot. The modular slot can utilize one
of three different cards:

• The first card is a 16-port 10/100/1000 card. It has 16 tri-speed copper Ethernet
ports. Because it has 16 1G ports and the complex it is connected to can only pass
10 Gbps in either direction, this card is oversubscribed by a ratio of 1.6:1.

• Similar to the first card is the 16-port SFP card. The difference here is that instead
of copper ports, the ports utilize SFPs and the SFPs allow the use of either fiber or
copper transceivers. This card is ideal for environments that need a mix of fiber
and copper 1G ports.

• The last card is the dense four-port 10G card. It has four 10-gigabit ports. Each
port is still an XFP port. This card is oversubscribed by a ratio of 4:1 and is ideal
for environments where connectivity is more important than line rate throughput.

Summary
Juniper Networks’ SRX Series Services Gateways are the company’s next-generation
firewall offerings. Juniper brings the Junos operating system onto the SRX, enabling
carrier-class reliability. This chapter introduced a multitude of platforms, features, and
concepts; the rest of the book will complete your knowledge in all of the areas that have
been introduced here. The majority of the features are shared across the platforms, so
as you read through the rest of the book, you will be learning a skill set that you can
apply to small hand-sized firewalls as well as larger devices. Your journey through the
material may seem great, but your reward will be great as well. The concepts in this
book apply not only to the SRX, but to all of the products in the Junos product line.

Chapter Review Questions
1. Which of the SRX platforms can use WAN interfaces?

2. What are the Ethernet switching restrictions on the branch SRX Series?

3. What is the true cutoff limit for using a branch device in a branch and not using it
in a larger environment such as a data center?

4. The SRX5000 line seems to have “too much” performance. Is such a device needed?

5. What is the biggest differentiator between the branch SRX Series and data center
SRX Series platforms?

6. Which SRX platforms support the UTM feature set?

68 | Chapter 1: Introduction to the SRX

7. Why can’t the data center SRX Series manage the AX411 Wireless LAN Access
Point?

8. For how long a term can you purchase a license for a Junos feature?

9. What does a Services Processing Card do?

10. What is the benefit of the distributed processing model on the data center SRX
Series?

Chapter Review Answers
1. The SRX210, SRX240, and SRX650 can use WAN interfaces. These are part of the

branch SRX Series. As they are placed in a branch, they are more likely to be ex-
posed to non-Ethernet interfaces and need to accommodate various media types.

2. Ethernet switching can only be done across the same card. It is not possible to
switch across multiple line cards. The branch SRX Series devices use a switching
chip on each of their interface modules. Switched traffic must stay local to the card.
It is possible to go across cards, but that traffic will be processed by the firewall.

3. It’s possible to place a branch device in any location. The biggest cutoff typically
is the number of concurrent sessions. When you are unable to create new sessions
there isn’t much the firewall can do with new traffic besides drop it. The second
biggest limit is throughput. If the firewall can create the session but not push the
traffic, it doesn’t do any good. If a branch SRX Series product can meet both of
these needs, it may be the right solution for you.

4. The SRX5800 can provide an unprecedented amount of throughput and interface
density. Although this device may seem like overkill, in many networks it’s barely
enough. Mobile carriers constantly drive for additional session capacity. In data
center networks, customers want more throughput. It’s not the correct device for
everyone, but in the correct network, it’s just what is needed.

5. The data center SRX Series devices allow the administrator to increase performance
by adding more processing. All of the branch devices have fixed processing.

6. As of Junos 10.2, only the branch SRX Series devices support UTM. The focus was
for a single small device to handle all of the security features for the branch. In the
data center, items such as antispam are handled by dedicated servers. In the future,
the feature may be added to the product.

7. It doesn’t make sense for the data center SRX Series to manage the AX411 because
of the typical deployment location for the product. Although it is technically pos-
sible, it is not a feature that many people would want to use, and hence Juniper
didn’t enable this.

8. The maximum length a Juniper license can be purchased for is five years.

9. A Services Processing Card on the data center SRX Series enables the processing
of traffic for all services. All of the services available on the SRX, such as IDP, VPN,

Chapter Review Answers | 69

and NAT, are processed by the same card. There is no need to add additional cards
for each type of service.

10. The distributed processing model of the data center SRX Series allows the device
to scale to an unprecedented degree. Each component in the processing of a flow
optimizes the processing capabilities to allow you to add more than a dozen pro-
cessors to the chassis, with equal distribution of sessions across all of the cards.

70 | Chapter 1: Introduction to the SRX

CHAPTER 2

What Makes Junos So Special?

Back when Juniper Networks set out to create the world’s best routers, it needed to
design a new hardware platform to handle extremely fast router speeds. The hardware
architecture included line cards that contained a series of application-specific integrated
circuits (ASICs), processors, and interfaces, with each card designed to act as a client
within the chassis. The main component that could control these line cards, the route
engine, was also created, and it is the hardware component that runs Junos.

Although this may not seem like such a big deal, it is; it was a huge advancement in the
state of router technology in the 1990s and it still is today. This design creates the clear
physical separation of the control and data planes; separating these two elements allows
the components to operate at their full capacity without interrupting each other. The
data plane can pass traffic at 100% of capacity while leaving the route engine (RE) to
calculate routes and manage the device. It’s at the heart of enabling extremely fast router
speeds.

Just as the forwarding and control planes were once intertwined, so, too, was the con-
trol and data plane software. All processes operated in kernel space and very little
prioritization was done. With Junos, the network operating system game changed.
Having a separate RE allowed for the running of a more robust underlying operating
system, and Junos, unlike previous network operating systems, enabled the restarting
of processes, separate user and kernel spaces, and an easier way to maintain modular
design. Again, it is a logical design today, but it was a game-changer back then.

This chapter is a primer for any administrator trying to understand what all the Junos
hoopla is about. It examines the foundations of Junos and how it works, and then
provides comparisons for those of you coming from other platforms such as ScreenOS
or IOS. It is not meant to be an extensive guide on Junos—if you need such a guide,
try the Day One booklets at http://www.juniper.net/dayone or the thorough documen-
tation at http://www.juniper.net/techpubs. We, the authors, consider learning Junos to
be a personal adventure.

And for all of you Junos router or switching heads who might be reading this excursion
into Junos security, even after years of use there is always something new to learn,

71

http://www.juniper.net/dayone
http://www.juniper.net/techpubs

something new you can do. Besides, any Junos knowledge you gain on the SRX Series
Services Gateway can easily be transferred to any other Junos platform.

OS Basics
The Junos operating system is unlike most firewall operating systems of the past. This
operating system is of a more modern design. It contains the characteristics of a server
and/or desktop operating system. Most firewall appliances and routers of the past used
a single OS image that contained what was known as a real-time operating system.
ScreenOS, Juniper’s original firewall platform, is an example of this, and these simpler
operating systems are great when the OS only needs to run a few different tasks. By the
way, all of the tasks in the operating system run in kernel mode, and if any of the tasks
crash, the whole system will come to a halt, as there is no process separation.

Kernel Space Versus User Space
The kernel of an operating system is no different from any other binary application that
can run on a system. The kernel, as an application, is designed to be the core of the
operating system. It handles specific system calls such as accessing hardware, or sched-
uling which processes can run and for how long. All of these tasks occur within what
is known as kernel space. Tasks that exist in kernel space have a higher priority on the
system. If something bad happens in the kernel, typically a kernel panic will occur,
bringing down the entire system.

The benefit of execution in kernel space is speed. Any task done by the kernel is given
the highest possible priority on the processor—that’s why many early networking de-
vices had everything run in kernel space. And frankly, if a device is simple enough,
process separation isn’t needed. However, when process separation isn’t used, it leaves
the system more exposed to crashes. The more tasks a kernel has to take on, the more
that can potentially go wrong.

In most modern operating systems, user processes are separated from the kernel. This
includes Junos, or any Unix-like system such as an operating system. User tasks run,
and are scheduled, by the kernel as well as by memory allocation or other user-task
access to hardware. If the user task crashes, the system continues to run, as it does not
affect the kernel.

When Junos was created, the fact that it featured process separation was quite a revo-
lution. Most networking devices at the time were plagued with crashes due to simple
issues with Simple Network Management Protocol (SNMP) or routing protocols and
the typical design at the time as a single processor providing both forwarding and
management of the platform. Based on Juniper’s design which separated the routing
and control planes, these tasks were divided onto multiple processors. This way, the
control plane would focus on controlling the device and the data plane would focus on
forwarding the device. Again, with this hardware separation, if the control plane or

72 | Chapter 2: What Makes Junos So Special?

data plane were to run into an issue, it would allow the remaining component to con-
tinue to run.

The founding engineers also came up with a new programming methodology for the
product, using FreeBSD as its base. At the time, Cisco Systems’ IOS software was ex-
tremely fragmented—for each Cisco hardware product there were several versions of
IOS, each with dozens of releases. It was (and still is) a major effort to determine what
features are in each release, and what release should be run on which device. This issue
was well known among the founding engineers (several were from Cisco Systems), and
they set out to correct in Junos what they saw as deficient in IOS.

FreeBSD
The Junos operating system is a derivative of the FreeBSD operating system. FreeBSD
is a descendant of BSD, or Berkeley Unix (BSD stands for Berkeley Software Distribu-
tion). This operating system was created at the University of California, Berkeley, in
1977, by Bill Joy. The original BSD was a branch off of the original AT&T Unix oper-
ating system. It also contained one of the initial deployments of the TCP/IP protocol
suite which made BSD one of the most popular operating systems on the Internet at
the time. The TCP/IP implementation in BSD is called Berkeley sockets, and today it is
still the fundamental standard for the TCP/IP implementation on modern operating
systems.

In 1992, AT&T filed a lawsuit against the company Berkeley Software Designs for the
inclusion of its source code in the BSDi fork of the BSD operating system (the BSDi
software release was one of two versions of BSD that ran on the ’386 architecture at the
time). Because of the lawsuit, BSD development between 1992 and 1994 was slowed,
and during this slowdown BSD momentum went to another kernel; eventually, another
operating system was born, known as Linux. Linus Torvalds has said that if BSD were
available on the ’386 architecture, he most likely would not have created Linux.

The issue at hand with the lawsuit was the BSD license and the inclusion of the AT&T
copyrighted software. The BSD license was extremely permissive and allowed users to
do what they wanted with the software as long as they displayed the BSD license. In
1994, the lawsuit was settled, allowing for the release of 4.4BSD. This release came in
two forms: 4.4BSD-Lite and 4.4BSD-Encumbered. The 4.4BSD-Lite release contained
no AT&T source code. The final release of the original BSD OS was 4.4BSD-Lite2, from
which FreeBSD was born.

FreeBSD started off as a compilation of software from the 386BSD fork and software
from the Free Software Foundation (FSF). However, after the lawsuit hit BSD, FreeBSD
was reengineered from 4.4BSD-Lite. The goal of FreeBSD is to provide an operating
system free from any restrictions, to allow users to take the OS and its source code and
use it as they see fit. Users can modify and use the code without having to share it—
this is a key reason that Juniper and other enterprises, such as Apple, chose to use

OS Basics | 73

FreeBSD as the core of their operating systems, because anyone can take it and develop
it without constraints.

When Juniper started to create its first product, the M40e Multiservice Edge Router,
it needed an OS. As the device’s heavy lifting was done on the data plane, all of the data
traffic processing was done on the Internet Processor (IP or I-Chip). But to allow users
to manage and run dynamic routing protocols, an OS needed to run on the separate
control plane. Because Juniper was more focused on the routing side of the house and
less on creating hard disk drivers and other OS basics, FreeBSD was chosen as the base
OS. It allowed Juniper to use this already existing and robust OS without restraints,
and frankly, since Juniper was founded in Silicon Valley, the OS was very familiar to
most of the computer and networking engineers in the area.

Today most organizations choose Linux as their base OS, often because their developers
are familiar with the Linux environment. When Juniper chose BSD as its base OS, Linux
was still extremely new and was not as robust as BSD. Also, Linux has a very different
licensing model, and Juniper was interested in crafting BSD to meet the needs of its
router—it wasn’t designing a server, but an OS to run processes relating to system
control and management. To accomplish this, kernel modification is required, and
under the BSD license, the kernel can be modified freely. In Linux, there are licensing
challenges to accomplish this; if the source code is modified, the modifications must
be shared back with the community. Although this is done by design so that new fea-
tures can be shared with the community, it doesn’t quite protect a company’s intellec-
tual property.

Over the 10-plus years that Juniper has been making Junos, it has been heavily modi-
fying it from its BSD past, but Juniper continues to utilize advancements in FreeBSD
within Junos, as this chapter will attempt to point out, including the porting of BSD’s
symmetric multiprocessing (SMP) capabilities into the Junos kernel.

Process Separation
One of the key features of Junos is the process separation of the OS. Because of its
design, and the fact that it is a FreeBSD derivative, Junos allows for the separation of
tasks into various processes. For example, the routing daemon is its own process, called
routing protocol daemon (RPD). Figure 2-1 illustrates an example of Junos process
separation.

The challenge for a router or any network device is that it must remain operational.
The device must be able to pass traffic at all times without service interruption, and
because of this tolerance, a router or network device needs to be very robust. When
Junos was brought to market this was not the case—a common reason routers of the
time crashed wasn’t due to forwarding traffic, but rather to routing protocols, SNMP,
or other services performed by the router. A mishandled SNMP query, or an unrecog-
nized bit in a protocol packet, often crashed routers, since they didn’t have process

74 | Chapter 2: What Makes Junos So Special?

separation. In the case of Junos, if a process were to crash, it would core dump and
another instance of the process would start in its place.

A core dump is the current memory space for a process at the time it
crashed. Dumping this information allows a developer to look into what
caused the process to crash. It is called a core dump instead of a memory
dump because memory used to consist of magnetic cores.

This is applicable to every service that is provided on the Junos control plane. It’s also
possible for a user to restart a process if needed. Process separation provides assurance
that the administrator has total control over the system. Again, since Junos is a Unix-
like OS, all of the power that comes in a Unix-like operating system also comes inside
Junos.

Development Model
When Juniper Networks set out to create Junos, it wanted to break the mold of the
incumbent in the router market space, and the incumbent was Cisco Systems. Cisco’s
IOS software has a very fragmented development model, with each Cisco device having
several active versions and each version having several feature releases. This matrix of
releases was the result of Cisco’s driving attempt to make its customers happy, and
quick releases to solve hot issues for customers or add new features as quickly as pos-
sible. The intentions were right, but the result was a messy codebase and a lot of

Figure 2-1. Junos process separation

OS Basics | 75

confusion. When the engineers at Juniper were deciding how to develop their software,
they came up with what would later be called the One Junos model.

The One Junos model is threefold: one OS, one release, and one architecture (see
Figure 2-2).

One OS means one OS is developed across all of the available platforms. It’s a powerful
statement, but it is often contested. Ideally, all Junos devices are built from a single
codebase; this means from a copy of the Junos source tree a working build for any
product can be made. There are some points of argument around this, as we will discuss
shortly.

Figure 2-2. Junos release model

One release refers to the standard release cycle of Junos, which provides a predictable
delivery date for software so that customers can understand when a release is going to
come out and plan accordingly. Junos is released quarterly, in the middle of the month
that falls in the middle of the quarter. It has been delivered consistently for more than
10 years, and is often delivered early. And when the release comes out, it is for all Junos
platforms at the same time.

The Junos Release Train
Each Junos release has the following naming scheme: MAJ.MIN(T)R.B. This breaks
down into MAJ for major release, MIN for minor release, R for release number, and B
for build. T stands for the type of release, which can be R for release, which is the typical
Junos release; B for beta; or S for service release. Each new release starts as an R1 and
then continues throughout the release’s life cycle. The number of R releases depends
on the life cycle of a release.

The first three releases in a calendar year are supported for nine months after they are
released. This means that new R releases providing bug fixes will be provided as needed.
There are at least three releases per release. The last release in a year, which comes out
in November, is supported for three years after the release comes out. At the end of the
support cycle for a release, no new patches will come out for that release. If a user
attempts to call in for support, the customer service organization will take calls for an
end-of-support release; however, no new patches or updates will be offered for an end-
of-support release. The customer will be requested to upgrade to a newer release if a
bug is identified.

76 | Chapter 2: What Makes Junos So Special?

Adding New Features
The Junos operating system is a shared codebase across all product lines. This means
that if a feature is added into the codebase, it allows any product to inherit the feature,
as shown in Figure 2-3.

Using Figure 2-3, let’s consider a few examples of how this works. The first example is
an extension to Border Gateway Protocol (BGP), which would start on the M Series
Multiservice Edge Routers, T Series Core Routers, and MX Series 3D Universal Edge
Routers in Junos 10.0R1. In Junos, new features are added only in an initial R1 release.
When a new feature is developed, the feature is typically available only in the originating
platform; then, at the next R1 release, other platforms are allowed to utilize the feature.
This lag is for performing quality assurance (QA): each platform utilizing a feature must
go through a complete feature testing cycle before it can be included in the product.

Figure 2-3. Feature migration example

Another example is importing a common feature into a product. Here there are two
aspects to consider. The first is whether it is a control plane feature or not, because
fundamentally, all features that run on the RE or control plane can run on any other

OS Basics | 77

device’s control plane. The restrictions are processing, memory, and need. Some branch
SRX Series products, for example, contain VoIP features that run on the control plane.
This feature is not available on the MX Series simply because it doesn’t make any sense
for the control plane on an MX Series router to be a voice gateway; it is outside the
scope of the product. If the MX Series router were to offer such a feature, it would need
to be much more scalable than just running the feature on the control plane.

The second aspect to consider is whether the data plane is capable of performing the
feature. This aspect is discussed in more detail in the next section, but the diagram in
Figure 2-3 shows Junos using what is called the one architecture approach. All of the
code is written in such a way that the underpinnings of the hardware are hidden from
the developers. This means that when a feature is written, the development of it is
platform-agnostic, which makes it easier to get features running on products that have
different data planes.

Data Plane
Each Junos product series can have radically different data planes. For example, MX
Series routers and the data center SRX Series, although sharing a majority of the hard-
ware, work very differently inside the box because the packet flow is processed differ-
ently in the hardware, and even some additional hardware is called into use. The goal
for Junos is to present a common configuration and interface to the two different devices
where possible.

Each product series has specific targets and markets in mind when they are developed,
so the data plane hardware may be different. As we discussed, the MX Series router
and data center SRX Series devices share all of the hardware between the two devices,
but the difference is that the SRX is a 100% flow-based device. This means all traffic
processed in the SRX is looked at and inspected on a flow-based level. The entire stream
of data is looked at and each packet is related to each other.

In the case of the MX, it is, by default, a packet-based device, and it optionally can use
Multiservices DPCs (MS-DPCs, which are the same thing as SPCs on the data center
SRX Series). An MX is designed to be an Ethernet services router and the SRX is a
services gateway. Both use the same hardware, yet in fundamentally different ways.

Because the hardware on the platforms is different, the underling software driving the
data plane must be different. This has been the same development model that has
existed for Junos since the very beginning. To make it easy for developers, Juniper uses
the one architecture model to provide an abstraction layer above the hardware. This
way, the platform engineers can write code that drives the features for the specific
platform when new chipsets and processors come out without disrupting the actual
implementation of the feature in its abstracted layer.

78 | Chapter 2: What Makes Junos So Special?

Junos Is Junos Except When It’s Junos
Since its launch, Junos has migrated from running on just the M40e Multiservice Edge
Router to running on well over a dozen platforms. This has brought criticism about
whether Junos is still the pure software that Juniper promotes it to be; if there is only
one Junos, why are there so many releases to download? To address these concerns,
consider the following.

Remember first that many of these platforms’ control planes and data plane processors
run on completely different CPUs and processors than other devices. The branch SRX
Series control plane runs on a MIPS64 processor, the SRX5000 line of services gateways
runs on Intel, and the SRX3000 line runs on the PowerPC processor. Each of these is
very different from the other. The original source code is the same, but it is compiled
into different builds to suit the platform.

Junos could do what Microsoft Windows does to cover the differences in underlying
hardware: provide a single multigigabyte DVD or USB image to allow customers to
load each release from a single Junos. This would be fairly impractical for devices with
limited compact flash, however, and the majority of the room would be wasted on
packages that the platform would not need. (Besides, who wants to insert a DVD into
their switch to upgrade the software?)

Remember, too, that the data plane on the majority of the platforms is different. The
branch SRX Series and data center SRX Series products share a majority of the under-
lying code, but they run it on very different processors. A branch SRX Series device has
only one or two processors, whereas a data center SRX Series device can have upward
of 50. This is very different, requiring the code to be built in different ways, even though
the flow features come from the same codebase. It is in Juniper’s best interest to main-
tain the smallest possible codebase. The smaller the codebase, the easier it is to imple-
ment new features and the quicker it is to resolve bugs.

Finally, Junos is one of the few software development models that provides regular
software releases on a driven schedule. This is an extremely hard feat to accomplish,
but it is done with the customer in mind. It is done to provide a consistent stream of
new features, a consistent support model around releases, and an easy-to-understand
model for customers to determine which release to run and what they will get out of
that release. Some customers choose to be bleeding-edge, others choose to run as far
behind as possible. Either way, it’s all about providing customers a choice for what is
best for them.

Coming from Other Products
For most people, Junos is not their first adventure in working with a network operating
system. Because of this, some assistance is needed when transitioning to the product.
To become an expert in a product is not to just be able to configure a few items, but to
know how a product is going to react in nearly any situation. It’s a skill that takes years

Coming from Other Products | 79

to master, and since versions change and new hardware is launched, the job is never
complete.

Because of this, there is always a concern when switching to a new platform. “Will I
lose all of my knowledge? Has all of this gone to waste?” This is something that goes
beyond the love of a product; it goes to the individuals’ careers and their ability to
support their families. Taking on a new product is a challenge, and there is always a
new learning curve.

The important part to focus on is the difference between the old product and the new
product. For the most part, routing protocols are the same across all devices. The com-
mands will be different, but the underlying concepts are the same. It’s important not
to lose sight of the fact that many skills can be carried over from other products into
Junos.

This section is dedicated to looking at three major firewall platforms and what can be
taken from them when moving into Junos. It also discusses major differences between
the platforms and how to migrate knowledge between them. In some cases, there will
not be a parallel comparison between the platforms, but the important features will be
noted.

ScreenOS
The ScreenOS platform comes from NetScreen Technologies. It was designed as an
ASIC-based firewall running a custom operating system. ScreenOS at the time was
revolutionary for including an ASIC to speed up traffic processing and for including
the concept of security zones. A security zone is a logical construct that contains one
or more interfaces, and zones are used to create a direction between two different areas
of the network. Traditionally, up until this time, policies were created only by using IP
addresses and ports. By breaking up policies into these contexts, NetScreen provided
for a simplified management infrastructure.

Because ScreenOS was the previous (acquired)-generation security product from Juni-
per Networks, the SRX Series and its Junos operating system are looked at as the next-
generation version of ScreenOS. For some, there is mild confusion when transitioning
between the two platforms. ScreenOS and Junos share some similarities with respect
to concepts, but it tends to end there.

The ScreenOS operating system runs a very simplistic “real-time” operating system. All
processes and tasks run in kernel space. There is no separation of processes within
ScreenOS, so if any one component were to fail, the entire operating system can crash,
and because the OS is required for session setup, the entire device is lost. The benefit
of the design of the ScreenOS software is that everything can happen very quickly, since
it is executed directly in the kernel.

But the major cons of the design outweigh its advantages. The real reason for the design
of the OS was because, at its inception, processors and memory were not as capable as

80 | Chapter 2: What Makes Junos So Special?

they are today. Making a cost-effective appliance with a small footprint was just not
possible on the hardware of the time. Besides, most of the heavy lifting was done by
the ASIC, which was really the gem of the ScreenOS platform’s design.

ScreenOS originally focused on the command-line interface (CLI) as its primary man-
agement interface, but later introduced a simple web UI to manage the device that
entered the CLI commands on behalf of the user. The CLI had similarities to Cisco’s
IOS in its usage, which is understandable, since IOS was the most popular network
operating system on the market and it made sense to follow its lead.

ScreenOS provides the traditional operational mode and configuration mode that most
network operating systems provide. Operational mode allows users to retrieve infor-
mation and configuration mode allows users to modify the device’s configuration. All
changes in configuration mode are made effective immediately.

ScreenOS changed the firewall market because of its appliance design, fast
performance, and ease of use. It also utilized stateful firewall technology, which at the
time was a major advancement. The more popular products of the time were proxy-
based firewall solutions, very few of which are popular today. Other major firewall
products at the time were not as easy to use, nor did they offer the performance that
ScreenOS did. Many firewall products required an underlying OS, such as Solaris, HP-
UX, and even Windows NT 4.0. ScreenOS allowed the administrator to take the ap-
pliance out of the box and literally be ready to go in minutes.

Because of ScreenOS’s ease of use and its long existence in the marketplace, its usage
has become extremely popular around the world. Because the SRX is also from Juniper
Networks, there is an expectation that it would be a descendant of ScreenOS, but rather,
the SRX products use the Junos operating system. Junos is vastly different from
ScreenOS, as it is of a modern OS design and extremely modular. The next chapter
talks in depth about how to use Junos; the remainder of this chapter is dedicated to
assist users who are coming from ScreenOS and how to ease into using Junos.

One of the most beloved features of ScreenOS was the web UI. This helped adminis-
trators use the platform right away, because they did not need to know how to use the
product. Underlying ScreenOS is a complete command-line-driven interface, and the
web UI simply created the appropriate CLI commands for the user.

Junos operates in a similar manner, as all the configuration elements are primarily
handled in the CLI. On top of this, devices run a web management tool called J-Web.
The J-Web interface allows users to manage Junos in a similar manner. The biggest
difference is that Junos was originally designed as a CLI-driven operating system, and
many tools and options are provided inside the Junos command line that simply are
not available in any other network operating system. Because of this flexibility, most
Junos users tend to lean toward using the CLI. This may seem like a strange concept
at first, but it is something that rings true with Junos. Either way, both the CLI and
J-Web are available.

Coming from Other Products | 81

If you are coming from ScreenOS, there are a few items that will typically get in your
way of getting started.

First, configuring something on Junos requires more commands than it would on
ScreenOS, due to the hierarchy-based configuration of Junos. An example of this is a
security policy. In ScreenOS, you can configure a security policy in a single command.
In Junos, it takes two commands, because Junos needs a match and then a stanza,
showing the device what to match in the policy and then what to do if a match is made.
Because these commands are in two different stanzas, two commands are required.

The Junos configuration is designed to be extremely flexible and not to change once a
stanza is added into a release, which means the configuration needs to be extremely
extensible. Due to its extensibility, the commands require extra commands to add
configuration. To compensate for this, Junos allows users to enter the command hier-
archy much like they would when changing a directory. Once users are inside a hier-
archy, they only need to enter local commands. This reduces the number of words that
users need to enter per command (we will cover this in more depth in Chapter 3).

Both systems use the set command to enter information into the configuration. In
ScreenOS, the get command is used to display operational information, and Junos uses
the show command, similar to IOS.

Another quirk from the ScreenOS user’s point of view is the size of the Junos operating
system installation file. Junos is a full-fledged operating system with a BSD core, so the
release file includes all of the various daemons, libraries, and utilities. The ScreenOS
image is a single binary file, and since ScreenOS does not have process separation,
everything runs quite compactly. The stability gained when using Junos is well worth
the additional size of the file.

Both Junos and ScreenOS can be managed side by side using the Network and Security
Manager (NSM) tool. NSM provides an abstraction that can be shared across both
platforms. Users who currently utilize NSM will get a similar experience across both
ScreenOS and Junos.

IOS and PIX OS
The Internetwork Operating System (IOS) was often considered the gold standard for
network operating systems, and it is why ScreenOS shares many similarities with IOS.
IOS is the primary OS for the majority of Cisco’s devices, though several new devices,
such as the Nexus series switches and the CRS product lines, use newer-style operating
systems.

IOS uses a simple model of commands. The command line can operate in two modes:
operational and configuration. In operational mode, the show command displays op-
erational information. The administrator can then enter configuration mode and enter
configuration commands. Unlike ScreenOS and Junos, the command is simply entered

82 | Chapter 2: What Makes Junos So Special?

without the need for using set. Most Cisco administrators utilize the command line
for administration on these devices.

Moving to Junos from an IOS device has the same challenges as moving from ScreenOS.
Most users who migrate between platforms are overwhelmed by the more detailed
command set in Junos. As mentioned earlier in this chapter, although this is challenging
at first, it ends up becoming a benefit because so many other types of devices run Junos
and they have the same command sets.

The majority of users who migrate from a Cisco firewall product to Junos will migrate
from a Cisco PIX or ASA platform, which, effectively, share the same operating system.
Originally, the PIX operating system ran much like IOS with all executions running in
kernel mode, which is the same design as ScreenOS and other network operating sys-
tems of the time. Later versions of PIX OS, such as 8.0 and later, run a Linux kernel for
the OS, and a combination of some of the older PIX OS technologies.

Both the old and new versions of PIX OS share a similar command-line infrastructure.
The OS utilizes the traditional operational mode and configuration mode design for
device management. Since Cisco purchased the company Network Translation, it has
moved the CLI to be more IOS-like, easing administrators’ transition between the two
platforms.

A strength of the PIX platform is the included GUI tool called the PIX Device Manager
(PDM). The PDM is a Java-based tool that allows for full administration of the device
as well as built-in troubleshooting. This tool is extremely strong and allows for nearly
anyone to jump into the platform. For those who rely on this tool solely to manage the
device, migrating to Junos may be more difficult, as J-Web does not provide a one-to-
one feature set.

Again, if you are one of these users, be sure to read Chapter 3 before jumping into the
big Junos pool.

Check Point
The Check Point firewall was one of the largest game changers in firewall history. It
came along at a time when most people believed a firewall was nothing more than a
piece of wood inside a wall. Check Point led the stateful firewall revolution and com-
peted with proxy firewalls. Check Point came out with the concept of a stateful firewall
and this has become the industry standard over proxy firewalls. As the industry requires
ever-faster performance, the market has become increasingly comfortable with stateful
technologies.

The Check Point firewall is a software solution. It has the flexibility of not being tied
to a specific hardware platform. Originally, Check Point was very popular on Solaris,
HP-UX, and Microsoft Windows NT 4.0. Over time, it became cumbersome to patch
the various base operating systems and, in the event of a disaster, rebuild them. In
response to this, several vendors began to come out with appliance-based systems that

Coming from Other Products | 83

could run Check Point. The appliances ran an easy-to-manage operating system and
often provided an on-box web UI to manage the device. Today, Check Point offers its
own OS, Secure Platform, which is Linux-based and can be run on any x86 hardware
as well as on the company’s own series of appliances.

The premier technology for Check Point is its management platform. The Windows-
based GUI has set the bar for management on any network device. The GUI allows for
configuration, log viewing, reporting, and real-time monitoring. The GUI is often the
most compelling reason to use Check Point. And because of this, Check Point can be
one of the most difficult firewalls from which to migrate.

The Check Point software system does provide a command line, but it is only used in
certain situations. The majority of the configurations are done through the GUI tool
base. Because Junos is command-line-driven, it can be very shocking to migrate over
to Junos. There are two solutions to the migration. The NSM tool is the legacy man-
agement option for all of the Juniper Networks products, and it provides a single con-
sole to manage all of the various devices that are manufactured by Juniper.

The next-generation tool that will slowly replace NSM is called Junos Space. The Junos
Space software is a modular system that is designed to manage all of Juniper’s devices.
The difference between Junos Space and NSM is that Junos Space provides a greater
abstraction from the configuration. We will discuss the capabilities of the two platforms
in Chapter 13, along with Junos automation.

Although moving from a GUI-based world to the Junos platform that is CLI-driven can
seem like quite a feat, it is actually empowering. Trust us. All of the authors of this book
have done it, and we are all now firm believers. The advanced capabilities of Junos
expose administrators to a larger space of products and technologies that can help
them, in turn, to expand their careers. Today, someone administering an SRX device
can easily move over to a switch or even the largest routers in the world. This book will
help you learn Junos, and learn the SRX well through Junos, if you want to make a true
investment in time and learning.

Summary
The Junos operating system is an advanced modern operating system that is designed
for both today’s and tomorrow’s needs. The thought put into the structure of Junos
provides a robust implementation that allows for the addition of new features without
compromising stability. In this chapter, we discussed the basics of the Junos operating
system because to learn an operating system, sometimes you just have to touch its
various capabilities. We wanted to provide you with an understanding of what makes
Junos tick and how to migrate, as we all did, to what we think is a superior platform
running a superior operating system.

In the next chapter, you’ll get a hands-on crash course in Junos. To supplement that
knowledge, you may want to check out the many online training tools designed to teach

84 | Chapter 2: What Makes Junos So Special?

users about Junos. You may want to start with Junos Central, at http://junos.juniper
.net/. Also, some free Day One Junos booklets might help (http://www.juniper.net/day
one). Finally, check out the O’Reilly series, Juniper Networks Technical Library, at
http://www.juniper.net/books. A new O’Reilly book titled Junos Fundamentals: The
JNCIA (scheduled for publication in November 2010) covers Junos for first-time users.

By the way, since Junos has new releases coming out every quarter, new features, ca-
pabilities, and even products are always on the horizon. It’s best to check online for
the latest on Junos at http://juniper.net.

Chapter Review Questions
1. What is an OS kernel?

2. What OS is Junos based upon?

3. What are the names of the two planes in the Junos operating system?

4. What is the benefit of separating processes?

5. How many Junos releases are there in a year?

6. How many software trains are there in Junos?

7. What is the only release that contains new features?

8. Why are there different builds of Junos for each release?

9. What is the primary method for managing Junos?

10. Can features created on one Junos device be shared with another Junos device?

Chapter Review Answers
1. An operating system’s kernel is responsible for managing the system. It controls

access to the hardware and the scheduling of running tasks.

2. Junos is derived from the FreeBSD operating system. This was done because
FreeBSD contained all of the basics, such as hardware support, process separation,
and a robust kernel. Its license also allowed for Juniper to utilize the code without
paying royalties.

3. The two planes in the Junos operating system are the control plane and the data
plane. The control plane is responsible for managing the system and running rout-
ing protocols. The data plane processes network traffic.

4. Separating processes out of the kernel allows the processes to be managed indi-
vidually. In the event that a process crashes, the rest of the system will continue to
run and will not be affected while that process restarts.

5. There are four Junos releases per year. One release is provided in the middle month
of each quarter.

Chapter Review Answers | 85

http://junos.juniper.net/
http://junos.juniper.net/
http://www.juniper.net/dayone
http://www.juniper.net/dayone
http://www.juniper.net/books
http://juniper.net

6. Junos is built on only a single train of software. Each device uses the same source
codebase to build its image.

7. Each R1 release of software contains new features. The remaining R1 releases only
contain bug fixes.

8. Each Junos platform contains different data plane chipsets and often different
control plane processor types. Because the binary images are different, a separate
release is needed. Also, some platforms may have features that others don’t, based
upon the deployment location of the platform.

9. Junos is primarily a command-line-managed device. All of the configuration is
stored in the command line. Tools such as J-Web, NSM, and Junos Space allow
for management through a GUI interface if the administrator desires to use them.

10. Since the source codebase is shared among all of the platforms, it’s possible to
enable features developed on one platform to be used on another. Junos is written
with a single architecture, meaning that the underlying hardware is abstracted from
the actual feature code. Features are enabled as needed based upon the deployment
of the device.

86 | Chapter 2: What Makes Junos So Special?

CHAPTER 3

Hands-On Junos

This chapter is designed as a jumpstart for users who are getting into Junos for the first
time. It is by no means meant to be a complete primer on Junos and all of its various
features; rather, it is intended to provide administrators who are new to Junos with
enough tools to get started on the SRX Series—and hopefully provide long-time Junos
users with a few new tips that are specific to the SRX.

If you’re coming from another network operating system such as IOS or ScreenOS, this
chapter will get you started in Junos.

Introduction
The command-line interface (CLI) is the premier way to manage the Junos platform,
and for the majority of its existence, the CLI has been the only way to manage Junos.
Lately, Juniper Networks has created an abundance of great tools designed to enable
customers to manage the platform via other management tools, including Junos Space,
the Network and Security Manager (NMS), and Junos automation techniques. We will
discuss these and other management tools in other chapters of this book. This chapter
provides a tour of the Junos CLI, and how to jump right in.

Why promote the CLI? First, no matter which tool you use to manage Junos, the tool
will always be represented in the CLI. So, it’s important to have an understanding of
the CLI, configuration output, and how the CLI works. This will give you a better
understanding of what is going on inside the Junos device, no matter which manage-
ment method you decide to use.

Second, for years the CLI has been the management tool of choice among the world’s
largest service providers, because they have learned that the CLI contains many built-
in tools and tricks to assist in configuration management. Remember that Junos is a
Unix-line operating system, and Unix is the master of text processing, which means
these tools are used well here. Administrators who are familiar with using shells and
pipes (|) will quickly see how Junos contains these same tricks. For those without this

87

experience, it’s the perfect time to learn. Learn the Junos CLI, and it becomes a trip
through Unix, programming, and pure access to the network.

Junos provides administrators with so many levels of access to configure and monitor
their devices. Even the default configuration for Junos is extremely deep and provides
administrators with a great deal of control regarding how they want traffic to operate
as it passes through a device. This can be thought of as programming the network.

There is a good side and a bad side to this level of depth. The bad side is that it can put
users too far away from being able to use the product. In fact, starting off with Junos
has proven to be a bit too daunting for some beginning users; fortunately, Juniper
Networks has listened to this and responded by providing more clarified documenta-
tion, books, and management tools such as J-Web and Junos Space.

The good news is that once administrators get their minds wrapped around Junos,
using it opens new doors. Since Junos runs on several different platforms, it allows
administrators to use their acquired knowledge across any Junos platform, whether it
is a router, switch, firewall, or something else. As your Unix skill set expands, you will
have full access to the underpinnings of Junos, allowing you access to a complete un-
derstanding of how the system works. It also opens up users to learning programming,
whether via Junos automation or by working with the Junos SDK. There’s a vast dif-
ference between configuring your devices and programming the network, and by learn-
ing Junos via the CLI, you’ll be closer to the latter, or at least to understanding how it
can be done.

Driving the Command Line
You can connect into the Junos CLI in numerous ways. You can access the device via
a serial port, Telnet, or secure shell (SSH). When users connect to the Junos device they
are placed into the CLI by default. The CLI for Junos is a custom shell that is built into
the device.

A shell is a command-line interpreter that accepts commands from the user and then
executes specific tasks based on the commands. The CLI is a custom-written shell
designed to allow very effective interactive access to monitoring and configuring Junos.
The name of the binary is called cli and it is stored in the /usr/sbin directory on the device.

Because Junos is based on BSD, its most powerful administrative user is named root.
The root user is the only default user on a Junos device. When logging in as root the
user is given access to the BSD side of Junos. This allows unlimited access to the file-
system, configuration files, and binaries.

To learn more about how the FreeBSD side of Junos works, please ref-
erence The Complete FreeBSD: Documentation from the Source by Greg
Lehey (O’Reilly). The book is considered a masterpiece and provides
amazing detail regarding the underpinnings of FreeBSD.

88 | Chapter 3: Hands-On Junos

http://oreilly.com/catalog/9780596005160/

The root user has access to all of this because the root user is placed into what is known
as the C shell or csh. This is the default shell of FreeBSD. There are times when using
csh is helpful in administering the device, but typically csh is for advanced users.

The root user can access the Junos CLI by executing the command cli. This will give
the root user access to all of the Junos functions of the system. The CLI binary, much
like other Unix shells, provides the user with many built-in features, such as command-
line completion, help, and output redirection, all of which are included in this chapter’s
overview. All users other than root will have their shell access default to the CLI instead
of csh, and later in this chapter we will discuss some of the secrets of what CLI access
has to offer.

Operational Mode
When you first log in to the system you are presented with the CLI.

The initial mode that you see in the CLI is what is called operational mode. This mode
provides you with access to run operational commands that enable the display of the
state and status of the device. It is in this mode that most users identify what is hap-
pening on the device, and perform troubleshooting, as opposed to configuration. The
commands in operational mode fall into one of several categories, as listed in Table 3-1.

Table 3-1. Operational command classification

Type Commands Description

View/change state show, clear,
monitor

Provides information about the current status of components in the
system. Also allows the user to reset the state of some system
components.

Configuration configure, save,
set, load

Allows access to and manipulation of configuration elements of the
system.

Diagnostics ping, mtrace,
traceroute, test,
restart, op, start

Diagnostic commands that provide device and network accessibility
testing of the system.

Documentation help Provides access to all of the Junos documentation right from the
command line.

Remote administration ssh, telnet Allows the user to connect to other remote systems.

This diverse command set offers you a venerable tool chest to work with on the Junos
device. Throughout this chapter, and indeed this entire book, we will use these com-
mands in correlation with real working examples for actual on-box troubleshooting
and monitoring.

Operational Mode | 89

Variable Length Output
Most elements in Junos allow for several levels of informational output to be displayed,
allowing you to choose what you want to see and how you want to see it. A perfect
example of this is the output for interfaces on a device; in this scenario, many stats are
associated with each interface, and if only one command output was available, it would
require a literal cruise through the ocean of information to get the information you
needed.

Because of the depth of information that can be provided per command, Junos comes
with four levels of depth, as highlighted in Table 3-2.

Table 3-2. Output command options

Command Description

terse Shows the smallest amount of information for the command; for example, showing the output as a list of
elements

brief Shows each output element plus some additional details regarding each element

detail Shows the majority of the information about each known element

extensive Shows all known information on each displayed element

Although this may seem like too many options for displaying output, it places you in
control, with the ability to choose the right amount of information at the right time.
Throughout this book, you’ll find that the CLI is designed to be the single source man-
agement solution for the SRX Series, and such flexibility is the key to providing the
right amount of information when you need it.

Passing Through the Pipe
In Unix, there is a concept called standard streams. A stream is a channel that allows
for the input or output of data. It’s a fundamental concept that has been used in Unix-
like operating systems since their inception. The idea is that there are three basic
streams: standard input, standard output, and standard error. The groundbreaking
concept that Unix provided was the fact that each of these is abstracted from its actual
source. For example, output could be sent back to the command line, or to a file, and
the implementation would be the same. This abstraction is very powerful, as the input/
output (I/O) streams could be sent in the same manner, no matter what type of source
or destination was involved.

This still applies in the case of Junos. You can use the special pipe or pipeline character
(|) at the end of any Junos command, allowing you to redirect the standard output or
output from any command to one of several other commands. These commands can
manipulate the output, limit the output, and even redirect the output to a file. We will
show various examples of the use of | throughout this chapter and throughout this
book.

90 | Chapter 3: Hands-On Junos

Seeking Immediate Help
Documentation has always been a big part of any computing system, but providing
documentation to the end user at the command line gives Unix an advantage, for the
user does not have to look through various paper manuals to identify commands and
options. Since Unix, and Unix-like operating systems, including Junos, are primarily
command-line-driven, and there tend to be many commands, users need a simple
method to look up information right from their access terminal. In 1971, Ken Thomp-
son and Dennis Richie wrote the original manpages for the Unix operating system.
These were single-page documents that could be accessed directly from the command
line, giving users a complete level of documentation at their fingertips.

Manpages stem from the man command used to access them, and they document several
aspects of a Unix system. They provide documentation for each command, system call,
C language library function, and several other topics. Because Unix contained so much
information, and it was accessed from a single command line, this simplified method
of accessing the information was heralded.

When Junos was launched, the Internet was still small, compared to today. Users often
needed access to documentation for Junos and had a few different places to turn. They
could access the Junos documentation online, on CD-ROM, in printed manuals, or
right from the command line. Junos documentation is written in the DocBook format.
This format allows for simple cross-format publication from a single source. This pro-
vides more consistency across the documentation, as well as simple distribution. Junos
command-line documentation was, and still is, popular due to its quick accessibility
and level of depth.

You can access the help command from either operational mode or configuration mode.
The help command contains a few options. The help reference command shows a
summary for a specific configuration statement. The help topic command provides
information on a topic. Here is an example of each:

root@SRX210-A> help reference security screen-security
 screen (Security)

 Syntax

 screen {

 ids-option screen-name {

 alarm-without-drop;

 icmp {

 flood {
 threshold number ;

 }

Operational Mode | 91

 fragment;

 ip-sweep {
 threshold number ;

 }
--snip--

root@SRX210-A> help topic firewall filter term
 Configuring Firewall Filter Terms

 Each firewall filter consists of one or more terms. To configure a term,
 include the term statement at the [edit firewall family family-name filter
 filter-name] hierarchy level:

 [edit firewall family family-name filter filter-name]

 term term-name {
 ...match-conditions ...
 ...actions

 }

 For IPv4 traffic, configure the filter terms at the [edit firewall family
--snip--

In this example, the reference and topic options are shown. Each provides a different
level of information on topics. Since there are so many available commands, it’s also
possible to search through the commands using the help apropos command. This
command allows you to search through the text in all of the statement names and help
strings. So, if you were looking for a command, help apropos would provide informa-
tion around those specific topics quite easily:

root@SRX210-A> help apropos flow
clear security flow
 Clear flow information
clear services dynamic-flow-capture
 Clear dynamic flow capture information
clear services flow-collector
 Clear services flow collector information
clear services flows
 Remove established flows from flow table
show interfaces flow-statistics
 Show security flow counters and errors
show route protocol <protocol> flow
 Locally defined flow route
show route flow
 Show flow routing information
--snip--

In this example, all of the commands that match the flow option are shown (the output
was trimmed for length). It’s very helpful in terms of finding that one specific command
you’re looking for to accomplish a particular task.

92 | Chapter 3: Hands-On Junos

On the screen, or in logs, you may encounter various strange messages. Often you may
want to look up what a log means. You can do this using the help syslog command.
This command can show you what the message means and the variables that are within
the command:

root@SRX210-A> help syslog | match LINK
CHASSISD_FASIC_HSL_LINK_ERROR chassisd detected F-chip link error
CHASSISD_FCHIP_HSR_INIT_LINK_ERR High-speed receiver (HSR) link initialization
CHASSISD_FCHIP_HST_INIT_LINK_ERR High-speed transmitter (HST) link
CHASSISD_FCHIP_LINK_ERROR chassisd detected F-chip link error
CHASSISD_MULTILINK_BUNDLES_ERROR chassisd could not create link bundles for PIC
COSD_MULTILINK_CLASS_CONFLICT Multilink class configuration exceeded limit
RPD_ISIS_LSPCKSUM IS-IS link-state packet failed checksum tests
RPD_ISIS_OVERLOAD IS-IS link-state database is full
RPD_LMP_RESOURCE_NO_LINK rpd could not find TE link for resource
RPD_LMP_TE_LINK TE-link operation failed
RPD_LMP_TE_LINK_INDEX rpd could not allocate TE-link index
RPD_RSVP_BYPASS_DOWN RSVP link-protection bypass was terminated
RPD_RSVP_BYPASS_UP RSVP link-protection bypass was established
SNMP_TRAP_LINK_DOWN linkDown trap was sent
SNMP_TRAP_LINK_UP linkUp trap was sent
VRRPD_LINK_LOCAL_ADD_MISMATCH Link local address was incorrect

root@SRX210-A> help syslog SNMP_TRAP_LINK_DOWN
Name: SNMP_TRAP_LINK_DOWN
Message: ifIndex <snmp-interface-index>, ifAdminStatus <admin-status>,
 ifOperStatus <operational-status>, ifName <interface-name>
Help: linkDown trap was sent
Description: The SNMP agent process (snmpd) generated a linkDown trap because
 the indicated interface changed state to 'down'.
Type: Event: This message reports an event, not an error
Severity: warning
Facility: LOG_DAEMON

root@SRX210-A>

In this example, the user is looking for the SNMP_TRAP_LINK_DOWN message. Since there
are so many different types of syslog messages, the | match LINK option is used. This
filters through all of the syslog messages and finds ones that contain the word link.
Then the command help syslog SNMP_TRAP_LINK_DOWN is used to display the informa-
tion on the log message.

When attempting to use commands in either operational or configuration mode, you
can use the ? prompt to ask the command line what the next possible options are. You
can do this after every command and it is extremely useful. It can guide you through
the command hierarchy and then right to the command you need:

root@SRX210-A> show interfaces ?
Possible completions:
 <[Enter]> Execute this command
 <interface-name> Name of physical or logical interface
 ge-0/0/0
 ge-0/0/0.0
--snip--

Operational Mode | 93

root@SRX210-A> show interfaces ge-0/0/0 ?
Possible completions:
 <[Enter]> Execute this command
 brief Display brief output
 descriptions Display interface description strings
 detail Display detailed output
 extensive Display extensive output
 media Display media information
 routing-instance Name of routing instance
 snmp-index SNMP index of interface
 statistics Display statistics and detailed output
 switch-port Front end port number (0..15)
 terse Display terse output
 | Pipe through a command
root@SRX210-A> show interfaces ge-0/0/0 brief
Physical interface: ge-0/0/0, Enabled, Physical link is Down
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
 Remote fault: Online
 Device flags : Present Running Down
 Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
 Link flags : None

 Logical interface ge-0/0/0.0
 Flags: Device-Down SNMP-Traps Encapsulation: ENET2
 Security: Zone: untrust
 Allowed host-inbound traffic : dhcp tftp

root@SRX210-A>

Each command in Junos can provide tab or space completion. As you are typing com-
mands, the appropriate or approximate command is automatically chosen for you. In
many Unix shells, the Tab key is often used for completion, and you can use it here as
well. However, the space bar completion in Junos is nice, because each command and
its options have spaces between them. So, as you are typing the command it is being
completed for you:

root@SRX210-A> sho<space>int<space>ter<space> #becomes

root@SRX210-A> show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up down
ge-0/0/0.0 up down
--snip--

root@SRX210-A>

Configuration Mode
The other mode in which to operate the Junos CLI is configuration mode. In configu-
ration mode, you can make configuration changes to the device. Configuration mode
is extremely versatile in the methods it allows you to use. Junos was designed to manage

94 | Chapter 3: Hands-On Junos

configurations comprising thousands of lines directly from the CLI, so in today’s world
of GUIs, this may seem like a Herculean task, but it’s why the most common way to
manage configuration is through the CLI.

To enter configuration mode from operational mode, you simply use the command
configure. You will know you are in configuration mode because the prompt will end
with # (instead of >, which indicates operational mode). As an alternative, you can use
the hidden command edit, which is allowed because it is also used heavily throughout
configuration mode.

There are actually several types of configuration modes. Each mode provides you with
a different level of access into the configuration.

The default mode is shared mode. This means the configuration you are editing is shared
among all of the other users on the device. When the configuration is finally made
active, all of the users’ changes will be made active.

You can also request exclusive access to the configuration by using the command con
figure exclusive. This means only that user can gain access to the configuration, and
no one else can edit it. You can gain exclusive access only when no other users have an
active configuration.

Alternatively, you can request a private configuration. This gives you a configuration
that will not show other users’ changes. If you choose to apply this configuration, it
will not reflect any other changes made by others, but if another user makes a config-
uration change and applies it before the private configuration is applied, the previous
changes will be lost.

No matter which way you request the configuration, you gain access to what is known
as a candidate configuration. The candidate configuration is a copy of the currently
running configuration. It’s a scratch pad that you can use to modify the configuration.
With Junos, the configuration is not applied until it is actually committed. This differs
from other operating systems, where the configuration is applied immediately. We will
discuss this commit model in more detail in the next section of this chapter.

Configuration mode is based on a hierarchical model. It allows you to step through the
configuration in a fashion similar to filesystem directories on your laptop, as shown in
Figure 3-1.

Configuration Mode | 95

Figure 3-1. Configuration hierarchy example

This hierarchy allows you to enter and exit various areas of the configuration. It pro-
vides the benefits of restricting the scope of the command space and the size of the
configuration that needs to be viewed. Here’s an example:

root@SRX210-A# set security zones security-zone Tester interfaces ge-0/0/0
###Very long command

[edit]
root@SRX210-A# edit security zones security-zone Tester
###entering the security zones security-zone Tester hierarchy
[edit security zones security-zone Tester]
root@SRX210-A# set interfaces ge-0/0/0
###short command
[edit security zones security-zone Tester]
root@SRX210-A# show
interfaces {
 ge-0/0/0.0;
}
###running the show command displays only the local configuration.

In Junos configuration mode, instead of using cd to change directories and move
through the hierarchy, you can use the edit command. As shown in the previous CLI
example, you would use the command and then specify where in the hierarchy you
want to be placed. From that position in the hierarchy, all commands are prefaced with
the position in the hierarchy. So, instead of typing set security
zones security-zone Tester interfaces ge-0/0/0, you simply type set
interfaces ge-0/0/0 and the rest of the command is assumed, due to the position in
the configuration tree. This is a great feature for reducing command length and sim-
plifying management.

96 | Chapter 3: Hands-On Junos

Another Junos trick comes into play when viewing the configuration. When you issue
the show command to view the configuration, you will only see what is under that
hierarchy. Although this restricts the current view of the configuration, it provides you
with a clear view of exactly what you want to see, and it’s a huge advantage when you
are editing large security policies or routing configurations.

Once you are inside a hierarchy, you can easily go up or down it. To go farther into the
hierarchy you can use the edit next-step command, and it will take you into the next
step of the configuration. Transversely, you can use the up command to go one step up
in the configuration. Lastly, the top command takes you to the top of the configuration
tree. Here’s a sample:

[edit]
root@SRX210-A# edit system services ssh

[edit system services ssh]
root@SRX210-A# show
root-login allow;

[edit system services ssh]
root@SRX210-A# up

[edit system services]
root@SRX210-A# show
ssh {
 root-login allow;
}
telnet;
web-management {
 http {
 interface vlan.0;
 }
 https {
 system-generated-certificate;
 interface vlan.0;
 }
}

[edit system services]
root@SRX210-A# edit web-management http

[edit system services web-management http]
root@SRX210-A# show
interface vlan.0;

[edit system services web-management http]
root@SRX210-A# top

[edit]
root@SRX210-A#

You add and remove configuration changes using the set and delete commands. The
set command adds the command to the configuration hierarchy. The delete command

Configuration Mode | 97

removes the command from the configuration hierarchy. Of course, the final changes
to the configuration are not made active to the device until the configuration is com-
mitted. When deleting parts of the configuration it’s possible to delete entire stanzas.
For example, if you use the command delete interfaces, the entire interfaces stanza,
no matter how long it is, will be deleted. This is much better than having to delete each
line individually. It’s also possible to use the wildcard delete command, which allows
you to delete certain sections under a stanza while leaving the others intact:

[edit]
root@SRX210-A# wildcard delete interfaces ge-*
 matched: ge-0/0/0
Delete 1 objects? [yes,no] (no)

Here, only the interfaces starting with ge- will be deleted and the rest will be left as is.
Note that Junos also asks you to confirm whether the deletion is OK. It’s possible to
use regular expression patterns to match the configuration, with the great advantage
that you can remove only specific parts of the configuration.

Another common task is the need to rename a part of the configuration—for example,
a security policy, where you want to change the policy’s name because the function has
changed. In other systems, you might be forced to delete the policy and then add it
back into the configuration, but you can save time and reduce mistakes by copying the
data to a file and then importing it, as shown in the following output:

[edit security policies from-zone trust to-zone untrust]
root@SRX210-A# rename policy trust-to-untrust to policy allow-outbound

[edit security policies from-zone trust to-zone untrust]
root@SRX210-A# show
policy allow-outbound {
 match {
 source-address any;
 destination-address any;
 application any;
 }
 then {
 permit;
 }
}

[edit security policies from-zone trust to-zone untrust]
root@SRX210-A#

You can also manipulate the configuration by using pattern matching replace through-
out the configuration; this is a helpful procedure when migrating configurations to new
interface cards. The action is simple to do, but its effects are profound:

[edit]
root@SRX210-A# replace pattern ge-0/0/1 with ge-5/0/0

98 | Chapter 3: Hands-On Junos

This command replaces all of the entries of ge-0/0/1 with ge-5/0/0 in the configuration
so that you don’t have to find them all. A similar feature called copy takes one config-
uration stanza and duplicates it to another one:

[edit]
root@SRX210-A# copy interfaces ge-0/0/0 to ge-0/0/2

Here, all of the statements under ge-0/0/0 are replicated under ge-0/0/2. This prevents
you from having to type out each element by hand, or copy and paste it back into a
terminal.

You can view the configuration with the show command, which displays the current
configuration relative to your position in the hierarchy. Much like when using the
edit or set command, the show command also lets you display a specific area in the
configuration:

[edit]
root@SRX210-A# show
Last changed: 2010-08-08 06:55:57 UTC
version 10.2R1.9;
system {
 host-name SRX210-A;
 root-authentication {
 encrypted-password "1o4rMECKV$mhN/bfMti9JnhQHtfhSka/"; ## SECRET-DATA
 }
 name-server {
 208.67.222.222;
 208.67.220.220;
 }

[edit]
root@SRX210-A# show security
nat {
 source {
 rule-set 1 {
 from zone A;
 to zone B;
 rule 1 {
 match {
 source-address 0.0.0.0/0;
 }
--snip--

[edit]
root@SRX210-A# show security | display set
set security nat source rule-set 1 from zone A
set security nat source rule-set 1 to zone B
set security nat source rule-set 1 rule 1 source-address 0.0.0.0/0
--snip--

[edit]
root@SRX210-A#

Configuration Mode | 99

The default method to display a configuration is to show it as a hierarchy. The config-
uration is displayed using brackets to show blocks of the configuration and semicolons
to display the end of a statement. This is akin to C code. Displaying it in this manner
makes the configuration easy to follow, but it is different from the commands that are
entered to actually apply the configuration. Because of this, Junos offers the ability to
modify the output with the | display option. The most commonly used option is
set, which displays the list of configuration elements as set statements, as you saw in
the previous output. These are the exact commands that you would type into the CLI
to configure the device. Note that there are several other display options, and we will
discuss them throughout this chapter.

Often, you may want to run operational commands inside configuration mode, perhaps
to see what is already configured or to check the status of something on the device.
This is possible to do by invoking the run command, which you can run when you need
to commit the configuration to make it active. Switching between operational and
configuration modes would be very tough to do while maintaining an effective work-
flow without the use of the run command:

[edit]
root@SRX210-A# run show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up down
ge-0/0/0.0 up down
gr-0/0/0 up up
ip-0/0/0 up up
lsq-0/0/0 up up
lt-0/0/0 up up
mt-0/0/0 up up

Commit Model
Junos offers a flexible model for you to decide when a new configuration should be
active, and it’s called the commit model. The concept comes from revision control sys-
tems which are used for software version control, whereby you edit the configuration
(as shown previously) and then, once the configuration is complete, you commit it to
the system. Upon commit, several things happen.

First, the configuration is validated by using a commit check. A commit check reviews
the configuration for any syntax errors or disallowed statements. It’s a sanity check to
ensure that a bad configuration is not installed. It’s also possible to issue a commit
check manually by using the commit check command. If an error is encountered, Junos
responds and specifies where the error occurs and what the error is.

[edit]
root@SRX210-A# set interfaces fe-2/0/3.0 family inet filter input bad-filter

[edit]
root@SRX210-A# commit
[edit interfaces fe-2/0/3 unit 0 family inet]

100 | Chapter 3: Hands-On Junos

 'filter'
 Referenced filter 'bad-filter' is not defined
error: configuration check-out failed

[edit]
root@SRX210-A#

In the preceding output, a commit error is highlighted. The configuration was attempt-
ing to reference a firewall filter that did not exist and the commit check provided an
error which prevented the configuration from being installed. The hierarchy in which
the error occurred was returned to the user, [edit interfaces fe-2/0/3 unit 0 family
inet], so it is easy to track down from where the error was issued. In some cases, a
warning is thrown instead that is similar to the error warning, but allows the configu-
ration to be committed because the configuration will still work and will not cause a
major episode.

When a configuration is committed a few other steps are applied, too. Junos groups
enable you to create a configuration part, and then apply it to the configuration. You
can do this as a single element or across multiple elements. During the configuration
commit, the group elements are rolled into the configuration as it is being prepared to
be committed.

Another feature in Junos is the commit script. A commit script allows you to validate
and modify the configuration according to your rules as to what will throw an error or
a warning in the configuration—for example, if one of your devices were to accidentally
delete all of the interfaces in the configuration. Although this is a perfectly legal option
in Junos, it might take the other administrators by surprise when the network goes
down.

Lastly, once the configuration is ready to be committed, it is broken down into the
various daemons and systems within the device that accept the configuration. Some
items, such as the BGP configuration, go off to the RPD process, while the firewall
policy is pushed to NSD on the control plane, and then pushed down to the data plane.
The statements in the configuration are broken out into stanzas not only to facilitate
device configuration, but also to enable Junos to easily break the configuration apart
and then push it to the various daemons that are responsible for processing it.

When a configuration is committed to the device, only the delta is actually committed.
This means the change between the existing configuration and the changes made by
the administrator are applied. Here’s an example:

[edit]
root@SRX210-A# show | compare
[edit interfaces fe-2/0/3]
+ unit 0 {
+ family inet {
+ filter {
+ input bad-filter;
+ }
+ }

Commit Model | 101

+ }

[edit]
root@SRX210-A#

Here, the administrator used the show command to display the current configuration
and then redirected the command’s output using the pipe character (|) to the compare
operation. This is the same type of capability that is used on revision control for soft-
ware. The output of the show | compare command is the same as the Unix diff com-
mand. It is using a plus sign, +, to show the lines that were added to the configuration;
if lines were removed, a minus sign, -, would be used.

[edit]
root@SRX210-A# show | compare
[edit system]
- host-name SRX210-A;

[edit]
root@SRX210-A#

Because only the differential is committed, it is less intensive on the system, and less
disruptive. In some cases, you might have configurations that are several hundred
thousand lines long, and if it were completely committed it would have a major impact
on the system. Sometimes a complete recommit of the configuration is required, and
in those instances, you can use the hidden command called commit full when you need
to force the entire configuration back down to the device. This command is also useful
in cases where the committed configuration is not being correctly read or the device is
not acting right. However, use it with caution, as it may impact the device and poten-
tially cause an outage for the duration of the commit.

Each time a user commits a configuration the previous version is archived. These ar-
chived configurations are versioned and kept for future comparison and even rollback.
Depending on the Junos platform, it will keep anywhere from 5 to 50 archived config-
urations. Let’s use a query to see the archival configs:

[edit]
root@SRX210-A# rollback ?
Possible completions:
 <[Enter]> Execute this command
 0 2010-05-05 14:16:22 UTC by root via cli
 1 2010-05-01 04:26:34 UTC by root via cli
 2 2010-04-30 07:03:28 UTC by root via cli
 3 2010-04-30 06:25:59 UTC by root via cli
 4 2010-04-30 06:14:46 UTC by root via cli
 5 2010-04-30 06:10:34 UTC by root via cli
 | Pipe through a command

root@SRX210-A# rollback 4
load complete

[edit]
root@SRX210-A# show | compare

102 | Chapter 3: Hands-On Junos

[edit system]
+ host-name SRX210-SUPER;
[edit system services]
- ssh;

[edit]
root@SRX210-A#

In the preceding output, rollback version 4 is loaded as the candidate configuration.
Then, as was done before, the loaded rollback configuration is piped to compare and
perform a diff between the loaded configuration and the running configuration. The
output shows that in this case the loaded configuration’s hostname was SRX210-
SUPER, and if the configuration were to be committed it would overwrite the current
hostname. Also, the line set system services ssh would be deleted, as noted by the
- symbol.

It’s also possible to compare the current configuration against a rollback configuration
or even a configuration file:

[edit]
root@SRX210-A# show | compare rollback 4
[edit system]
+ host-name SRX210-SUPER;
[edit system services]
- ssh;

[edit]
root@SRX210-A#

[edit]
root@SRX210-A# show | compare old-configuration.txt
[edit system]
+ host-name SRX210-GOOD-OLD-CONFIG;
[edit system services]
+ ssh;

[edit]
root@SRX210-A#

At any time when you’re working with the configuration it’s possible to
discard all of your changes and move back to the original candidate
configuration. To do this, use the rollback 0 command from configu-
ration mode. This is helpful when you want to move back to the original
configuration without having to delete all of the changes.

By default, when an administrator commits a configuration it is done at the time the
command is executed. But it’s also possible to schedule a commit. Scheduling the
configuration for commit is useful if you need several different devices to be activated
at the same time. Your commit can be scheduled for one minute into the future or even
days in advance. At a minimum, the hour and minute need to be specified using the

Commit Model | 103

format hh:mm with h being the hour and m being the minute. The full syntax of the time
is yyyy-mm-dd hh:mm[:ss] with seconds and the date being optional:

[edit]
root@SRX210-A# commit at ?
Possible completions:
 <at> Time at which to activate configuration changes
[edit]
root@SRX210-A# commit at 2010-08-08 18:30:00

If you need to clear the pending commit for whatever reason, use the following opera-
tional command:

root@SRX210-A> clear system commit
warning: discarding uncommitted changes
Pending commit cleared

{primary:node0}
root@SRX210-A>

When a commit is issued it is logged to the messages logfile as well as the commit log.
This logs the user who committed the configuration and the time at which it was com-
mitted, and is a great tool when you need to track which user modified the configuration
and when. But when you want to track specific information about a change, such as
the reason for the change or the change control number, it’s possible in Junos to add
a comment to a commit:

[edit]
root@SRX210-A# commit comment "Finished big changes"
configuration check succeeds

commit complete

[edit]
root@SRX210-A# exit
Exiting configuration mode

syntax error, expecting <command>.
root@SRX210-A> show system commit
0 2010-05-05 16:10:48 UTC by rcameron via cli
 Finished big changes
1 2010-05-05 14:16:22 UTC by root via cli
2 2010-05-01 04:26:34 UTC by dburt via cli
3 2010-04-30 07:03:28 UTC by root via cli
4 2010-04-30 06:25:59 UTC by bwoodberg via cli
5 2010-04-30 06:14:46 UTC by root via cli

root@SRX210-A>

In this example, the commit command was run, and then the comment flag along with a
string encapsulated in double quotes was added. The string can contain up to 512
characters, allowing for almost chatty comments to be used when committing a con-
figuration. To show the commit log you use the operational command show system
commit, which will show the last commits based on the total that are supported on the

104 | Chapter 3: Hands-On Junos

platform. Here, a Juniper Networks SRX210 Services Gateway was used, so the device’s
maximum of six is shown.

When your commit is issued in configuration mode, you will remain in configuration
mode after the new configuration is applied. Often, the administrator would rather exit
configuration mode after committing the configuration, so if this is your preference,
you can exit and commit in one step, instead of making the commit exit a two-step
process:

[edit]
root@SRX210-A# set system host-name SRX210-TEST

[edit]
root@SRX210-A# commit and-quit
commit complete
Exiting configuration mode

root@SRX210-TEST>

The only additional item you need to add at the end of the commit command is and-
quit. Upon completion of a successful commit, you’ll be returned to operational mode,
as noted by the different prompt.

The crown jewel of the commit feature is commit confirmed. This feature allows the
administrator to commit a configuration and then force the validation that the commit
worked as expected. By default, a typical commit takes effect, and if you accidentally
modify the configuration in such a way that it causes a negative effect on the device,
the change will be permanent until the correct configuration is applied. This may cause
an outage, and may even disconnect you from the device.

To prevent the unfortunate accident of an outage, commit confirmed forces you to com-
mit twice. The first commit applies the configuration to the device and the second
commit validates that you are satisfied with the changes. If a second commit is not
issued the configuration is automatically rolled back to the previous release, a safeguard
for when you might get disconnected from the terminal due to a configuration error;
the device will reset itself to the previous configuration, restoring your access.

root@SRX210-TEST> edit
Entering configuration mode
The configuration has been changed but not committed

[edit]
root@SRX210-TEST# set system host-name SRX210-A

[edit]
root@SRX210-TEST# commit confirmed ?
Possible completions:
 <[Enter]> Execute this command
 <timeout> Number of minutes until automatic rollback (1..65535)
 and-quit Quit configuration mode if commit succeeds
 comment Message to write to commit log
 | Pipe through a command

Commit Model | 105

[edit]
root@SRX210-TEST# commit confirmed
commit confirmed will be automatically rolled back in 10 minutes unless confirmed
commit complete

commit confirmed will be rolled back in 10 minutes
[edit]
root@SRX210-A# commit
commit complete

[edit]
root@SRX210-A#

By default, commit confirmed has a 10-minute rollback window; the configuration will
be automatically rolled back after 10 minutes if you don’t commit for a second time
within the 10 minutes. It’s possible to change the timer and set it from between 1 and
65,535 minutes. You can also issue a comment and/or quit after the first commit.

The Junos commit model provides a robust method for applying configurations to a
Junos device, including a versioning model that keeps several copies of the configura-
tion to allow for a history of configuration changes and the ability to roll back to them
if needed. Using commit confirmed enables you to roll back the configuration automat-
ically in case there is an issue with the device. These and many other CLI features are
the result of feedback regarding users’ experiences with other network operating sys-
tems; the Junos engineers used that feedback to create the robust Junos operating
system as it exists today.

Restarting Processes
Restarting a process in Junos allows the device to refresh its configuration or fix the
process if it is stuck. Typically, you do not need to restart a process; however, in some
circumstances you may need to restart a process, such as when the process is stuck at
100% utilization, which is sometimes caused when Junos tracing options are set to
show every debug message. Restarting processes only applies to the control plane, not
the data plane.

To look at the currently running processes, use the show system processes command.
This command utilizes the underlying ps or “process status” BSD command. There are
several variants of the command, but perhaps the most interesting is show system
processes extensive, as shown here:

root@SRX210-A> show system processes extensive

last pid: 27309; load averages: 1.02, 1.03, 1.01 up 22+05:42:10 14:18:22
127 processes: 16 running, 100 sleeping, 11 waiting

Mem: 147M Active, 89M Inact, 532M Wired, 148M Cache, 112M Buf, 55M Free
Swap:

106 | Chapter 3: Hands-On Junos

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
1060 root 4 76 0 491M 49700K select 0 611.7H 96.19% flowd_octeon_hm
 22 root 1 171 52 0K 16K RUN 0 430.4H 81.20% idle: cpu0
 24 root 1 −20 −139 0K 16K RUN 0 744:02 0.00% swi7: clock
 5 root 1 −84 0 0K 16K rtfifo 0 213:09 0.00% rtfifo_kern_recv
 23 root 1 −40 −159 0K 16K WAIT 0 74:50 0.00% swi2: net
1092 root 1 76 0 12256K 5856K select 0 44:42 0.00% utmd
1065 root 1 76 0 4220K 1788K select 0 42:31 0.00% license-check
1077 root 1 76 0 14172K 4872K select 0 40:37 0.00% l2ald
1047 root 1 76 0 2612K 1228K select 0 24:54 0.00% bslockd
1099 root 1 76 0 15420K 9236K select 0 22:35 0.00% snmpd
 45 root 1 −16 0 0K 16K psleep 0 22:31 0.00% vmkmemdaemon
1051 root 1 76 0 7064K 3356K select 0 18:41 0.00% alarmd
1112 root 1 4 0 0K 16K peer_s 0 17:33 0.00% peer proxy
 26 root 1 −16 0 0K 16K - 0 13:31 0.00% yarrow
1076 root 1 4 0 38152K 19512K kqread 0 12:44 0.00% rpd
1057 root 1 76 0 13776K 4644K select 0 12:12 0.00% pfed
1094 root 2 76 0 10144K 4332K select 0 11:48 0.00% wland
1050 root 1 76 0 28088K 13656K select 0 11:15 0.00% chassisd
1100 root 1 76 0 25172K 8948K select 0 9:42 0.00% dcd

Here you can see the status of all the current processes. Ideally, you would want to look
for all processes that have a high CPU utilization and are stuck, except for the flowd
process on the branch SRX Series platform, as it runs on one or more cores in a tight
loop (a tight loop means the process is constantly running and ready to process packets).
A process that may have issues is chassisd, as you can see in this example.

Now the process will be restarted. The command name may not tie to the process name
exactly, but it represents the name of the process. In the case of chassisd, it is called
chassis-control:

root@SRX210-A> restart chassis-control ?
Possible completions:
 <[Enter]> Execute this command
 gracefully Gracefully restart the process
 immediately Immediately restart (SIGKILL) the process
 soft Soft reset (SIGHUP) the process
 | Pipe through a command
{primary:node0}
root@SRX210-A> restart chassis-control gracefully
Chassis control process started, pid 27310

{primary:node0}
root@SRX210-A>

Most processes allow for three separate options when restarting: gracefully, immedi-
ately, and soft. A graceful restart tells the process to complete its current task, and then
restart (this is also the default option if one is not specified). A soft restart tells the
process to restart after it has completed its tasks and its child process has done the
same. An immediate restart stops the process immediately and starts a new process in
its place; you should use this option only if a process is stuck at a high level of utilization.
(That’s why implementing an immediate restart is also known as killing a process.)

Restarting Processes | 107

Killing a process or restarting a process can affect your running platform. These effects
vary based on the process, but if chassisd is killed, the control plane can lose commu-
nication with the chassis. So, when restarting processes, it’s best to ensure the outcome
of the event. For the most part, the process will gracefully restart and things will con-
tinue to work well. That’s the benefit of having process separation: being able to restart
individual processes without impacting the rest of the running system.

Junos Automation
Junos can have all of its output displayed in XML. XML is used to describe data. For
instance, when you read “1234 Easy Street” it’s easy to determine that this is the street
address of a house. Now there isn’t anything that tells you that it is an address, but it’s
simply assumed because it’s a format that you are familiar with. To a computer there
are no assumptions. Although it’s possible for a computer to try to determine what that
text means, there are better ways to do it.

One of these methods uses XML. By using XML, you create the encapsulation of data
between XML tags, and the tags that surround the data specify its meaning:

<address>
 <first-name>Juniper</first-name>
 <last-name>Networks</last-name>
 <house-number>1194</house-number>
 <street-name>North Mathilda</street-name>
 <city>Sunnyvale</city>
 <state>CA</state>
 <zip-code>94089</zip-code>
</address>

Here a client can read in the data and have context for what each piece of data repre-
sents. The same capabilities are available in Junos:

root@SRX210-A> show version
Hostname: SRX210-A
Model: srx210h
JUNOS Software Release [10.2B1.9]

root@SRX210-A> show version | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2B1/junos">
 <software-information>
 <host-name>SRX210-A</host-name>
 <product-model>srx210h</product-model>
 <product-name>srx210h</product-name>
 <jsr/>
 <package-information>
 <name>junos</name>
 <comment>JUNOS Software Release [10.2B1.9]</comment>
 </package-information>
 </software-information>
 <cli>
 <banner></banner>

108 | Chapter 3: Hands-On Junos

 </cli>
</rpc-reply>

root@SRX210-A>

Here, the same command is executed twice. The first time is the typical Junos command
and output, and the second shows the output as XML. To do this the command show
version | display xml is used and the | display xml modifier transforms the output
to XML. The output doesn’t look like it has much value to humans, but computers eat
it up. The XML can be parsed by off-the-box scripts to provide analysis. And Junos
uses these XML capabilities in several ways and provides several ways to utilize it. Two
remote APIs can be used to connect and talk to the device: Junoscript and NETCONF.
On-box Junos automation can also be used.

Junos automation is accomplished via a series of tools that enable you to customize
Junos in very powerful ways. It’s something that all users of Junos should take
advantage of, and we discuss it in this book to help you automate SRX functions. We
will cover Junos automation in detail in Chapter 13.

Junos Configuration Essentials
Logging in to a command line for the first time can be a daunting task. You stare into
a black-and-white terminal, and a seemingly infinite combination of commands are
staring back—it can be extremely difficult. All users of Junos or Unix start out this way,
and soon enough they become nimble on the CLI.

This section is one of two that will show you some of the basic techniques you can use
if you’re starting out on the Junos command line with your SRX device.

The first thing you need to do is begin to configure the device. All Junos devices come
with some base configurations. In this section, we will ignore the base configurations
and instead discuss the important base configuration elements. This should help you
to understand how to get the device up and running with base configuration settings.

System Settings
When you configure a Junos device many options are used system-wide. These system-
wide options are set in the system stanza. Several dozen configuration settings are in
the system stanza, and here we’ll cover the most important ones that you need to con-
figure for a typical Junos deployment.

For further information on these and other configuration options, please
review the Junos CLI tech doc references (http://www.juniper.net/tech
pubs) or the free Day One booklets (http://www.juniper.net/dayone).

Junos Configuration Essentials | 109

http://www.juniper.net/techpubs
http://www.juniper.net/techpubs
http://www.juniper.net/dayone

Before you can commit a configuration, the root user must have an authentication
method configured. When a Junos device ships the root password is empty. The ad-
ministrator can log in as root (the only default user that’s configured) without a pass-
word. Upon the first commit on the device one of the authentication methods must be
configured.

[edit system]
root@SRX210-A# set root-authentication ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 encrypted-password Encrypted password string
 load-key-file File (URL) containing one or more ssh keys
 plain-text-password Prompt for plain text password (autoencrypted)
> ssh-dsa Secure shell (ssh) DSA public key string
> ssh-rsa Secure shell (ssh) RSA public key string
[edit system]
root@SRX210-A# set root-authentication plain-text-password
New password:
Retype new password:

[edit system]
root@SRX210-A#

As you can see, you can use four different methods to authenticate the root user. Plain-
text password is the most common. This is the normal, hand-typed password and is
the example shown in the preceding output. The administrator must hand-type the
password and then confirm it. The password is stored in the configuration as an MD5
password with a salt. This means it’s not possible to reverse the password just by seeing
it, and because it has a salt, it is extremely hard to determine the password.

The alternate methods for the root password are all about using SSH keys. When you
use an SSH key a password is not used to authenticate the user. This is more secure, as
the user has ownership of his private key and it is not sent over the network for au-
thentication. In Junos, the user’s public key must be loaded on the system. You can do
this in one of three ways: as a DSA key, as an RSA key, or by loading the key from a file.

No matter which way you choose to set up root authentication, it is suggested that you
always utilize a nonroot user for administration. Junos is designed to handle multiple
user accounts and determining permissions per user based upon groups. The root user
has the ultimate permissions into the system, and users logging on as root can choose
to do whatever they wish. Individual user accounts enable better tracking of what each
user is doing on the device. Junos tracks each user’s commands and configuration
commits, and identifies who changed what. So, it is considered a best practice to always
use an alternate user account instead of root.

When creating a new user account you need to select a few properties for the new
account:

[edit system]
root@SRX210-A# set login user ?

110 | Chapter 3: Hands-On Junos

Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> authentication Authentication method
 class Login class
 full-name Full name
 uid User identifier (uid) (100..64000)
[edit system]
root@SRX210-A# set login user rcameron class ?
Possible completions:
 <class> Login class
 operator permissions [clear network reset trace view]
 read-only permissions [view]
 super-user permissions [all]
 unauthorized permissions [none]

[edit system]
root@SRX210-A# set login user rcameron class super-user

[edit system]
root@SRX210-A# set login user rcameron authentication plain-text-password
New password:
Retype new password:

[edit system]
root@SRX210-A#

The minimum items for a user are a username, a class (or group), and an authentication
method. The available authentication methods are the same as those covered for the
root user. In this example, the common plain-text password was chosen. One item that
may not be obvious is class. A class is the same concept as a user group. It provides the
user access to issue specific commands and modes. In this example, the super-user class
was chosen and this class gives the user access to all possible commands and modes.
The various prebuilt classes are a small example of what is possible for classes. It is
possible to build custom classes that can restrict a user to run a specific command or
view only specific portions of the configuration. You can find further details regarding
classes in the Junos documentation suite for your SRX model and platform.

You can remotely access a Junos device in many different ways, all of which are done
through the system services stanza. In this stanza, all of the various services are con-
figured. Depending on the device type, different services may be configured. If only one
service needs to be configured, it should be SSH, because SSH is the best way to access
the CLI remotely.

The service allows for encrypted transport of data, key-based authentication, and even
the ability to transfer files. Most Unix-like clients contain a built-in client using the
OpenSSH software package. For Windows users, a plethora of SSH clients can be used.
Several of them are free, and some are available as commercial packages. Even devices
such as the Apple iPhone and iPad have very viable SSH clients.

Enabling SSH is simple, as it requires only a single command and just a few options:

Junos Configuration Essentials | 111

[edit system services]
root@SRX210-A# set ssh ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 connection-limit Maximum number of allowed connections (1..3)
+ protocol-version Specify ssh protocol versions supported
 rate-limit Maximum number of connections per minute (1..3)
 root-login Configure root access via ssh
 | Pipe through a command
[edit system services]
root@SRX210-A# set ssh

[edit system services]
root@SRX210-A#

The single command set system services ssh enables the SSH service. You also can
specify whether the root user can authenticate, whether to rate-limit the number of
connections per minute, the maximum number of concurrent connections, and the
protocol version. It’s best to disallow SSH authentication for root so that unauthorized
attempts to log in as root are not allowed. Also, limiting the rate at connections per
minute ensures that someone cannot attempt to use a brute force attack to access the
system.

A Junos device can use name resolution to convert Domain Name System (DNS) names
to IP addresses. This is useful when using ping, SSH, and Telnet commands from the
device. Configuring a name server is simple, and it is done under the system stanza. If
a name server is not configured, name resolution will not be possible. Here’s an
example:

[edit system]
root@SRX210-A# set name-server 208.67.222.222

name-server {
 208.67.222.222;
 208.67.220.220;
}
--snip—

[edit system]
root@SRX210-A#

Each device should have a unique hostname. This is useful for identifying the device
on the command line. Providing a unique hostname can also help prevent an accidental
configuration change on the wrong device in the network. Configuring the hostname
is simple and it takes only one command:

[edit system]
root@SRX210-A# set host-name JunosBook

[edit system]
root@SRX210-A# show

112 | Chapter 3: Hands-On Junos

host-name JunosBook;
--snip--

[edit system]
root@SRX210-A#

Interfaces
A networking device without interfaces isn’t much of a networking device. Since a Junos
device is always in the network, and most of the time it is in the path of the network,
it is critical to understand interface configuration.

Some Junos interface concepts might seem foreign to administrators who are migrating
from other operating systems. Remember that the Junos CLI is designed to be extensible
and scalable, and once an element is added to the configuration hierarchy after a soft-
ware release is made, it is not changed. Because of this, creating an interface and mod-
ifying its parameters may seem overly complex, but it is done for a good reason: to
ensure that 10 years from now the general structure of creating an interface is backward-
compatible.

Interfaces come in two types: logical and physical. A physical interface is an actual
device that someone can touch and a cable of some sort goes into it. A logical interface
is an entity that has a protocol and a network address assigned to it. A physical interface
can also be called an IFD and a logical interface is called an IFL, terms sometimes
sprinkled around in the documentation or in various Junos material.

An interface is named in a common format and the format is shared regardless of the
interface type. The first part of an interface name is the media type. Table 3-3 lists a
few of the common media types and their abbreviations.

Table 3-3. Interface media types

Name Media type

fe Fast Ethernet 10/100

ge Gigabit Ethernet 1000

xe 10 gigabit Ethernet

t1 T1 interface

vlan Virtual interface that resides in a virtual LAN (VLAN)

There are many different types of interfaces, and only a handful are represented in
Table 3-3. For more information on the various interface types refer to the Junos doc-
umentation set at http://www.juniper.net/techpubs.

Interface names also include the location in which they are found in the chassis. This
portion of the interface name consists of three numbers: the FPC number, the physical
interface card (PIC) number, and the port number.

Junos Configuration Essentials | 113

http://www.juniper.net/techpubs

FPC stands for flexible PIC concentrator, and it is simply a slot in a chassis. The differ-
entiation of FPCs typically determines how the FPC plugs into the backplane of the
device. A PIC represents a physical or pluggable (both terms are seen and sometimes
used interchangeably) interface card on which interfaces or ports reside. The number-
ing for an interface is represented in an X/Y/Z pattern, with X being the FPC, Y being
the PIC, and Z being the port. An example of a complete interface name is “ge-0/0/0”.

A few interface types do not fit into this format. One of these is fxp0,
which is used as a management port. You can configure it with most of
the options that an interface can use, such as IP addresses, but this in-
terface cannot route traffic because it is not a transient interface. We
will discuss the fxp0 interface in Chapter 10.

Each physical interface has some physical properties that you can configure, such as
speed, duplex, and auto-negotiation; these properties vary based on interface type.
Because of all the variations that are possible, it’s best to check the latest Junos docu-
mentation to get the most up-to-date configuration options. But in most cases, the
command-line help, using ?, will give you what you need.

When an interface is configured for use on the network it must always be configured
with what is known as a unit. A unit is a logical entity that is applied to an interface. A
physical interface must have at least one unit, but it can have as many as 16,000, de-
pending on the need. This is a departure from other operating systems.

To communicate with other hosts and pass traffic through the device, protocols must
be configured. Junos supports numerous protocols for network communication and
several can be configured per unit. The most common protocol that is used is IPv4.
This is the current standard on the Internet and in most networks. IPv6 is growing in
popularity, and because of this, Junos has support for it as well. When configuring an
interface, a protocol is called a family. This is because a protocol is often a family of
protocols; an example is IP, as IP uses ICMP, TCP, and UDP for messaging purposes.

Configuring an interface is simple, even though it has several parts to it. Let’s create an
interface configured with an IP address on it. Although there are many different pro-
tocols and permutations, we will use IPv4, as it is fairly common.

[edit interfaces]
root@SRX210-A# set ge-0/0/0 unit 0 family inet address 1.2.3.4/30

[edit interfaces]
root@SRX210-A# show
ge-0/0/0 {
 unit 0 {
 family inet {
 address 1.2.3.4/30;
 }
 }
}

114 | Chapter 3: Hands-On Junos

In this command set the IP address of 1.2.3.4 with a bit mask of 30 bits is used. It is
applied to interface ge-0/0/0 and unit 0. Although any unit number can be used,
it’s common to use 0 when only one unit is used. When VLANs are implemented, it’s
common to have the unit name match the VLAN tag; although this is not required, it
helps when other administrators need to look through a configuration.

Instead of having to type out “unit” when running a command, you can use a period
(.) instead of the word unit when configuring an interface. It’s a nice shortcut:

[edit interfaces]
root@SRX210-A# set ge-0/0/0.0 family inet address 1.2.3.4/30

[edit interfaces]
root@SRX210-A# show ge-0/0/0
unit 0 {
 family inet {
 address 1.2.3.4/30;
 }
}

[edit interfaces]
root@SRX210-A#

Adding a VLAN tag is a simple configuration. To start the configuration the interface
needs to have tagging enabled on it, before it can be enabled on the logical interface:

[edit interfaces]
root@SRX210-A# set ge-0/0/0 vlan-tagging

[edit interfaces]
root@SRX210-A# set ge-0/0/0.100 vlan-id 100

[edit interfaces]
root@SRX210-A# set ge-0/0/0.100 family inet address 1.2.3.4/30

[edit interfaces]
root@SRX210-A# show ge-0/0/0
vlan-tagging;
unit 100 {
 vlan-id 100;
 family inet {
 address 1.2.3.4/30;
 }
}

[edit interfaces]
root@SRX210-A#

Switching (Branch)
On the branch SRX Series (see Chapter 1), most Ethernet interfaces support the ability
to do switching. The switching capabilities in the branch SRX Series are inherited from

Junos Configuration Essentials | 115

Juniper Networks’ EX Series Ethernet Switches, so the functionality and configuration
are nearly identical.

The most common configuration type is an access port. An access port is a port that
does not accept VLAN tagged packets, but rather tags the packets internally to the
switch. It will also allow the packet to exit as a tagged packet on a trunk port. (A VLAN
must be assigned to an interface even if the traffic will never exit the device as a packet
tagged with the VLAN. In cases such as these, the actual VLAN tag used is irrelevant.)

[edit interfaces ge-0/0/2.0]
root@JunosBook# set family ethernet-switching

[edit interfaces ge-0/0/2.0]
root@JunosBook# set family ethernet-switching port-mode access

[edit interfaces ge-0/0/2.0]
root@JunosBook# show
unit 0 {
 family ethernet-switching {
 port-mode access;
 vlan {
 members 100;
 }
 }
}

[edit interfaces ge-0/0/2.0]
root@JunosBook#

Here, ethernet-switching was added as a family (remember that a family represents a
protocol suite, and in this case it represents switching). The port was set to access
mode, which internally tags the packet after it enters the port. It is tagged with VLAN
100, as that is what is configured under the vlan stanza. An access port can only have
a single VLAN configured. When configuring a VLAN it can be specified with the tag
number or a configured VLAN name. We will discuss VLAN configuration later in this
section.

Most of the branch SRX Series devices have several ports that you can configure for
switching. In some cases, up to 24 sequential ports can be used for switching. Instead
of having to configure all of the ports by hand, it’s possible to use the interface
range command. This configuration allows you to select several ports and then apply
the same commands across all of the interfaces:

[edit interfaces]
root@JunosBook# show
interface-range interfaces-trust {
 member ge-0/0/1;
 member fe-0/0/2;
 member fe-0/0/3;
 member fe-0/0/4;
 member fe-0/0/5;
 member fe-0/0/7;

116 | Chapter 3: Hands-On Junos

 unit 0 {
 family ethernet-switching {
 vlan {
 port-mode access;
 members 100;
 }
 }
 }
}

An interface range must be given a unique name, and then one or more interfaces can
be added as members of the range. At this point, any configuration option that can
normally be added to an interface can be added here. Because of this, the use of interface
ranges is not just limited to switching. For example, unit 0 was created with Ethernet
switching and VLAN 100. Upon commit, all interfaces have the same configuration
applied to them.

Up to this point, all VLANs have been used with just a number tag. It is also possible
to create VLANs and give them a name which allows for easier management and iden-
tification in the configuration. You can use the VLAN name instead of the tag name
anywhere in the configuration:

[edit vlans]
root@JunosBook# show
vlan-trust {
 vlan-id 100;
 interface {
 fe-0/0/6.0;
 }
 l3-interface vlan.0;
}

[edit vlans]
root@JunosBook#

Each VLAN is given a custom name. This name must be unique and must not overlap
with any other existing VLAN name. You also must assign a VLAN ID to the VLAN.
You can configure several other options under a VLAN, the most common of which
concern the direct configuration of interfaces. Previously, when Ethernet switching was
configured on each interface, a VLAN had to be configured. In this configuration ex-
ample, the VLAN can be configured from one central location directly under the VLAN.
Either option is valid; the usage is based on personal preference.

The other common option is the use of a VLAN interface. A VLAN interface allows for
the termination of traffic that can then be routed out another interface on the device.
The VLAN interface is accessible from any port that is a member of that VLAN. The
interface is configured just like any other interface type:

[edit]
root@JunosBook# edit interfaces

[edit interfaces]

Junos Configuration Essentials | 117

root@JunosBook# set vlan.0 family inet address 1.2.3.4/24

[edit interfaces]
root@JunosBook# edit interfaces

[edit interfaces]
root@JunosBook# show vlan
unit 0 {
 family inet {
 address 1.2.3.4/24;
 }
}

[edit interfaces]
root@JunosBook#

A trunk port is a port that has two or more VLANs configured on it and traffic entering
a trunk port must be tagged with a VLAN tag. A trunk port is typically used when
connecting the SRX to another switch:

[edit]
root@JunosBook# edit interfaces

[edit interfaces]
root@JunosBook# set ge-0/0/2.0 family ethernet-switching port-mode trunk

[edit interfaces]
root@JunosBook# set ge-0/0/2.0 family ethernet-switching vlan members 200

[edit interfaces]
root@JunosBook# show ge-0/0/2.0
family ethernet-switching {
 port-mode trunk;
 vlan {
 members [100 200];
 }
}

[edit interfaces]
root@JunosBook#

As you can see, the configuration here is very similar to an access port. The differences
are minor, as the port mode is configured as a trunk and multiple VLAN members are
added to the port. Traffic entering the port must be tagged and must match the VLANs
configured on the port.

Zones
A zone is a logical construct that is applied to an interface and is used as a building
block for security policies on the SRX Series Services Gateways and the Juniper Net-
works J Series Services Routers. The concept of the zone originated on the ScreenOS
platform from NetScreen Technologies. When creating a security policy, the idea is to
allow traffic from a source to go to a destination. The zone adds another dimension to

118 | Chapter 3: Hands-On Junos

that by allowing for the concept of a source zone and a destination zone. This was very
different from all of the existing firewall products of the time. The division of a security
policy base into multiple smaller policy sets, or contexts, enhanced performance and
simplified management.

Creating a security zone is simple, as the minimum requirement is just a name. In the
past on NetScreen products, there was a concept of having prenamed zones called
Trust, Untrust, and DMZ. These zone names were always left in place because the
original ScreenOS devices actually used these as the interface names. Juniper has moved
away from having the default names, and now allows users to name the zones whatever
they want. Security zones are located under the security zones stanza:

[edit security zones]
root@SRX210-A# show
security-zone SuperZone {
 interfaces {
 ge-0/0/0.0;
 }
}

[edit security zones]
root@SRX210-A#

Security zones offer little to no value without the addition of interfaces. In the example
shown here, the ge-0/0/0.0 interface is added to the new zone named SuperZone. The
zone is now ready to be used in security policies. We will cover security policies in detail
in Chapter 4.

At least one interface must be bound in a zone to be able to use it to create security
policies. Multiple interfaces can be added to a zone as well, and this may be helpful
depending on the goal of the network design. An interface can only be a member of
one zone at a time. Logical interfaces are added to a zone, and so it’s possible to have
multiple logical interfaces that are a member of the same physical interface to be mem-
bers of multiple zones.

Functional zones are a logical entity that is applied to the interface to enable it to have
a special function. Interfaces that are a member of a functional zone cannot be used in
a security zone. On the SRX, the only functional zone that is used is management.
Adding an interface into the management zone allows the interface to be used for out-
of-band management, a helpful tool for devices such as the branch SRX Series devices,
which do not have a dedicated interface for management.

[edit security zones]
root@JunosBook# set functional-zone management interfaces fe-0/0/6.0

[edit security zones]
root@JunosBook# edit functional-zone management

[edit security zones functional-zone management]
root@JunosBook# show
interfaces {

Junos Configuration Essentials | 119

 fe-0/0/6.0;
}
host-inbound-traffic {
 system-services {
 all;
 }
}

[edit security zones functional-zone management]
root@JunosBook#

Adding an interface to a functional zone is the same as using a security zone. A new
element shown in this configuration is host inbound traffic. The host inbound traf
fic stanza can be configured under any zone, and it allows for the acceptance of two
different types of traffic to the SRX itself. If the host inbound traffic is not configured,
traffic will not be accepted. This is different from creating a security policy, as a security
policy is only for transit traffic and not for traffic terminating on the device.

root@JunosBook# set host-inbound-traffic system-services ?
Possible completions:
 all All system services
 any-service Enable services on entire port range
 dns DNS and DNS-proxy service
 finger Finger service
 ftp FTP
 http Web management service using HTTP
 https Web management service using HTTP secured by SSL
 ident-reset Send back TCP RST to IDENT request for port 113
 ike Internet Key Exchange
 lsping Label Switched Path ping service
 netconf NETCONF service
 ntp Network Time Protocol service
 ping Internet Control Message Protocol echo requests
 reverse-ssh Reverse SSH service
 reverse-telnet Reverse telnet service
 rlogin Rlogin service
 rpm Real-time performance monitoring
 rsh Rsh service
 sip Enable Session Initiation Protocol service
 snmp Simple Network Management Protocol service
 snmp-trap Simple Network Management Protocol traps
 ssh SSH service
 telnet Telnet service
 tftp TFTP
 traceroute Traceroute service
 xnm-clear-text JUNOScript API for unencrypted traffic over TCP
 xnm-ssl JUNOScript API service over SSL
[edit security zones functional-zone management]
root@JunosBook# set host-inbound-traffic protocols ?
Possible completions:
 all All protocols
 bfd Bidirectional Forwarding Detection
 bgp Border Gateway Protocol
 dvmrp Distance Vector Multicast Routing Protocol
 igmp Internet Group Management Protocol

120 | Chapter 3: Hands-On Junos

 ldp Label Distribution Protocol
 msdp Multicast Source Discovery Protocol
 ndp Enable Network Discovery Protocol
 nhrp Next Hop Resolution Protocol
 ospf Open Shortest Path First
 ospf3 Open Shortest Path First version 3
 pgm Pragmatic General Multicast
 pim Protocol Independent Multicast
 rip Routing Information Protocol
 ripng Routing Information Protocol next generation
 router-discovery Router Discovery
 rsvp Resource Reservation Protocol
 sap Session Announcement Protocol
 vrrp Virtual Router Redundancy Protocol
[edit security zones functional-zone management]
root@JunosBook# set host-inbound-traffic protocols

The first type of host inbound traffic is called system services. System services traffic is
related to any service that is used for management on the SRX. This includes SSH,
Telnet, and DNS. The other type of host inbound traffic is protocols. These are routing
protocols or other protocols that are used for communicating with other network de-
vices. Each individual service can be turned on, or all of them can be turned on, using
the all flag.

Given that an SRX is most often deployed as a security device, it’s a best
practice to reduce the total number of host inbound protocols.

Host inbound traffic can also be enabled on a per-interface basis. This is a good idea
when multiple interfaces are in a zone. Also, some protocols such as DHCP can only
be enabled on a single interface and not on a per-zone basis. DHCP will not be allowed
unless specifically enabled under the interface.

root@host# set interfaces fe-0/0/6.0 host-inbound-traffic system-services dhcp

[edit security zones functional-zone management]
root@JunosBook# show
interfaces {
 fe-0/0/6.0 {
 host-inbound-traffic {
 system-services {
 dhcp;
 }
 }
 }
}
host-inbound-traffic {
 system-services {
 all;
 }
}

Junos Configuration Essentials | 121

[edit security zones functional-zone management]
root@JunosBook#

Summary
Junos is a large-scale and extensible operating system. It is designed to give adminis-
trators flexible configuration options that allow for extreme customization of the de-
vice. It also allows full control over what happens to the traffic that passes through the
device. For administrators who are looking for more information on how to use the
Junos operating system there are four great resources.

The first resource is the Juniper Networks Technical Library (of which this book is a
part), covering the Junos operating system. These books are published by O’Reilly and
have “Junos” in the main title. You can discover more about them at http://www.oreilly
.com or at http://www.juniper.net/books. The series includes books such as Junos Cook-
book (http://oreilly.com/catalog/9780596100148/) by Aviva Garrett, which provides
valuable tips that apply to all Junos-based devices. For those of you who are migrating
from other vendors and platforms, look for Junos Fundamentals (scheduled for publi-
cation in November 2010). This book covers all the basics and will prepare you for the
JNCIA, Juniper’s foundation certification track.

In addition, Juniper publishes a series of how-to booklets called the Day One series
(http://www.juniper.net/dayone). These mini-books are full of information focused on
specific topics. They are free and cover a wide variety of topics.

Lastly, the Junos documentation covers every nook and cranny of the operating system
and is the best place to find information on how to use a command or review a concept.

These resources can fill in where this short chapter had to leave off. The rest of the book
assumes you can find your way around the CLI. If need be, review this chapter, and
the aforementioned resources, if you need more basic instruction. The authors assume
you have an intermediate familiarity with using a CLI, and we will try to introduce you
gradually to the finer points of configuring, administering, and monitoring your SRX
Series Services Gateway device.

Chapter Review Questions
1. What are the two different modes of operation in the Junos command line?

2. What topics are covered on the built-in help on the command line?

3. In configuration mode, what command is used to place a statement into the
configuration?

4. What is the benefit of having a configuration that is based on a hierarchy?

5. What is a unit on an interface?

122 | Chapter 3: Hands-On Junos

http://www.oreilly.com
http://www.oreilly.com
http://www.juniper.net/books
http://oreilly.com/catalog/9780596100148/
http://www.juniper.net/dayone

6. What is the commit model for the configuration?

7. Where is the concept of the commit model inherited from?

8. What is a zone?

9. What does the root user do?

10. What platform can support Ethernet switching?

Chapter Review Answers
1. Operational mode and configuration mode are the two different modes of opera-

tion in the Junos command line.

2. A full copy of the Junos documentation is configured on every Junos device. All of
the available commands and topics are accessible.

3. The set command places a new configuration statement into the configuration.
The delete command can be used to remove a command from the configuration.

4. A hierarchy-based configuration allows an administrator to enter a specific part of
the configuration that he wishes to edit. It also provides the ability to restrict access
to specific stanzas by using access classes.

5. A unit is a logical interface that is applied to a physical interface. A unit is an
abstraction that allows for the use of multiple VLANs or protocols to be enabled
on the same physical interface.

6. The commit model allows for the application of the configuration when the user
specifies. This is different from traditional network operating systems which ap-
plied the configuration immediately to the device.

7. The commit model was inherited from revision control software for source code.
It enables the ability to commit, roll back, and save several revisions of
configurations.

8. A zone is a logical entity that interfaces can become a member of. Zones are used
in creating security policies and they provide a clear source and destination for
traffic regardless of IP address. It’s also possible to create a functional zone to place
an interface in management mode so that it cannot pass traffic.

9. The root user is the ultimate administrator for a Junos device. It is the only user
that is configured by default. A new user should be configured and used to manage
the device. The root user should only be used for initial configuration of the device.

10. Currently, the branch platform can configure Ethernet switching. In the future, the
capability will be made available to data center SRX Series devices.

Chapter Review Answers | 123

CHAPTER 4

Security Policy

Security policies, sometimes called firewall rules, are a method of selectively allowing
traffic through a network. In a sense, security policies control who can talk to whom
(or rather, what systems can talk to which other systems), and more importantly, how
the conversation takes place. Security policies also provide the means for logging, au-
thentication, and accounting of network traffic. The SRX evaluates every packet that
passes through its zones and determines whether the traffic is permitted, dropped,
logged, or more deeply inspected, or if it requires further authentication. This chapter
explores how the SRX evaluates traffic and performs security policy lookups, how to
configure those security policies, and some common issues to avoid.

Security Policy Overview
As illustrated in Figure 4-1, when a packet enters the SRX, the flow daemon (flowd)
performs a session lookup. It does this to see whether the packet is already part of an
existing session. If the packet is part of an existing session, it takes what is referred to
as the fast path. If it is not found to be part of an existing session, it goes down the slow
path. The fast path has fewer steps involved in checking the packet, and as a result, it
is much faster at processing the packet.

Why does the security policy lookup take place after so many other checks?

The SRX is a zone-based firewall, meaning that all security policies are associated with
zones and those zones are tied to interfaces. The SRX must perform a route lookup to
determine the destination zone context before it can examine the correct security pol-
icies. In fact, before the firewall can do a security policy evaluation for a flow, it must
perform three actions: a screen check (detailed in Chapter 6), a route lookup, and
finally, a route lookup to determine the destination security zone. Any of these steps
might result in the packet being dropped, even before security policy evaluation.

By default, three security zones come preconfigured on the SRX: the Trust zone, the
Untrust zone, and the junos-global zone. It’s best to use custom zones with clear names
describing their role and placement in the network. An example of this would be calling

125

the accounting department network segment “accounting-dept” or even “Dept-A.”
This will be far more user-friendly than a generic name such as “Trust” when an
administrator returns to this zone configuration in the future.

Let’s create a new security zone:

[edit]
juniper@SRX5800> edit security
[edit security]
juniper@SRX5800> set zones security-zone accounting-dept

The new zone is called accounting-dept. Once a new zone has been created there are a
few features that can be turned on. The most important feature is called TCP-RST.
TCP-RST will send a RESET packet for any non-TCP SYN packet that doesn’t already
match an existing session. What does that mean? Well, it basically means that if a
session has timed out or is started improperly, the SRX will tell the source node that it
needs to restart the TCP connection. It is recommended by the authors that TCP-RST
remain disabled unless it is required on your network. This makes the SRX visible when
it drops packets and can be abused by a malicious user to probe the SRX’s security
policies.

Figure 4-1. Where policy evaluation in the SRX packet flow takes place

126 | Chapter 4: Security Policy

Additional zone configuration items include:

Host-inbound-traffic
This tells the SRX what to allow to this security zone. For example, if you want to
ping the SRX’s interface, you need to configure ping under the zone’s host-inbound-
traffic profile. Any protocols or system services that need to be allowed to go to
the SRX should be configured under host-inbound-traffic. Here’s a quick
example:

juniper@SRX5800> set zones security-zone accounting-dept host-inbound-traffic
system-services ping

Screen
Screens are high-performance denial-of-service (DoS) and distributed denial-of-
service (DDoS) protections that are extremely efficient and can block a number of
floods and attacks in hardware. We will cover screens thoroughly in Chapter 7.

The last step in configuring a security zone is to apply the interface to the zone:

[edit security]
juniper@SRX5800> set zones security-zone accounting-dept interfaces ge-0/0/0

The new zone configuration is:

[edit security]
juniper@SRX5800> show zones security-zone accounting-dept
host-inbound-traffic {
 system-services {
 ping;
 }
}
interfaces {
 ge-0/0/0.0;
}

These are the fundamentals of zones, so let’s take a look at a quick security policy. The
format and configuration of a simple security policy that the firewall administrator has
previously configured might look something like the following:

juniper@SRX5800> show configuration security policies
from-zone trust to-zone Internet {
 policy allow-users {
 match {
 source-address inside-users;
 destination-address any;
 application any;
 }
 then {
 permit;
 }
 }
}

Security Policy Overview | 127

Security policy configurations are composed of six major elements all used within this
sample security policy:

Source zone
The source zone is referred to as from-zone and is labeled as trust.

Destination zone
The destination, or to-zone, is labeled as Internet.

Policy
This is a descriptive name assigned to the policy. In the preceding example, it’s
called allow-users.

Source address
The source address group is inside-users. A source address is a collection or a
single IP address used in policy to dictate whom is initiating this connection.

Destination address
In the example allow-users policy, the destination address is any. The destination
address again is a collection or a single IP address that the source is talking to. In
this case, any means any destination.

Service
In the example allow-users policy, the service is any. The service is a single port or
port range such as HTTP (TCP port 80), SSH (TCP port 22), or, for example, DNS
(UDP port 53).

These items are all a part of the match statement which details to what and to whom
this policy applies.

The last line of the example policy is an action configured to take place if the traffic
matches the criteria of the first lines, referred to as the then statement. If traffic is ini-
tiated from the Trust zone, has a destination address in the Internet zone, and is from
the inside-users segment, the SRX permits the traffic. The then statement describes
what action should be taken. An action can include logging, denying, permitting, or
sending for deeper inspection in cases such as Intrusion Detection and Protection (IDP)
and Unified Threat Management (UTM). We will cover both IDP and UTM later in
the book, but for now it’s important to understand that they are enabled and triggered
by the then statement in security policies. The security policy is what matches traffic
and tells the SRX to send the packet or flow for deeper inspection.

Keep in mind that multiple actions can be configured inside the then statement.

SRX Policy Processing
In step 4 of Figure 4-1’s illustrated SRX packet flow, the SRX builds a list of configured
policies and the order in which they are processed. When the network security process
determines a source and destination zone, the SRX evaluates only those policies con-
figured between those two zones and continues to evaluate them (in a top-down order)

128 | Chapter 4: Security Policy

until a matching condition is found, as shown in Figure 4-2. As the network security
process evaluates an incoming packet, if a matching policy is found no further policies
will be evaluated.

Figure 4-2. SRX policy processing

There are two important things to note in the SRX policy process shown in
Figure 4-2. First, not all configured policies are evaluated when the SRX does its policy
processing. Only the policies that have been configured between the matching from-
zone to-zone are evaluated. Second, the policy tables are evaluated in a top-down fash-
ion, which means the order of your policies is very important. When the SRX finds a
matching policy it takes whatever action that policy has.

Let’s look at an example of a configuration error that has not taken into account the
fact that the policies are evaluated in a top-down fashion:

juniper@SRX5800> show configuration security policies
from-zone trust to-zone Internet {
 policy allow-users {
 match {
 source-address inside-users;
 destination-address any;
 application any;
 }
 then {
 permit;
 }
 }
 policy protect_inside_users {
 match {
 source-address inside-users;
 destination-address bad_hosts;
 application any;
 }
 then {
 deny;
 }
 }
}

SRX Policy Processing | 129

When read, the first policy to be evaluated is permitting inside-users to connect to
any address using any application, and the second policy that is evaluated is to keep
the inside-users from connecting to a list of known, bad hosts, but it is after the permit
policy. So, in this instance, when the SRX does its policy lookup, the second policy
never gets hit and the inside-users network is never protected from accessing those
bad hosts.

For legacy ScreenOS users, it’s important to note that there is no global
security policy in the SRX policy system today. This means you cannot
write global policies that apply to all zones.

We will discuss proper policy processing throughout this chapter. It really is key to
establishing secure and efficient premises, and it depends on how you create the poli-
cies. The SRX will do exactly what you tell it to do. Now that we’ve briefly discussed
what a security policy is and how the SRX handles its processing let’s take a look at
some real policy tables.

A helpful tip that catches many users is where Network Address Trans-
lation (NAT) is applied and how that relates to policy. Destination NAT
is applied before the policy lookup takes place, and source NAT is ap-
plied after. That means when you are configuring policies you must
ensure that if a destination NAT is configured, the security policies are
using the new NATed address instead of the nontranslated original
address.

Viewing SRX Policy Tables
Within the SRX there are multiple ways to view the details of the configured security
policies and their order. While viewing the security policies you can issue the optional
detail command at the end of any policy lookup. The detail switch gives you addi-
tional information regarding the security policies, such as their address books and
applications.

Before using the detail command, let’s look at example output that shows how to view
all configured security policies using the show security policies command:

juniper@SRX5800> show security policies
Default policy: deny-all
From zone: trust, To zone: trust
 Policy: default-permit, State: enabled, Index: 4, Sequence number: 1
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit
From zone: trust, To zone: Internet
 Policy: default-permit, State: enabled, Index: 5, Sequence number: 1

130 | Chapter 4: Security Policy

 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit
 Policy: protect_inside_users, State: enabled, Index: 7, Sequence number: 2
 Source addresses: inside-users
 Destination addresses: bad_hosts
 Applications: any
 Action: deny
From zone: Internet, To zone: trust
 Policy: default-deny, State: enabled, Index: 6, Sequence number: 1
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: deny

Did you notice in the preceding output that this SRX is configured with
a default policy of deny-all, meaning that it will deny all traffic by de-
fault? Policies must be written to allow traffic to pass between the
security zones.

By default, there are two configured policies: the default-permit from Trust to Internet
and the default-deny from Internet to Trust. Any additional behaviors must be con-
figured to block or permit the desired traffic. Remember, if additional access is needed
from the Internet zone to the Trust zone when a new security policy is configured, it
must be placed before the default-deny. The order of policies is very important.

Now, let’s get more information by adding detail at the end of the command:

juniper@SRX5800> show security policies detail
Default policy: deny-all
Policy: default-permit, action-type: permit, State: enabled, Index: 4
 Sequence number: 1
 From zone: trust, To zone: trust
 Source addresses:
 any: 0.0.0.0/0
 Destination addresses:
 any: 0.0.0.0/0
 Application: any
 IP protocol: 0, ALG: 0, Inactivity timeout: 0
 Source port range: [0-0]
 Destination port range: [0-0]
Policy: default-permit, action-type: permit, State: enabled, Index: 5
 Sequence number: 1
 From zone: trust, To zone: Internet
 Source addresses:
 any: 0.0.0.0/0
 Destination addresses:
 any: 0.0.0.0/0
 Application: any
 IP protocol: 0, ALG: 0, Inactivity timeout: 0

Viewing SRX Policy Tables | 131

 Source port range: [0-0]
 Destination port range: [0-0]

Here the show security policies detail command displays a lot more information
than what we saw in the previous output. Now, the true source/destination address IPs
are displayed as any, or 0.0.0.0/0, and the application port ranges and protocols are
listed.

Instead of viewing all policies configured on the SRX, it is often easier to view policies
between two specific zones by using the additional command options from-zone <zone>
to-zone <zone>:

juniper@SRX5800> show security policies from-zone trust to-zone Internet
From zone: trust, To zone: Internet
 Policy: default-permit, State: enabled, Index: 5, Sequence number: 1
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit
 Policy: protect_inside_users, State: enabled, Index: 7, Sequence number: 2
 Source addresses: inside-users
 Destination addresses: bad_hosts
 Applications: any
 Action: deny

In this example output of only the security policies between the Trust and Internet
zones, you should notice that the policies are still out of order, and that the protect_
inside_users policy is still after the default-permit policy. We’ll fix this later in the
chapter.

Another way to view a specific policy instead of looking at a large list is to view it
by policy-name. The policy-name option shows only that specific policy and provides
you with the same level of information as the previous examples, if the name of the
policy is already known (in our case it’s protect_inside_users). In this example, the
detail command has been used to provide further information about the
protect_inside_users policy:

juniper@SRX5800> show security policies policy-name protect_inside_users detail
Policy: protect_inside_users, action-type: deny, State: enabled, Index: 7
 Sequence number: 2
 From zone: trust, To zone: Internet
 Source addresses:
 inside-users: 10.1.1.0/24
 Destination addresses:
 bad_hosts: 198.133.219.25/32
 Application: any
 IP protocol: 0, ALG: 0, Inactivity timeout: 0
 Source port range: [0-0]
 Destination port range: [0-0]

132 | Chapter 4: Security Policy

Viewing Policy Statistics
To enable policy statistics the then action must include the count flag. The count state-
ment then enables counters for the specific policy.

Here, count is added to default-deny from Internet to Trust:

juniper@SRX5800# edit security policies from-zone Internet to-zone trust
[edit security policies from-zone Internet to-zone trust]
juniper@SRX5800# set policy default-deny then count

The configuration ends up looking like this:

juniper@SRX5800> show conf security policies from-zone Internet to-
zone trust
policy default-deny {
 match {
 source-address any;
 destination-address any;
 application any;
 }
 then {
 deny;
 count;
 }
}

Notice that both the then action and the count action are deny. This tells the SRX to
keep track of statistics on this policy.

You must configure counting directly on each policy on which counting
is needed.

Now, when the policy is viewed, new statistics are shown:

juniper@SRX5800> show security policies policy-name default-deny detail
Policy: default-deny, action-type: deny, State: enabled, Index: 6
 Sequence number: 1
 From zone: Internet, To zone: trust
 Source addresses:
 any: 0.0.0.0/0
 Destination addresses:
 any: 0.0.0.0/0
 Application: any
 IP protocol: 0, ALG: 0, Inactivity timeout: 0
 Source port range: [0-0]
 Destination port range: [0-0]
 Policy statistics:
 Input bytes : 200 5 bps
 Output bytes : 500 10 bps
 Input packets : 23 2 pps
 Output packets : 45 4 pps

Viewing Policy Statistics | 133

 Session rate : 3 1 sps
 Active sessions : 2
 Session deletions: 1
 Policy lookups : 3

Notice that the input/output rates are shown, as well as the session ramp rate. The
session ramp rate is the number of sessions per second (sps in the preceding output)
that the SRX has handled as a result of this policy.

Policy counters allow for much more visibility into the details of a policy, but do proceed
with caution. Policy counters can add a bit of overhead to the policy processing, and if
the device is a lower-end SRX it might be wise to limit the number of policies that have
counters enabled to only those that are truly needed. On the higher-end models, policy
counters will add a minor amount of overhead, but it is much less noticeable.

To reset policy counters back to zero use the clear security policies statistics
command.

It’s also possible to set alarms based upon predefined traffic count thresholds so that
if the number of policy hits exceeds your preconfigured kilobytes-per-minute or bytes-
per-second threshold, the SRX can send an alarm or, if an event script is written, take
an advanced next-step action such as adding a firewall filter or access control list (ACL)
to block the host.

An event script is an automated script that runs directly on the SRX
when triggered by a certain event or log. Event scripts are outside the
scope of this book. For more information about event scripts, visit http:
//www.juniper.net/techpubs/.

The code to configure thresholds and alarm for a policy looks something like this:

juniper@SRX5800# edit security policies from-zone Internet to-zone trust
[edit security policies from-zone Internet to-zone trust]
juniper@SRX5800# set policy default-deny then count alarm per-minute-threshold 100

The configuration will look something like this:

juniper@SRX5800# show security policies from-zone Internet to-zone trust
policy default-deny {
 match {
 source-address any;
 destination-address any;
 application any;
 }
 then {
 deny;
 count {
 alarm per-minute-threshold 100;
 }
 }
}

134 | Chapter 4: Security Policy

http://www.juniper.net/techpubs/
http://www.juniper.net/techpubs/

It’s also possible to alarm the local log or an external logging device such
as the Network and Security Manager (NSM), a syslog server, or a Sim-
ple Network Management Protocol (SNMP) collector on both permit
and deny policies on a kilobytes-per-minute or bytes-per-second basis.

Viewing Session Flows
Once traffic has gone through the SRX packet flow, and assuming that the traffic has
been permitted, the details of that session go into the SRX’s session table. The session
table is a real-time list of current sessions going through the SRX. Only connections
that are active or haven’t been timed out show up in the session table.

One very important thing to note is that if a flow is in the session table, it has already
been permitted by policy and the session has been created—the SRX has allowed this
connection and all return traffic for this flow to pass through. At this point, the SRX is
only doing some minor checks via the fast path, as we saw in Figure 4-1 earlier in this
chapter.

Here’s an example of what a session looks like:

juniper@SRX5800> show security flow session
Session ID: 4785, Policy name: default-permit/1, Timeout: 1800
 In: 10.10.1.1/49229 --> 10.1.1.254/23;tcp, If: ge-0/0/0.0
 Out: 10.1.1.254/23 --> 10.10.1.1/49229;tcp, If: ge-0/0/1.0

You can learn a lot of useful information about this short session:

• The policy name that allowed this traffic is default-permit.

• The timeout is 1,800 seconds or 30 minutes; 30 minutes is the default timeout for
TCP traffic.

• Both the source IP, 10.10.1.1, and the destination IP, 10.1.1.254, are shown with
their respective source/destination ports, and the session is TCP port 23 or Telnet.

• The source interface is ge-0/0/0.0 and the destination interface for this session is
ge-0/0/1.0.

To view the session table at a higher level you would use the summary command, which
gives a breakdown of the different types of sessions and how many sessions there are:

juniper@SRX5800> show security flow session summary
Session summary:
 Unicast-sessions: 20
 Multicast-sessions: 0
 Failed-sessions: 0
 Sessions-in-use: 20
 Maximum-sessions: 65536

Be aware that session tables are often quite large, with thousands or even millions of
sessions at any given time. Even so, the ability to search through the session table is
extremely important, and Juniper has added some great filters to assist with this. As

Viewing Session Flows | 135

always, use the question mark (?) in the command-line interface (CLI) to show the list
of possible options, as shown in the following output:

juniper@SRX5800> show security flow session ?
Possible completions:
 <[Enter]> Execute this command
 application Show session for specified application or application set
 destination-port Show each session that uses specified destination port
 destination-prefix Show each session that matches destination prefix
 idp Show IDP sessions
 interface Show each session that uses specified interface
 protocol Show each session that uses specified IP protocol
 resource-manager Show resource-manager sessions
 session-identifier Show session with specified session identifier
 source-port Show each session that uses specified source port
 source-prefix Show each session that matches source prefix
 summary Show summary of sessions
 tunnel Show tunnel sessions
 | Pipe through a command

Keep in mind that you can apply multiple filters to the search.

Another feature that has been added in Junos but was not available in ScreenOS is the
ability to not only search by a source IP or destination IP, but also by an entire subnet.

This is important because it enables you to search for all traffic coming from or going
to an entire subnet:

juniper@SRX5800> show security flow session destination-prefix 10.1.1/24
Session ID: 4785, Policy name: default-permit/1, Timeout: 1800
 In: 10.10.1.1/49229 --> 10.1.1.254/23;tcp, If: ge-0/0/0.0
 Out: 10.1.1.254/23 --> 10.10.1.1/49229;tcp, If: ge-0/0/1.0
Session ID: 4787, Policy name: default-permit/1, Timeout: 1800
 In: 10.10.1.5/49131 --> 10.1.1.254/23;tcp, If: ge-0/0/0.0
 Out: 10.1.1.254/23 --> 10.10.1.5/49131;tcp, If: ge-0/0/1.0
2 sessions displayed

In the following example, we are filtering the session table by destination-port 23 or
Telnet:

juniper@SRX5800> show security flow session destination-port 23
Session ID: 4785, Policy name: default-permit/1, Timeout: 1800
 In: 10.10.1.1/49229 --> 10.1.1.254/23;tcp, If: ge-0/0/0.0
 Out: 10.1.1.254/23 --> 10.10.1.1/49229;tcp, If: ge-0/0/1.0
Session ID: 4787, Policy name: default-permit/1, Timeout: 1800
 In: 10.10.1.5/49131 --> 10.1.1.254/23;tcp, If: ge-0/0/0.0
 Out: 10.1.1.254/23 --> 10.10.1.5/49131;tcp, If: ge-0/0/1.0
2 sessions displayed

136 | Chapter 4: Security Policy

And finally, here’s how you can apply multiple filters to filter the session output even
further. In the following output, two filters have been applied: the source-prefix filter
and the destination port filter. This snippet shows only the sessions that match both
of these requirements:

juniper@SRX5800> show security flow sess source-prefix 10.10.1.5
destination-port 23
Session ID: 4787, Policy name: default-permit/1, Timeout: 1800
 In: 10.10.1.5/49131 --> 10.1.1.254/23;tcp, If: ge-0/0/0.0
 Out: 10.1.1.254/23 --> 10.10.1.5/49131;tcp, If: ge-0/0/1.0
1 sessions displayed

Policy Structure
Earlier in the chapter we broke down an example security policy into its core elements.
Now, let’s discuss how to create the various objects that go into those security policies
and toy with some of the advanced configuration options.

Security Zones
The first thing we need to do is to create a new security zone and assign it to the
corresponding interface:

juniper@SRX5800> edit
Entering configuration mode
[edit]
juniper@SRX5800# set security zones security-zone web-dmz
juniper@SRX5800# set security zones security-zone web-dmz interfaces fe-0/0/2.0

Now we need to configure the IP address of the web servers. IP addresses or DNS names
are configured in what’s called address-books. These address-books store the IP or DNS
information used in security policies. Additionally, address-books are tied to a single
security zone; it’s not possible to assign the same address-book to two different security
zones.

The important thing to note is that it’s not possible to configure IP addresses directly
into the security policy—it must be done within an address-book.

juniper@SRX5800> edit
Entering configuration mode
[edit]
juniper@SRX5800# edit security zones security-zone web-dmz
[edit security zones security-zone web-dmz]
juniper@SRX5800# set address-book address web1 172.31.100.60

Here, a new address-book has been created on web-dmz that was previously configured.
The new address-book has been assigned the label of web1, and the IP address of web1
is 172.31.100.60.

Policy Structure | 137

You create a second address-book for the second web server on web-dmz in the same
way:

juniper@SRX5800>
[edit security zones security-zone web-dmz]
juniper@SRX5800# set address-book address web2 172.31.100.61

The third address-book that is configured is slightly different. This time, instead of using
IP addresses, the address-book is configured with a DNS name:

juniper@SRX5800> edit security zones security-zone Internet
[edit security zones security-zone Internet]
juniper@SRX5800# set address-book address hackers_web hackers.com

Here, the address-book hackers_web was configured to the Internet security zone. The
hackers_web address-book includes the DNS name hackers.com.

Some address-book names are reserved internally for the SRX and can-
not be used. The prefixes are static_nat_, incoming_nat_, and junos_.

In situations where the policy calls for multiple IP addresses, ranges, or DNS names,
instead of writing multiple security policies that all take the same action it’s possible
to use an address-set. An address-set is simply a grouping of address books.

Think of the address-book as a business card with information such as a phone number
and name. Those business cards can all be stored into a single Rolodex or an address-
set. Creating an address-set is similar to creating an address-book. Address-sets are
also assigned to security zones and configured in the same manner:

juniper@SRX5800> edit security zones security-zone web-dmz
Entering configuration mode
[edit security zones security-zone web-dmz]
juniper@SRX5800# set address-book address-set web-servers address web1
[edit security zones security-zone web-dmz]
juniper@SRX5800# set address-book address-set web-servers address web2

A new address-set has been configured and is called web-servers, and the two web
server address-books have been assigned to it. Now, when policy is written later, instead
of writing policy for both web1 and web2 we can just use web-servers and it is applied
to both.

We can verify the configuration by looking at the web-dmz zone to confirm that the
proper addresses are assigned to the zone, and that the address-set is configured
properly:

juniper@SRX5800> show configuration security zones security-zone web-dmz
address-book {
 address web1 172.31.100.60/32;
 address web2 172.31.100.61/32;
 address-set web-servers {
 address web1;

138 | Chapter 4: Security Policy

 address web2;
 }
}

Service Configuration
The next object to configure in our policy structure is the application (or service, as it
was previously known in ScreenOS). Applications are used in policy to state how the
source and destination can talk to each other, with some examples including HTTP,
SSH, DNS, and SIP.

The SRX comes with a large list of preconfigured applications with much of the hard
work already done. The protocol, source port, destination port, and other values have
already been configured. All we need to do is to assign it to a policy.

These predefined applications start with junos-. To view a list of the predefined services
use the show configuration groups junos-defaults applications command:

juniper@SRX5800> show configuration groups junos-defaults applications
#
File Transfer Protocol
#
application junos-ftp {
 application-protocol ftp;
 protocol tcp;
 destination-port 21;
}
#
Trivial File Transfer Protocol
#
application junos-tftp {
 application-protocol tftp;
 protocol udp;
 destination-port 69;
}
#
Real Time Streaming Protocol
#
application junos-rtsp {
 application-protocol rtsp;
 protocol tcp;
 destination-port 554;

To view the details of a specific application use the syntax show configuration groups
junos-defaults applications application junos-<application name>:

juniper@SRX5800> show conf groups junos-defaults app app junos-telnet
protocol tcp;
destination-port 23;

Much like address-books and address-sets, it is also possible to configure application-
sets. This is a useful feature that replaces the need to write the same policy again and

Policy Structure | 139

again just to permit a single additional service. Here’s a web-management application-
set that allows the network administrator to manage the servers on web-dmz:

juniper@SRX5800> edit applications application-set
Entering configuration mode
[edit applications application-set]
juniper@SRX5800# set web_mgt application junos-ssh
[edit applications application-set]
juniper@SRX5800# set web_mgt application junos-ping

[edit applications application-set]
juniper@SRX5800# set web_mgt application junos-pc-anywhere

The application-set web_mgt has been created and then configured for SSH, ping, and
pcAnywhere as a part of that web management group.

If there is a custom program on the network, or perhaps an application isn’t already
configured on the SRX, it’s easy to create a custom application. Say the local system
administrators don’t use pcAnywhere, but instead use a different remote access solu-
tion that goes over TCP port 4999. Now we’ll have to create a custom application for
them to use.

You must configure the following items when configuring a custom application:

Application name
This is a label assigned to the custom application.

Protocol
This specifies what protocol is used: TCP, UDP, ICMP, and so on.

Source-port
This is the source port for the application. Keep in mind that most of the time the
source port is a randomly assigned port between 1024 and 65535. Any is not an
accepted configuration option; however, a range can be used.

Destination-port
This is the destination port or range.

Inactivity-timeout
This is how long the SRX will let the connection go idle before removing it from
the session table. This value is configured in seconds and is optional. If you don’t
configure a value, the default timeout for the protocol will apply. For TCP the
default is 30 minutes, and for UDP it is 2 minutes.

Here is an example of a custom remote_mgt application created for the system admin-
istrators to access into their web servers. This application allows them to connect to
TCP port 4999, and because no inactivity-timeout is configured, it’s automatically
set for 30 minutes, the TCP default:

juniper@SRX5800> edit applications application
Entering configuration mode
[edit applications application]

140 | Chapter 4: Security Policy

juniper@SRX5800# set remote_mgt protocol tcp source-port 1024-65535
destination-port 4999

Now that the application has been configured, it’s time to create the policies for the
web-dmz zone. The first policy to create is to allow system administrators on the Trust
zone to manage the web servers on the web-dmz zone and log the traffic.

juniper@SRX5800# edit security policies from-zone trust to-zone web-dmz
[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy webdmz_mgt match source-address any
destination-address web-servers application web_mgt
[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy webdmz_mgt then permit
[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy webdmz_mgt then log session-close session-init

Now let’s confirm the webdmz_mgt policy configuration:

juniper@SRX5800# show security policies from-zone trust to-zone web-dmz
policy webdmz_mgt {
 match {
 source-address any;
 destination-address web-servers;
 application web_mgt;
 }
 then {
 permit;
 log {
 session-init;
 session-close;
 }
 }
}

The next step is to set up access from the Internet zone to the web-dmz zone to allow
users on the Internet to access the web servers via HTTP and keep statistics on the
traffic:

juniper@SRX5800# edit security policies from-zone Internet to-zone web-dmz
[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800# set policy http-access match source-address any
destination-address web-servers application junos-http
[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800# set policy http-access then permit
[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800# set policy http-access then count

Keep in mind that, as stated earlier, unless something is explicitly permitted, it will be
denied. So, there is no reason to write a deny when evaluating traffic from the Internet
zone to the web-dmz zone, as only HTTP is permitted (as currently configured), unless
you want to modify the deny policy for logging purposes:

juniper@SRX5800> show conf security policies from-zone Internet to-zone web-dmz
policy http-access {
 match {
 source-address any;

Policy Structure | 141

 destination-address web-servers;
 application junos-http;
 }
 then {
 permit;
 count;
 }
}

To recap what we have done so far, we created a new zone named web-dmz; assigned
two web server addresses to the web-servers address-set; created an application-
set called web_mgt for system administrator access; and wrote a policy between both
the Internet zone and the web-dmz zone for HTTP access in addition to a policy be-
tween the Trust zone and the web-dmz zone for management. Figure 4-3 shows that
user Dept-A can now connect to the web application servers.

Figure 4-3. Dept-A data path to web servers

142 | Chapter 4: Security Policy

Blocking Unwanted Traffic
The next thing we need to do as we explore our sample policy structure is to deny
unwanted outbound traffic from the users zone. In cases of Trust to Untrust, there is
a default permit. Network operators may wish to block undesired programs and pro-
tocols from being used on the network using this default permit, such as instant mes-
saging clients, outbound email (with the exception of email going through the corporate
email servers), and many popular P2P applications. In this type of situation, we would
need to explicitly block them.

Let’s configure the SRX to block some of these services per the Campus Core’s Internet
access policy. The goal is to have the SRX silently deny all of these applications, as
shown in Figure 4-4.

Figure 4-4. Blocking unwanted traffic with the SRX

Let’s start our configuration:

juniper@SRX5800# edit applications application-set
[edit applications application-set]
juniper@SRX5800# set deny_services application junos-ymsg
[edit applications application-set
juniper@SRX5800# set deny_services application junos-smtp
[edit applications application-set
juniper@SRX5800# set deny_services application junos-msn
[edit applications application-set
juniper@SRX5800# set deny_services application junos-irc
[edit applications application-set

Policy Structure | 143

juniper@SRX5800# set deny_services application junos-gnutella
[edit applications application-set
juniper@SRX5800# set deny_services application junos-aol

Now, we’ll create an open policy that applies to everyone going to any destination (any
source to any destination):

juniper@SRX5800# edit security policies from-zone trust to-zone Internet
[edit security policies from-zone trust to-zone Internet]
juniper@SRX5800# set policy denied_apps match source-address any
destination-address any application deny_services

When blocking traffic on the SRX you have a couple of options that are very different
in terms of how they go about dropping traffic:

deny
The deny flag will silently drop the connection. The packet is dropped and logged
(if configured to do so).

reject
The reject flag has a key difference from the deny flag. Although reject drops the
packet and logs (if configured to do so), it will also send an ICMP Port Unreachable
packet to the initiating source for every packet that is rejected. This is used to
inform the end host that the traffic was dropped.

Obviously, you must be careful with the reject flag because a large number of rejected
packets could cause the SRX’s performance to degrade due to flooding ICMP messages.
In nearly all cases, the authors of this book highly recommend using deny instead of
reject. For the same reason as the zone TCP-RST configuration, policies configured
with reject could allow for malicious users to notice the SRX on your network and
assist in mapping out your security policies. With that in mind, let’s proceed with our
blocking traffic policy:

[edit security policies from-zone trust to-zone Internet]
juniper@SRX5800# set policy denied_apps then deny log session-close session-init

Now let’s confirm the deny policy’s configuration:

juniper@SRX5800# show security policies from-zone trust to-zone Internet
policy denied_apps
match {
 source-address any;
 destination-address any;
 application deny_services;
}
then {
 deny;
 log {
 session-init;
 session-close;
 }
}

144 | Chapter 4: Security Policy

Always remember to evaluate policy ordering—since the policy that was just created
is after the permit-any policy it must be moved before the permit-any policy to take
effect. To do this use the insert command and insert denied_apps before default-
permit:

[edit]
juniper@SRX5800# insert security policies from-zone trust to-zone Internet
policy denied_apps before policy default-permit

A quick confirmation shows that the policies are in the correct order:

juniper@SRX5800> show security policies from-zone trust to-zone Internet
From zone: trust, To zone: Internet
 Policy: denied_apps, State: enabled, Index: 13, Sequence number: 1
 Source addresses: any
 Destination addresses: any
 Applications: deny_services
 Action: deny, log
 Policy: default-permit, State: enabled, Index: 5, Sequence number: 2
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit
 Policy: protect_inside_users, State: enabled, Index: 6, Sequence number: 3
 Source addresses: inside-users
 Destination addresses: bad_hosts
 Applications: any
 Action: deny

Policy Logging
We briefly covered policy logging from a configuration standpoint earlier in this
chapter. Here we’ll discuss the details of policy logging and how to configure and view
the logs.

For legacy NetScreen readers, policy logging is very different on the SRX.
The logging system is more of a local syslog server than the traditional
traffic log found on NetScreen devices, and nearly everything that could
be done with the ScreenOS traffic logs can be done on the SRX’s logfiles.

To log on the SRX you must configure the following two items:

• Policy logging must be enabled on the policy via the session-init and session-
close configuration items.

• A filter and traffic logfile must be created on the SRX.

Policy Logging | 145

First, to enable policy logging, configure log session-close session-init on the spe-
cific policy on which logging is desired. The session-close flag tells the SRX to log
whenever it tears down a session’s connection (a session could close for many reasons,
including a timeout, a FIN packet, or an RST packet). The session-init flag tells the
SRX to log traffic for that policy when a session is built.

Here’s an example of a policy with logging enabled (that was actually configured earlier
in the chapter). This example policy logs both the creation and the teardown of these
connections and works on policies that permit traffic as well as policies that deny traffic:

[edit]
juniper@SRX5800# set security policies from-zone trust to-zone web-dmz
policy webdmz_mgt then log session-close session-init

The next item we need to configure is a location for the traffic logs to go to. You can
name the traffic logfile whatever you want, although it’s always best to give the log a
descriptive name, such as traffic-log or policy-log, just so other users know where
to look for the logs.

Here the traffic logfile is called traffic-log. The second line of the config tells the SRX
to send all traffic matching RT_FLOW_SESSION, which is a string that shows up in the
policy messages:

[edit]
juniper@SRX5800# set system syslog file traffic-log any any
juniper@SRX5800# set system syslog file traffic-log match "RT_FLOW_SESSION"

Now, to view the traffic logs, use the show log <filename> command to display the
entire traffic log:

juniper@SRX5800> show log traffic-log
Jan 7 12:07:24 SRX5800 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/53910->172.31.100.60/22 junos-ssh
10.1.1.100/53910->172.31.100.60/22 None None 6 webdmz_mgt trust web-dmz 59
Jan 7 12:07:25 SRX5800 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP RST:
10.1.1.100/53908->172.31.100.60/22 junos-ssh 10.1.1.100/53908->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 57 1(64) 1(40) 3

Here is a detailed breakdown of the different types of messages, followed by an example
(borrowed from the SRX documentation):

Session creation
<source-address>/<source-port>-><destination-address>/
<destination-port>,<protocol-id>: <policy-name>

RT_FLOW_SESSION_CREATE: session created 10.1.1.100/53908->172.31.100.60/22 junos-
ssh 10.1.1.100/53908->172.31.100.60/22 None None 6 webdmz_mgt trust web-dmz 57

Session close
session closed <reason>: <source-address>/<source-port>->
<destination-address>/<destination-port>,<protocol-id>:<policy-name>,
<inbound-packets>, <inbound-bytes>,<outbound-bytes> <elapsed-time>

146 | Chapter 4: Security Policy

RT_FLOW_SESSION_CLOSE: session closed TCP RST: 10.1.1.100/53907->172.31.100.60/22
junos-ssh 10.1.1.100/53907->172.31.100.60/22 None None 6 webdmz_mgt trust web-dmz
56 1(64) 1(40) 2

Session deny
session denied <source-address>/<source-port>-><destination-address>/
<destination-port>,<protocol-id>(<icmp-type>):<policy-name>

RT_FLOW_SESSION_DENY: session denied 10.1.1.100/2->10.2.0.254/25931 icmp 1(8)
web_deny trust web-dmz

There are no built-in filters, as there were on the NetScreen platform. Instead, the SRX
has some very powerful methods for filtering the displayed data that are built into the
Junos operating system. Although a deep dive into all of the different filter options is
outside the scope of this chapter, let’s cover a few ways to filter through the traffic log.
Just remember, this is only a small sample of what’s possible.

The simplest way to filter the traffic log (or any syslog file, for that matter) is to use the
| match <data> command, which filters the output to only that which matches the data
that was input:

juniper@SRX5800> show log traffic-log | match 3389
Jan 7 12:06:38 SRX5800 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/53904->172.31.100.60/3389 None 10.1.1.100/53904->172.31.100.60/
3389 None None 6 webdmz_mgt trust web-dmz 49

In this example, the match condition was 3389 (in this case, a port for Windows Remote
Desktop). The match command is very powerful, and even allows for regular-
expression-type searches, such as this match filter matching on the string 3389 OR 22:

juniper@SRX5800> show log traffic-log | match "3389|22"
Jan 7 12:06:38 SRX5800 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/53904->172.31.100.60/3389 None 10.1.1.100/53904->172.31.100.60/
3389 None None 6 webdmz_mgt trust web-dmz 49
Jan 7 12:07:22 SRX5800 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/53907->172.31.100.60/22 junos-ssh 10.1.1.100/53907->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 56
Jan 7 12:07:23 SRX5800 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/53908->172.31.100.60/22 junos-ssh 10.1.1.100/53908->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 57

Additional methods for viewing the traffic log include the ability to do a Unix-tail-type
command. For example, the last command displays the last X number of lines. Here,
the last filter is used to display only the last two lines of the traffic log:

juniper@SRX5800> show log traffic-log | last 2
Jan 7 12:07:25 SRX5800 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP RST:
10.1.1.100/53909->172.31.100.60/22 junos-ssh 10.1.1.100/53909->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 58 1(64) 1(40) 2
Jan 7 12:07:25 SRX5800 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP RST:
10.1.1.100/53910->172.31.100.60/22 junos-ssh 10.1.1.100/53910->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 59 1(64) 1(40) 1

Policy Logging | 147

Keep in mind that you can use multiple pipe filters together to form powerful com-
mands. For example, if your goal is to determine how many times a certain IP, or
segment, showed up in the traffic log, you could use a combination of match and count:

juniper@SRX5800> show log traffic-log | match 172.31.100.60 | count
Count: 13 lines

In the preceding output, 172.31.100.60 shows up 13 times in the traffic log.

You also can see what the firewall has dropped. Assuming that logging has been enabled
on the deny policy, a simple filter on deny shows dropped traffic:

juniper@SRX5800> show log traffic-log | match DENY
Jan 7 12:07:05 SRX5800 RT_FLOW: RT_FLOW_SESSION_DENY: session denied
10.1.1.100/53906->172.31.100.60/21 junos-ftp 6(0) web_deny trust web-dmz
Jan 7 12:07:06 SRX5800 RT_FLOW: RT_FLOW_SESSION_DENY: session denied
10.1.1.100/53906->172.31.100.60/21 junos-ftp 6(0) web_deny trust web-dmz
Jan 7 12:07:11 SRX5800 RT_FLOW: RT_FLOW_SESSION_DENY: session denied
10.1.1.100/0->10.2.0.254/25931 icmp 1(8) web_deny trust web-dmz
Jan 7 12:07:12 SRX5800 RT_FLOW: RT_FLOW_SESSION_DENY: session denied
10.1.1.100/1->10.2.0.254/25931 icmp 1(8) web_deny trust web-dmz
Jan 7 12:07:13 SRX5800 RT_FLOW: RT_FLOW_SESSION_DENY: session denied
10.1.1.100/2->10.2.0.254/25931 icmp 1(8) web_deny trust web-dmz

It is also possible to log the policy denies to their own logfile—for example, if you wish
to keep a separate copy of dropped traffic. You can do this by creating a new logfile
and adjusting the match condition:

[edit]
juniper@SRX5800# set system syslog file traffic-deny any any
[edit]
juniper@SRX5800# set system syslog file traffic-deny match "RT_FLOW_SESSION_DENY"

A helpful trick to make it easier to troubleshoot traffic when a lot of data is going to
the traffic logfile is to filter with more specific matching conditions. For example, if we
were troubleshooting connectivity to 172.31.100.60, or wanted to log that specific
traffic to a different logfile for later evaluation, we could filter only that traffic to a
different file. Here, 172.31.100.60 is filtered to a new logfile called troubleshoot
ing_traffic:

[edit]
juniper@SRX5800# set system syslog file troubleshooting_traffic any any
[edit]
juniper@SRX5800# set system syslog file troubleshooting_traffic match
"172.31.100.60"

Now, it’s possible to view the traffic log for just 172.31.100.60:

juniper@SRX5800> show log troubleshooting_traffic
Jan 7 12:24:42 SRX5800 clear-log[1377]: logfile cleared
Jan 7 12:24:46 SRX5800 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/53989->172.31.100.60/22 junos-ssh 10.1.1.100/53989->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 91
Jan 7 12:24:47 SRX5800 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP RST:

148 | Chapter 4: Security Policy

10.1.1.100/53989->172.31.100.60/22 junos-ssh 10.1.1.100/53989->172.31.100.60/22
None None 6 webdmz_mgt trust web-dmz 91 1(64) 1(40) 2

Once you get the hang of it, you’ll see that there are many ways to filter out and count
the data in logfiles using various commands. We’ve just scratched the surface here. Use
the CLI question mark (?) to display all the different command possibilities:

juniper@SRX5800> show log troubleshooting_traffic | ?
Possible completions:
 count Count occurrences
 display Show additional kinds of information
 except Show only text that does not match a pattern
 find Search for first occurrence of pattern
 hold Hold text without exiting the --More-- prompt
 last Display end of output only
 match Show only text that matches a pattern
 no-more Don't paginate output
 request Make system-level requests
 resolve Resolve IP addresses
 save Save output text to file
 trim Trim specified number of columns from start of line

Oops, I almost forgot to mention another very useful feature, the monitor command.
Use the monitor command so that the SRX displays the output of the traffic log in real
time to the console. It’s very useful when troubleshooting or evaluating traffic.

juniper@SRX5800> monitor start traffic-log

Then, as data is written to the traffic logfile, it’s displayed to the console. Use the monitor
stop command to turn off the monitoring:

juniper@SRX5800>
*** traffic-log ***
Jan 7 12:07:13 SRX5800 RT_FLOW: RT_FLOW_SESSION_DENY: session denied
10.1.1.100/2->10.2.0.254/25931 icmp 1(8) web_deny trust web-dmz

On the high-end lines such as the SRX5800 a limited amount of logging
is available to the local logs. There simply isn’t enough disk space or
processing to log the high rate of sessions that the high-end SRX devices
are capable of handling. Logging to the local disk should be limited on
these platforms to only critical policies.

Troubleshooting Security Policy and Traffic Flows
In most cases, simple policy logging of the traffic that is being denied and permitted is
sufficient to verify what the SRX is doing with the data. However, in some instances
more information is needed. On the NetScreen platform this information was gained
via debugs, typically via debug flow basic. Juniper has taken into account how often
debugs are used when troubleshooting traffic flows, in addition to policies, and has
improved on this feature with traceoptions.

Troubleshooting Security Policy and Traffic Flows | 149

Within traceoptions you can accomplish the equivalent of a “debug flow basic” via
basic-datapath traceoption. Traceoptions monitor and log traffic flows going into and
out of the SRX and, much like the NetScreen debugs, filters tend to be very resource-
intensive. The authors of this book highly suggest that when you use traceoptions you
always have a packet filter set, and that the packet filter is as specific as possible to
avoid any adverse system impacts.

Unlike on the NetScreen platform, on the SRX you can configure only
one expression per packet filter. To examine bidirectional communica-
tion you need multiple packet filters, one for each direction.

Troubleshooting Sample
Our sample problem is as follows: while configuring a new web server, users are com-
plaining that they cannot access the website. It has already been confirmed that policy
is written correctly and traffic logs session initiation. It’s all shown somewhat briefly
in Figure 4-5.

The source is 10.1.1.100, a local workstation on the Trust zone in Dept-A via port
ge-0/0/0.0.

The destination is 10.2.0.3, a new web server on the web-dmz zone via port fe-0/0/2.0.

Figure 4-5. Sample problem showing users unable to access the website

150 | Chapter 4: Security Policy

The first thing we should do is to configure a logfile for the traceoption output. We
can do this using the file <file_name> command. Here, the output file is named
tshoot_web:

juniper@SRX5800# edit security flow traceoptions
[edit security flow traceoptions]
juniper@SRX5800# set file tshoot_web

Next we need to set the filters. It’s worth noting that nothing takes effect until the
configuration is committed, so it’s perfectly safe to change the order in which these
items are configured:

[edit security flow traceoptions]
juniper@SRX5800# set packet-filter trust_to_web source-prefix 10.1.1.100/32
destination-prefix 10.2.0.3/32
[edit security flow traceoptions]
juniper@SRX5800# set packet-filter web_to_trust source-prefix 10.2.0.3/32
destination-prefix 10.1.1.100/32

In the preceding output, two packet filters have been configured. The
first filter is for 10.1.1.100 to 10.2.0.3 and the second filter is for the
reverse traffic flow 10.2.0.3 talking to 10.1.1.100.

The last item we need to configure is the actual traceoption flag. Here, it is basic-
datapath, as this should give us all the information we need:

[edit security flow traceoptions]
juniper@SRX5800# set flag basic-datapath

If you haven’t heard it before, it’s always wise to review the configuration before
applying:

juniper@SRX5800# show security flow traceoptions
file tshoot_web;
flag basic-datapath;
packet-filter trust_to_web {
 source-prefix 10.1.1.100/32;
 destination-prefix 10.2.0.3/32;
}
packet-filter web_to_trust {
 source-prefix 10.2.0.3/32;
 destination-prefix 10.1.1.100/32;
}
[edit]

The output of the config looks correct. All of the required configuration options are
there: a traceoptions file, a traceoptions flag, and two packet filters for bidirectional
traffic. Since everything looks OK, we can commit the configuration and the worksta-
tion can initiate some traffic so that we can monitor it. Once the test traffic has been
completed, all the data to troubleshoot our problem should be in the tshoot_web trace-
options file.

Troubleshooting Security Policy and Traffic Flows | 151

The output contains a lot of detailed information regarding what the
SRX is doing with the packet as it passes through its hardware and does
its series of checks, and the reality is that you can overlook much of this
information in the output because it’s for developers who are trouble-
shooting and does not apply to what you need to know. Also, the trace-
options output will likely change over the printed lifetime of this book,
as the developers add and remove information.

Troubleshooting Output
The output of the packet’s details is shown in its entirety in Example 4-1. Look through
it and then we’ll break down what each portion means or does and what we can
overlook.

This output is from a single first packet as it enters the SRX in our troubleshooting
scenario (see Figure 4-5).

Example 4-1. Output of the packet’s details, in its entirety

juniper@SRX5800> show log tshoot_web
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:<10.1.1.100/51510-
>10.2.0.3/80;6> matched filter trust_to_web:
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:packet [48] ipid = 57203,
@423f6b9e
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:---- flow_process_pkt: (thd
1): flow_ctxt type 13, common flag 0x0, mbuf 0x423f6a00
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: flow process pak fast ifl
68 in_ifp ge-0/0/0.0
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: ge-
0/0/0.0:10.1.1.100/51510->10.2.0.3/80, tcp, flag 2 syn
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: find flow: table
0x4d5c8238, hash 1430(0xffff), sa 10.1.1.100, da 10.2.0.3, sp 51510,
dp 80, proto 6, tok 384
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: no session found, start
first path. in_tunnel - 0, from_cp_flag - 0
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: flow_first_create_session
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: flow_first_in_dst_nat: in
<ge-0/0/0.0>, out <N/A> dst_adr 10.2.0.3, sp 51510, dp 80
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: chose interface ge-
0/0/0.0 as incoming nat if.
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:flow_first_rule_dst_xlate:
DST no-xlate: 0.0.0.0(0) to 10.2.0.3(80)
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:flow_first_routing: call
flow_route_lookup(): src_ip 10.1.1.100, x_dst_ip 10.2.0.3, in ifp ge-
0/0/0.0, out ifp N/A sp 51510, dp 80, ip_proto 6, tos 0
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:Doing DESTINATION addr
route-lookup
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: routed (x_dst_ip
10.2.0.3) from trust (ge-0/0/0.0 in 0) to ge-0/0/0.0, Next-hop:
10.1.1.1
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: policy search from zone
trust-> zone trust

152 | Chapter 4: Security Policy

Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: app 6, timeout 1800s,
curr ageout 20s
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:flow_first_src_xlate:
10.1.1.100/51510 -> 10.2.0.3/80 | 10.2.0.3/80 -> 0.0.0.0/51510:
nat_src_xlated: False, nat_src_xlate_failed: False
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:flow_first_src_xlate: src
nat 0.0.0.0(51510) to 10.2.0.3(80) returns status: 0, rule/pool id:
0/0, pst_nat: False.
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: dip id = 0/0,
10.1.1.100/51510->10.1.1.100/51510
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:flow_first_get_out_ifp:
1000 -> cone nat test
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: choose interface ge-
0/0/0.0 as outgoing phy if
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:is_loop_pak: No loop: on
ifp: ge-0/0/0.0, addr: 10.2.0.3, rtt_idx:0
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:policy is NULL (wx/pim
scenario)
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:sm_flow_interest_check:
app_id 0, policy 4, app_svc_en 0, flags 0x2. not interested
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:sm_flow_interest_check:
app_id 1, policy 4, app_svc_en 0, flags 0x2. not interested
Jan 17 12:35:51 12:35:50.1249501:CID-
0:RT:flow_first_service_lookup(): natp(0x4b9f2198):
local_pak(0x3fdedc70.0x423f6a00): TCP proxy NOT interested: 0.
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: service lookup identified
service 6.
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: flow_first_final_check:
in <ge-0/0/0.0>, out <ge-0/0/0.0>
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: existing vector list 2-
446fe828.
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: Session (id:9270) created
for first pak 2
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:
flow_first_install_session======> 0x4b9f2198
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: nsp 0x4b9f2198, nsp2
0x4b9f2204
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:
make_nsp_ready_no_resolve()
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: route lookup: dest-ip
10.1.1.100 orig ifp ge-0/0/0.0 output_ifp ge-0/0/0.0 orig-zone 6 out-
zone 6 vsd 0
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: route to 10.1.1.100
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:Installing c2s NP session
wing
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:Installing s2c NP session
wing
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: flow got session.
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: flow session id 9270
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: tcp flags 0x2, flag 0x2
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: Got syn,
10.1.1.100(51510)->10.2.0.3(80), nspflag 0x1021, 0x20
Jan 17 12:35:51 12:35:50.1249501:CID-0:RT:mbuf 0x423f6a00, exit nh
0x30010

Troubleshooting Security Policy and Traffic Flows | 153

Jan 17 12:35:51 12:35:50.1249501:CID-0:RT: ----- flow_process_pkt rc
0x0 (fp rc 0)

That’s a lot to digest. To make this easier (quicker) to read, a helpful tip is to use the
trim command option. The trim command removes a specified number of characters.
For instance, you can use it to remove the date and time to make the code a lot easier
to read or fit on a screen. Example 4-2 shows the trace file trimmed. Trim 42 removes
the date and time as well as the CID-0:RT:, leaving just the important data.

Example 4-2. Trimmed trace file

juniper@SRX5800> show log tshoot_web | trim 42
<10.1.1.100/51510->10.2.0.3/80;6> matched filter trust_to_web:
packet [48] ipid = 57203, @423f6b9e
---- flow_process_pkt: (thd 1): flow_ctxt type 13, common flag 0x0,
mbuf 0x423f6a00
 flow process pak fast ifl 68 in_ifp ge-0/0/0.0
 ge-0/0/0.0:10.1.1.100/51510->10.2.0.3/80, tcp, flag 2 syn
 find flow: table 0x4d5c8238, hash 1430(0xffff), sa 10.1.1.100, da
10.2.0.3, sp 51510, dp 80, proto 6, tok 384
 no session found, start first path. in_tunnel - 0, from_cp_flag - 0
 flow_first_create_session
 flow_first_in_dst_nat: in <ge-0/0/0.0>, out <N/A> dst_adr 10.2.0.3,
sp 51510, dp 80
 chose interface ge-0/0/0.0 as incoming nat if.
flow_first_rule_dst_xlate: DST no-xlate: 0.0.0.0(0) to 10.2.0.3(80)
flow_first_routing: call flow_route_lookup(): src_ip 10.1.1.100,
x_dst_ip 10.2.0.3, in ifp ge-0/0/0.0, out ifp N/A sp 51510, dp 80,
ip_proto 6, tos 0
Doing DESTINATION addr route-lookup
 routed (x_dst_ip 10.2.0.3) from trust (ge-0/0/0.0 in 0) to ge-
0/0/0.0, Next-hop: 10.1.1.1
 policy search from zone trust-> zone trust
 app 6, timeout 1800s, curr ageout 20s
flow_first_src_xlate: 10.1.1.100/51510 -> 10.2.0.3/80 | 10.2.0.3/80 -
> 0.0.0.0/51510: nat_src_xlated: False, nat_src_xlate_failed: False
flow_first_src_xlate: src nat 0.0.0.0(51510) to 10.2.0.3(80) returns
status: 0, rule/pool id: 0/0, pst_nat: False.
 dip id = 0/0, 10.1.1.100/51510->10.1.1.100/51510
flow_first_get_out_ifp: 1000 -> cone nat test
 choose interface ge-0/0/0.0 as outgoing phy if
is_loop_pak: No loop: on ifp: ge-0/0/0.0, addr: 10.2.0.3, rtt_idx:0
policy is NULL (wx/pim scenario)
sm_flow_interest_check: app_id 0, policy 4, app_svc_en 0, flags 0x2.
not interested
sm_flow_interest_check: app_id 1, policy 4, app_svc_en 0, flags 0x2.
not interested
flow_first_service_lookup(): natp(0x4b9f2198):
local_pak(0x3fdedc70.0x423f6a00): TCP proxy NOT interested: 0.
 service lookup identified service 6.
 flow_first_final_check: in <ge-0/0/0.0>, out <ge-0/0/0.0>
 existing vector list 2-446fe828.
 Session (id:9270) created for first pak 2
 flow_first_install_session======> 0x4b9f2198

154 | Chapter 4: Security Policy

 nsp 0x4b9f2198, nsp2 0x4b9f2204
 make_nsp_ready_no_resolve()
 route lookup: dest-ip 10.1.1.100 orig ifp ge-0/0/0.0 output_ifp ge-
0/0/0.0 orig-zone 6 out-zone 6 vsd 0
 route to 10.1.1.100
Installing c2s NP session wing
Installing s2c NP session wing
 flow got session.
 flow session id 9270
 tcp flags 0x2, flag 0x2
 Got syn, 10.1.1.100(51510)->10.2.0.3(80), nspflag 0x1021, 0x20
mbuf 0x423f6a00, exit nh 0x30010
 ----- flow_process_pkt rc 0x0 (fp rc 0)

Bidirectional Traffic
For a quick way to verify bidirectional traffic—for example, if you need to confirm
whether an end host is responding—you can perform a quick match command. Keep
in mind that this will not tell you what has happened, only that the traffic is bidirec-
tional. Notice how 10.1.1.100 is shown as the source on the trust_to_dmz filter and
172.31.100.60 is shown as the source on the dmz_to_trust filter:

juniper@SRX5800> show log tracetest | match matched
Jan 21 23:32:21 23:32:21.807167:CID-0:RT:<10.1.1.100/58543-
>172.31.100.60/80;6> matched filter Trust_to_dmz:
Jan 21 23:32:21 23:32:21.823519:CID-0:RT:<172.31.100.60/80-
>10.1.1.100/58543;6> matched filter dmz_to_trust:
Jan 21 23:32:21 23:32:21.825358:CID-0:RT:<10.1.1.100/58543-
>172.31.100.60/80;6> matched filter Trust_to_dmz:
Jan 21 23:32:21 23:32:21.825358:CID-0:RT:<10.1.1.100/58543-
>172.31.100.60/80;6> matched filter Trust_to_dmz:
Jan 21 23:32:22 23:32:21.935552:CID-0:RT:<172.31.100.60/80-
>10.1.1.100/58543;6> matched filter dmz_to_trust:
Jan 21 23:32:22 23:32:21.937322:CID-0:RT:<10.1.1.100/58543-
>172.31.100.60/80;6> matched filter Trust_to_dmz:

Now, let’s analyze the data from the traceoption’s output shown in Example 4-2.

The first line, shown here, displays the source IP 10.1.1.100 and destination IP 10.2.0.3,
as well as the ports used to communicate. It then documents that this traffic matched
the trust_to_web traceoptions filter.

<10.1.1.100/60218->10.2.0.3/80;6> matched filter trust_to_web:

The next line gives us the IPID, which is 57203 in this example:

packet [48] ipid = 57203, @423f6b9e

These two lines are basically useful to internal developers for troubleshooting
hardware/software issues, and not for our problem at hand:

---- flow_process_pkt: (thd 1): flow_ctxt type 13, common flag 0x0,
mbuf 0x423f6a00
 flow process pak fast ifl 68 in_ifp ge-0/0/0.0

Troubleshooting Security Policy and Traffic Flows | 155

Notice that the inbound interface is ge-0/0/0.0 and the protocol is TCP, and that this
is a SYN packet:

ge-0/0/0.0:10.1.1.100/60218->10.2.0.3/80, tcp, flag 2 syn

Here is the output as the SRX performs its 5-tuple lookup. The 5-tuple includes the
source, destination, source port, destination port, and protocol. Protocol number 6
is TCP.

find flow: table 0x4d5c8238, hash 1430(0xffff), sa 10.1.1.100, da 10.2.0.3, sp
51510, dp 80, proto 6, tok 384

The Internet Assigned Numbers Authority (IANA) has assigned num-
bers to all protocols. Here is a link to a list that IANA updates periodi-
cally: http://www.iana.org/assignments/protocol-numbers/.

Now that the 5-tuple lookup has been completed, a flow lookup is done. At this point,
as shown by the output, the SRX determines if there is an existing session for this packet
and whether it can take the fast path, or if this is a new session and it needs to go down
the slow path. The example packet that is being broken down is, in fact, a first packet
of a new session, and as such, the SRX determines that no existing session has been
found and one must be created:

no session found, start first path. in_tunnel - 0, from_cp_flag - 0
 flow_first_create_session

The SRX then checks to see if there are any destination NAT configurations that apply.
In this case, there are none, so no NAT is applied:

flow_first_in_dst_nat: in <ge-0/0/0.0>, out <N/A> dst_adr 10.2.0.3, sp 51510,
dp 80
 chose interface ge-0/0/0.0 as incoming nat if.
flow_first_rule_dst_xlate: DST no-xlate: 0.0.0.0(0) to 10.2.0.3(80)

After the destination NAT has been looked up and applied, a route lookup can be done
if one exists. The route lookup must take place after a destination NAT for routing
purposes:

10.2.0.3, in ifp ge-0/0/0.0, out ifp N/A sp 51510, dp 80, ip_proto 6, tos 0
Doing DESTINATION addr route-lookup
 routed (x_dst_ip 10.2.0.3) from trust (ge-0/0/0.0 in 0) to ge-0/0/0.0,
Next-hop: 10.1.1.1

Once a route lookup is done on the destination, the SRX can determine the source and
destination zones via a zone lookup. It then does a policy search to see if this traffic is
denied/rejected/permitted or some other action, but in our case, it’s permitted:

policy search from zone trust-> zone web-dmz
 app 6, timeout 1800s, curr ageout 20s

156 | Chapter 4: Security Policy

http://www.iana.org/assignments/protocol-numbers/

If it had been denied by policy, a message such as this would have shown up, saying
that the packet was denied and dropped:

packet dropped, denied by policy
packet dropped, policy deny.
flow find session returns error.
----- flow_process_pkt rc 0x7 (fp rc −1)

But that’s not the case, and now that the policy has been evaluated, the SRX checks to
see if any source NAT configuration applies. In this case, there is no source NAT and
everything returns false:

flow_first_src_xlate: 10.1.1.100/51510 -> 10.2.0.3/80 | 10.2.0.3/80 ->
0.0.0.0/51510: nat_src_xlated: False, nat_src_xlate_failed: False
flow_first_src_xlate: src nat 0.0.0.0(51510) to 10.2.0.3(80) returns status: 0,
rule/pool id: 0/0, pst_nat: False.
 dip id = 0/0, 10.1.1.100/51510->10.1.1.100/51510
flow_first_get_out_ifp: 1000 -> cone nat test

The SRX then determines the outgoing interface for this packet:

choose interface ge-0/0/0.0 as outgoing phy if
is_loop_pak: No loop: on ifp: ge-0/0/0.0, addr: 10.2.0.3, rtt_idx:0

Next, the SRX does some additional policy checks to see if items such as TCP proxy
and WX apply:

policy is NULL (wx/pim scenario)
sm_flow_interest_check: app_id 0, policy 4, app_svc_en 0,
flags 0x2. not interested
sm_flow_interest_check: app_id 1, policy 4, app_svc_en 0,
flags 0x2. not interested
flow_first_service_lookup(): natp(0x4b9f2198): local_pak(0x3fdedc70.0x423f6a00):
TCP proxy NOT interested: 0.
 service lookup identified service 6.

In the preceding output, notice the policy number, policy 4. All security policies are
assigned an index number. This index number is mainly for internal reference, but it
can be viewed within the show security policies command, as shown in the following
output, where you can see that policy 4 is a default-permit:

juniper@SRX5800> show security policies | match index
 Policy: default-permit, State: enabled, Index: 4, Sequence number: 1
 Policy: default-permit, State: enabled, Index: 5, Sequence number: 1
 Policy: protect_inside_users, State: enabled, Index: 6, Sequence number: 2
 Policy: webdmz_mgt, State: enabled, Index: 8, Sequence number: 1
 Policy: web_deny, State: enabled, Index: 9, Sequence number: 2
 Policy: default-deny, State: enabled, Index: 7, Sequence number: 1
 Policy: http-access, State: enabled, Index: 10, Sequence number: 1
 Policy: deny-all, State: enabled, Index: 11, Sequence number: 2

Back to our SRX output … the packet is sent out as the last checks are completed, as
indicated here:

flow_first_final_check: in <ge-0/0/0.0>, out <ge-0/0/0.0>
 existing vector list 2-446fe828.

Troubleshooting Security Policy and Traffic Flows | 157

 Session (id:9270) created for first pak 2
 flow_first_install_session======> 0x4b9f2198
 nsp 0x4b9f2198, nsp2 0x4b9f2204
 make_nsp_ready_no_resolve()
 route lookup: dest-ip 10.1.1.100 orig ifp ge-0/0/0.0 output_ifp ge-0/0/0.0
orig-zone 6 out-zone 6 vsd 0
 route to 10.1.1.100
Installing c2s NP session wing
Installing s2c NP session wing
 flow got session.
 flow session id 9270
 tcp flags 0x2, flag 0x2
 Got syn, 10.1.1.100(51510)->10.2.0.3(80), nspflag 0x1021, 0x20
mbuf 0x423f6a00, exit nh 0x30010
 ----- flow_process_pkt rc 0x0 (fp rc 0)

Although the output from traceoptions is a bit cryptic and hard to read, sometimes it’s
much easier to understand if you look at it line by line, like we just did.

So, from the output in the tshoot_web file, it appears that traffic is going out the incor-
rect interface. From the preceding output, the route lookup is done and it appears that
traffic is exiting the same interface on which it is entering. The ifp is the inbound
interface and the output_ifp is the outbound interface.

route lookup: dest-ip 10.1.1.100 orig ifp ge-0/0/0.0 output_ifp ge-0/0/0.0
orig-zone 6 out-zone 6 vsd 0

Look at the routing table to confirm that traffic is not exiting the proper interface:

juniper@SRX5800> show route 10.2.0.3
inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
0.0.0.0/0 *[Static/5] 6d 11:52:38
 > to 10.1.1.1 via ge-0/0/0.0

The routing is incorrect. A quick static route should fix this problem and route traffic
out the proper interface:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set routing-options static route 10.2.0.0/24 next-hop 10.2.1.1

Fix the problem and return to the show route command. Once a correct route is added,
the traffic works for all users on the internal LAN:

juniper@SRX5800> show route 10.2.0.3
inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.2.0.0/24 *[Static/5] 00:02:32
 > 10.2.1.1 via fe-0/0/2.0

158 | Chapter 4: Security Policy

Turning Off Traceoptions
After you have completed any troubleshooting in your network, is it highly recom-
mended that you turn off traceoptions. Unless there is a very good reason to leave them
running, you should always disable them as soon as you have finished troubleshooting,
as traceoptions can consume SRX resources, and depending on the amount of traffic
being debugged, SRX performance could be impacted.

There are two ways to turn off traceoptions. The first method is to just deactivate the
configuration. This leaves the traceoptions configuration in the SRX, but it is turned
off until it is reactivated at a later date when troubleshooting has resumed.

To deactivate everything use the deactivate security flow traceoptions command.
However, be careful when using the deactivate command, because much like the
delete command, if you use it incorrectly, it can have a severe impact on the SRX.

 [edit]
juniper@SRX5800# deactivate security flow traceoptions

To confirm that the traceoptions have been disabled, just look at the configuration with
the show command. Junos will tell you that this portion of the configuration is inactive:

juniper@SRX5800# show security flow traceoptions
##
inactive: security flow traceoptions
##
file tshoot_web;
flag basic-datapath;
packet-filter trust_to_web {
 source-prefix 10.1.1.100/32;
 destination-prefix 10.2.0.3/32;
}
packet-filter web_to_trust {
 source-prefix 10.2.0.3/32;
 destination-prefix 10.1.1.100/32;
}

The second method to turn off traceoptions is to delete the traceoptions configuration.
If the traceoptions configuration is no longer needed and troubleshooting has been
completed, it’s wise to delete the configuration from the SRX.

To do this, use the delete command coupled with the security flow traceoptions
configuration:

[edit]
juniper@SRX5800# delete security flow traceoptions

Now confirm that the traceoptions configuration is gone:

[edit]
juniper@SRX5800# show security flow traceoptions
[edit]
juniper@SRX5800#

Troubleshooting Security Policy and Traffic Flows | 159

The authors recommend that whenever you use the delete command you issue a show
| compare before committing the configuration. This will display all changes to the
configuration that are applied when a commit is done. It also ensures that no
unintended configurations are made, or in this case, deleted:

juniper@SRX5800# show | compare
[edit security]
- flow {
- traceoptions {
- file tshoot_web;
- flag basic-datapath;
- packet-filter trust_to_web {
- source-prefix 10.1.1.100/32;
- destination-prefix 10.2.0.3/32;
- }
- packet-filter web_to_trust {
- source-prefix 10.2.0.3/32;
- destination-prefix 10.1.1.100/32;
- }
- }
- }
[edit]

As shown, only the traceoptions configuration has been deleted, so it’s safe to do a
commit and exit configuration mode.

To remove old troubleshooting logfiles, use the file delete <file
name> command. It’s always a best practice to remove old, unused files
when you no longer need them.

Application Layer Gateway Services
Application layer gateways (ALGs) are advanced application-inspecting features avail-
able on the SRX that serve two primary purposes. The first is to dynamically pinhole
traffic for applications allowing return inbound packets (e.g., for FTP there may be
multiple sessions for control and data for the same data connection between the source
and destination). The second role of an ALG is to provide a deeper layer of inspection
and a more granular layer of application security. ALGs can be better described as extra
intelligence built to assist with certain applications that have problems with stateful
firewalls.

This type of extra security and inspection is possible because an ALG understands the
application protocol and how it is supposed to function. The SRX can prevent many
types of SCCP DoS attacks, such as call flooding, from taking place on the network.
We will cover these configurable application screens in detail in Chapter 7, but in a
nutshell, ALGs are application (Layer 7)-aware packet processing (Layer 4).

160 | Chapter 4: Security Policy

It’s worth noting that not all ALGs are available in the higher-end SRX
models. For example, at the time of this writing, SCCP and H323 are
not available on the high-end SRX devices, while the branch SRX Series
has full support for all listed ALGs.

Here is a list of ALGs currently built into the SRX, along with a brief explanation of
what each one does:

REAL
RealAudio/RealVideo are proprietary formats developed by RealNetworks and
they use what is called Progressive Network Audio (PNA) or Progressive Network
Media (PNM) to send streaming audio data. PNA packets are sent over a TCP
connection and act like a control channel. The audio data itself is sent over a UDP
connection. The ALG dynamically allows these UDP data connections and per-
forms any NAT that needs to take place.

RTSP
Real-Time Streaming Protocol is used to establish and control media connections
between end hosts. RTSP handles all client-to-media server requests such as play
and pause, and is used to control real-time playback of the media files from the
server. RTSP does not, however, stream any media data. Commonly, that is left to
Real-time Transport Protocol (RTP), and the two are used in combination to deliver
media to the clients.

DNS
The Domain Name System ALG monitors DNS queries and response packets.
Since DNS is UDP and is a simple request-response type of flow, the DNS ALG
monitors for the response flag and then closes down the UDP session. This is very
useful; otherwise, the SRX would wait two minutes before timing out the session,
which is the default for UDP.

FTP
The File Transfer Protocol ALG monitors the FTP connection for PORT, PASV,
and 227 commands. The ALG will handle all NAT functions and pinholing of any
additional ports necessary. Additional security options can be leveraged by con-
figuring the FTP ALG to block specific FTP functions, such as FTP put or FTP get.

TFTP
The Trivial File Transfer Protocol ALG monitors the initiation of a TFTP connec-
tion and pinholes a connection through the SRX permitting the reverse direction.

TALK
TALK is a legacy chat-type application for Unix platforms developed in the early
1980s. TALK communicates on UDP port 517/518 for control-channel-type func-
tions. The TALK ALG will handle all NAT functions in addition to any pinholing
that needs to take place.

Application Layer Gateway Services | 161

RSH
RSH stands for Remote Shell. RSH is a Unix-type program that can execute com-
mands across a network. RSH typically uses TCP port 514. RSH has largely been
replaced by SSH as RSH communicates unencrypted. The RSH ALG handles all
NAT functions as well as any pinholing that needs to take place.

PPTP
Point-to-Point Tunneling Protocol is a Layer 2 protocol used for tunneling PPP
over an IP network. PPTP is often used as a way to implement virtual private net-
works (VPNs) and is tunneled over TCP and a Generic Route Encapsulation (GRE)
tunnel encapsulating the PPP packets. The PPTP ALG handles all NAT functions
and pinholing for functions of PPTP, such as Call IDs of PAC and PNS.

SQL
The Structured Query Language ALG handles SQL TNS response frames and then
evaluates the packet for IP address and port information. The SQL ALG handles
all NAT functions and pinholing for the TCP data channel.

H323
This is a suite of protocols that provides audio-visual communication sessions over
an IP network. The H.323 standard includes call signaling, call control, multimedia
transport, multimedia control, and bandwidth control. The H323 ALG handles all
NAT functions in addition to gatekeeper discovery, endpoint registration/admis-
sion/status, and call control/call setup. The H323 ALG also has many application
screens that provide additional protections at an application level.

SIP
Session Initiation Protocol is a signaling protocol used for initiating, modifying,
and terminating multimedia sessions such as voice and video calls over IP. The SIP
ALG on the SRX only supports Session Description Protocol (SDP), even though
SIP can use a variety of different description protocols to describe the session. The
SIP ALG monitors SIP connections and dynamically pinholes for the SIP traffic.

SCCP
Skinny Client Control Protocol is a Cisco protocol for VoIP call signaling to the
Cisco CallManager. The SCCP ALG will look within the control packets and allow
the RTP port number and IP address of the media termination, dynamically pinhol-
ing for the RTP flows. In addition to pinholing, the SCCP ALG also handles all
NAT functions and application layer protections.

MGCP
Media Gateway Control Protocol is a signaling and call control protocol used in
VoIP between the media gateway and media controller. The MGCP ALG handles
the dynamic pinholing for any additional connections needed, as well as handling
all NAT functions. The MGCP ALG also inspects the VoIP signaling data and
ensures that it complains to RFC standards blocking any malformed packets or
attacks. Additional application layer protections are also configurable within
the ALG.

162 | Chapter 4: Security Policy

RPC
Remote Procedure Call is a secure interprocess communication that handles data
exchange and invocation to a different process, typically to a machine on the local
network or across the Internet. The RPC ALG handles dynamic port negotiation
and pinholing as well as all NAT functions.

IKE/ESP
IKE (Internet Key Exchange) and ESP (Encapsulating Security Payload) are a part
of the IP Security (IPsec) protocol. In situations where the SRX is inline and an
IPsec VPN passes through the SRX and NAT is enabled, IPsec VPNs can have
issues. This is a common problem with IPsec and address translation. The IKE/
ESP ALG should help with that problem, enabling the SRX to go inline and not
interfere with VPN flows.

ALGs all perform the same type of function: they inspect the applications control
channel and handle either NAT, dynamic pinholing of ports, or both. The ALG process
does not inspect or monitor the actual data channel, something to keep in mind when
working with ALGs.

To view which ALGs are currently enabled on the SRX, use the show security alg
status command to display the ALGs:

juniper@SRX5800> show security alg status
ALG Status :
 DNS : Enabled
 FTP : Enabled
 H323 : Enabled
 MGCP : Enabled
 MSRPC : Enabled
 PPTP : Enabled
 RSH : Enabled
 RTSP : Enabled
 SCCP : Enabled
 SIP : Enabled
 SQL : Enabled
 SUNRPC : Enabled
 TALK : Enabled
 TFTP : Enabled

How to Configure an ALG
Let’s use the FTP ALG as our first configuration example, because if you remember
from earlier in this chapter, it was configured for web-dmz administration.

From the trust network the web administrators are now requesting FTP access to the
web1 server so that files can be uploaded to the server. In a secured network, their
request should be denied because FTP transmits everything in clear text as it is an
insecure protocol. The web administrators should be told to use SFTP. However, for
this example, let’s assume that SFTP is not available and FTP must be used. Sadly, cases
such as this widely exist due to many legacy platforms and applications.

Application Layer Gateway Services | 163

Enabling the FTP ALG is simple, since there is already a policy that allows the web
administrators to connect to the web-dmz:

juniper@SRX5800> show security policies from-zone trust to-zone web-dmz
From zone: trust, To zone: web-dmz
 Policy: webdmz_mgt, State: enabled, Index: 8, Sequence number: 1
 Source addresses: any
 Destination addresses: web-servers
 Applications: web_mgt
 Action: permit, log
 Policy: web_deny, State: enabled, Index: 9, Sequence number: 2
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: deny, log

All we need to do is add the Junos-FTP service to the web_mgt application-set:

[edit]
juniper@SRX5800# set applications application-set web_mgt application junos-ftp
[edit]
juniper@SRX5800# commit and-quit
commit complete
Exiting configuration mode

Look at the applications the Junos-FTP service shows under web_mgt:

juniper@SRX5800> show configuration applications application-set web_mgt
application junos-ssh;
application junos-ping;
application junos-pc-anywhere;
application windows_rdp;
application junos-http;
application junos-ftp;

A more detailed look at the webdmz_mgt policy shows the new ALG information:

juniper@SRX5800> show security policies from-zone trust to-zone web-dmz
policy-name webdmz_mgt detail
Policy: webdmz_mgt, action-type: permit, State: enabled, Index: 8
 Sequence number: 1
 From zone: trust, To zone: web-dmz
 Source addresses:
 any: 0.0.0.0/0
 Destination addresses:
 web2: 10.2.0.2/32
 web1: 172.31.100.60/32
 Application: web_mgt
 IP protocol: tcp, ALG: 0, Inactivity timeout: 1800
 Source port range: [0-0]
 Destination port range: [22-22]
 IP protocol: 1, ALG: 0, Inactivity timeout: 60
 ICMP Information: type=255, code=0
 IP protocol: udp, ALG: 0, Inactivity timeout: 60
 Source port range: [0-0]
 Destination port range: [5632-5632]
 IP protocol: tcp, ALG: 0, Inactivity timeout: 1800

164 | Chapter 4: Security Policy

 Source port range: [1024-65535]
 Destination port range: [3389-3389]
 IP protocol: tcp, ALG: 0, Inactivity timeout: 1800
 Source port range: [0-0]
 Destination port range: [80-80]
 IP protocol: tcp, ALG: ftp, Inactivity timeout: 1800
 Source port range: [0-0]
 Destination port range: [21-21]
 Session log: at-create, at-close

Let’s confirm that FTP does work to the server and that the web administrators can
now upload their files as needed:

ftp> open 172.31.100.60
Connected to 172.31.100.60.
220-FileZilla Server version 0.9.34 beta
220-written by Tim Kosse (Tim.Kosse@gmx.de)
220 Please visit http://sourceforge.net/projects/filezilla/
Name (172.31.100.60:tle4729):
331 Password required for tle4729
Password:

Now view this connection on the SRX:

juniper@SRX5800> show security flow session application ftp
Session ID: 11663, Policy name: webdmz_mgt/8, Timeout: 788
 In: 10.1.1.100/59832 --> 172.31.100.60/21;tcp, If: ge-0/0/0.0
 Out: 172.31.100.60/21 --> 10.1.1.100/59832;tcp, If: fe-0/0/2.0
Session ID: 11664, Policy name: webdmz_mgt/8, Timeout: 790
 In: 10.1.1.100/59834 --> 172.31.100.60/21;tcp, If: ge-0/0/0.0
 Out: 172.31.100.60/21 --> 10.1.1.100/59834;tcp, If: fe-0/0/2.0
2 sessions displayed

Voilà! Some ALGs are simple to set up, as easy as using the prebuilt Junos application.
ALGs such as FTP, TFTP, and DNS are perfect examples of this type of ALG. Other,
more complex ALGs have more optional configuration knobs.

Our second ALG configuration example concerns the SIP ALG. The SIP ALG has a lot
more configuration options than the FTP ALG, but the SIP ALG is applied in the same
way the FTP ALG is applied: via security policy and Junos-SIP as the application.

Although SIP has various configuration knobs under the security alg sip stanza, I’ll
cover just a few here. First, set the SIP ALG maximum-call-duration setting to 1,000
minutes (that’s more than 15 hours!):

[edit]
juniper@SRX5800# set security alg sip maximum-call-duration 1000

The next optional configuration is the timeout value (this value is in seconds):

[edit]
juniper@SRX5800# set security alg sip inactive-media-timeout 60

Overall, the SIP ALG is pretty easy to set up and configure. Problems arise when vendors
do not follow RFC guidelines or they write their own one-off SIP implementations. If
issues start after the SIP ALG is configured, the primary things to check are the SIP

Application Layer Gateway Services | 165

counters for errors. For inoperability issues, one possible workaround is to enable the
unknown-message option; by default, the SRX’s SIP ALG drops all unsupported messages
for security purposes. Note that this disables that security feature:

[edit]
juniper@SRX5800# set security alg sip application-screen unknown-message
permit-routed

Another common issue is when vendors implement proprietary headers into their SIP
packets. Per standards, the call-id header should contain a hostname or source IP ad-
dress, and in some cases, vendors adjust or change this. To disable the call-id enforce-
ment use the following:

[edit]
juniper@SRX5800# set security alg sip disable-call-id-hiding
juniper@SRX5800# edit security policies from-zone trust to-zone voip-dmz

Once that has been applied, the base SIP configuration is finished. SIP calls can be made
and should have no problems going through. Let’s verify the SIP stats by using the show
security alg sip counters command to view the counters, including errors on
decoding packets:

juniper@SRX5800> show security alg sip counters
 Method T 1xx 2xx 3xx 4xx 5xx 6xx
 RT RT RT RT RT RT RT
 INVITE 2 1 0 0 2 0 0
 0 0 0 0 0 0 0
 CANCEL 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 ACK 2 0 0 0 0 0 0
 0 0 0 0 0 0 0
 BYE 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 REGISTER 28 0 8 0 20 0 0
 0 0 0 0 0 0 0
 OPTIONS 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 INFO 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 MESSAGE 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 NOTIFY 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 PRACK 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 PUBLISH 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 REFER 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
SUBSCRIBE 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 UPDATE 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 BENOTIFY 0 0 0 0 0 0 0
 0 0 0 0 0 0 0

166 | Chapter 4: Security Policy

 SERVICE 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 OTHER 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
SIP Error Counters:
 Total Pkt-in : 76
 Total Pkt dropped on error : 13
 Transaction error : 0
 Call error : 0
 IP resolve error : 0
 NAT error : 0
 Resource manager error : 0
 RR header exceeded max : 0
 Contact header exceeded max : 0
 Call Dropped due to limit : 0
 SIP stack error : 0
 SIP decode error : 13
 SIP unknown method error : 0
 RTO message sent : 0
 RTO message received : 0
 RTO buffer allocation failure : 0
 RTO buffer transmit failure : 0
 RTO send processing error : 0
 RTO receive processing error : 0
 RTO receive invalid length : 0

To view a higher-level overview of calls, use the show security alg sip calls command
as the optional detail flag at the end to display even more information about the call:

juniper@SRX5800> show security alg sip calls
Total number of calls: 2 (# of call legs 4)
 Call leg1: zone 3
 UAS callid:120ed748-11121207-04c1279d-0bbb7e18@172.31.100.50 (pending tsx 1)
 Local tag
 Remote tag: 120ed748111212e264b0a951-5cbb0a95
 State: STATE_DISCONNECTED
 Call leg2: zone 2
 UAC callid:120ed748-11121207-04c1279d-0bbb7e18@172.31.100.50 (pending tsx 1)
 Local tag: 120ed748111212e264b0a951-5cbb0a95
 Remote tag
 State: STATE_DISCONNECTED
 Call leg1: zone 3
 UAS callid:120ed748-11121207-04c1279d-0bbb7e18@172.31.100.50 (pending tsx 1)
 Local tag: 120f90542e7e64cd724880f5-65db2f99
 Remote tag: 120ed748111212e264b0a951-5cbb0a95
 State: STATE_ESTABLISHED
 Call leg2: zone 2
 UAC callid:120ed748-11121207-04c1279d-0bbb7e18@172.31.100.50 (pending tsx 1)
 Local tag: 120ed748111212e264b0a951-5cbb0a95
 Remote tag: 120f90542e7e64cd724880f5-65db2f99

To view transactions, use the show security alg sip transaction command:

 juniper@SRX5800> show security alg sip transaction
Total number of transactions: 1
 Transaction Name Method CSeq State Timeout VIA RSC ID

Application Layer Gateway Services | 167

 UAS:gsn0x5a06ddf1 BYE 101 Proceeding −1 -
 UAC:gsn0x5a06f615 BYE 101 Calling 25 8184

And to view the overall health of the SIP ALG, use show security alg sip rate:

juniper@SRX5800> show security alg sip rate
CPU ticks per microseconds is 3735928559
Time taken for the last message is 0 microseconds
Total time taken for 0 messages is 0 microseconds(in less than 10 minutes)
Rate: 3735928559 messages/second

ALGs provide an additional layer of security and handle NAT as well as dynamic
pinholing when needed. With that deeper layer of inspection come more processing
and additional potential problems. Oftentimes when Juniper writes ALGs, they are
written to follow and enforce RFC specifications. The problem most commonly comes
when vendors write one-off applications or their own additions to the protocol, or to
the service, and the ALG doesn’t know how to properly handle it.

Juniper has incorporated as many workarounds as possible, such as called-hiding and
unknown-message, in the SIP ALG. However, sometimes issues still occur. In these
events, the only option may be to open more port ranges than the vendor has provided.

Policy Schedulers
Policy schedulers are rules that you can enable or disable based on time and date.
Schedulers are configured on a per-policy basis and only one scheduler can be config-
ured per policy. However, multiple policies can reference a single scheduler.

You can use schedulers in a number of different situations and for several different
purposes:

Internet browsing access
You can write a scheduler to allow Internet access from the employees’ network
only during nonbusiness hours. For example, from 5:00 p.m. to 8:00 a.m. and from
noon to 1:00 p.m. (lunch hour) employees are allowed to access the Internet via
HTTP as this is during nonbusiness hours.

Access to payroll systems
You can write a scheduler to allow the HR department to access the payroll system
only during business hours—for example, from 8:00 a.m. to 6:00 p.m. This can
prevent rogue access when nobody is on-site or in the office.

In both of the preceding examples, you can use schedules to restrict or permit access
based on the time or date. Schedulers can assist in enforcing company policies and in
increasing security, and you can be quite creative based on the habits of typical network
users.

You can enable schedules by first creating the scheduler and then applying it to the
policy.

168 | Chapter 4: Security Policy

Let’s create a few sample schedulers and then discuss what was done.

juniper@SRX5800# set schedulers scheduler deny-web daily start-time 08:00
stop-time 17:00
[edit]

In the preceding output, a scheduler was created called deny-web that is enforced daily
from 8:00 a.m. to 5:00 p.m., thus applying this scheduler to anything that you do not
want done during office hours.

Now, let’s apply that scheduler to a policy that denies access to HTTP:

juniper@SRX5800# edit security policies from-zone trust to-zone Internet
[edit security policies from-zone trust to-zone Internet]
juniper@SRX5800# set policy deny_daytime_websurfing match source-address any
destination-address any application junos-http
[edit security policies from-zone trust to-zone Internet]
juniper@SRX5800# set Internet policy deny_daytime_websurfing then deny
[edit security policies from-zone trust to-zone Internet]
juniper@SRX5800# set policy deny_daytime_websurfing scheduler-name deny-web

In the preceding output, a security policy was written from the Trust zone going to the
Internet zone for any HTTP traffic. Then an action of deny was applied, and finally the
scheduler deny-web was configured to be active during those time frames in deny-web.

It is also possible to add days to exclude, as in the following:

juniper@SRX5800# edit schedulers scheduler
[edit schedulers scheduler]
juniper@SRX5800# set network-access daily start-time 09:00 stop-time 20:00
[edit schedulers scheduler]
juniper@SRX5800# set network-access saturday exclude
[edit schedulers scheduler]
juniper@SRX5800# set network-access sunday exclude

The scheduler called network-access runs daily from 9:00 a.m. to 8:00 p.m. (This
scheduler might be used to control remote access into the network.) Notice that two
additional lines were configured for both Saturday and Sunday to be excluded. In other
words, remote users will not be able to access the network on weekends once this
scheduler is applied to the proper policy.

Just like the first policy, let’s configure this setup to allow the contractor subnet access
to everything on the web-dmz zone during the defined times in network-access:

juniper@SRX5800#set security zones security-zone trust address-book address
contractor_subnet 10.3.0.0/24
[edit]
juniper@SRX5800# edit security policies from-zone trust to-zone web-dmz
[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy contractor_access match source-address
contractor_subnet destination-address any application any

[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy contractor_access then permit

Policy Schedulers | 169

[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy contractor_access scheduler-name network-access

Now look at the configuration to check that everything is in order:

juniper@SRX5800# show security policies from-zone trust to-zone web-dmz policy
contractor_access
match {
 source-address contractor_subnet;
 destination-address any;
 application any;
}
then {
 permit;
}
scheduler-name network-access;
[edit]

One-Time Schedulers
One-time schedulers can also be configured to run for a predefined period of time. After
that period of time, the scheduler becomes inactive and does not activate the policy.
You can use this in situations where access should be granted on a temporary basis or
something needs to be blocked for a period of time.

An example of a one-time scheduler is a scheduler that grants access to a vendor for a
window of time to troubleshoot or fix a problem. If the web servers we configured
earlier were having problems, we could configure a policy that allowed Microsoft to
access them remotely. The security department should have a problem with granting
this type of access permanently, so we would use a scheduler to ensure that access is
removed after a previously agreed upon time frame. Here’s a one-time scheduler grant-
ing temporary access into the network:

[edit]
juniper@SRX5800# set schedulers scheduler microsoft_remote_access
start-date 2010-02-14.09:00 stop-date 2010-02-15.09:00
[edit]
juniper@SRX5800#

This one-time scheduler is called microsoft_remote_access and is set to enable on Feb-
ruary 14, 2010 at 9:00 a.m. It will end 24 hours later. Here is the permit that will no
longer apply after 24 hours:

juniper@SRX5800# edit
[edit]
juniper@SRX5800# set security zones security-zone Internet address-book address
ms_support 207.46.197.32

[edit]
juniper@SRX5800# set security policies from-zone Internet to-zone web-dmz

[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800# set policy temp_ms_access match source-address ms_support

170 | Chapter 4: Security Policy

destination-address web1 application any
[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800# set policy temp_ms_access scheduler-name microsoft_remote_access

[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800# set policy temp_ms_access then permit
[edit security policies from-zone Internet to-zone web-dmz]
juniper@SRX5800#

In the preceding output, a new address book was created for Microsoft’s source IP
address. Then a policy was written to allow that IP access to the web1 server via any
application. The third item configured was the scheduler microsoft_remote_access that
was applied. Now, this scheduler will be active from February 14 until February 15 to
allow Microsoft to remotely access the server.

Let’s look at the configuration as a whole:

juniper@SRX5800# show security policies from-zone Internet to-zone web-dmz
policy temp_ms_access
match {
 source-address ms_support;
 destination-address web1;
 application any;
}
then {
 permit;
}
scheduler-name microsoft_remote_access;
[edit]

You can view configured schedulers with the show schedulers command. Here is the
output from the three already configured schedulers. Right now it appears that there
are two active schedulers and one inactive scheduler. The output will also list the next
time a scheduler is set to turn on or off.

juniper@SRX5800> show schedulers
Scheduler name: deny-web, State: active
 Next deactivation: Fri Jan 22 17:00:00 2010
Scheduler name: microsoft_remote_access, State: inactive
 Next activation: Sun Feb 14 09:00:00 2010
Scheduler name: network-access, State: active
 Next deactivation: Fri Jan 22 20:00:00 2010

Let’s look at a detailed policy output to confirm that the schedule is applied and it is
active (the state should show enabled):

juniper@SRX5800> show security policies from-zone trust to-zone web-dmz
policy-name contractor_access detail
Policy: contractor_access, action-type: permit, State: enabled, Index: 14
 Sequence number: 3
 From zone: trust, To zone: web-dmz
 Source addresses:
 contractor_subnet: 10.3.0.0/24
 Destination addresses:
 any: 0.0.0.0/0

Policy Schedulers | 171

 Application: any
 IP protocol: 0, ALG: 0, Inactivity timeout: 0
 Source port range: [0-0]
 Destination port range: [0-0]
 Scheduler name: network-access

Web and Proxy Authentication
The SRX can also be used as an inline web proxy, forcing users to authenticate for
access, or as a pass-through authentication forcing Telnet, FTP, and HTTP to authen-
ticate, adding an additional layer of security while keeping a historical log for later
review and auditing.

Web Authentication
Figure 4-6 illustrates the stages of the web authentication process.

Figure 4-6. How web authentication works

Configuring web authentication is relatively painless. The largest task is creating the
user profiles that would be needed for authentication.

The first step is to enable authentication on the interface itself. Here we apply web
authentication to an already existing interface, ge-0/0/0, of which the Trust zone is a
part:

172 | Chapter 4: Security Policy

[edit]
juniper@SRX5800# set interfaces ge-0/0/0 unit 0 family inet
address 10.1.0.254/24 web-authentication http
[edit]
juniper@SRX5800#

Next, we need to create a user or list of users that have permission to access the Web.
Here we use the volunteer sample user Tim_Eberhard which has been set up under access
profile web-allow-group. The access profile will be referenced later in the
configuration.

[edit]
juniper@SRX5800# set access profile web-allow-group client Tim_Eberhard
firewall-user password letmeinpls

An alternative to using local user lists on the SRX is to authenticate users to an external
database on a RADIUS, RSA, or LDAP server.

Let’s begin a web authentication configuration example to an external RADIUS server.
A RADIUS server could be configured with thousands of individual accounts:

[edit]
juniper@SRX5800# set access profile web-allow-group_radius
radius-server 10.3.4.100 secret radius_secret_key retry 2

Next we will configure the SRX to try the RADIUS server first; if that server fails, the
SRX will resort back to the local database (this way, if the RADIUS server ever fails, it’s
possible to have a default account that allows access during emergencies):

[edit]
juniper@SRX5800# set access profile web-allow-group authentication-order radius
authentication-order password

Now we’ll apply the web authentication to the policy, adding the permit-http policy
from the Trust zone to the Internet zone:

[edit]
juniper@SRX5800# set security policies from-zone trust to-zone Internet
policy permit-http then permit firewall-authentication web-authentication

Let’s look at the configuration as a whole:

[edit]
juniper@SRX5800# show access profile web-allow-group
authentication-order [radius password];
client Tim_Eberhard {
 firewall-user {
 password "9hISclM7NbgaUX7wgoZkqCtu0RS7Nb2oG"; ## SECRET-DATA
 }
}
radius-server {
 10.3.4.100 {
 secret "9iq5Fn6AOBEP5hrvM-d6/CuIcKvLN-wKM7VbsZGREclvLdVYgJD";
SECRET-DATA
 retry 2;
 }

Web and Proxy Authentication | 173

}
[edit]
juniper@SRX5800# show interfaces ge-0/0/0
description "Inside network";
speed 100m;
link-mode full-duplex;
unit 0 {
 family inet {
 address 10.1.0.254/24 {
 web-authentication http;
 }
 }
}
juniper@SRX5800# show security policies from-zone trust to-zone Internet
policy permit-http {
 match {
 source-address any;
 destination-address any;
 application junos-http;
 }
 then {
 permit {
 firewall-authentication {
 web-authentication;
 }
 }
 }
}

This basic web authentication will prompt users when they try to use HTTP. Web
authentication is basically a portal that will authenticate a user’s traffic through.

Pass-Through Authentication
Another method of authentication that you can use on the SRX is called pass-through
authentication. Pass-through authentication is different from web authentication as it
just prompts the user to enter his account information for authentication somewhat
transparently. Pass-through can be triggered by HTTP, Telnet, and FTP traffic.

From a user standpoint, the authentication process looks as though the website or
Telnet, or the FTP session, is prompting the user for his account information, whereas
with web authentication users need to go to a certain IP address and authenticate before
attempting to send any other traffic.

Figure 4-7 illustrates the pass-through authentication process.

Configuring pass-through authentication is much like configuring web authentication.
The first thing you need to do is to turn on pass-through authentication and assign it
to a profile. For the following example, we’ll reuse web-allow-group since it already had
a user account and RADIUS server configured. The second thing you need to do is to
set a banner to inform the user what to submit for authentication.

174 | Chapter 4: Security Policy

A banner should provide a phone number or an email address that users
can use for support if they cannot get past the inline challenge.

We’ll use the Telnet service for our example. Since Telnet is an insecure protocol that
must sometimes be supported due to legacy applications and systems, using inline
authentication here is an additional layer of security that we can apply to our
connection.

juniper@SRX5800# edit access firewall-authentication pass-through
[edit access firewall-authentication pass-through]
juniper@SRX5800# set default-profile web-allow-group
[edit access firewall-authentication pass-through]
juniper@SRX5800# set telnet banner success "PLEASE ENTER IN YOUR ACCOUNT INFO.
FOR SUPPORT PLEASE CALL THE NOC AT 1-800-555-1212"
[edit access firewall-authentication pass-through]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security policies from-zone trust to-zone web-dmz
[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy permit-telnet match source-address any
destination-address any
[edit security policies from-zone trust to-zone web-dmz]
juniper@SRX5800# set policy permit-telnet match application junos-telnet
[edit security policies from-zone trust to-zone web-dmz]

Figure 4-7. How pass-through authentication works

Web and Proxy Authentication | 175

juniper@SRX5800# set policy permit-telnet then permit firewall-authentication
pass-through access-profile web-allow-group

And here is what that configuration looks like all together:

juniper@SRX5800# show | compare
[edit security policies from-zone trust to-zone web-dmz]
 policy web_deny { ... }
+ policy permit-telnet {
+ match {
+ source-address any;
+ destination-address any;
+ application junos-telnet;
+ }
+ then {
+ permit {
+ firewall-authentication {
+ pass-through {
+ access-profile web-allow-group;
+ }
+ }
+ }
+ }
+ }

We can view active authenticated information about the SRX’s authentications using
the following output:

juniper@SRX5800# show security firewall-authentication users
Firewall authentication data:
 Total users in table: 1
 Id Source Ip Src zone Dst zone Profile Age Status User
 4 10.3.0.12 Trust Internet webauth- 4 Success Tim

The show security firewall-authentication history command shows all active and
authenticated users currently passing through the SRX:

juniper@SRX5800> show security firewall-authentication history
History of firewall authentication data: Authentications: 2 Id Source Ip
Date Time Duration Status User
1 10.1.0.120 2010-01-12 18:20:02 0: 00:22 Failed bob
2 10.1.0.125 2010-01-13 12:22:48 0: 00:21 Success bill

Firewall authentication provides an additional layer of security as well as logs. It can
be used to enforce company access policies or better protect network boundaries and
access. It is a very simple way to improve the overall security strategy of anything from
the smallest home office to a large corporate network.

Case Study 4-1
Objective: Set up basic firewall policy for the company’s network, including web and
email access for the users, and inbound as well as outbound access for the servers.

176 | Chapter 4: Security Policy

Our strategies to achieve that objective are as follows:

• Create a security policy that allows access to the web server DMZ from anywhere
on the Internet.

• Allow access to the mail servers on the mail server DMZ from the internal user
networks 10.1.0.0/24 and 10.1.2.0/24, and inbound/outbound mail access to the
mail server from the Internet.

• Create a custom application with a 60-minute timeout for TCP port 6667 and apply
that custom application on the web server DMZ to the Internet.

• Create a policy that requires users on the trust network 10.1.0.0/24 to authenticate
for web browsing during business hours to comply with the company’s Internet
access policy.

Figure 4-8 shows our topology for Case Study 4-1.

Figure 4-8. Case Study 4-1’s objective

Case Study 4-1 | 177

First, we need to write a policy for access to the web server DMZ from the Internet.
This is a basic permit policy with any source. Since it’s a web server facing the public
Internet logging will be enabled. Let’s start with the following:

[edit]
juniper@SRX5800# set security zones security-zone web-dmz address-book address
web_server 172.31.100.60/32
[edit]
juniper@SRX5800# edit security policies from-zone internet to-zone web-dmz
[edit security policies from-zone internet to-zone web-dmz]
juniper@SRX5800# set policy "allow_http_from_web" match source-address any
destination-address web1 application junos-http
[edit security policies from-zone internet to-zone web-dmz]
juniper@SRX5800# set policy "allow_http_from_web" then permit
[edit security policies from-zone internet to-zone web-dmz]
juniper@SRX5800# set policy "allow_http_from_web" then log session-close
session-init

Next, we need to write a couple of policies that make the mail server work. To do this,
we’ll create one policy that allows the user segments to access the mail server and
another policy to allow both inbound and outbound mail access from the mail server
itself.

First we need to create the address-books. An address-set will combine both user seg-
ments into a single address-set:

[edit security policies from-zone internet to-zone web-dmz]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security zones security-zone dept-a address-book
[edit security zones security-zone dept-a address-book]
juniper@SRX5800# set address users1 10.1.0.0/24
[edit security zones security-zone dept-a address-book]
juniper@SRX5800# set address users2 10.1.2.0/24
[edit security zones security-zone dept-a address-book]
juniper@SRX5800# set address-set users_segments address users1
[edit security zones security-zone dept-a address-book]
juniper@SRX5800# set address-set users_segments address users2

Now, we need to create the mail server DMZ and configure an address-book for that
server:

[edit security zones security-zone dept-a address-book]
juniper@SRX5800# top
[edit]
juniper@SRX5800# set security zones security-zone mail-dmz
[edit]
juniper@SRX5800# set security zones security-zone mail-dmz address-book
address mail_server 172.31.100.70/32

178 | Chapter 4: Security Policy

We need to configure an application-set to allow the various mail services:

juniper@SRX5800# edit applications application-set
[edit applications application-set]
juniper@SRX5800# set mail_services application junos-imap
[edit applications application-set]
juniper@SRX5800# set mail_services application junos-smtp
[edit applications application-set]
juniper@SRX5800# set mail_services application junos-pop3

Once that is complete, we can configure the first policy that allows users to access the
mail server:

[edit applications application-set]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security policies from-zone dept-a to-zone mail-dmz
[edit security policies from-zone dept-a to-zone mail-dmz]
juniper@SRX5800# set policy "allow_users_to_mail" match source-address
users_segments destination-address mail_server application mail_services
[edit security policies from-zone dept-a to-zone mail-dmz]
juniper@SRX5800# set policy "allow_users_to_mail" then permit

Now that users are allowed to access the mail servers, the mail servers need to send
email out as well as receive mail from the Internet.

Here is the code to send email from mail-dmz to the Internet:

[edit security policies from-zone dept-a to-zone mail-dmz]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security policies from-zone mail-dmz to-zone internet
[edit security policies from-zone mail-dmz to-zone internet]
juniper@SRX5800# set policy "permit_outbound_mail"
match source-address mail_server destination-address any
application mail_services
[edit]
juniper@SRX5800# set policy "permit_outbound_mail" then permit

Now, here’s the code to reverse connectivity:

juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security policies from-zone internet to-zone mail-dmz
[edit security policies from-zone internet to-zone mail-dmz]
juniper@SRX5800# set policy "permit_inbound_mail" match source-address any
destination-address mail_server application mail_services
[edit security policies from-zone internet to-zone mail-dmz]
juniper@SRX5800# set policy "permit_inbound_mail" then permit
[edit security policies from-zone internet to-zone mail-dmz]
juniper@SRX5800# set policy "permit_inbound_mail" then log session-init
session-close

You might have noticed that logging was enabled. It is a best practice to log anything
coming in from the Internet, at the very least. Here, both the web server and the mail
server inbound connections from the Internet are logged.

Case Study 4-1 | 179

Another service that needs to be permitted is TCP port 6667 with an inactivity timeout
of 60 minutes; we also need to allow the web server to connect to any destination on
the Internet with that port. Since timeouts are configured in seconds, our timeout will
need to be 3,600 seconds:

juniper@SRX5800# top
[edit]
juniper@SRX5800# set applications application tcp_6667 protocol tcp
source-port 6667 destination-port 1-65000 inactivity-timeout 3600
[edit]
juniper@SRX5800# edit security policies from-zone web-dmz to-zone internet
[edit security policies from-zone web-dmz to-zone internet]
juniper@SRX5800# set policy "permit_irc" match source-address web1
destination-address any application tcp_6667
[edit]
juniper@SRX5800# set policy "permit_irc" then permit

The last few configurations we need to make are to create a policy that forces users on
the Dept-A segment to authenticate for HTTP access during business hours. We can do
this by creating a scheduler and then configuring pass-through authentication for
HTTP.

But before we can configure anything, we must set a scheduler for the normal business
hours of 8:00 a.m. to 5:00 p.m., excluding weekends, to enforce company policy:

juniper@SRX5800# top
[edit]
juniper@SRX5800# edit schedulers scheduler
[edit schedulers scheduler]
juniper@SRX5800# set "http-business-hours" daily start-time 08:00:00
stop-time 17:00:00
[edit schedulers scheduler]
juniper@SRX5800# set "http-business-hours" sunday exclude
[edit schedulers scheduler]
juniper@SRX5800# set "http-business-hours" saturday exclude

Now we can set up a pass-through authentication profile:

juniper@SRX5800# top
[edit]
juniper@SRX5800# set access profile web-allow-group radius-server 10.3.4.100
secret radius_secret_key retry 2
[edit]
juniper@SRX5800# set access firewall-authentication pass-through
default-profile web-allow-group http banner login
"PLEASE ENTER IN YOUR ACCOUNT INFO. FOR SUPPORT PLEASE CALL THE NOC AT
1-800-555-1212"

OK, now we need to write our policy to reference both the scheduler and the pass-
through access profile:

[edit]
juniper@SRX5800# edit security policies from-zone dept-a to-zone internet
[edit security policies from-zone dept-a to-zone internet]
juniper@SRX5800# set policy "http_auth" match source-address users_segments

180 | Chapter 4: Security Policy

destination-address any application junos-https
[edit security policies from-zone dept-a to-zone internet]
juniper@SRX5800# set policy "http_auth" scheduler-name http-business-hours
[edit security policies from-zone dept-a to-zone internet]
juniper@SRX5800# set policy "http_auth" then permit firewall-authentication
pass-through access-profile web-allow-group

Finally, let’s take a look at the entire configuration and ensure that everything commits
correctly:

juniper@SRX5800# show | compare
[edit security zones security-zone web-dmz address-book]
 address web2 { ... }
+ address web_server 172.31.100.60/32;
[edit security zones]
 security-zone CDN { ... }
+ security-zone internet;
+ security-zone dept-a {
+ address-book {
+ address users1 10.1.0.0/24;
+ address users2 10.1.2.0/24;
+ address-set users_segments {
+ address users1;
+ address users2;
+ }
+ }
+ }
+ security-zone mail-dmz {
+ address-book {
+ address mail_server 172.31.100.70/32;
+ }
+ }
[edit security]
+ policies {
+ from-zone internet to-zone web-dmz {
+ policy allow_http_from_web {
+ match {
+ source-address any;
+ destination-address web1;
+ application junos-http;
+ }
+ then {
+ permit;
+ log {
+ session-init;
+ session-close;
+ }
+ }
+ }
+ }
+ from-zone dept-a to-zone mail-dmz {
+ policy allow_users_to_mail {
+ match {
+ source-address users_segments;
+ destination-address mail_server;
+ application mail_services;

Case Study 4-1 | 181

+ }
+ then {
+ permit;
+ }
+ }
+ }
+ from-zone mail-dmz to-zone internet {
+ policy permit_outbound_mail {
+ match {
+ source-address mail_server;
+ destination-address any;
+ application mail_services;
+ }
+ then {
+ permit;
+ }
+ }
+ }
+ from-zone internet to-zone mail-dmz {
+ policy permit_inbound_mail {
+ match {
+ source-address any;
+ destination-address mail_server;
+ application mail_services;
+ }
+ then {
+ permit;
+ log {
+ session-init;
+ session-close;
+ }
+ }
+ }
+ }
+ from-zone web-dmz to-zone internet {
+ policy permit_irc {
+ match {
+ source-address web1;
+ destination-address any;
+ application tcp_6667;
+ }
+ then {
+ permit;
+ }
+ }
+ }
+ from-zone dept-a to-zone internet {
+ policy http_auth {
+ match {
+ source-address users_segments;
+ destination-address any;
+ application junos-https;
+ }
+ then {
+ permit {

182 | Chapter 4: Security Policy

+ firewall-authentication {
+ pass-through {
+ access-profile web-allow-group;
+ }
+ }
+ }
+ }
+ scheduler-name http-business-hours;
+ }
+ }
+ }
[edit]
+ access {
+ profile web-allow-group {
+ radius-server {
+ 10.3.4.100 {
+ secret
"9VZsoGDjq5T3gonCu0cSjikPz6pu1hclp0Eyrex7F36Au1SyKMX-";
SECRET-DATA
+ retry 2;
+ }
+ }
+ }
+ firewall-authentication {
+ pass-through {
+ default-profile web-allow-group;
+ http {
+ banner {
+ login "PLEASE ENTER IN YOUR ACCOUNT INFO.
FOR SUPPORT PLEASE CALL THE NOC AT 1-800-555-1212";
+ }
+ }
+ }
+ }
+ }
[edit applications]
 application windows_rdp { ... }
+ application tcp_6667 {
+ protocol tcp;
+ source-port 6667;
+ destination-port 1-65000;
+ inactivity-timeout 3600;
+ }
[edit applications]
 application-set web_mgt { ... }
+ application-set mail_services {
+ application junos-imap;
+ application junos-smtp;
+ application junos-pop3;
+ }
[edit]
+ schedulers {
+ scheduler http-business-hours {
+ daily {
+ start-time 08:00:00 stop-time 17:00:00;

Case Study 4-1 | 183

+ }
+ sunday exclude;
+ saturday exclude;
+ }
+ }
[edit]
juniper@SRX5800# commit check
configuration check succeeds

After reviewing the changes and performing a commit check, everything looks good.
Our SRX is now set up for the company when users come into the office.

Case Study 4-2
Objective: A new department is being added and their network configured on the
company’s network, and while in a meeting to talk about their access requirements
they stated they need the following networking requirements:

• Full unfiltered Internet access

• Full unfiltered access to the web and mail servers

• Access from the Internet into their network segment so that they can host customer-
facing web servers

Our strategy to achieve that objective is to evaluate how best to give them the requested
access while maintaining network security. Figure 4-9 illustrates their needs.

This case study is more real-world than you might think. All too often, users (including
management) do not understand the needs of their business or how to incorporate
security into the workflow. External servers should never be on the same segment as
users, and unfiltered access may sound like a good idea from a “getting things done”
point of view, but in reality, policies can be written to allow the user department to do
everything that they need to do while maintaining an acceptable level of security.

Corporate security policies should apply to everyone. They exist for a reason, and if it’s
a corporation’s security policy to block P2P apps on its network, this should be done
globally.

First, let’s set up their Internet access. We need to create a new zone for Dept-B, and
we need to create address-books which should be put into an address-set.

[edit]
juniper@SRX5800# edit security zones security-zone
[edit security zones security-zone]
juniper@SRX5800# set dept-b
[edit security zones security-zone]
juniper@SRX5800# set dept-b address-book address users3 10.2.1.0/24
[edit security zones security-zone]
juniper@SRX5800# set dept-b address-book address users4 10.2.2.0/24
[edit security zones security-zone]
juniper@SRX5800# set dept-b address-book address users5 10.2.3.0/24

184 | Chapter 4: Security Policy

[edit security zones security-zone]
juniper@SRX5800# set dept-b address-book address-set dept_b_users address users3
[edit security zones security-zone]
juniper@SRX5800# set dept-b address-book address-set dept_b_users address users4
[edit security zones security-zone]
juniper@SRX5800# set dept-b address-book address-set dept_b_users address users5

Next, we should block a group of predetermined applications from accessing the
Internet. We should put these applications into an address-set for ease of policy en-
gineering, and we need to deny those applications via policy.

[edit security zones security-zone]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit applications application-set
[edit applications application-set]
juniper@SRX5800# set deny_services application junos-ymsg
[edit applications application-set]
juniper@SRX5800# set deny_services application junos-smtp
[edit applications application-set]
juniper@SRX5800# set deny_services application junos-msn

Figure 4-9. Case Study 4-2’s objectives

Case Study 4-2 | 185

[edit applications application-set]
juniper@SRX5800# set deny_services application junos-irc
[edit applications application-set]
juniper@SRX5800# set deny_services application junos-gnutella
[edit applications application-set]
juniper@SRX5800# set deny_services application junos-aol
[edit applications application-set]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security policies from-zone dept-b to-zone internet
[edit security policies from-zone dept-b to-zone internet]
juniper@SRX5800# set policy "deny_bad_apps" match source-address dept_b_users
destination-address any application deny_services
[edit security policies from-zone dept-b to-zone internet]
juniper@SRX5800# set policy "deny_bad_apps" then deny log session-close
session-init

Don’t forget to add the policy that allows everything else! The new department’s users
might be upset if all of their traffic was denied.

[edit security policies from-zone dept-b to-zone internet]
juniper@SRX5800# set policy "permit-to-internet-any" match source-address
dept_b_users destination-address any application any
[edit security policies from-zone dept-b to-zone internet]
juniper@SRX5800# set policy "permit-to-internet-any" then permit

Now that we’ve taken care of Internet access, the next order of business is access to the
mail server. Using the application-set and mail address-book that we created earlier,
all we really need to do is to create a policy to permit the traffic.

[edit security policies from-zone dept-b to-zone internet]
juniper@SRX5800# top
[edit]
juniper@SRX5800# edit security policies from-zone dept-b to-zone mail-dmz
[edit security policies from-zone dept-b to-zone mail-dmz]
juniper@SRX5800# set policy "permit_b_to_mail" match source-address dept_b_users
destination-address mail_server application mail_services
[edit security policies from-zone dept-b to-zone mail-dmz]
juniper@SRX5800# set policy "permit_b_to_mail" then permit

The last item is to address this new web server that Dept-B wants on the network. The
web server should be moved to its own DMZ and policy specifically for that web server
needs to be written:

[edit security policies from-zone dept-b to-zone mail-dmz]
juniper@SRX5800# top
[edit]
juniper@SRX5800# set security zones security-zone Bweb-dmz
[edit]
juniper@SRX5800# set security zones security-zone Bweb-dmz address-book
address web5 10.3.0.1/32
[edit]
juniper@SRX5800# edit security policies from-zone internet to-zone Bweb-dmz
[edit security policies from-zone internet to-zone Bweb-dmz]
juniper@SRX5800# set policy "permit_to_bweb" match source-address any
destination-address web5 application junos-http

186 | Chapter 4: Security Policy

[edit security policies from-zone internet to-zone Bweb-dmz]
juniper@SRX5800# set policy "permit_to_bweb" then permit
[edit security policies from-zone internet to-zone Bweb-dmz]
juniper@SRX5800# set policy "permit_to_bweb" then log session-close session-init

And if you noticed, as always, it’s suggested that you log the traffic from the Internet.

Now, let’s take a look at the entire configuration for Dept-B:

juniper@SRX5800# show | compare
[edit security zones]
 security-zone mail-dmz { ... }
+ security-zone dept-b {
+ address-book {
+ address users3 10.2.1.0/24;
+ address users4 10.2.2.0/24;
+ address users5 10.2.3.0/24;
+ address-set dept_b_users {
+ address users3;
+ address users4;
+ address users5;
+ }
+ }
+ }
+ security-zone Bweb-dmz {
+ address-book {
+ address web5 10.3.0.1/32;
+ }
+ }
[edit security policies]
 from-zone dept-a to-zone internet { ... }
+ from-zone dept-b to-zone internet {
+ policy deny_bad_apps {
+ match {
+ source-address dept_b_users;
+ destination-address any;
+ application deny_services;
+ }
+ then {
+ deny;
+ log {
+ session-init;
+ session-close;
+ }
+ }
+ }
+ policy permit-to-internet-any {
+ match {
+ source-address dept_b_users;
+ destination-address any;
+ application any;
+ }
+ then {
+ permit;
+ }
+ }

Case Study 4-2 | 187

+ }
+ from-zone dept-b to-zone mail-dmz {
+ policy permit_b_to_mail {
+ match {
+ source-address dept_b_users;
+ destination-address mail_server;
+ application mail_services;
+ }
+ then {
+ permit;
+ }
+ }
+ }
+ from-zone internet to-zone Bweb-dmz {
+ policy permit_to_bweb {
+ match {
+ source-address any;
+ destination-address web5;
+ application junos-http;
+ }
+ then {
+ permit;
+ log {
+ session-init;
+ session-close;
+ }
+ }
+ }
+ }
[edit applications]
 application-set mail_services { ... }
+ application-set deny_services {
+ application junos-ymsg;
+ application junos-smtp;
+ application junos-msn;
+ application junos-irc;
+ application junos-gnutella;
+ application junos-aol;
+ }
[edit]
juniper@SRX5800# commit check
configuration check succeeds

The commit check appears to be successful and the configuration looks good. The new
department can now come online without any issues and the security of the company
has not been compromised.

Converters and Scripts
To help bridge the gap between the NetScreen system and the SRX system several tools
have been developed. One such tool is the S2JES (ScreenOS to Junos-ES) converter.
This is a free tool (it requires a valid login to http://www.juniper.net) that will convert
a ScreenOS configuration file or syntax to Junos-ES. It can help with migration from a

188 | Chapter 4: Security Policy

http://www.juniper.net

ScreenOS policy base to Junos policy. You can find the tool at https://i2j.juniper.net/
s2jes/index.jsp.

Op scripts will also assist in migration efforts. Op scripts are SLAX or XSLT-based
scripts that run directly on the SRX. These scripts are often developed by Juniper and
by external users. You can use op scripts to view information in a summarized format
or, for example, to run a series of health checks.

One of my favorite op scripts for the SRX is the policy test script. The policy test script
will take input such as a source IP, destination IP, source port, or destination port and
find any matching policies. All of these fields are optional, so the match can be as broad
or as narrow as you want it to be.

Here is example output of the policy test script:

user@cli# op policy-test source-address 10.1.1.1 destination-address 10.2.2.2
From-Zone To-Zone Name Src-Addr Dst-Addr
Application Action trust untrust ftp-permit any any
junos-ftp permit trust untrust http-https-rej any any
junos-https reject junos-http

The policy test script found two policies that match the source/destination address.
From the preceding output it appears that only FTP is allowed and HTTP/HTTPS is
explicitly denied.

Other scripts mimic the output of ScreenOS-type commands, such as “get interface,”
“get service,” and “get policy.” You can find these scripts in a number of places, but
two of the major sites are:

http://www.juniper.net/us/en/community/junos/script-automation/library/
http://code.google.com/p/junoscriptorium/

You can find the policy test script shown earlier at the following URL:

http://www.juniper.net/us/en/community/junos/script-automation/library/configura
tion/policy-test/

Summary
The SRX security policy system is extremely flexible and straightforward. We will use
security policies in later chapters to perform functions such as VPN, IDP, UTM, and
more. The SRX exemplifies why a zone-based firewall is a better choice than a tradi-
tional interface-based firewall, and with more granular security and less work involved
in assigning levels of trusts to their various zones, will make your life as a security
engineer much better.

Although the SRX policy system doesn’t have complete feature parity with NetScreen’s,
Juniper continues to make progress with its large resource base that is working on the
SRX. New features such as additional ALGs are being deployed regularly with no signs
of slowing down.

Summary | 189

https://i2j.juniper.net/s2jes/index.jsp
https://i2j.juniper.net/s2jes/index.jsp
http://www.juniper.net/us/en/community/junos/script-automation/library/
http://code.google.com/p/junoscriptorium/
http://www.juniper.net/us/en/community/junos/script-automation/library/configuration/policy-test/
http://www.juniper.net/us/en/community/junos/script-automation/library/configuration/policy-test/

Chapter Review Questions
1. How do you write a global security policy on an SRX?

2. When writing security policies for traffic that the destination is NATed to, which
IP address would you put in the security policy—the true destination address or
the NATed IP address?

3. What is the difference between deny and reject actions in a security policy?

4. How do you view all active sessions from the 192.168.0.0 subnet?

5. How do you filter denied traffic to a file called Deny_log?

6. What are traceoptions and why would you use them to troubleshoot security
policies?

7. What are ALGs and what do they do?

8. How can you, as the SRX administrator, limit access to specific network segments
during nonbusiness hours?

9. At what step does firewall policy lookup take place in the SRX flow process?

10. What is the difference between a fast path and a slow path?

Chapter Review Answers
1. Global security policies are not supported on the SRX. They are a legacy NetScreen

feature and are not available today on the SRX platform.

2. Destination NAT is applied before security policy is evaluated. As a result, all se-
curity policies must be written for the NATed address. Source NAT is applied after
the security policy is evaluated and should be written for the nontranslated IP
address.

3. The deny action will silently drop the packet, where reject will send back an ICMP
Port Unreachable to the source IP address. The deny action is usually the preferred
method, unless it’s critical that the source IP address be notified that its traffic has
been dropped by a firewall.

4. To view all active sessions from the 192.168.0.0 subnet, use either:

juniper@SRX5800> show security flow session source-prefix 192.168/16

or:

juniper@SRX5800> show security flow session source-prefix 192.168.0.0/16

Either method is acceptable.

5. To filter denied traffic to a file called Deny_log, first you will need to ensure that
the security policy has logging enabled. Without that, nothing will be sent to the
local syslogs. Once that is complete, you’ll need to specify a syslog file and filter
for the RT_FLOW_SESSION_DENY string:

190 | Chapter 4: Security Policy

[edit]
juniper@SRX5800# set system syslog file Deny_log any any
[edit]
juniper@SRX5800# set system syslog file Deny_log match "RT_FLOW_SESSION_DENY"

6. Traceoptions are much like debugs on the NetScreen platform. Traceoptions will
monitor and record the packet as it’s evaluated through the various stages of packet
processing. You can use traceoptions to verify that a packet is arriving on the correct
interface and is being evaluated by the correct policy. You can also use traceoptions
to ensure that the correct action is being taken (deny, permit, IDP, etc.) and to
verify return traffic.

7. Application layer gateways are Layer 6 and Layer 7 inspections of certain protocols
by the SRX. They are used to assist with certain applications that have problems
with stateful firewalls, and can be used to provide an additional layer of application
security. ALGs monitor the control channel of a data connection for specific in-
formation so that the SRX can dynamically handle firewall pinholing and NAT
translation.

8. This is a perfect example of when to use policy schedulers. Policy schedulers can
control when traffic is allowed (or denied) to network segments or services. Using
policy schedulers, an SRX admin could lock down the payroll servers during
nonbusiness hours by writing a policy scheduler that only permits traffic from
8:00 a.m. to 5:00 p.m. Monday through Friday.

9. As shown in Figure 4-1 at the beginning of this chapter, security policy lookup
takes place just after route lookup/destination zone lookup. It is critical to under-
stand the flow processing, as it will often be used while troubleshooting traffic
down the road.

10. As a packet arrives on the interface of an SRX, an existing session lookup takes
place. The SRX looks at the packet and tries to match it to an already established
connection in the session table. If one is found, the SRX sends it down the fast
path. If no session match is found, it is sent down the slow path.

When a packet is sent down the slow path, the SRX must initially perform several
checks when the new session is created, such as NAT, route lookup, and policy
lookup, among others. Once those have been completed and the traffic is permit-
ted, the SRX will build a session in the session table and all additional packets for
that connection will take the fast path.

The fast path just does some basic TCP checks and screens to ensure that everyone
is playing nicely on this already allowed connection. Additionally, the SRX will do
some ALG processing, and if an action such as IDP of VPNs exists, the action will
also be processed.

Chapter Review Answers | 191

CHAPTER 5

Network Address Translation

This chapter details the Junos Network Address Translation (NAT) features for the
SRX. NAT provides a versatile set of tools for overcoming IPv4 address exhaustion,
merging networks, migrating networks, redirecting traffic, or simply hiding network
topologies. Put simply, NAT is the means for modifying the IP addresses and TCP/UDP
ports in IP packets.

This chapter has three main sections that correspond to the three main types of NAT
on the SRX:

• Source NAT

• Destination NAT

• Static NAT

Source NAT translates the source IP addresses and TCP/UDP ports of matching flows.
Destination NAT translates the destination IP addresses and TCP/UDP ports of match-
ing flows. And static NAT translates configured prefixes symmetrically whether they
are the sources initiating flows or the destinations receiving them.

This chapter shows you how to configure NAT with step-by-step tutorials using the
Junos command-line interface (CLI). It also includes a case study at the end of each
main section.

How the SRX Processes NAT
The Junos operating system provides a complete and integrated set of NAT tools for
the SRX. It departs both from the earlier ScreenOS security policy model and the Junos
services interface model of NAT configuration. It depends neither on the disparate
MIPs, DIPs, and VIPs of ScreenOS security policy, nor on the logical interface traffic
steering of the packet mode Junos services stanza.

NAT is configured in the SRX under the Junos security stanza. It is fully integrated
with stateful flow processing, while it is logically separate from security policy

193

configuration. A given traffic flow can match, at most, a single NAT rule, and must
match just a single security policy. There is no direct correspondence between NAT
rules and security policies—the flows matched by one NAT rule may then be matched
by one or several security policies. Flows matched by one security policy may have
matched zero, one, or several NAT rules. But once a flow is matched by a NAT rule,
the effect of the NAT rule will be fully integrated with the creation of a session table
flow such that translation takes place symmetrically for both directions of IP
conversation.

Figure 5-1 illustrates the processing of NAT in relation to the SRX flow model.

Figure 5-1. NAT processing within SRX flow

Notice that static NAT and destination NAT rules are matched before the route and
zone lookups that must precede security policy evaluation. Source NAT and the reverse
of static NAT rules are matched after security policy evaluation. In other words:

• Translations that change the destination IP addresses of packets always take place
before the route lookups that depend on those destination addresses for determin-
ing the best matching route. As a result, security policy (which depends on route
lookup for zone determination) is written to the translated destination IP address.

• Translations that change the source IP addresses of packets always take place
after route lookups, as the source address does not affect traditional

194 | Chapter 5: Network Address Translation

destination-based routing decisions. As a result, security policy is written to the
original (pre-translation) source IP address.

When a static NAT rule-set matches a given flow, it will take precedence over either a
source or a destination NAT rule-set that would otherwise match the same flow.

The SRX NAT model enables more flexible and precise NAT configu-
ration, as the absence of security policy dependencies makes network
topology and address translation redesign possible, even as security
policies remain in place.

Each NAT rule-set must be implemented from the context of an interface, zone, or
routing instance. Because source translations follow route and zone lookups, their rule-
sets must be configured with the context of both the ingress and egress interface, zone,
or routing instance. As static and destination translations precede route and zone look-
ups, their rule-sets must be configured with the context of just the ingress interface,
zone, or routing instance (given that the egress interface, zone, or routing instance is
not determined until the route lookup following the translation).

When multiple NAT rule-sets contain contexts matching a given flow, the rule-set with
the most specific context is used to determine the translation action. As shown in
Figure 5-2, a rule-set with a matching interface context is preferred over one with a
matching zone context, which is preferred over one with a matching routing instance
context. Then within the chosen rule-set, rules are evaluated in order, with the first
matching the flow utilized to determine the translation action.

Figure 5-2. NAT rule-set precedence

Source NAT
Source NAT is the translation of source IP addresses and TCP/UDP ports in the headers
of IP flows. It is most commonly used for the translation of private IP address space to
public globally routable address space.

Source NAT | 195

Source NAT on the SRX enables the translation of one or more private source IP ad-
dresses to a group of public IP addresses of equal or smaller size. TCP and UDP port
translation may be used to scale translations when a larger group of private source IP
addresses is overloading onto a smaller group of public IP addresses. The post-
translation IP addresses may be configured in a pool, or the translations may be over-
loaded to the IP address configured on the egress interface of the matching flows.

In Figure 5-3, a source NAT is shown in action. Here the internal source IP address and
port of an IP packet are translated to a different public source IP address and port, as
the packet egresses the device.

Figure 5-3. Source NAT

Source NAT implementation in Junos for the SRX is a superset of the ScreenOS DIP
security policy and NAT mode interface translation.

Source NAT is commonly implemented to overcome IPv4 public address exhaustion.
Systems within an organization are configured with private RFC 1918 IPv4 addresses
and then translated to globally routable IPv4 addresses at a public network boundary.

Figure 5-4 shows the Dept-A and Dept-B networks of Organization-XYZ (this book’s
sample network topology) and the path through the core SRX5800 cluster to the public
Internet. In Chapter 3, the necessary security policies were configured to allow Internet-
bound traffic from Dept-A and Dept-B systems to successfully reach systems on the
public Internet. However, the IPv4 address space used in Dept-A and Dept-B is not
globally routable. It is private IPv4 address space as defined in RFC 1918.

Public Internet routers do not have reachability information with which to direct traffic
toward private RFC 1918 address space. When systems with private IPv4 addresses in
Dept-A and Dept-B attempt to communicate with systems on the public Internet, the
return traffic from those public Internet systems toward the private IPv4 addresses must
fail. The first public Internet router hop returns an ICMP Unreachable message, as the
private addresses are unknown. Meanwhile the systems in Dept-A and Dept-B remain
idle with flows which never receive responses.

196 | Chapter 5: Network Address Translation

For bidirectional communication to the public Internet to succeed, the private IPv4
address space of the Dept-A and Dept-B systems must be translated to globally routable
public IPv4 address space.

Interface NAT
SRX platforms support NAT configurations where the source IP addresses in flows are
translated to the address assigned to the security platform’s own outgoing interface.
This behavior is commonly called interface NAT and is similar to the NAT mode inter-
face configuration in ScreenOS. Interface NAT overloads one or more internal source
IP addresses to the single public interface IP address via Port Address Translation (PAT),
as shown in Figure 5-5. Here, the source IP address and port are translated to a new
port of the SRX interface IP address 198.18.5.50.

The Junos implementation of interface NAT for the SRX departs from the limited
ScreenOS behavior where translation took effect exclusively for traffic originated from
an ingress “Trust” zone interface in “NAT mode” toward an egress “Untrust” zone
interface. In contrast, Junos allows wide flexibility in the implementation of interface
NAT between any zones, interfaces, or routing instances. The source IP addresses of
flows can be explicitly translated to an interface address or to pool addresses, or simply
excluded from translation altogether through configuration of the SRX’s powerful NAT
rule-sets.

Figure 5-4. Dept-A and Dept-B path to public Internet

Source NAT | 197

Implementing a source NAT rule-set

In the Junos CLI configuration that follows, a simple source NAT rule-set is imple-
mented between the Dept-A zone and the Inet zone. Use the edit command to enter
configuration mode:

james@SRX5800-1> edit
Entering configuration mode

Here you access command-line help (?) for the NAT configuration hierarchy:

[edit]
james@SRX5800-1# edit security nat ?
Possible completions:
 <[Enter]> Execute this command
> destination Configure Destination NAT
> proxy-arp Configure Proxy ARP
> source Configure Source NAT
> static Configure Static NAT
> traceoptions NAT trace options
 | Pipe through a command

The SRX has three major categories of NAT: destination, source, and static. Here you
access the command-line help for the source NAT configuration hierarchy:

[edit]
james@SRX5800-1# edit security nat source ?
Possible completions:
 <[Enter]> Execute this command
> interface Configure interface port overloading for persistent NAT
> pool Define a source address pool
> pool-utilization-alarm Configure pool utilization alarm
> port-randomization Configure Source NAT port randomization
> rule-set Configurate a set of rules
 | Pipe through a command

Figure 5-5. Interface NAT

198 | Chapter 5: Network Address Translation

The two major elements of a source NAT configuration are the pool and rule-set. Use
the edit command to move to the source NAT rule-set hierarchy:

[edit]
james@SRX5800-1# edit security nat source rule-set Dept-A-to-Inet

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set ?
Possible completions:
> rule Source NAT rule
> from Where is the traffic from
> to Where is the traffic to
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

The command-line help output shows the options for a source NAT rule-set. A source
NAT rule-set must define both where traffic will be coming from as well as where it
will be going to. View the command-line help for the from context:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set from ?
Possible completions:
+ interface Source interface list
+ routing-instance Source routing instance list
+ zone Source zone list

You discover that traffic may come from a zone, interface, or routing instance. Use the
set command to limit the scope of this rule-set to traffic initiated from the Dept-A
zone:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set from zone Dept-A

Now access the command-line help for the rule-set’s to context:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set to ?
Possible completions:
+ interface Destination interface list
+ routing-instance Destination routing instance list
+ zone Destination zone list

You discover that traffic may go to a zone, interface, or routing instance. Use the set
command to limit the scope of this rule-set to traffic destined toward the Inet zone:

 [edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set to zone Inet

Access command-line help for the configuration of rules within the source NAT
rule-set:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule intNAT ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

Source NAT | 199

> match Specify Source NAT rule match criteria
> then Then action
 | Pipe through a command

A rule-set must contain one or more rules. Every rule must have a name. This rule is
named intNAT. Each rule must contain both a match criterion and a then action. Here
you access command-line help for the source NAT rule match conditions:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule intNAT match ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
+ destination-address Destination address
> destination-port Destination port
+ source-address Source address

A source NAT rule may match source IP addresses, destination IP addresses, and des-
tination TCP/UDP ports. Use the set command to match this rule to traffic from the
10.1.0.0/16 address prefix:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule intNAT match source-address 10.1/16

Here you examine command-line help for source NAT rule actions:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule intNAT then source-nat ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> interface Use egress interface address
 off No action
> pool Use Source NAT pool

A source NAT rule may translate via an interface, a pool, or not at all (off). Use the
set command to configure the source NAT rule action of PAT overloading on the IP
address of the SRX device’s egress interface:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule intNAT then source-nat interface

Note that PAT overloading is implied by the use of interface NAT. Examine your new
source NAT rule-set with the show command:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# show
from zone Dept-A;
to zone Inet;
rule intNAT {
 match {
 source-address 10.1.0.0/16;
 }
 then {
 source-nat {
 interface;

200 | Chapter 5: Network Address Translation

 }
 }
}

This rule-set matches flows originated from the Dept-A zone’s 10.1.0.0/16 IP address
range and destined toward the Inet zone. Flows matching these conditions are trans-
lated by the SRX device via PAT to the interface IP address configured on the SRX
device’s Inet zone egress interface.

Once you’re satisfied that your configuration work is complete, execute the commit
command to move your candidate configuration to the active running configuration
on the SRX device:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

Viewing interface NAT in the session table

Now you examine a live flow in the SRX device’s session table from the operational
CLI. You find that this flow has been translated by your new source NAT rule-set:

james@SRX5800-1> show security flow session
Session ID: 2299, Policy name: webdmz_mgt/8, Timeout: 1792
 In: 10.1.1.100/49783 --> 198.18.200.1/80;tcp, If: ge-0/0/0.0
 Out: 198.18.200.1/80 --> 198.18.5.50/15653;tcp, If: ge-0/0/2.0

1 sessions displayed

james@SRX5800-1>

You note that the pre-translation source IP address of the flow is 10.1.1.100 in the
initiating direction (In:). You also see that return traffic for the flow (Out:) comes back
to a post-translation IP address of 198.18.5.50 (the SRX interface IP address) as the
destination.

The port that this flow’s traffic returns to (15653) on the translated public IP address
(198.18.5.50) is different from the port (49783) that the original pre-translation IP
address (10.1.1.100) utilized to initiate the traffic. This change of ports is PAT in action.
This PAT makes it possible to overload such a large range of internal address space (the
10.1.0.0/16 Dept-A network) to the single Inet zone interface IP address (198.18.5.50).

Viewing traffic flow logs for interface NAT

Traffic flow logging is a useful tool for troubleshooting and forensics. Here you examine
the logs for your translated flow with the show log command:

james@SRX5800-1> show log traffic-log
Jan 19 09:32:28 SRX210 RT_FLOW: RT_FLOW_SESSION_CREATE: session created

Source NAT | 201

10.1.1.100/49783->198.18.200.1/80 junos-http 198.18.5.50/15653->198.18.200.1/80
intNAT None 6 webdmz_mgt trust Inet 2293

Jan 19 09:32:30 SRX210 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP FIN:
10.1.1.100/49783->198.18.200.1/80 junos-http 198.18.5.50/15653->198.18.200.1/80
intNAT None 6 webdmz_mgt trust Inet 2293 6(330) 4(436) 3
james@SRX5800-1>

Fortunately, flow logging has already been enabled for both the session initiation and
the session closure in the configuration of the security policy matching this flow (see
Chapter 2 for more information about the actual configuration of security policy
logging).

Both the session initiation and the session closure logs show the following:

• The matching NAT rule (intNAT)

• The pre-translation source IP address and port of the packets entering the Dept-A
zone (10.1.1.100 and 49783)

• The post-translation source IP address and port of the packets that egress the Inet
zone interface (198.18.5.50 and 15653)

Operational commands for interface NAT

Now you examine the NAT rule itself in the Junos operational CLI:

james@SRX5800-1> show security nat source rule all
Total rules: 1

source NAT rule: intNAT Rule-set: Dept-A-to-Inet
 Rule-Id : 1
 Rule position : 1
 From zone : Dept-A
 To zone : Inet
 Match
 Source addresses : 10.1.0.0 - 10.1.255.255
 Action : interface
 Persistent NAT type : N/A
 Inactivity timeout : 0
 Max session number : 0
 Translation hits : 9

james@SRX5800-1>

The output shows all aspects of the NAT rule configuration:

• The context of the traffic (in this case, traffic initiated from zone Dept-A toward
zone Inet)

• The rule-set name (Dept-A-to-Inet)

• The rule name (intNAT)

• The position of the rule within that rule-set (1, or first)

202 | Chapter 5: Network Address Translation

• The rule conditions for matching traffic (source addresses of 10.1.0.0 through
10.1.255.255)

• The action to be taken (translate to the interface address)

• The number of flows that have been translated by this NAT rule (Translation
hits : 9)

Next, as this is an interface NAT configuration (which thereby intrinsically utilizes
PAT), you can examine the availability and allocation of TCP/UDP ports on the egress
interface’s IP address:

james@SRX5800-1> show security nat interface-nat-ports
Pool Total Single ports Single ports Twin ports Twin ports
index ports allocated available allocated available
 0 64510 0 63486 0 1024
 1 64510 0 63486 0 1024
 2 64510 0 63486 0 1024
 3 64510 1 63485 0 1024
 4 64510 0 63486 0 1024
 5 64510 0 63486 0 1024
 6 64510 0 63486 0 1024
 7 64510 0 63486 0 1024

james@SRX5800-1>

Here the output shows that a total of 64,510 ports are available while just a single port
is allocated.

Tracing interface NAT flows

Lastly, you access the most comprehensive NAT troubleshooting tool through the
configuration of security flow traceoptions. When security flow traceoptions are
enabled for a given flow, the SRX records a comprehensive breakdown of the handling
of the translated IP packets (a “debug flow” in the language of legacy ScreenOS
software).

Here you begin enabling security flow tracing by entering configuration mode on the
SRX device:

james@SRX5800-1> edit
Entering configuration mode

You move the configuration mode prompt to the security flow traceoptions hierarchy
and then use command-line help to view the configuration options within it:

[edit]
james@SRX5800-1# edit security flow traceoptions

[edit security flow traceoptions]
james@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

Source NAT | 203

> file Trace file information
> flag Events and other information to include in trace output
 no-remote-trace Disable remote tracing
> packet-filter Flow packet debug filters
 rate-limit Limit the incoming rate of trace messages (0..4294967295)

A minimum flow traceoptions configuration must include both a target file and a
flag. The target file determines where the flow trace output will be recorded. The
flag defines what type of flow trace data will be collected. The packet-filter option
should also be used to narrow the trace to specific flows.

Here you define a target flow trace logfile named tracetest (which will automatically
be placed in the /var/log directory upon commit completion):

[edit security flow traceoptions]
james@SRX5800-1# set file tracetest

You now view command-line help for the flag option:

[edit security flow traceoptions]
james@SRX5800-1# set flag ?
Possible completions:
 all All events
 basic-datapath Basic packet flow
 packet-drops Packet drops

The basic-datapath flag is the most common flag for flow tracing and provides func-
tionality roughly equivalent to the “debug flow basic” command in legacy ScreenOS
systems. Add this flag to the configuration with the set command:

[edit security flow traceoptions]
james@SRX5800-1# set flag basic-datapath

You now view command-line help for the optional packet-filter configuration:

[edit security flow traceoptions]
james@SRX5800-1# set packet-filter NATfilter ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 destination-port Match TCP/UDP destination port
 destination-prefix Destination IPv4 address prefix
 interface Logical interface
 protocol Match IP protocol type
 source-port Match TCP/UDP source port
 source-prefix Source IPv4 address prefix

The packet-filter option restricts traces to flows matching your specified IP protocol
numbers, IP addresses, and TCP/UDP ports. This narrows the trace results collected
in the target logfile, making it easier for you to find relevant information when
troubleshooting.

It is very important to trace only the traffic you need, as significant
additional processing overhead is required on the SRX for packet tracing.

204 | Chapter 5: Network Address Translation

Without the packet-filter, this traceoptions configuration would impact all traffic
passing the SRX device and potentially lead to significant performance degradation.

Use the set command to restrict flow traces to packets with a source IP address in the
range of 10.1.0.0/16:

[edit security flow traceoptions]
james@SRX5800-1# set packet-filter NATfilter source-prefix 10.1/16

Note that this only matches one direction of the flows. An additional packet-filter
must be defined with a condition matching the same address range as a destination in
order to capture traces for the opposite direction of the flows. For now, you will just
trace the one direction of the translated flows. Use the set command to also restrict
flow traces to packets with a destination port of 80 (the typical port for HTTP):

[edit security flow traceoptions]
james@SRX5800-1# set packet-filter NATfilter destination-port 80

An additional packet-filter must likewise be defined here as well for this same port
as a source in order to capture traces for the opposite direction of the flows. Again, you
will just trace the one direction of the translated flows in this example. Now check your
completed traceoptions configuration with the show command. Pipe the output to a
compare so that you can quickly see only the changes you have made:

[edit security flow traceoptions]
james@SRX5800-1# show | compare

[edit security]
+ flow {
+ traceoptions {
+ file NATtrace;
+ flag basic-datapath;
+ packet-filter NATfilter {
+ source-prefix 10.1.0.0/16;
+ destination-port 80;
+ }
+ }
+ }

And finally, enable the new security flow traceoptions with the commit command:

[edit security flow traceoptions]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

james@SRX5800-1>

The security flow traceoptions configuration begins collecting the basic-datapath
information for packets initiated from 10.1.0.0/16 toward a destination port of 80. Now
you can check the logs for your new trace data.

Source NAT | 205

Here’s a tip. You can pipe the security flow traceoptions logfile output to a trim
command in order to eliminate the leading characters from each line (which include
timestamp and module identification) for ease of readability. Use the show log com-
mand to view the flow trace results:

james@SRX5800-1> show log NATtrace | trim 41
<10.1.1.100/49783->198.18.200.1/80;6> matched filter NATfilter:
packet [64] ipid = 26698, @423f279e

---- flow_process_pkt: (thd 1): flow_ctxt type 13, common flag 0x0,
mbuf 0x423f2600
 flow process pak fast ifl 68 in_ifp ge-0/0/0.0

 ge-0/0/0.0:10.1.1.100/49783->198.18.200.1/80, tcp, flag 2 syn
 find flow: table 0x4d5c8220, hash 38079(0xffff), sa 10.1.1.100, da 198.18.200.1,
sp 49783, dp 80, proto 6, tok 384
 no session found, start first path. in_tunnel - 0, from_cp_flag - 0
 flow_first_create_session

Here you see your packet-filter named NATfilter matching the TCP flow (IP protocol
number “6”) sourced from IP address 10.1.1.100 on TCP port 49783 toward a desti-
nation IP address of 198.18.200.1 on TCP port 80 (the traditional identification of
HTTP traffic) entering interface ge-0/0/0.0.

Your security flow traceoptions packet-filter has succeeded in narrowing the trace
to the packets you have chosen.

Most importantly, the trace output shows that there is no existing session for this packet
(no session found, start first path). The system must evaluate this packet as a
potential new flow.

Continuing to examine the output:

 flow_first_in_dst_nat: in <ge-0/0/0.0>, out <N/A> dst_adr 198.18.200.1,
sp 49783, dp 80
 chose interface ge-0/0/0.0 as incoming nat if.
flow_first_rule_dst_xlate: DST no-xlate: 0.0.0.0(0) to 198.18.200.1(80)
flow_first_routing: call flow_route_lookup(): src_ip 10.1.1.100, x_dst_ip
198.18.200.1, in ifp ge-0/0/0.0, out ifp N/A sp 49783, dp 80, ip_proto 6, tos 10
Doing DESTINATION addr route-lookup
 routed (x_dst_ip 198.18.200.1) from trust (ge-0/0/0.0 in 0) to ge-0/0/2.0,
Next-hop: 198.18.5.51

And here the trace output shows that the route lookup for the destination IP address
198.18.200.1 results in a next hop of 198.18.5.51 via the ge-0/0/2.0 interface.

Next, the trace output shows the policy search between security zones Dept-A and Inet.
This shows that the ingress interface ge-0/0/0.0 is configured in security zone Dept-A
and that the egress interface ge-0/0/2.0 is configured in security zone Inet:

 policy search from zone Dept-A-> zone Inet
 policy has timeout 900
 app 6, timeout 1800s, curr ageout 20s

206 | Chapter 5: Network Address Translation

The trace output here shows that the source IP address and port of the flow have been
translated from 10.1.1.100 and 49783 to 198.18.5.50 and 15653:

flow_first_src_xlate: 10.1.1.100/49783 -> 198.18.200.1/80 | 198.18.200.1/80 ->
0.0.0.0/49783: nat_src_xlated: False, nat_src_xlate_failed: False
flow_first_src_xlate: src nat 0.0.0.0(49783) to 198.18.200.1(80)
returns status: 1, rule/pool id: 1/2, pst_nat: False.
 dip id = 2/0, 10.1.1.100/49783->198.18.5.50/15653
 dip id = 2/0, 10.1.1.100/49783->198.18.5.50/15653
flow_first_get_out_ifp: 1000 -> cone nat test
 choose interface ge-0/0/2.0 as outgoing phy if
is_loop_pak: No loop: on ifp: ge-0/0/2.0, addr: 198.18.200.1, rtt_idx:0
policy is NULL (wx/pim scenario)
sm_flow_interest_check: app_id 0, policy 8, app_svc_en 0, flags 0x2.
not interested
sm_flow_interest_check: app_id 1, policy 8, app_svc_en 0, flags 0x2.
not interested
flow_first_service_lookup(): natp(0x4b6cea18): local_pak(0x3fdedc70.0x423f2600):
TCP proxy NOT interested: 0.
 service lookup identified service 6.
 flow_first_final_check: in <ge-0/0/0.0>, out <ge-0/0/2.0>
flow_first_final_check: flow_set_xlate_vector.
 existing vector list 1002-446f8628.
 Session (id:2299) created for first pak 1002
 flow_first_install_session======> 0x4b6cea18
 nsp 0x4b6cea18, nsp2 0x4b6cea84
 make_nsp_ready_no_resolve()
 route lookup: dest-ip 10.1.1.100 orig ifp ge-0/0/0.0 output_ifp ge-0/0/0.0
orig-zone 6 out-zone 6 vsd 0
 route to 10.1.1.100

And finally, notice that the trace output shows that both wings (directions) of the flow
have been installed successfully into the session table with the identifier 2299:

Installing c2s NP session wing
Installing s2c NP session wing
 flow got session.
 flow session id 2299
 tcp flags 0x2, flag 0x2
 Got syn, 10.1.1.100(49783)->198.18.200.1(80), nspflag 0x1021, 0x20
 post addr xlation: 198.18.5.50->198.18.200.1.
mbuf 0x423f2600, exit nh 0x50010
 ----- flow_process_pkt rc 0x0 (fp rc 0)

james@SRX5800-1>

Before leaving the device, make sure the security flow traceoptions configuration is
removed.

Removing the security flow traceoptions configuration upon com-
pletion of your troubleshooting eliminates any potential performance
impact to your SRX device and traffic passing through it.

Source NAT | 207

Enter configuration mode and use the delete command to remove the security flow
traceoptions configuration:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# delete security flow traceoptions

Review your configuration changes with the show command:

[edit]
james@SRX5800-1# show | compare
[edit security]
- flow {
- traceoptions {
- file tracetest;
- flag basic-datapath;
- flag all;
- packet-filter NATfilter {
- source-prefix 10.1.0.0/16;
- destination-port 80;
- }
- }
- }

You see that the security flow traceoptions configuration has been deleted in this
candidate configuration. Implement your configuration changes with the commit
command:

[edit]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

james@SRX5800-1>

Address Pools
Although interface NAT is a simple and often used tool, the SRX offers an even more
powerful NAT tool: address pools. Address pools are often used instead of the simple
interface NAT when:

• PAT is not an option for a given application flow.

• More than a single post-translation IP address is needed to achieve the required
NAT scaling.

• More complex or powerful translations are necessary to the given NAT design.

Figure 5-6 shows the translation of a source address and port to a new IP address and
port from an address pool defined within the SRX device.

208 | Chapter 5: Network Address Translation

NAT address pools are configured with one or more address ranges or prefixes. They
may be configured with PAT (by default) or without PAT (utilizing a port no-transla
tion option). When configured with PAT, the range of ports used for translation can
be specified with the port option. When a given pool is exhausted, it may then reference
a completely different overflow-pool for additional translations.

Implementing a source NAT address pool

In the example source NAT address pool configuration which you’re about to begin,
the interface NAT configuration is replaced with a pool NAT (while renaming the NAT
rule from intNAT to poolNAT for good measure).

The process isn’t that difficult, so you’ll start by entering configuration mode again and
moving the configuration prompt back to the source NAT hierarchy. Use command-
line help to get a list of all the options at the source NAT configuration hierarchy:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat source

[edit security nat source]
james@SRX5800-1# set ?
Possible completions:
 address-persistent Allow source address to maintain same translation
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> interface Configure interface port overloading for persistent NAT
> pool Define a source address pool
> pool-utilization-alarm Configure pool utilization alarm
> port-randomization Configure Source NAT port randomization
> rule-set Configurate a set of rules

Figure 5-6. Source NAT with address pools

Source NAT | 209

Here you can see the special address-persistent option.

The address-persistent option is configured when all PAT translations
for a given host must be translated through the same public IP address.

Without the address-persistent option, different flows from a given source address
may be translated through entirely different public IP addresses.

Farther down the same command line help output, you also see the port-randomiza
tion option.

The SRX randomizes the translated port chosen for each translated flow
by default. The port-randomization disable option disables this be-
havior.

Although port randomization is more secure and can mitigate some attacks, it requires
additional system resources to achieve the randomization behavior.

Use command-line help for the source NAT address pool configuration:

[edit security nat source]
james@SRX5800-1# set pool ipPool ?
Possible completions:
> address Add address to pool
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> host-address-base The base of host address
> overflow-pool Specify an overflow pool
> port Config port attribute to pool
> routing-instance Routing instance

Junos reveals that the following:

• One or more addresses, prefixes, or ranges may be configured in a pool.

• Port ranges may be defined for pool translations.

• As discussed earlier, an overflow-pool may be referenced for use when this pool
itself is exhausted.

Use the set command to define the prefix 10.10.10.192/29 for use in the ipPool source
NAT address pool:

[edit security nat source]
james@SRX5800-1# set pool ipPool address 10.10.10.192/29

210 | Chapter 5: Network Address Translation

Now move the configuration prompt to the rule-set hierarchy to complete your work:

[edit security nat source]
james@SRX5800-1# edit rule-set Dept-A-to-Inet

Rename the previous intNAT rule to poolNAT:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# rename rule intNAT to rule poolNAT

Use the command-line help to see the source NAT rule actions for address pools:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule poolNAT then source-nat pool ?
Possible completions:
 <pool-name> Name of Source NAT pool
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 ipPool
> persistent-nat Persistent NAT info

The ipPool address pool you just created is already listed in the command-line help
output as a configuration option.

Also shown is the persistent-nat configuration option which allows the mapping of
source translations to be maintained over time across multiple flows (and is discussed
later in this chapter).

Now use the set command to change the NAT rule’s action to reference your new
address pool named ipPool:

[edit security nat source rule-set Dept-A-to-Inet]
james@SRX5800-1# set rule poolNAT then source-nat pool ipPool

Use the show command to see your completed configuration changes including the
replacement of the previous interface NAT with the new pool NAT:

[edit security nat source]
james@SRX5800-1# show | compare
[edit security nat source]
+ pool ipPool {
+ address {
+ 10.10.10.192/29;
+ }
+ }
[edit security nat source rule-set Dept-A-to-Inet]
+ rule poolNAT {
+ match {
+ source-address 10.10.0/16;
+ }
+ then {
+ source-nat {
+ pool {
+ ipPool;
+ }
+ }
+ }

Source NAT | 211

+ }
- rule intNAT {
- match {
- source-address 10.1.0.0/16;
- }
- then {
- source-nat {
- interface;
- }
- }
- }

And finally, use the commit command to implement the configuration changes on the
running SRX system:

[edit]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

The configuration is now active on the SRX device. The source addresses of flows
originated from the Dept-A zone’s 10.1.0.0/16 IP address range toward the Inet zone
will now be translated by the SRX to the ipPool prefix of 10.10.10.192/29.

Viewing pool NAT in the session table

Now you show a new flow as it is translated by the modified NAT rule-set:

james@SRX5800-1> show security flow session
Session ID: 2321, Policy name: webdmz_mgt/8, Timeout: 1782
 In: 10.1.1.100/49794 --> 198.18.200.1/80;tcp, If: ge-0/0/0.0
 Out: 198.18.200.1/80 --> 10.10.10.197/16137;tcp, If: ge-0/0/2.0

1 sessions displayed

james@SRX5800-1> show security flow session session-identifier 2321
Session ID: 2321, Status: Normal
Flag: 0x0
Policy name: webdmz_mgt/8
Source NAT pool: ipPool, Application: junos-http/6
Maximum timeout: 1800, Current timeout: 1778
Start time: 4371, Duration: 22
 In: 10.1.1.100/49794 --> 198.18.200.1/80;tcp,
 Interface: ge-0/0/0.0,
 Session token: 0x180, Flag: 0x4129
 Route: 0x40010, Gateway: 10.1.1.100, Tunnel: 0
 Port sequence: 0, FIN sequence: 0,
 FIN state: 0,
 Out: 198.18.200.1/80 --> 10.10.10.197/16137;tcp,
 Interface: ge-0/0/2.0,
 Session token: 0x200, Flag: 0x4128
 Route: 0x50010, Gateway: 198.18.200.1, Tunnel: 0

212 | Chapter 5: Network Address Translation

 Port sequence: 0, FIN sequence: 0,
 FIN state: 0,

1 sessions displayed

james@SRX5800-1>

Two key distinctions relative to the earlier interface NAT section can be seen in this
session table output:

• The ipPool address pool is shown in the detailed session table entry accessed via
the specific session identifier (Source NAT pool: ipPool).

• The return direction of the flow (Out) shows a post-translation IP address of
10.10.10.197, which is indeed from the configured ipPool address pool.

Note that PAT is still in action as the TCP port is changed from 49794 to 16137. This
is expected as the port no-translation option was absent from your ipPool address
pool’s configuration earlier.

Viewing traffic flow logs for pool NAT

Show and examine the logs for the initiation and closure of this session:

james@SRX5800-1> show log traffic-log
Jan 19 09:35:43 SRX210 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/49794->198.18.200.1/80 junos-http 10.10.10.197/16137->198.18.200.1/80
poolNAT None 6 webdmz_mgt trust Inet 2313

Jan 19 09:35:46 SRX210 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP FIN:
10.1.1.100/49794->198.18.200.1/80 junos-http 10.10.10.197/16137->198.18.200.1/80
poolNAT None 6 webdmz_mgt trust Inet 2313 7(384) 5(488) 3
james@SRX5800-1>

Both the session initiation and the session closure logs show the following:

• The matching NAT rule poolNAT.

• The pre-translation source IP address and port (10.1.1.100 and 49794) of the pack-
ets entering the Dept-A zone.

• The post-translation source IP address and port (10.10.10.197 and 16137) of the
packets that ultimately egress via the Inet zone interface.

Operational commands for pool NAT

Now examine your poolNAT rule from the operational CLI:

[edit]

james@SRX5800-1> show security nat source rule all
Total rules: 1

source NAT rule: poolNAT Rule-set: Dept-A-to-Inet
 Rule-Id : 2

Source NAT | 213

 Rule position : 1
 From zone : Dept-A
 To zone : Inet
 Match
 Source addresses : 10.1.0.0 - 10.1.255.255
 Action : ipPool
 Persistent NAT type : N/A
 Inactivity timeout : 0
 Max session number : 0
 Translation hits : 4

james@SRX5800-1>

This output shows all aspects of the NAT rule configuration, including the following:

• The context of traffic (traffic initiated from zone Dept-A toward zone Inet)

• The rule-set name (Dept-A-to-Inet)

• The rule name (poolNAT)

• The position of the rule within that rule-set (1, or first)

• The rule conditions for matching traffic (source addresses of 10.1.0.0 through
10.1.255.255)

• The action to be taken (translate to the ipPool address pool)

• The number of flows that have been translated by this NAT rule (Translation
hits : 4)

Next you examine the ipPool address pool:

james@SRX5800-1> show security nat source pool all
Total pools: 1

Pool name : ipPool
Pool id : 4
Routing instance : default
Host address base : 0.0.0.0
Port : [1024, 63487]
Total addresses : 8
Translation hits : 4
Address range Single Ports Twin Ports
 10.10.10.192 - 10.10.10.197 1 0

james@SRX5800-1>

And the output shows the following:

• The number of addresses in the pool (Total Addresses : 8)

• The range of ports available for PAT (Port : [1024, 63487])

• The address range (10.10.10.192 – 10.10.10.197)

• The number of flows that have been translated using this pool (Translation
hits : 4)

• The number of ports currently allocated from this PAT pool (1)

214 | Chapter 5: Network Address Translation

Tracing pool NAT flows

Finally, you examine the trace logfile after restoring the security flow traceoptions
configuration from the earlier interface NAT section (configuration not repeated here
for brevity):

james@SRX5800-1> show log NATtrace | trim 41
<10.1.1.100/49794->198.18.200.1/80;6> matched filter NATfilter:
packet [64] ipid = 8085, @423efd1e
---- flow_process_pkt: (thd 1): flow_ctxt type 13, common flag 0x0,
mbuf 0x423efb80
 flow process pak fast ifl 68 in_ifp ge-0/0/0.0
 ge-0/0/0.0:10.1.1.100/49794->198.18.200.1/80, tcp, flag 2 syn
 find flow: table 0x4d5c8220, hash 26127(0xffff), sa 10.1.1.100,
da 198.18.200.1, sp 49794, dp 80, proto 6, tok 384
 no session found, start first path. in_tunnel - 0, from_cp_flag - 0
 flow_first_create_session
 flow_first_in_dst_nat: in <ge-0/0/0.0>, out <N/A> dst_adr 198.18.200.1,
sp 49794, dp 80
 chose interface ge-0/0/0.0 as incoming nat if.
flow_first_rule_dst_xlate: DST no-xlate: 0.0.0.0(0) to 198.18.200.1(80)
flow_first_routing: call flow_route_lookup(): src_ip 10.1.1.100, x_dst_ip
198.18.200.1, in ifp ge-0/0/0.0, out ifp N/A sp 49794, dp 80, ip_proto 6, tos 10
Doing DESTINATION addr route-lookup
 routed (x_dst_ip 198.18.200.1) from Dept-A (ge-0/0/0.0 in 0) to ge-0/0/2.0,
Next-hop: 198.18.200.1
 policy search from zone Dept-A-> zone Inet
 policy has timeout 900
 app 6, timeout 1800s, curr ageout 20s
flow_first_src_xlate: 10.1.1.100/49794 -> 198.18.200.1/80 | 198.18.200.1/80 ->
 0.0.0.0/49794: nat_src_xlated: False, nat_src_xlate_failed: False
flow_first_src_xlate: src nat 0.0.0.0(49794) to 198.18.200.1(80)
returns status: 1, rule/pool id: 2/4, pst_nat: False
 dip id = 4/0, 10.1.1.100/49794->10.10.10.197/16137
 dip id = 4/0, 10.1.1.100/49794->10.10.10.197/16137

Here the pool NAT is shown taking effect, as the pre-translation address and port
(10.1.1.100 and 49794) are changed to the post-translation address and port
(10.10.10.197 and 16137). And the remainder of the output:

flow_first_get_out_ifp: 1000 -> cone nat test
 choose interface ge-0/0/2.0 as outgoing phy if
is_loop_pak: No loop: on ifp: ge-0/0/2.0, addr: 198.18.200.1, rtt_idx:0
policy is NULL (wx/pim scenario)
sm_flow_interest_check: app_id 0, policy 8, app_svc_en 0, flags 0x2.
not interested
sm_flow_interest_check: app_id 1, policy 8, app_svc_en 0, flags 0x2.
not interested
flow_first_service_lookup(): natp(0x4b6d03e8): local_pak(0x3fdedc70.0x423efb80):
TCP proxy NOT interested: 0.
 service lookup identified service 6.
 flow_first_final_check: in <ge-0/0/0.0>, out <ge-0/0/2.0>
flow_first_final_check: flow_set_xlate_vector.
 existing vector list 1002-446f8628.
 Session (id:2313) created for first pak 1002

Source NAT | 215

 flow_first_install_session======> 0x4b6d03e8
 nsp 0x4b6d03e8, nsp2 0x4b6d0454
 make_nsp_ready_no_resolve()
 route lookup: dest-ip 10.1.1.100 orig ifp ge-0/0/0.0 output_ifp ge-0/0/0.0
orig-zone 6 out-zone 6 vsd 0
 route to 10.1.1.100
Installing c2s NP session wing
Installing s2c NP session wing
 flow got session.
 flow session id 2313
 tcp flags 0x2, flag 0x2
 Got syn, 10.1.1.100(49794)->198.18.200.1(80), nspflag 0x1021, 0x20
 post addr xlation: 10.10.10.197->198.18.200.1.
mbuf 0x423efb80, exit nh 0x50010
 ----- flow_process_pkt rc 0x0 (fp rc 0)

james@SRX5800-1>

This shows both directions (wings) of the flow successfully installed in the session table.
The address and port translation from the configured ipPool address pool will now
take effect statefully for both directions of conversation.

Removing PAT
The SRX supports the creation of NAT address pools without PAT via the port no-
translation option. In this model each internal IP address will be translated directly to
a different corresponding public IP address from the pool. The TCP and UDP ports
pass through the device unchanged. Although these translations can be simpler for
applications and users to work with, they will more rapidly deplete your address pools
as each private IP address requires its own unique public IP address from the pool.

A translation without PAT is shown in Figure 5-7, where the source address is changed
from 10.1.1.100 to 1.1.1.1, while the source port remains fixed at 58393.

Now you will continue on to modify your configuration from the previous section to
likewise disable PAT. The existing ipPool pool contains just eight unique IP addresses
(from the 10.10.10.192/29 address pool) while it is translating a potentially much larger
body of hosts (the 10.1.0.0/16 Dept-A zone). This worked fine with PAT where tens
of thousands of ports were available for unique source IP address translations. But now
without PAT, you’ll need to use the overflow-pool configuration option to allow the
translation of flows for additional hosts in the likely event that this small pool is
exhausted.

216 | Chapter 5: Network Address Translation

Figure 5-7. Source NAT without PAT

Implementing source NAT without PAT

To begin, enter configuration mode and move the configuration prompt to the source
NAT pool hierarchy:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat source pool ipPool
[edit security nat source pool ipPool]

Use the set command to disable PAT for this pool:

james@SRX5800-1# set port no-translation

Use the set command to create an overflow-pool directing excess translations to an
interface NAT:

[edit security nat source pool ipPool]

james@SRX5800-1# set overflow-pool interface

Although up to eight Dept-A zone IP addresses may be concurrently translated to
unique pool IP addresses (from the existing 10.10.10.192/29 ipPool pool’s prefix) with
PAT now disabled, any situation with more than eight addresses concurrently creating
flows through this pool will now result in the translation of these additional flows via
PAT overloading on the IP address of the egress interface (198.18.5.50 in this case).
Without this overflow-pool, the additional addresses’ flows would simply fail to be
translated.

Source NAT | 217

Show the completed configuration changes and then commit to the running configura-
tion on the SRX device:

[edit security nat source pool ipPool]
james@SRX5800-1# show | compare
[edit security nat source pool ipPool]
+ port no-translation;
+ overflow-pool interface;

[edit security nat source pool ipPool]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

Viewing source NAT without PAT

And now you view a new flow translated through the modified rule-set:

james@SRX5800-1> show security flow session
Session ID: 2330, Policy name: webdmz_mgt/8, Timeout: 1782
 In: 10.1.1.100/49832 --> 198.18.200.1/80;tcp, If: ge-0/0/0.0
 Out: 198.18.200.1/80 --> 10.10.10.195/49832;tcp, If: ge-0/0/2.0

1 sessions displayed

james@SRX5800-1>

Here in the session table output, the internal source IP address 10.1.1.100 is translated
to the 10.10.10.195 pool address (visible in the Out return direction) while the source
port remains unchanged at 49832.

Here you show the corresponding traffic log for this same flow’s initiation:

james@SRX5800-1> show log traffic-log
Jan 19 09:39:47 SRX210 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.1.1.100/49832->198.18.200.1/80 junos-http 10.10.10.195/49832->198.18.200.1/80
poolNAT None 6 webdmz_mgt Dept-A Inet 2330

james@SRX5800-1>

This session initiation log entry likewise shows the translation of the source IP address
from 10.1.1.100 to 10.10.10.195, while the source port remains fixed at 49832. It also
shows the matching NAT rule (poolNAT).

And here is the modified ipPool address pool in the operational CLI:

james@SRX5800-1> show security nat source pool all
Total pools: 1

Pool name : ipPool
Pool id : 4
Routing instance : default
Host address base : 0.0.0.0

218 | Chapter 5: Network Address Translation

Port : no translation
Total addresses : 8
Translation hits : 2
Address range Single Ports Twin Ports
 10.10.10.192 - 10.10.10.197 1 0

james@SRX5800-1>

And sure enough, PAT has been disabled for the ipPool address pool (Port : no
translation).

Proxy ARP
The address pool we used in the preceding sections used a prefix that existed only
virtually within the SRX device. It did not exist anywhere physically on a real network.
Reachability for this pool necessarily depends upon simple IP routing lookups (whether
through a static or a dynamic routing entry).

The SRX also supports the configuration of address pools that reside within the bounds
of subnets on the SRX device’s own physical interfaces, as shown in Figure 5-8.

Figure 5-8. Source NAT with Proxy ARP

The Proxy ARP feature must be engaged in these cases to allow reachability for these
pools. As the pool exists within a presumably already routable IP network (or else the
SRX device itself would be unreachable), the key is to provide reachability at the Ether-
net layer (rather than the IP layer as in previous examples).

The last hop IP routing device must send an ARP request on the local Ethernet network,
seeking the Media Access Control (MAC) address for each given pool address, in order
to pass data to that NAT device.

Source NAT | 219

The Proxy ARP feature allows the SRX device to respond to these ARP requests on
behalf of the pool addresses, and in so doing, the SRX device provides its own MAC
address as the Ethernet layer destination for packets sent to a pool address at the IP
layer. Once packets are received, the SRX device continues flow processing as normal.

Implementing proxy ARP

Now you will put the Proxy ARP feature to use by creating a new source NAT rule-set
for the Dept-B zone network. First, enter configuration mode and move to the source
NAT configuration hierarchy:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat source

Configure a new source NAT pool from a portion of the Inet zone interface’s IP network
range:

[edit security nat source]
james@SRX5800-1# set pool phyPool address 198.18.5.64/27

Now create a new rule-set that will utilize the new pool:

[edit]
james@SRX5800-1# edit rule-set Dept-B-to-Inet

Use the set command to configure the new rule-set for traffic originated from the Dept-
B zone:

[edit security nat source rule-set Dept-B-to-Inet]
james@SRX5800-1# set from zone Dept-B

And for traffic destined to the Inet zone:

[edit security nat source rule-set Dept-B-to-Inet]
james@SRX5800-1# set to zone Inet

Move the configuration prompt to the rule hierarchy:

[edit security nat source rule-set Dept-B-to-Inet]
james@SRX5800-1# edit rule phypoolNAT

Use the set command to configure the rule to match flows originated from a source IP
address in the 10.2.0.0/16 range:

[edit security nat source rule-set Dept-B-to-Inet rule phypoolNAT]
james@SRX5800-1# set match source-address 10.2/16

And then to take the new phyPool pool as a source NAT action:

[edit security nat source rule-set Dept-B-to-Inet rule phypoolNAT]
james@SRX5800-1# set then source-nat phyPool

Next you move the configuration prompt up three levels in the hierarchy:

220 | Chapter 5: Network Address Translation

[edit security nat source rule-set Dept-B-to-Inet rule phypoolNAT]
james@SRX5800-1# up 3

And here you configure Proxy ARP for the 198.18.5.64/27 range (the same as the
phyPool address pool) on the ge-0/0/2.0 interface (which is within the Inet zone):

[edit security nat]
james@SRX5800-1# set proxy-arp interface ge-0/0/2.0 address 198.18.5.64/27
 [edit security nat]

Use the show command to see the completed Proxy ARP, NAT pool, and rule-set con-
figuration changes for Dept-B:

james@SRX5800-1# show | compare
[edit security nat source]
 pool ipPool { ... }
+ pool phyPool {
+ address {
+ 198.18.5.64/27;
+ }
+ }
[edit security nat source]
 rule-set Dept-A-to-Inet { ... }
+ rule-set Dept-B-to-Inet {
+ from zone Dept-B;
+ to zone web-dmz;
+ rule phypoolNAT {
+ match {
+ source-address 198.18.11.0/24;
+ }
+ then {
+ source-nat {
+ pool {
+ phyPool;
+ }
+ }
+ }
+ }
+ }
[edit security nat]
+ proxy-arp {
+ interface ge-0/0/2.0 {
+ address {
+ 198.18.5.64/27;
+ }
+ }
+ }

And after confirming, commit the new configuration:

[edit security nat]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

Source NAT | 221

The source addresses of flows originated from the Dept-B zone’s 10.2.0.0/16 IP address
range toward the Inet zone will now be translated by the SRX device to the
198.18.5.64/27 address pool that exists within the SRX device’s egress Inet zone net-
work. The SRX device will now also answer ARP requests for addresses in the same
198.18.5.64/27 range when they’re received on the ge-0/0/2.0 interface.

Viewing proxy ARP in action

Now you see a flow translated via the new rule-set:

james@SRX5800-1> show security flow session
Session ID: 2336, Policy name: webdmz_mgt/8, Timeout: 1796
 In: 10.2.1.15/49842 --> 198.18.200.1/80;tcp, If: ge-0/0/0.0
 Out: 198.18.200.1/80 --> 198.18.5.78/2615;tcp, If: ge-0/0/2.0

1 sessions displayed

james@SRX5800-1>

Here, the internal source IP address 10.2.1.15 is translated to the 198.18.5.78 pool
address (visible in the Out return direction) while the source port is translated from
49842 to 2615. PAT overloading is engaged (as it was not specifically disabled).

The corresponding traffic log for this flow is:

james@SRX5800-1> show log traffic-log
Jan 19 09:41:59 SRX210 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.2.1.15/49842->198.18.200.1/80 junos-http 198.18.5.78/2615->198.18.200.1/80
phypoolNAT None 6 webdmz_mgt Dept-B web-dmz 2336

james@SRX5800-1>

This session initiation log entry shows the translation of the internal source IP address
and port from 10.2.1.15 and 49842 to the public address and port of 198.18.5.78 and
2615. It also shows the matching NAT rule (phypoolNAT).

Show the new rule in the operational CLI:

james@SRX5800-1> show security nat source rule phypoolNAT

source NAT rule: phypoolNAT Rule-set: Dept-B-to-Inet
 Rule-Id : 2
 Rule position : 1
 From zone : Dept-B
 To zone : Inet
 Match
 Source addresses : 198.18.5.64 - 198.18.5.95
 Action : phyPool
 Persistent NAT type : N/A
 Inactivity timeout : 0
 Max session number : 0
 Translation hits : 1

james@SRX5800-1>

222 | Chapter 5: Network Address Translation

And the new pool:

james@SRX5800-1> show security nat source pool all
Total pools: 1

Pool name : phyPool
Pool id : 5
Routing instance : default
Host address base : 0.0.0.0
Port : [1024, 63487]
Total addresses : 32
Translation hits : 1
Address range Single Ports Twin Ports
 198.18.5.64 - 198.18.5.95 1 0

james@SRX5800-1>

Persistent NAT
The persistent NAT feature in the SRX makes it possible to maintain address and port
translation mappings over time and across multiple flows. True to its name, it literally
makes NAT a persistent behavior.

Persistent NAT behavior was often called Cone NAT in the past.

Here you will run through an example persistent NAT implementation. Persistent NAT
is configured in the SRX under the hierarchy for pool actions within a source NAT rule.

Implementing persistent NAT

You’ll get started by moving the configuration prompt to the right hierarchy within the
source NAT rule:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat source rule-set Dept-B-to-Inet
rule phypoolNAT then source-nat pool persistent-nat

Check out the command-line help for the persistent NAT hierarchy:

[edit security nat source rule-set Dept-B-to-Inet rule poolNAT
then source-nat pool persistent-nat]
james@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 inactivity-timeout Inactivity timeout value (60..7200)

Source NAT | 223

 max-session-number The maximum session number value (8..100)
> permit Persistent NAT permit configure

The inactivity-timeout option defines how long a persistent NAT mapping will re-
main in the persistent NAT table. The value is defined in increments of seconds from
a minimum of one minute to a maximum of two hours. The default is five minutes.

The max-session-number option defines how many concurrent entries may be created
in the session table for a given persistent NAT mapping. The default is 30 sessions, but
this can be tuned to between eight and 100 concurrent sessions.

Use command-line help again to find the permissible types of persistent NAT
mappings:

[edit security nat source rule-set Dept-B-to-Inet rule poolNAT
then source-nat pool persistent-nat]
james@SRX5800-1# set permit ?
Possible completions:
 any-remote-host Permit any remote host
 target-host Permit target host
 target-host-port Permit target host port

Once enabled, all of these options ensure that any flows initiated from a given internal
IP address and port pair are translated to the same public IP address and port pair
consistently for the duration of the persistent NAT mapping. The distinction between
them is in the externally initiated traffic which is translated by the NAT rule.

The any-remote-host option allows translations for all external hosts initiating traffic
into the public IP address on which the internal host is being translated by the persistent
NAT mapping. Of course, security policy continues to be evaluated and may block the
externally initiated flows depending on the configuration. (See Chapter 3 for more
information on security policy configuration.)

The target-host option differs in that it only permits the translation of externally ini-
tiated flows from hosts that have already received flows initiated from the internal host
with the persistent NAT mapping. Any external host which has not received traffic
initiated from the internal host will not be translated by the NAT rule.

The target-host-port option goes one step further by only allowing the translation of
externally initiated flows on the specific ports on which the external hosts have received
traffic initiated from the internal host within the persistent NAT mapping. Any exter-
nally initiated flow that does not match both the IP addresses and ports of a previous
internally initiated flow in the persistent NAT mapping will fail to be translated. In this
example, you configure the target-host-port option:

[edit security nat source rule-set Dept-B-to-Inet rule poolNAT
then source-nat pool persistent-nat]
james@SRX5800-1# set permit target-host-port

Check the completed persistent NAT configuration changes:

[edit security nat source rule-set Dept-B-to-Inet rule poolNAT
then source-nat pool persistent-nat]

224 | Chapter 5: Network Address Translation

james@SRX5800-1# show | compare
[edit security nat source rule-set Dept-B-to-Inet rule poolNAT
then source-nat pool]
+ persistent-nat {
+ permit target-host-port;
+ }

And commit the persistent NAT configuration on the SRX device:

[edit security nat source rule-set Dept-B-to-Inet rule poolNAT
then source-nat pool]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

james@SRX5800-1>

Viewing persistent NAT in action

Now you view a flow translated via the new persistent NAT configuration:

james@SRX5800-1> show security flow session
Session ID: 60178, Policy name: webdmz_mgt/14, Timeout: 1768
 In: 10.2.1.17/52538 --> 198.18.200.1/80;tcp, If: ge-0/0/0.0
 Out: 198.18.200.1/80 --> 198.18.5.68/16754;tcp, If: ge-0/0/2.0

1 sessions displayed
james@SRX5800-1>

As you can see in the session table output, the internal source IP address 10.2.1.17 and
source port 52538 are translated to the 198.18.5.68 pool address and 16754 source
port (visible in the Out return direction).

Next you see the corresponding traffic logs for this flow:

james@SRX5800-1> show log traffic-log
Feb 1 03:44:19 SRX210 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
10.2.1.17/52538->198.18.200.1/80 None 198.18.200.159/16754->198.18.200.1/80
phypoolNAT None 6 webdmz_mgt Dept-B Inet 60023

Feb 1 03:44:40 SRX210 RT_FLOW: RT_FLOW_SESSION_CLOSE: session closed TCP FIN:
10.2.1.17/52538->198.18.200.1/80 None 198.18.200.159/16754->198.18.200.1/80
phypoolNAT None 6 webdmz_mgt Dept-B Inet 60023 8(1145) 5(1036) 22

james@SRX5800-1>

Here the log entries each show the translation of the internal source IP address and port
from 10.2.1.17 and 52538 to the public address and port of 198.18.5.68 and 16754.
They also show the matching NAT rule (phypoolNAT).

Now look at the modified rule in the operational CLI:

james@SRX5800-1> show security nat source rule phypoolNAT

source NAT rule: phypoolNAT Rule-set: Dept-B-to-Inet
 Rule-Id : 2

Source NAT | 225

 Rule position : 1
 From zone : Dept-B
 To zone : Inet
 Match
 Source addresses : 198.18.5.64 - 198.18.5.95
 Action : phyPool
 Persistent NAT type : target-host-port
 Inactivity timeout : 300
 Max session number : 8
 Translation hits : 110

james@SRX5800-1>

Here the key change is that the Action now shows a specific persistent NAT type
(target-host-port), persistent NAT inactivity timeout (300), and maximum number of
sessions per persistent NAT mapping (8).

Here you see that the pool itself has not been changed:

james@SRX5800-1> show security nat source pool all
Total pools: 1

Pool name : phyPool
Pool id : 5
Routing instance : default
Host address base : 0.0.0.0
Port : [1024, 63487]
Total addresses : 32
Translation hits : 2
Address range Single Ports Twin Ports
 198.18.5.64 - 198.18.5.95 1 0

james@SRX5800-1>

And last is the most significant operational CLI distinction between working with a
persistent NAT and an ordinary source NAT:

james@SRX5800-1> show security nat source persistent-nat-table all
Internal Reflective Source Type
Left_time/ Curr_Sess_Num/ Source
 In_IP In_Port Ref_IP Ref_Port NAT Pool
Conf_time Max_Sess_Num NAT Rule
10.2.1.17 52538 198.18.5.68 16754 phyPool target-host-port 186/300
 0/8 phypoolNAT

james@SRX5800-1>

You can see that persistent NAT maintains a separate mapping in a persistent NAT
table that includes:

• The pre-translation source IP address (10.2.1.17)

• The pre-translation source port (52538)

• The post-translation source IP address (198.18.5.68)

• The post-translation source port (16754)

226 | Chapter 5: Network Address Translation

• The source NAT pool (phyPool)

• The persistent NAT mode (target-host-port)

• The time left for this persistent NAT mapping in seconds (186)

• The timeout configured for this mapping in seconds (300)

• The current number of sessions using this persistent NAT mapping (0)

• The maximum number of sessions that may use this mapping (8)

• The matching source NAT rule (phypoolNAT)

The maintenance of this persistent NAT mapping table, and the resultant association
of future translations with this persistent mode of NAT, is the key distinction between
persistent NAT and traditional source NAT.

Case Study 5-1: ISP Redundancy via PAT
When an organization is unable to obtain adequate public IPv4 address space (and is
thus in need of PAT overloading), it is usually also the case that the organization’s
address space is too small to meet the minimum requirements for global routing ad-
vertisement. For instance, large Internet service providers (ISPs) will decline to accept
route advertisements smaller than /24 address blocks from peers.

If an organization has been designated with an address block smaller than a /24 by its
upstream ISP, it isn’t possible to implement a redundant advertisement of this address
block. The address block will be summarized into a larger address block, owned by the
ISP, when it is advertised on to the ISP’s global Internet peers, as shown in Figure 5-9.

The challenge with this approach is that any flap of the organization’s connectivity with
its upstream ISPs will remain invisible to the global Internet community. The adver-
tisement of the upstream ISP’s larger summarized block will be entirely unaffected by
a loss of connectivity to any one downstream customer. Traffic to the small organiza-
tion’s address block will simply be black-holed down an unusable path in the event of
a connectivity failure.

An imperfect, but necessary, solution to this challenge is the implementation of distinct
PAT rules per upstream ISP, as shown in Figure 5-9. Each ISP will provide its own
globally routable address space. These two ranges of addresses are then separately ad-
vertised within these ISPs’ own larger summarized blocks of address space. In this way,
the customer organization has two distinct paths to the public Internet via these two
ISPs, but the return path for each ISP is to a different block of address space.

The redundancy exists in the received routes (likely just a default route, as shown in
Figure 5-9). Traffic leaves the customer via whichever ISP’s route is preferred. It is
translated according to the specific PAT rule implemented for that egress zone. This
NAT rule then uses the egress ISP’s address block for the PAT. The return traffic comes
back via the correct ISP through the summarized route, containing this PAT pool, which
is advertised to the global Internet.

Source NAT | 227

In the event of a failover, the traffic exits via the other ISP and the different PAT rule
for that ISP’s egress zone. The traffic would thereby return through that second ISP’s
own summarized address advertisement containing this second different PAT pool.

Although many applications will break as connectivity is failed over to the redundant
path (as the translated source IP addresses will change for the hosts), it would none-
theless be possible to restart many applications and user flows following the failover.
This would provide a level of redundancy, though a very imperfect one.

Implementing redundant ISP PAT

You will implement a redundant ISP PAT configuration step by step over the next few
pages. The first step is to enter configuration mode and create a source PAT address
pool for traffic to ISP-A:

Figure 5-9. ISP redundancy via PAT

228 | Chapter 5: Network Address Translation

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat source

[edit security nat source]
james@SRX5800-1# set pool ISP-A-Pool address 198.18.8.72/29

Then a source PAT address pool is created for traffic to ISP-B:

[edit security nat source]
james@SRX5800-1# set pool ISP-B-Pool address 198.18.130.48/29

Now a source NAT rule-set is created for traffic from Dept-A to ISP-A:

[edit]
james@SRX5800-1# edit rule-set Dept-A-to-ISP-A

[edit security nat source rule-set Dept-A-to-ISP-A]
james@SRX5800-1# set from zone Dept-A

[edit security nat source rule-set Dept-A-to-ISP-A]
james@SRX5800-1# set to zone ISP-A

Now you configure the NAT rule-set for traffic from Dept-A to ISP-A to match all traffic
(source-address 0/0) and translate to the ISP-A-Pool address pool that you created
earlier:

[edit security nat source rule-set Dept-A-to-ISP-A]
james@SRX5800-1# set rule ISP-A-PAT match source-address 0/0

[edit security nat source rule-set Dept-A-to-ISP-A]
james@SRX5800-1# set rule ISP-A-PAT then source-nat pool ISP-A-Pool

And now you create a separate source NAT rule-set for traffic from Dept-A to ISP-B:

[edit security nat source rule-set Dept-A-to-ISP-A]
james@SRX5800-1# up

[edit security nat source]
james@SRX5800-1# edit rule-set Dept-A-to-ISP-B

[edit security nat source rule-set Dept-A-to-ISP-B]
james@SRX5800-1# set from zone Dept-A

[edit security nat source rule-set Dept-A-to-ISP-B]
james@SRX5800-1# set to zone ISP-B

The NAT rule-set for traffic from Dept-A to ISP-B is configured to match all traffic
(source-address 0/0) and translate to the ISP-B-Pool address pool created earlier:

[edit security nat source rule-set Dept-A-to-ISP-B]
james@SRX5800-1# set rule ISP-B-PAT match source-address 0/0

[edit security nat source rule-set Dept-A-to-ISP-B]
james@SRX5800-1# set rule ISP-B-PAT then source-nat pool ISP-B-Pool

Source NAT | 229

Check your completed redundant ISP PAT configuration:

[edit security nat source rule-set Dept-A-to-ISP-B]
james@SRX5800-1# show | compare
[edit security nat source]
+ pool ISP-A-Pool {
+ address {
+ 198.18.8.72/29;
+ }
+ }
+ pool ISP-B-Pool {
+ address {
+ 198.18.130.48/29;
+ }
+ }
+ rule-set Dept-A-to-ISP-A {
+ from zone Dept-A;
+ to zone ISP-A;
+ rule ISP-A-PAT {
+ match {
+ source-address 0.0.0.0/0;
+ }
+ then {
+ source-nat {
+ pool {
+ ISP-A-Pool;
+ }
+ }
+ }
+ }
+ }
+ rule-set Dept-A-to-ISP-B {
+ from zone Dept-A;
+ to zone ISP-B;
+ rule ISP-B-PAT {
+ match {
+ source-address 0.0.0.0/0;
+ }
+ then {
+ source-nat {
+ pool {
+ ISP-B-Pool;
+ }
+ }
+ }
+ }
+ }

Everything looks good. Commit the configuration to complete your work:

[edit security nat source rule-set Dept-A-to-ISP-B]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

james@SRX5800-1>

230 | Chapter 5: Network Address Translation

Conclusion
Our review of Source NAT on the SRX covered a very powerful set of tools for modifying
the source IP addresses and TCP/UDP ports of IP packets. You learned about interface
NAT, pool NAT (both with and without PAT), Proxy ARP, and persistent NAT. With
these simple tools, you can now fulfill the great majority of real-world NAT needs. But
not quite all. In the next sections, you will go on to learn about the two remaining pillars
of NAT on SRX devices: destination NAT and static NAT.

Destination NAT
Destination NAT enables the translation of one destination address to another, a des-
tination address and port to another destination address and port, or a group of des-
tination addresses to another group of equal size. Figure 5-10 shows a simple example
where a public IP address is mapped directly to a private internal IP address while
maintaining the original port number.

Figure 5-10. Destination NAT

Destination NAT in SRX Junos is a superset of ScreenOS VIP and security policy des-
tination translations. Figure 5-11 shows the equivalent of a ScreenOS VIP translation
where both the destination port and destination IP address are translated.

Destination NAT is most commonly used for hiding internal servers, migrating servers,
or mapping different services on a single public address to multiple internal systems.

Figure 5-12 shows a snippet of our book’s topology (see Figure P-1 in the Preface), the
Internal-Servers network of Organization-XYZ and its path through the core SRX5800
cluster to the public Internet. In Chapter 3, the necessary security policies were con-
figured to allow inbound Internet traffic to the Internal-Servers network’s devices. But
like Dept-A and Dept-B earlier, the IPv4 address space used for Internal-Servers is not
globally routable. It is also private IPv4 address space as defined in RFC 1918.

Destination NAT | 231

Figure 5-12. Destination NAT with PAT

So, here your sample configuration objective is to implement a basic destination NAT
rule-set enabling global connectivity to the devices in the Internal-Servers network.

Implementing Destination NAT
Begin by entering configuration mode and moving the configuration prompt to the
destination NAT hierarchy:

Figure 5-11. Destination NAT with PAT

232 | Chapter 5: Network Address Translation

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat destination

Use the set command to create a destination NAT pool serverPool targeting a private
10.3.1.45 IP address on port 80:

[edit security nat destination]
james@SRX5800-1# set pool serverPool address 10.3.1.45/32 port 80

Move the configuration prompt to the Internet rule-set hierarchy:

[edit security nat destination]
james@SRX5800-1# edit rule-set Internet

And again use the set command to configure the new rule-set for traffic originated from
the Inet zone:

[edit security nat destination rule-set Internet]
james@SRX5800-1# set from zone Inet

Destination NAT rule-sets do not use a to context as the destination route will not be
determined until after the destination IP address translation has been completed.

Move the configuration prompt to the serverNAT rule hierarchy:

[edit security nat destination rule-set Internet]
james@SRX5800-1# edit rule serverNAT

Use the set command to configure the rule to match all possible source addresses:

[edit security nat destination rule-set Internet rule serverNAT]
james@SRX5800-1# set match source-address 0/0

And once again to configure the rule to match a destination address of 198.18.12.1
specifically:

[edit security nat destination rule-set Internet rule serverNAT]
james@SRX5800-1# set match destination-address 198.18.12.1/32

Now configure the rule to match a destination port of 80:

[edit security nat destination rule-set Internet rule serverNAT]
james@SRX5800-1# set match destination-port 80

And finally, use the set command to configure the rule for translation via the server
Pool address pool defined earlier (10.3.1.45/32 port 80):

[edit security nat destination rule-set Internet rule serverNAT]
james@SRX5800-1# set then destination-nat pool serverPool

Now check your completed configuration changes:

[edit security nat destination rule-set Internet rule serverNAT]
james@SRX5800-1# show | compare
[edit security nat]
+ destination {

Destination NAT | 233

+ pool serverPool {
+ address 10.3.1.45/32 port 80;
+ }
+ rule-set Internet {
+ from zone Inet;
+ rule serverNAT {
+ match {
+ source-address 0.0.0.0/0;
+ destination-address 198.18.12.1/32;
+ destination-port 80;
+ }
+ then {
+ destination-nat pool serverPool;
+ }
+ }
+ }
+ }

Nice. Now commit the configuration so that the destination NAT rule-set takes effect:

[edit security nat destination rule-set Internet rule serverNAT]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

Viewing Destination NAT
Now you view a flow translated by the new destination NAT rule-set:

james@SRX5800-1> show security flow session destination-port 80
Session ID: 2416, Policy name: webdmz_mgt/8, Timeout: 1794
 In: 198.18.11.100/50073 --> 198.18.12.1/80;tcp, If: ge-0/0/0.0
 Out: 10.3.1.45/80 --> 198.18.11.100/50073;tcp, If: ge-0/0/2.0

1 sessions displayed

james@SRX5800-1>

The output shows the flow initiated toward the 198.18.12.1 address on port 80 (match-
ing the serverNAT rule configured earlier). The return direction of the flow (Out) is
sourced from 10.3.1.45 on port 80 (the address and port pairing defined in the server
Pool address pool). Now you drill down into the log for the session creation:

james@SRX5800-1> show log traffic-log
Jan 19 09:59:08 SRX210 RT_FLOW: RT_FLOW_SESSION_CREATE: session created
198.18.11.100/50073->198.18.12.1/80 junos-http 198.18.11.100/50073->10.3.1.45/80
None serverNAT 6 webdmz_mgt trust web-dmz 2416

james@SRX5800-1>

And as you can see, the log shows much of the same information as in the session table
entry. The destination address and port are translated from 198.18.12.1 and 80 when

234 | Chapter 5: Network Address Translation

entering the Inet zone interface, to 10.3.1.45 and 80 when leaving the Internal-Servers
zone interface. The NAT rule performing the translation is also clearly shown (server
NAT). Now you view the summary of the destination NAT configuration:

james@SRX5800-1> show security nat destination summary
Total pools: 1
Pool name Address Routing Port Total
 Range Instance Addres
serverPool 10.3.1.45 - 10.3.1.45 default 80 1

Total rules: 1
Rule name Rule set From Action
serverNAT Internet Internal-Servers serverPool

james@SRX5800-1>

There is one rule named serverNAT within the Internet rule-set matching traffic from
the Internal-Servers zone, which is then translated via the serverPool address pool
containing the address 10.3.1.45 and port 80.

You examine the operational CLI output showing the destination NAT rule:

james@SRX5800-1> show security nat destination rule all
Total destination-nat rules: 1

Destination NAT rule: serverNAT Rule-set: Internet
 Rule-Id : 1
 Rule position : 1
 From zone : Internal-Servers
 Match
 Source addresses : Any - 255.255.255.255
 Destination addresses : 198.18.12.1 - 198.18.12.1
 Action : serverPool
 Destination port : 80
 Translation hits : 2

james@SRX5800-1>

And here you see the serverNAT rule in the Internet rule-set matching traffic from the
Internal-Servers zone with any source address and a 198.18.12.1 destination address
and 80 destination port. This output shows that matching traffic is then translated via
the serverPool address pool. Two flows have been translated via this rule thus far
(Translation hits : 2). Now you take a look at the destination pool:

james@SRX5800-1> show security nat destination pool all
Total destination-nat pools: 1

Pool name : serverPool
Pool id : 1
Routing instance: default
Total address : 1
Translation hits: 2

Destination NAT | 235

Address range Port
 10.3.1.45 - 10.3.1.45 80

james@SRX5800-1>

Here the output shows the destination NAT pool serverPool with an address of
10.3.1.45 and port of 80. Two flows have been translated via this pool thus far
(Translation hits: 2).

Tracing Destination NAT Flows
And finally, here is the security flow traceoptions logfile output showing the first
translated packet of this flow.

james@SRX5800-1> show log NATtrace | trim 41
<198.18.11.100/50073->198.18.12.1/80;6> matched filter NATfilter:
packet [64] ipid = 64159, @423f279e
---- flow_process_pkt: (thd 1): flow_ctxt type 13, common flag 0x0,
mbuf 0x423f2600
 flow process pak fast ifl 68 in_ifp ge-0/0/0.0
 ge-0/0/0.0:198.18.11.100/50073->198.18.12.1/80, tcp, flag 2 syn
 find flow: table 0x4d5c8220, hash 16311(0xffff), sa 198.18.11.100,
da 198.18.12.1, sp 50073, dp 80, proto 6, tok 384
 no session found, start first path. in_tunnel - 0, from_cp_flag - 0
check self-traffic on ge-0/0/0.0, in_tunnel 0x0
 flow_first_create_session
 flow_first_in_dst_nat: in <ge-0/0/0.0>, out <N/A> dst_adr 198.18.12.1,
sp 50073, dp 80
 chose interface ge-0/0/0.0 as incoming nat if.
flow_first_rule_dst_xlate: DST xlate: 198.18.12.1(80) to 10.3.1.45(80),
rule/pool id 1/1.

The output shows the destination translation as the address 198.18.12.1 and port 80
are translated to 10.3.1.45 and 80. Note that the rule and pool identification numbers
(1 and 1) match the same identification numbers shown for the serverNAT rule and
serverPool address pool in the earlier operational CLI outputs. You examine a little
more output:

flow_first_routing: call flow_route_lookup(): src_ip 198.18.11.100, x_dst_ip
10.3.1.45, in ifp ge-0/0/0.0, out ifp N/A sp 50073, dp 80, ip_proto 6, tos 10
Doing DESTINATION addr route-lookup
 routed (x_dst_ip 10.3.1.45) from Inet (ge-0/0/0.0 in 0) to ge-0/0/2.0,
Next-hop: 10.3.1.45

And you find that having translated the destination IP address of the packet, the SRX
device now performs the destination route lookup on the translated 10.3.1.45 IP ad-
dress. The next hop identified is the directly connected 10.3.1.45 server, reachable via
the ge-0/0/2.0 interface.

236 | Chapter 5: Network Address Translation

Following the route lookup, the zones corresponding to the ingress and egress interfaces
are identified (Inet zone to Internal-Servers zone):

policy search from zone Inet-> zone Internal-Servers
 policy has timeout 900

So, the policy chain can now be searched successfully as well.

app 6, timeout 1800s, curr ageout 20s
flow_first_src_xlate: 198.18.11.100/50073 -> 198.18.12.1/80 | 10.3.1.45/80 ->
0.0.0.0/50073: nat_src_xlated: False, nat_src_xlate_failed: False
flow_first_src_xlate: src nat 0.0.0.0(50073) to 10.3.1.45(80) returns status: 0,
rule/pool id: 0/0, pst_nat: False.
 dip id = 0/0, 198.18.11.100/50073->198.18.11.100/50073
flow_first_get_out_ifp: 1000 -> cone nat test
 choose interface ge-0/0/2.0 as outgoing phy if
is_loop_pak: No loop: on ifp: ge-0/0/2.0, addr: 10.3.1.45, rtt_idx:0
policy is NULL (wx/pim scenario)
sm_flow_interest_check: app_id 0, policy 8, app_svc_en 0, flags 0x2.
not interested
sm_flow_interest_check: app_id 1, policy 8, app_svc_en 0, flags 0x2.
not interested
flow_first_service_lookup(): natp(0x4b6dc1d0): local_pak(0x3fdedc70.0x423f2600):
TCP proxy NOT interested: 0.
 service lookup identified service 6.
 flow_first_final_check: in <ge-0/0/0.0>, out <ge-0/0/2.0>
flow_first_final_check: flow_set_xlate_vector.
 existing vector list 1002-446f8628.
 Session (id:2416) created for first pak 1002
 flow_first_install_session======> 0x4b6dc1d0
 nsp 0x4b6dc1d0, nsp2 0x4b6dc23c
 make_nsp_ready_no_resolve()
 route lookup: dest-ip 198.18.11.100 orig ifp ge-0/0/0.0 output_ifp ge-0/0/0.0
orig-zone 6 out-zone 6 vsd 0
 route to 198.18.11.100

And now your last look through the remaining output shows that both directions
(wings) of the flow are installed successfully in the session table:

Installing c2s NP session wing
Installing s2c NP session wing
 flow got session.
 flow session id 2416
 tcp flags 0x2, flag 0x2
 Got syn, 198.18.11.100(50073)->198.18.12.1(80), nspflag 0x1021, 0x30
 post addr xlation: 198.18.11.100->10.3.1.45.
mbuf 0x423f2600, exit nh 0x50010
 ----- flow_process_pkt rc 0x0 (fp rc 0)

Here, the destination address and port translation from the configured serverNAT rule
and serverPool pool have taken effect statefully for both directions of the conversation.

Destination NAT | 237

Case Study 5-2: Virtual IP NAT
For your case study on destination NAT, a common NAT scenario is inherited from
the old ScreenOS VIP NAT feature. This is a destination NAT scenario where one public
IP address (the virtual IP address) appears to offer multiple public services, but in reality
is mapped to multiple function-specific internal servers, as shown in Figure 5-13.

Figure 5-13. Virtual IP with NAT

This form of NAT allows best-of-breed servers to be leveraged for each server applica-
tion, while one common face (the virtual IP) is maintained to the public Internet
community.

For your case study, you’ll configure the virtual IP scenario shown in Figure 5-13 from
the Junos CLI.

Implementing VIP NAT

You begin by entering configuration mode and creating the destination NAT address
pool for the internal HTTP server (HTTP-VIP):

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat destination

[edit security nat destination]
james@SRX5800-1# set pool HTTP-VIP address 10.1.1.1 port 80

Create the destination NAT address pool for the internal DNS server (DNS-VIP):

238 | Chapter 5: Network Address Translation

[edit security nat destination]
james@SRX5800-1# set pool DNS-VIP address 10.1.1.2 port 53

Create the destination NAT address pool for the internal IMAP server (IMAP-VIP):

[edit security nat destination]
james@SRX5800-1# set pool IMAP-VIP address 10.1.1.3 port 143

Create the new destination NAT rule-set (Virtual-IP) for traffic initiated from the Inet
zone:

[edit security nat destination]
james@SRX5800-1# edit rule-set Virtual-IP

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set from zone Inet

Create a new destination NAT rule for mapping HTTP traffic destined to the public IP
address through to the private HTTP server:

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule HTTP match destination-address 198.18.5.72

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule HTTP match destination-port 80

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule HTTP then destination-nat pool HTTP-VIP

Create a new destination NAT rule for mapping DNS traffic destined to the public IP
address through to the private DNS server:

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule DNS match destination-address 198.18.5.72

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule DNS match destination-port 53

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule DNS then destination-nat pool DNS-VIP

Finally, create a new destination NAT rule for mapping IMAP traffic destined to the
public IP address through to the private IMAP server:

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule IMAP match destination-address 198.18.5.72

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule IMAP match destination-port 143

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# set rule IMAP then destination-nat pool IMAP-VIP

Examine your destination NAT configuration changes:

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# show | compare
[edit security nat destination]

Destination NAT | 239

+ pool HTTP-VIP {
+ address 10.1.1.1/32 port 80;
+ }
+ pool DNS-VIP {
+ address 10.1.1.2/32 port 53;
+ }
+ pool IMAP-VIP {
+ address 10.1.1.3/32 port 143;
+ }
+ rule-set Virtual-IP {
+ from zone Inet;
+ rule HTTP {
+ match {
+ destination-address 198.18.5.72/32;
+ destination-port 80;
+ }
+ then {
+ destination-nat pool HTTP-VIP;
+ }
+ }
+ rule DNS {
+ match {
+ destination-address 198.18.5.72/32;
+ destination-port 53;
+ }
+ then {
+ destination-nat pool DNS-VIP;
+ }
+ }
+ rule IMAP {
+ match {
+ destination-address 198.18.5.72/32;
+ destination-port 143;
+ }
+ then {
+ destination-nat pool IMAP-VIP;
+ }
+ }
+ }

That should do the trick. Now you can commit and go get a drink!

[edit security nat destination rule-set Virtual-IP]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

james@SRX5800-1>

Static NAT
Static NAT enables the translation of flows initiated both to and from a configured
address or range of addresses. It accomplishes in one rule-set what would otherwise
require a combination of separate source and destination NAT rule-sets. Static

240 | Chapter 5: Network Address Translation

translations are always between one address and another address, or one range of ad-
dresses and another of equal size. In other words, static NAT requires a one-to-one
correspondence between the pre-translation and post-translation addresses. Thus,
static NAT provides a simple and effective method of migrating systems to new address
space.

Figure 5-14 shows this bidirectional nature of static NAT, where a given host’s IP ad-
dress is translated whether it is initiating communication outbound or whether it is
receiving communication initiated from elsewhere inbound.

Static NAT in the SRX is a superset of ScreenOS MIP configuration.

Now you will walk through an example creating a static NAT rule-set that statically
translates flows originating from the Inet zone and destined to a specific /24 network.

First enter configuration mode and move the configuration prompt to the static NAT
rule-set hierarchy in Junos:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat static rule-set Internet

Now use the set command to configure the new static NAT rule-set for traffic origi-
nated from the Internal-Servers zone:

[edit security nat static rule-set Internet]
james@SRX5800-1# set from zone Inet

Figure 5-14. Static NAT

Static NAT | 241

Move the configuration prompt to the static NAT rule hierarchy:

[edit security nat static rule-set Internet]
james@SRX5800-1# edit rule 1to1NAT

Use the set command to match your new rule to flows destined toward the
198.18.31.0/24 address range (the public addresses of this particular static NAT):

[edit security nat static rule-set Internet rule 1to1NAT]
james@SRX5800-1# set match destination-address 198.18.31.0/24

And now configure the rule to translate matched traffic to the private 10.3.10.0/24
prefix:

[edit security nat static rule-set Internet rule 1to1NAT]
james@SRX5800-1# set then static-nat prefix 10.3.10/24

These last two commands have created a direct static NAT correspondence between
1.1.1.0/24 and 10.3.10.0/24. Flows initiated toward a destination of 1.1.1.1 will trans-
late to a destination of 10.3.10.1 (and vice versa: flows initiated from 10.3.10.1 will be
translated to a source of 1.1.1.1). And the same correspondence continues through the
range. Flows initiated toward 1.1.1.200 will be translated to 10.3.10.200 (and vice
versa: flows initiated from 10.3.10.200 will be translated to a source of 1.1.1.200).

Now check your completed static NAT configuration:

 [edit security nat static rule-set Internet rule 1to1NAT]
james@SRX5800-1# show | compare
[edit security nat]
+ static {
+ rule-set Internet {
+ from zone Inet;
+ rule 1to1NAT {
+ match {
+ destination-address 198.18.31.0/24;
+ }
+ then {
+ static-nat prefix 10.3.10.0/24;
+ }
+ }
+ }
+ }

And commit to the active configuration on the SRX device:

[edit security nat static rule-set Internet rule 1to1NAT]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

You view your new static NAT rule here in the Junos operational CLI:

james@SRX5800-1> show security nat static rule all
Total static-nat rules: 1

Static NAT rule: 1to1NAT Rule-set: Internet
 Rule-Id : 1

242 | Chapter 5: Network Address Translation

 Rule position : 3
 From zone : Inet
 Destination addresses : 198.18.31.0
 Host addresses : 10.3.10.0
 Netmask : 255.255.255.0
 Host routing-instance : N/A
 Translation hits : 41859

Case Study 5-3: Double NAT
Double NAT occurs when both the source IP address and destination IP address leave
the translating system changed. Double NAT is commonly used for merging two net-
works with overlapping address space. This has become an increasingly common sce-
nario as more organizations have moved to using RFC 1918 private address space for
their internal addressing in an effort to overcome public IPv4 address exhaustion. When
these organizations merge, they are left with overlapping RFC 1918 addressing. In these
cases, double NAT must be leveraged until systems can be readdressed.

Figure 5-15 shows a double NAT scenario where the source client and destination
server share the identical IP address configuration. This seemingly impossible com-
munication scenario is made quite possible by double NAT.

Figure 5-15. Double NAT

For this double NAT case study, you will create a double NAT configuration facilitating
communication between Org-A and Org-B routing instances with overlapping
10.1.0.0/16 IP address space.

Enter configuration mode and create a new rule-set for traffic originated in the Org-A
routing instance:

james@SRX5800-1> edit
Entering configuration mode

[edit]
james@SRX5800-1# edit security nat static rule-set Org-A-to-Org-B

Static NAT | 243

[edit security nat static rule-set Org-A-to-Org-B]
james@SRX5800-1# set from routing-instance Org-A

Configure a rule-set matching traffic destined to the public IP address range designated
for Org-B (172.31.0.0/16) and translate it to the overlapping private address range
(10.1.0.0/16) for communication with the real Org-B hosts:

[edit security nat static rule-set Org-A-to-Org-B]
james@SRX5800-1# set rule Orb-B-hide match destination-address 172.31/16

[edit security nat static rule-set Org-A-to-Org-B]
james@SRX5800-1# set rule Orb-B-hide then static-nat prefix 10.1/16

Now use the up command to move your configuration prompt and create a new rule-
set matching traffic destined to the public IP address range designated for Org-A
(172.30.0.0/16) and translate it to the overlapping private address range (10.1.0.0/16),
for communication with the real Org-A hosts:

[edit security nat static rule-set Org-A-to-Org-B]
james@SRX5800-1# up

[edit security nat static]
james@SRX5800-1# edit rule-set Org-B-to-Org-A

[edit security nat static rule-set Org-B-to-Org-A]
james@SRX5800-1# set from routing-instance Org-B

[edit security nat static rule-set Org-B-to-Org-A]
james@SRX5800-1# set rule Org-A-hide match destination-address 172.30/16

[edit security nat static rule-set Org-B-to-Org-A]
james@SRX5800-1# set rule Org-A-hide then static-nat prefix 10.1/16

As always, it is best to review your configuration before making it active on your SRX
device:

[edit security nat static rule-set Org-B-to-Org-A]
james@SRX5800-1# show | compare
[edit security]
+ nat {
+ static {
+ rule-set Org-A-to-Org-B {
+ from routing-instance Org-A;
+ rule Orb-B-hide {
+ match {
+ destination-address 172.31.0.0/16;
+ }
+ then {
+ static-nat prefix 10.1.0.0/16;
+ }
+ }
+ }
+ rule-set Org-B-to-Org-A {
+ from routing-instance Org-B;
+ rule Org-A-hide {

244 | Chapter 5: Network Address Translation

+ match {
+ destination-address 172.30.0.0/16;
+ }
+ then {
+ static-nat prefix 10.1.0.0/16;
+ }
+ }
+ }
+ }
+ }
[edit]
+ routing-instances {
+ Org-A {
+ instance-type virtual-router;
+ }
+ Org-B {
+ instance-type virtual-router;
+ }
+ }

Your careful review has approved the double NAT configuration and you commit to the
active configuration on your SRX device. You can now move on to concluding this
chapter with a review and some study questions.

[edit security nat static rule-set Org-B-to-Org-A]
james@SRX5800-1# commit and-quit
commit complete
Exiting configuration mode

james@SRX5800-1>

Summary
You covered a lot of ground in this chapter implementing an array of source, destina-
tion, and static address translations on SRX devices. You are now empowered to solve
a wide array of address translation projects in the real world.

Whether grappling with the global challenge of IPv4 address exhaustion, the more local
challenge of corporate mergers, or simply implementing unique server DMZs in a data
center, you now have the tools to solve these challenges with grace and ease.

Chapter Review Questions
1. What is NAT?

2. What is source NAT?

3. What is destination NAT?

4. What is static NAT?

5. What is PAT?

Chapter Review Questions | 245

6. What is a pool?

7. What type of NAT hides hosts behind an interface address in Junos for the SRX?

8. What type of NAT is best used for overcoming IPv4 address exhaustion?

9. What type of NAT is best used for hiding servers in a data center?

10. What type of NAT is best used for integrating overlapping privately addressed
networks during corporate mergers?

Chapter Review Answers
1. NAT stands for Network Address Translation. It is the translation of IP addresses

and TCP/UDP ports in the headers of IP packets.

2. Source NAT is the translation of source IP addresses and TCP/UDP ports in the
headers of IP packets.

3. Destination NAT is the translation of destination IP addresses and TCP/UDP ports
in the headers of IP packets.

4. Static NAT is the symmetrical translation of flows for a given IP prefix whether it
is initiating the flows as the source, or receiving them as the destination.

5. PAT stands for Port Address Translation. It is a subset of NAT where TCP/UDP
ports are translated. The most typical variant of PAT is source PAT where a larger
private source address range is overloaded to a smaller public address range. This
is typically accomplished through PAT overloading. PAT overloading occurs when
more than one private IP address shares the same public IP address. This is achieved
by using different TCP/UDP ports of the same public IP address.

6. A pool is an IP prefix, IP range, or collection of IP prefixes and/or IP ranges that
can be used for translating either the source or destination IP addresses in the
headers of IP packets. Pools may also define TCP/UDP port ranges for PAT.

7. Interface NAT is accomplished through the source NAT feature set in Junos for
the SRX.

8. Source NAT is best used for overcoming IPv4 address exhaustion by hiding the
source IP addresses of privately addressed hosts behind one or more public IP
addresses.

9. Destination NAT is the most effective tool for hiding the real IP addresses of sys-
tems providing services for other devices on the network.

10. Static NAT is the most effective tool for integrating overlapping private IP address
ranges. Static NAT can most easily be applied to large IP prefixes where hosts will
need to both initiate and receive translated traffic.

246 | Chapter 5: Network Address Translation

CHAPTER 6

IPsec VPN

The SRX product suite combines the robust IP Security virtual private network (IPsec
VPN) features from ScreenOS into the legendary networking platform of Junos. IPsec
VPNs have become a central component of modern computer networks for securing
the data between different sites and remote users. As more critical applications and
sensitive information has been transferred into electronic format, the demand to secure
this information has grown. IPsec VPNs are sometimes confused with Layer 2 or Layer
3 VPNs which do not actually encrypt the data, but rather tunnel the traffic that flows
through the VPNs; however, IPsec VPNs are VPNs that provide encryption and au-
thentication to secure traffic. In the past, IPsec VPNs were widely used out of
convenience to securely deliver data between sites, and also to provide remote access
for mobile users. After numerous high-profile security breaches resulting in the com-
promise of sensitive data, many regulations (PCI, SOX, HIPAA) have been enacted to
help prevent such incidents. Although the high-profile data breaches were not the result
of compromise from a lack of IPsec VPNs, many of these regulations require that data
is encrypted in transit and at rest. Since VPNs satisfy the encryption of data in transit,
they have been widely deployed for this purpose.

There are two high-level uses for IPsec VPNs: to secure data between two or more
computer networks, and to secure data between a remote user and a computer network.
This chapter details the technologies behind both site-to-site and remote access VPNs
and how these technologies are implemented on the SRX. After a thorough discussion
of the technology and the implementation of the IPsec VPNs on the SRX, we will ex-
amine verification and troubleshooting features and conclude with some case studies
to provide you with a few real-world implementation examples.

247

VPN Architecture Overview
VPNs not only secure communication between two devices, but they also create a vir-
tual channel that data can traverse. In this section, we will examine two primary VPN
architectures: site-to-site and remote access. Although the underlying technologies are
essentially the same, the manner in which the VPNs interconnect varies between the
different models.

Site-to-Site IPsec VPNs
Site-to-site IPsec VPNs connect two sites together to allow for secure communication
between the two sites, as shown in Figure 6-1. Site-to-site VPNs are most often deployed
to secure data between sites in an organization, or between an organization and a part-
ner organization. Site-to-site VPNs are more common over the Internet than across
private networks; however, many organizations are encrypting data between sites on
private networks, to secure the communication. Internet site-to-site VPNs also offer a
cost and availability benefit over private site-to-site links, making them a good choice
for securing data, especially when performance is not a major concern. The Internet
site-to-site VPNs may also serve as a backup link to private links, in the event the private
link should fail. There are a couple of variations of site-to-site VPNs besides the direct
site-to-site architecture; these include hub and spoke, full mesh, and multipoint VPNs.

Figure 6-1. Sample site-to-site VPN

248 | Chapter 6: IPsec VPN

Hub and Spoke IPsec VPNs
Many enterprise networks have one or more large offices, with multiple branch offices.
In some cases, branch offices need to access resources in all other branches; in other
cases, they may only need to access resources in the central sites. In the latter case, hub
and spoke VPN networks provide a simple method of accomplishing this goal, as il-
lustrated in Figure 6-2. Each remote site connects into the central site, but they do not
connect into each other directly; rather, they connect through the central site, hence
the hub and spoke moniker.

Figure 6-2. Sample hub and spoke VPN

VPN Architecture Overview | 249

From a management perspective, hub and spoke networks are straightforward to ad-
minister since all spokes connect to the hub. They are easy to scale because there is a
minimum amount of state that must be maintained. (Only N VPNs must be maintained,
where N is the number of VPNs, or remote sites; full mesh VPNs, which we will discuss
next, require N(N − 1)/2 VPNs. This means that with 10 remote sites, only 10 VPNs
would need to be maintained in a hub and spoke network, whereas 25 would need to
be maintained in a full mesh network.) And finally, it is much easier to secure hub and
spoke networks, as well as provide services for each connected network, because the
security and services can be administered centrally at the hub rather than occurring at
all of the spokes (this, as you can imagine, equates to cost savings).

Full Mesh VPNs
Although hub and spoke VPNs might be commonplace because of their simplicity,
there are a few factors that might make this model undesirable for your particular
network. First, all traffic must go from the spoke to the hub and then to the other spoke
when trying to send traffic between spokes. This can result in a lag in performance and
can cause latency issues, as the hub site must process all of the traffic. This is a common
issue in modern networks that run real-time applications such as VoIP and video con-
ferencing, which are sensitive to bandwidth and latency issues and generally work bet-
ter when the sites can communicate directly with each other. Therefore, full mesh is
most typically implemented for connecting remote offices within an organization (and
is not so common between separate organizations) because it allows each site to com-
municate directly with all other sites, as shown in Figure 6-3. The disadvantages of full
mesh VPNs are the complexity of implementation (since all sites must be interconnec-
ted), the inability to scale, and the management overhead associated with maintaining
all of the VPNs.

Multipoint VPNs
Multipoint VPNs are a hybrid of hub and spoke and full mesh, and they attempt to
combine the advantages of each model, as depicted in Figure 6-4. In multipoint VPNs,
some spokes also have direct connections between each other to improve bandwidth
and latency without constricting the hub site. Suffice it to say that multipoint VPNs do
have some different mechanisms to establish themselves dynamically; they are typically
implemented to connect remote offices with the hub, and in some cases with each other,
within an organization.

250 | Chapter 6: IPsec VPN

The obvious advantage of multipoint VPNs is that the remote offices still connect to
the hub, but also can connect to each other. This is common in environments with
some real-time applications that may need to connect to each other for performance
reasons. When a VPN must be established between spokes, the spokes negotiate the
connections dynamically, and shut the VPNs down after the communication has
ceased.

ScreenOS supported an example of multipoint VPNs, called auto-
connect VPNs (AC-VPNs). At the time of this writing, the SRX does not
support AC-VPNs.

Remote Access VPNs
Whereas site-to-site VPNs commonly connect sites together, another form of IPsec
VPN allows a remote user to connect to a true site for remote access. The underlying
technologies of site-to-site and remote access IPsec VPNs are essentially the same; the
main difference is that a site-to-site VPN is typically terminated between two VPN
gateways, such as two SRX platforms. There is no requirement for software on any of
the end systems. In fact, the end systems do not have to be aware that there is a VPN
at all; the VPN is completely transparent to the end systems, the applications, and the

Figure 6-3. Sample full mesh VPN

VPN Architecture Overview | 251

users. The problem is that site-to-site VPNs are not always possible to implement be-
cause of the requirement for the additional hardware. To help alleviate this
requirement, and empower remote users to be able to access corporate resources, re-
mote access VPNs are used to provide this functionality.

Remote access VPNs are created by running software on the end systems which will
establish a VPN to the central site VPN gateway such as an SRX, as shown in Figure 6-5.

Remote access VPNs are commonly available in two forms: IPsec VPNs and SSL VPNs.
Although the functionality is essentially transparent to the user, there are differences
between IPsec VPNs and SSL VPNs:

Figure 6-4. Sample multipoint VPN

252 | Chapter 6: IPsec VPN

IPsec VPNs
IPsec VPNs utilize underlying Layer 3 encryption to establish secure VPNs between
a host and VPN gateway. The user traffic may or may not be tunneled, and IPsec
processing is optimized for processing network traffic. IPsec VPNs also are con-
sidered to have the strongest security of any kind of remote access.

SSL VPNs
SSL VPNs are widely deployed for their simplicity, in part because they often utilize
the Secure Sockets Layer (SSL) of a web browser (although SSL VPNs may also use
separate applications to process this traffic as well). SSL VPNs (including the Ju-
niper Networks Secure Access SSL VPN Gateway) gained popularity because of
their interoperability with end systems and their ability to function within most
networks.

Figure 6-5. Sample remote access VPN

IPsec VPN Concepts Overview
IPsec VPNs come in many different flavors and support a multitude of configuration
options in order to adapt to the needs of various networks while securing the data which
travels in the VPN. This adaptive variation, and the fact that IPsec VPNs are popularly
deployed, demand that we take a little time to demystify these options and provide you
with some insight into how the different features can be used.

IPsec VPN Concepts Overview | 253

IPsec Encryption Algorithms
Encryption serves VPNs by obfuscating unencrypted traffic into a form that only the
two sides of the VPN can understand. The SRX supports the use of the following
standards-based encryption algorithms for this purpose. (For the sake of brevity, we
have condensed our explanation of how the different encryption algorithms actually
function, and instead we examine the strength and performance impact.)

Data Encryption Standard (DES)
DES was one of the first widely deployed encryption algorithms for IPsec. It is
lightweight in terms of processing power; thus, this algorithm is more susceptible
to brute force attacks since there is not as large of a key space to encrypt the traffic.
It’s largely been replaced with the newer encryption algorithms of 3DES and AES.
Best security practices tend for DES not to be used unless security is not a concern,
and only basic encryption is desired.

Triple Data Encryption Standard (3DES)
3DES is a more powerful version of DES and subjects the data to additional rounds
of encryption, making it more difficult to identify clear-text traffic. Although 3DES
does require more processing power than DES, it is considered to be a safe algo-
rithm to implement for data that is of medium sensitivity.

Advanced Encryption Standard (AES)
AES is an encryption algorithm developed by the National Institute of Standards
and Technology (NIST) to provide secure and efficient encryption for very sensitive
data. AES comes in different key bit lengths, most commonly 128, 256, and 384—
the longer the key length the more secure the data. Note also that the longer the
key length, the more processing power is required to encrypt the data. AES should
be used to encrypt the most sensitive traffic.

IPsec Authentication Algorithms
IPsec authentication, also known as hashing, protects the authenticity of the source of
the encryption traffic. Without authentication, the two VPN endpoints would be un-
able to ensure that the traffic arrived unmodified, or even that it came from its original
source. IPsec authentication performs this task by using a hashing algorithm. A hashing
algorithm essentially calculates a special value based on the data which it hashes. Even
a change of a single bit of data results in a completely different hash result. Also, a hash
algorithm is meant to be nonreversible, so if an attacker had the result of the hash
algorithm, it would still be difficult for him to determine the original contents. Although
there is a possibility that two or more data sets could produce the same hash result,
this is very unlikely, and even if there is a collision whereby two values create the same
hash, it is unlikely that the two data sets would be interchangeable in clear-text form.

The SRX supports three different hash algorithms to provide IPsec authentication:

254 | Chapter 6: IPsec VPN

Message-Digest algorithm 5
MD5 is a widely deployed hash algorithm that consists of a 128-bit hash space.
Although acceptable as a hashing algorithm, it is not recommended for the most
sensitive applications.

Secure Hash Algorithm 1
SHA-1 is an improvement over MD5, using a more robust algorithm with a larger
key space (168-bit) to provide more security over MD5. SHA-1 is recommended
for sensitive data that needs more powerful security than MD5. SHA-1 is slowly
being replaced with the new SHA-2 algorithm, although deployment of SHA-2, at
the time of this writing, is not common.

Secure Hash Algorithm 2
SHA-2 is a very powerful secure hash algorithm which is supported on the SRX. It
uses a larger key space than both MD5 and SHA-1 to provide maximum security,
and also has some modifications to help maximize performance and security.

IKE Version 1 Overview
IPsec can establish a VPN in one of two ways: via the Internet Key Exchange (IKE)
protocol or via manual key exchange. Manual key exchange is exactly that: both sides
exchange the keys in some manual fashion (e.g., phone or email), and once everything
is configured the VPN can be established. IKE is a more involved process that negotiates
the VPN between both VPN endpoints. It should be strongly noted that using IKE to
negotiate VPNs between two endpoints is much more common and much more secure
than manual key exchange. IKE allows both sides to renegotiate VPNs on the fly so
that the encryption keys are constantly changing, making it more difficult for an eaves-
dropper to compromise the security of the network. Manual keys do not change (or at
least not automatically), so if the keys are somehow determined, administrative inter-
vention must take place to change the keys.

Two versions of the IKE standard are available: IKE version 1 and IKE version 2.

This book will focus on IKE version 1, as IKE version 2 is not supported
by the SRX at the time of this writing (although it is supported in
ScreenOS as of version 6.1).

Further, IKE negotiation takes place in two phases, known as Phase 1 and Phase 2. The
purpose of Phase 1 is to authenticate the identities of both sides of the VPN, and to
establish a secure communication channel between both sides for further negotiation.
In Phase 2, the remainder of the VPN negotiation process completes, and the encryption
keys are exchanged to be used to secure the data that traverses the VPN.

Let’s drill down just a little into Phase 1 and Phase 2 of IKE version 1 negotiations just
to ensure that you understand the process. Numerous options may be implemented,

IPsec VPN Concepts Overview | 255

and those options will be examined further in “Phase 1 IKE Negotiations”
on page 259.

IKE Phase 1

IKE Phase 1 is responsible for establishing a secure communication channel through
which to negotiate the VPN encryption keys. During this process, different messages
are exchanged between the two VPN gateways, depending on whether Phase 1 is ne-
gotiated in Main mode or in Aggressive mode (to be detailed shortly). In Phase 1, three
events take place, along with optional exchanges depending on the configuration. The
actual negotiation itself will vary depending on whether Main mode or Aggressive mode
is used.

1. The encryption and authentication algorithms to be used are negotiated to secure
the communication.

2. A secure communication channel is established using Diffie-Hellman key
exchange.

3. The peer’s identity is authenticated using either the preshared key or certificates,
along with the IKE identity.

4. Phase 1 will also negotiate various options such as Network Address Translation
traversal (NAT-T) and Dead Peer Detection (DPD).

During these initial Phase 1 IKE negotiations, a secure channel must be established
between the two VPN peers; however, a question may arise: how do you form a secure
communication channel that can be negotiated over an insecure network? The answer
is to use the Diffie-Hellman key exchange method. The intimate details of this exchange
are beyond the scope of this book and are not necessary to understand VPN configu-
ration. Suffice it to say that essentially, Diffie-Hellman key exchange uses public key
encryption whereby each party shares each other’s public keys, while retaining the
private keys. They then encrypt the authentication parameter (e.g., password) and send
it to the other peer, which decrypts it with their private key. This happens in both
directions. If both peers cannot successfully authenticate the other peer, Phase 1 cannot
be established.

Diffie-Hellman groups refer to the size of the key length used for negotiating the VPN.
There are several different groups, not all of which are supported by all vendors. When
setting up a VPN with another party, the Diffie-Hellman groups must match on both
peers; otherwise, the VPN connection will not establish, and error messages should
detail the failure. The larger the key length, the stronger it is considered to be, because
there are more possibilities for bit combinations. For instance, a 1-bit key would have
two values, 0 and 1. A 2-bit key would have four values, 0, 1, 2, and 3, which in binary
is 00, 01, 10, and 11. Therefore, the larger the key, the more possibilities for different
keys and the more difficult it is to guess the correct key used for encryption. Consider
these three groups and their escalating strength:

256 | Chapter 6: IPsec VPN

Group 1: 768-bit strength
Group 2: 1,024-bit strength
Group 5: 1,536-bit strength

IKE Phase 2

IKE Phase 2 is responsible for generating the encryption keys used to encrypt the data
traffic within the VPN. Just like in Phase 1, messages are exchanged between the two
VPN gateways, and there are some similarities. Unlike Phase 1, however, there is only
one negotiation mode, called Quick mode. In Quick mode, the following events always
occur during Phase 2:

1. The encryption and authentication algorithms to be used to encrypt the data traffic
are negotiated.

2. The method to be used to encrypt the data traffic is negotiated: either Encapsu-
lating Security Payload (ESP) or Authentication Header (AH).

3. Proxy IDs which identify the traffic to be encrypted are negotiated.

4. Phase 2 optional processing, including Perfect Forward Secrecy (PFS), is
negotiated.

Do not confuse IKE Phase 1 and Phase 2 with IKE version 1 and version
2. As mentioned, IKE version 1 is the only version that is supported on
the SRX at the time of this writing. Version 2 is supported by ScreenOS,
and the SRX will support this in the future.

IPSec VPN Protocol
Two different VPN protocols can be used for IPsec VPNs, regardless of what IKE pa-
rameters are used to establish the VPN. The two protocols are Encapsulating Security
Payload (ESP) and Authentication Header (AH):

ESP
This performs encryption and authentication on the traffic within the VPN, thus
protecting the confidentiality of the traffic within the VPN. It also authenticates
the data within the VPN, ensuring that it has not been modified and that it origi-
nated from the correct source.

AH
This protocol does not encrypt the traffic within the VPN, but simply authenticates
the traffic to ensure that it came from the correct source, and has not been modified.

ESP is much more widely deployed than AH, because typically, organizations want to
ensure that data originated from the correct location and that it wasn’t modified (they
may also want to ensure that the data is confidential). Since additional effort is not
required to configure the encryption on the VPN gateway, most network administrators

IPsec VPN Concepts Overview | 257

or organizations simply encrypt and authenticate. Note that additional processing must
take place to perform both the encryption and the authentication, so ESP may not
perform as well as AH, but the security benefits of ESP far outweigh any performance
impact it might have.

IPsec VPN Mode
In addition to the choice of VPN protocol, there are two different modes which will
determine how the traffic is exchanged in the VPN:

Tunnel mode
Tunnel mode encapsulates the original IP packet within another packet in the VPN
tunnel. This is most commonly used when hosts within separate private networks
want to communicate over a public network. Both VPN gateways establish the
VPN tunnel to each other, and all traffic between the two gateways appears to be
from the two gateways, with the original packet embedded within the exterior IPsec
packet. Note that whether the original packet is encrypted depends on whether
ESP or AH mode has been selected. ESP encapsulates, encrypts, and authenticates
the original Layer 3 through Layer 7 IP traffic, whereas AH only encapsulates and
authenticates the original Layer 3 through Layer 7 IP traffic.

Transport mode
Transport mode does not encapsulate the original packet in a new packet, like
Tunnel mode does; rather, it sends the packet directly between the two hosts that
have established the IPsec tunnel. Depending on whether ESP or AH mode is used,
the data is either encrypted and authenticated, or just authenticated. This includes
encryption and authentication for Layer 4 through Layer 7 in ESP mode, or just
authentication for AH for Layer 4 through Layer 7 of the original IP packet.

Tunnel mode is the most common VPN mode on the Internet because it easily allows
entire networks (particularly those with private address space) to communicate over
public IP networks. Transport mode is primarily used when encrypting traffic between
two hosts to secure communication where IP address overlap is not an issue (such as
between a host and a server on a private network).

IPsec Manual Keys
In certain situations, IKE negotiations are not preferable. Although an individual IKE
negotiation may not require too many resources to establish, setting up hundreds or
thousands of VPNs per second can be very difficult due to the key generation that must
take place for each VPN. Another non-IKE-preferred scenario is when an organization
does not want the keys to expire.

In both scenarios, manual key IPsec VPNs, as we discussed in “IKE Version 1 Over-
view” on page 255, may be the optimal choice. The disadvantage is that manual keys
do not automatically get renegotiated (which happens by default every 24 hours for

258 | Chapter 6: IPsec VPN

Phase 1, and every hour for Phase 2). Therefore, the keys remain the same, and if they
are somehow compromised, manual intervention must take place in order to change
the keys. With manual keys, there is no VPN negotiation process; the IPsec keys are
hardcoded, along with the encryption, authentication, protocol, and mode for the VPN.
Essentially, manual keys skip the Phase 1 and Phase 2 negotiation and just produce the
keys that would normally be generated in Phase 2. All of the same concepts in terms of
encryption and authentication algorithms—ESP versus AH, Tunnel versus Transport
mode—apply with manual keys.

Phase 1 IKE Negotiations
Now that you know a little more about how the VPN negotiation takes place, let’s drill
down into a detailed discussion and break down the individual components of Phase
1 IKE negotiation.

IKE Authentication
A few pages back you learned about Diffie-Hellman at the initial stages of a Phase 1
IKE negotiation, but Diffie-Hellman only provides the ability to establish a secure
channel over which two parties can communicate—it does not actually authenticate
the other VPN peer. This is where IKE authentication is used to ensure that the other
party is authorized to establish the VPN. The details of Diffie-Hellman authentication
are beyond the scope of this book; there is an abundance of information available on
the Internet, including on Wikipedia (http://en.wikipedia.org/wiki/Diffie-Hellman_key
_exchange).

IKE authentication comes in two forms: preshared key (password) and certificate
authentication.

Preshared key authentication

The most common way to establish a VPN connection is to use preshared keys, which
is essentially a password that is the same for both parties. This password must be ex-
changed in advance in some out-of-band mechanism, such as over the phone, via a
verbal exchange, or via less secure mechanisms, even email. The parties then authen-
ticate each other by encrypting the preshared key with the peer’s public key, which was
obtained in the Diffie-Hellman exchange.

Preshared keys are commonly deployed for site-to-site IPsec VPNs, either within a single
organization or between different organizations. Preshared key authentication is pop-
ular because the keys do not require the overhead of certificates, and many adminis-
trators are much more familiar with passwords than they are with certificates. To ensure
that preshared keys are used in the most secure fashion, a preshared key must consist
of at least 8 characters (12 or more is recommended) using a combination of letters,
numbers, and nonalphanumeric characters, along with different cases for the letters

Phase 1 IKE Negotiations | 259

http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange
http://en.wikipedia.org/wiki/Diffie-Hellman_key_exchange

(i.e., the preshared key should not use a dictionary word). An example of a complex
password is H7bK1Mc2$#cNa.

When using nonalphanumeric characters, make sure they are not special characters
which could be mistaken by some operating systems. A common example is the ques-
tion mark (?), which can typically trigger a command-line interface (CLI) to think the
user is requesting context-sensitive help. And although most operating systems support
the use of a control sequence, some do not, so you may want to avoid using a control
sequence if you are unsure whether the peer supports it.

Certificate authentication

Certificate-based authentication is considered more secure than preshared key authen-
tication because the certificate key cannot be compromised easily (as can a weak
preshared key). In addition, optional mechanisms can be used within certificate au-
thentication to ensure that a certificate is still valid. Finally, certificates are not easily
vulnerable to visual eavesdropping, like a preshared key might be, although certificates
can still be compromised if access to the filesystem that they are stored on is obtained.

Certificates are composed of a public and private key, and can be “signed” by a master
certificate known as a certificate authority (CA). In this way, certificates can be checked
to see if they are signed with a CA which is trusted. Certificates can also be revoked
should they be compromised, or if they expire (since certificates are generated with an
expiration date, although there is no standard time frame for generated certificates).

The many aspects of certificate-based authentication could fill an entire book, so all
the intricate details of this form of authentication are not covered here. For the purposes
of this chapter, we expect you to have a working understanding of Public Key Infra-
structure (PKI), including certificates, CAs, and the technologies that deliver these ca-
pabilities. Later in this chapter we will discuss the configuration specifics on the SRX
to get you working with this technology.

IKE Identities
You can think of the IKE identity as the username that is associated with the authen-
tication method (preshared key or certificate). Although that isn’t exactly the purpose
of this feature, IKE identity performs a similar functionality.

The SRX platform supports a few different types of IKE identities, and you can use
them to identify the identity (along with other attributes such as the preshared key or
certificate) of the remote party.

IP address
The most common form of IKE identity for site-to-site VPNs is the IP address.
Typically, this is automatically derived from the configuration of a peer gateway,
by using the IP address. IP addresses are not commonly used for remote access

260 | Chapter 6: IPsec VPN

VPNs because the client IP address is typically not static, but there is nothing tech-
nically wrong with using an IP address for the client IKE identity.

Hostname
The hostname, or fully qualified domain name (FQDN), is essentially a string that
identifies the end system. This does not strictly have to match the actual FQDN of
the end system; however, this is recommended for ease of management.

User FQDN
A user FQDN (UFQDN) is also known as a user-at-hostname. It is a simple string
that follows the same format as an email address: user@company.com. Note that
this doesn’t have to match the user’s actual hostname; however, it is recommended
that you use the same email address as the user’s actual email address for ease of
management.

Distinguished name
The distinguished name (DN) is the full name that is used in certificates to identify
a unique user in a certificate. An example of a DN is “CN=user, DC=company,
DC=com,” the ASN.1 encoding standard.

When using site-to-site VPNs the most common type of IKE identity is the IP address,
assuming that the host has a static IP address. If the host does not have a static IP
address, a hostname can be used. When a dial-up remote access client (rather than a
gateway) is used, a UFQDN is the most common IKE identity. And if certificates are
used, the DN or a subset of the name can be used to identify the users of an organization
or a unit of the organization.

Phase 1 IKE Negotiation Modes
IPsec VPNs can use two different modes when negotiating the IKE in Phase 1. The two
modes of negotiation of Phase 1 are called Main mode and Aggressive mode. Only one
mode is used for negotiation of Phase 1 of the VPN tunnel, and the mode must be
configured the same on both sides of the tunnel; otherwise, Phase 1 is not able to
complete.

Main mode

When building site-to-site VPNs, Main mode is the most common and secure way to
establish the VPN because it provides additional security during the setup phase of the
VPN tunnel and requires that six messages be exchanged during the negotiation. The
advantage in security of Main mode over Aggressive mode is that the IKE identities are
encrypted and cannot be determined by eavesdroppers. Main mode does require ad-
ditional processing, and is typically used when the IP address of the client is not fixed,
or known in advance.

Phase 1 IKE Negotiations | 261

mailto:user@company.com

The following sequence of message exchange occurs during Main mode:

1. Initiator proposes the encryption and authentication algorithms to be used to es-
tablish the VPN.

2. Responder must accept the proposal and provide the other VPN gateway with a
proposal of the encryption and authentication algorithm.

3. Initiator starts the Diffie-Hellman key exchange process by presenting a generated
public key, along with a pseudorandom number.

4. Responder responds to the initiator with its public key as part of the Diffie-Hellman
key exchange. After message 4, both parties communicate via an encrypted
channel.

5. Initiator sends the responder its IKE identity to authenticate itself.

6. Responder sends the initiator its IKE identity. Message 6 completes Phase 1 of the
IKE negotiation.

Aggressive mode

Aggressive mode is an alternative to Main mode IPsec negotiation and it is most com-
mon when building VPNs from client workstations to VPN gateways, where the client’s
IP address is neither known in advanced nor fixed. Aggressive mode requires half of
the messages that Main mode does when establishing Phase 1, but it does so at the cost
of disclosing the IKE identities in clear text; thus, it is a little aggressive in its security
negotiations.

Aggressive mode uses the following sequence of messages:

1. Initiator proposes the encryption and authentication algorithms to be used, begins
the Diffie-Hellman key exchange, and sends its IKE identity and pseudorandom
number.

2. Responder must accept the proposal, and will provide the initiator with a pseu-
dorandom number and the IKE identity of the responder. The responder will have
also authenticated the initiator in this stage.

3. Initiator authenticates the responder and confirms the exchange. At this point,
both parties have established a secure channel for negotiating the IPsec VPN in
Phase 2 and Phase 1 is now complete.

Phase 2 IKE Negotiations
Phase 2 of IKE negotiations establishes the security associations (encryption/decryp-
tion key) that are used to secure the IPsec data within the VPN. IKE Phase 2 only has
a single mode, known as Quick mode, which negotiates the Phase 2 IPsec keys.

262 | Chapter 6: IPsec VPN

Additional processing may optionally take place either in Phase 2, or
between Phase 1 and Phase 2. XAuth is an authentication mechanism
that commonly is used for remote client IPsec VPNs, and it takes place
between Phase 1 and Phase 2. We will cover XAuth later in this chapter.

Perfect Forward Secrecy
PFS renegotiates Phase 1 before proceeding to negotiate Phase 2. The purpose of PFS
is because in Phase 1, the exchange of keys and other encryption components can
present a risk, particularly in Aggressive mode where IKE identities are sent in the clear.

PFS mitigates those concerns by renegotiating Phase 1 in the same secure channel that
Phase 1 previously built. The new Phase 1 channel is used to renegotiate Phase 2. In
terms of properties, PFS essentially allows the user to suggest a different Diffie-Hellman
group; however, the encryption and authentication algorithms are the same as the ones
used for the original Phase 1 negotiation.

Quick Mode
The only mode of negotiating Phase 2 in IPsec, known as Quick mode, exchanges three
messages:

Encryption/authentication algorithms
The encryption and authentication algorithms which are used as part of the IPsec
VPN

Proxy IDs
The proxy IDs which identify what traffic is part of the VPN

Mode and encapsulation
The VPN protocol and mode the VPN uses (ESP/AH and Tunnel/Transport)

There are some additional parameters which can be configured as part of Phase 2, and
they may or may not be negotiated as part of the Quick mode process.

Proxy ID Negotiation
A proxy ID is a mechanism for identifying the traffic carried within the VPN, and it
contains two components: the local and remote IP prefix, and the service. Within IKE
version 1, only a single prefix can be defined per local and remote IP value, along with
a single service.

Strictly speaking, the proxy IDs do not really need to match the traffic at all, but both
parties must match what they are negotiating in the VPN. Proxy IDs have long been
considered a nuisance when configuring VPNs because they are not really needed, and
in large part because different vendors have determined the proxy IDs differently. There

Phase 2 IKE Negotiations | 263

is an exception to this that was supported in ScreenOS (multiple proxy IDs), but this
isn’t supported today in the SRX.

The issue is that the proxy IDs are defined within the IKE RFC, which strictly defines
how they are formatted and what they contain. However, the RFC doesn’t exactly state
how the proxy IDs should be derived, and therefore vendors have interpreted this dif-
ferently. Ultimately, this has caused interoperability issues when trying to establish
VPN tunnels, so be advised that some tuning may be required.

Flow Processing and IPsec VPNs
It is important to understand where IPsec processing of traffic happens in the traffic
processing chain. When a session is created on the SRX (as discussed in Chapter 5) we
perform all of the flow processing steps, which includes services at the end of the pro-
cessing chain. If a flow is destined for a VPN (whether it is route- or policy-based) the
traffic will be sent into the VPN as one of the last steps in the processing chain (just
before actually sending the traffic out of the physical media itself). Placing the VPN at
the end of the processing chain allows other services to take place on the plain-text
traffic (such as UTM, IPS, NAT, ALG, etc.) and the reverse operation can happen after
the traffic is decrypted, returning from another IPsec peer. If the VPN is not already
established when the traffic is destined for a VPN peer, the SRX will queue the traffic
while it establishes the VPN, and then will send it out as soon as the VPN is
established—or drop it if the VPN cannot be established. Just like clear-text traffic,
VPN-bound traffic is fully flow-aware (and is enforced by flow processing). The IPsec
tunnel is just an abstraction layer on top of the standard flow processing itself.

SRX VPN Types
Two types of VPNs can be configured on the SRX—policy-based VPNs and route-based
VPNs—and their underlying IPsec functionality is essentially the same in terms of traffic
being encrypted. It’s the implementation that’s different and that can be used to lev-
erage administrative functionality.

Not all vendors provide both policy- and route-based VPNs; however,
there are no compatibility issues with running a policy-based VPN to a
route-based VPN, with one exception: when running dynamic routing
protocols such as Routing Information Protocol (RIP), Open Shortest
Path First (OSPF), Intermediate System-to-Intermediate System (IS-IS),
or Protocol-Independent Multicast (PIM) on the VPN, only route-based
VPNs can be used.

264 | Chapter 6: IPsec VPN

Policy-Based VPNs
Policy-based VPNs utilize the power of a firewall security policy to define what traffic
should be passed through a VPN. Policy-based VPNs allow traffic to be directed to a
VPN on a policy-by-policy basis, including the ability to match traffic based on the
source IP, destination IP, application, and respective to and from zones. When using
policy-based VPNs the action of “Tunnel” is used, which implies that the traffic is
permitted, along with defining the VPN to be used in that policy. Additional policy
processing such as application services (IPS, URL filtering, antivirus, logging, etc.) can
be used in policy-based VPNs.

When using policy-based VPNs, the proxy IDs are derived from the firewall policy that
is used. The policy’s source address maps to the proxy ID’s local ID, the destination
address maps to the remote ID, and the service maps to the application for traffic that
is destined for the tunnel (to be encrypted; e.g., Trust to Untrust). In the case where
traffic is arriving encrypted from the VPN (to be decrypted; e.g., Untrust to Trust) the
proxy ID source address will be the remote ID, the destination address is the local ID,
and the service is the application.

Determining the Proxy IDs on Policy-Based VPNs
When address object sets, or multicelled source or destination addresses, are used, the
respective IDs will be negotiated as 0.0.0.0/0. In the case of service, when either an
application set or multicelled applications are used, the service will be negotiated as
Any. Although the same proxy ID can be used multiple times on the platform, it can
only be defined once per VPN endpoint. For instance, if three different VPNs negotiate
the proxy IDs as Local: 0.0.0.0/0, Remote 0.0.0.0/0, and Service Any, that is fine; how-
ever, the same VPN can only have this once. If it is defined multiple times for a single
VPN, the SRX will issue a commit error due to the overlapping proxy IDs. Proxy IDs
can be manually hardcoded by the administrator for the VPN rather than being derived
automatically from the policies. The main thing to take away is how the proxy IDs can
be derived, as the proxy IDs must match on both sides for VPN negotiation to be
successful.

With policy-based VPNs, you can override the proxy IDs which are derived from the
policy by defining them (like you would with route-based VPNs) in the Phase 2
configuration. We will discuss the configuration for defining the proxy IDs later in this
chapter.

Policy-based VPNs are primarily used for simple site-to-site VPNs and for remote access
VPNs. For more advanced needs, route-based VPNs should be considered.

Route-Based VPNs
The alternative to policy-based VPNs is route-based VPNs. Route-based VPNs use a
virtual interface known as a secure tunnel interface (st0 interface) in which all traffic

SRX VPN Types | 265

routed into the interface will be sent into a VPN. The traffic is directed into the interface
just like any other traffic decision through the use of routing, hence the term route-
based VPN. Route-based VPNs still have a secure policy applied to them; however, the
security policy does not use the action of Tunnel, but rather the action of Permit. The
routing decision causes the traffic to be sent into the VPN. The interesting part of route-
based VPNs is that they can be used to leverage advanced features such as use of dy-
namic routing protocols. Dynamic routing protocols allow easier administration and
the ability to fail traffic over to different links. Note that dynamic routing is not required
for route-based VPNs; static routes will work just fine as well.

The negotiation of proxy IDs for route-based VPNs is relatively simple. Because they
must be manually defined for each VPN, they are not derived from a policy or other
source. Just like policy-based VPNs, only a single proxy ID combination can be used
per VPN; however, proxy IDs from different VPNs can overlap.

The st0 interface must be configured within a security zone just like any other logical
interface. Prior to versions 10.0r3, 10.1r2, and 10.2r2, placing the st0 interface in a non-
Inet.0 virtual router (VR) was not supported, but in these and later releases this was
fixed.

Generally, when using site-to-site VPNs route-based VPNs are preferred over policy-
based VPNs because they are more flexible and they allow the use of dynamic routing
over the VPNs; however, there is some added complexity over using policy-based VPNs.

Numbered versus unnumbered st0 interfaces

In a point-to-point VPN configuration, the st0 interface can function similarly to a
Point-to-Point Protocol (PPP) interface in that it doesn’t have to be numbered (config-
ured with an IP address) since there are only two hosts on the communication channel
(the IPsec VPN). In the case that you use an unnumbered interface, you will essentially
borrow the IP address of another interface rather than using an explicit IP address for
the interface itself. Typically, it is a good idea to just configure IP addresses on the
interface rather than using unnumbered interfaces because you can always use private
IP addressing within the IPsec VPN since, as the name implies, it is private (not only is
it encrypted, but also the actual network within the IPsec tunnel is not impacted by the
IP addressing of the network it is running over).

Point-to-point versus point-to-multipoint VPNs

Route-based VPNs offer two different types of architectures: point-to-point and point-
to-multipoint. Point-to-point VPNs map a single VPN to a single logical interface unit,
so the SRX connects directly to a single peer VPN gateway on the interface. Point-to-
multipoint VPNs allow the device to connect to multiple peer gateways on a single
logical interface. Refer to Figure 6-1 for a point-to-point architecture, and to
Figure 6-2 for a point-to-multipoint architecture.

266 | Chapter 6: IPsec VPN

An important design consideration to make when building a VPN infrastructure is
when to use point-to-point and when to use point-to-multipoint. Point-to-point VPNs
are an obvious design decision when only a single peer needs to be connected; when
multiple peers need to be connected point-to-multipoint should be considered.

But point-to-multipoint also has the advantage of conserving IP subnets along with the
number of logical interfaces that are used. For example, in the case of point-to-point
VPNs, an IP subnet and logical interface must be used for each VPN. When only a few
VPNs are used the consumption of IP subnets and logical interfaces may not be much
of a concern. However, when thousands of VPNs are used, platform limits may occur
with point-to-point VPNs.

On the other hand, point-to-point VPNs have the advantage of being able to define
each logical interface to a separate zone, whereas point-to-multipoint VPNs are all part
of the same zone. Note that even when point-to-multipoint is used, each VPN can still
be segmented by security policies, since intra-zone blocking is hardcoded into each
zone.

Typically, when connecting to other trading partners that are not part
of your organization, point-to-point VPNs should be used rather than
point-to-multipoint.

Special point-to-multipoint attributes

It is important to understand that point-to-multipoint VPNs require additional con-
figuration to be supported. First, on the hub’s st0 interface, you must also specify that
it is a multipoint interface, as shown in the following output:

[edit]
root@SRX5800-1# show interfaces st0
unit 0 {
 multipoint;
 family inet {
 address 192.168.100.5/24;
 }
}

Also, if you are using auto Next-Hop Tunnel Binding (NHTB), no additional config-
uration is required, but if your peer device doesn’t support auto NHTB you must
manually specify these entries, as shown in the following output. If you do not specify
this information, your point-to-multipoint VPN will not be able to properly establish
and route traffic accordingly.

[edit]
root@SRX5800-1# show interfaces st0
unit 0 {
 multipoint;
 family inet {
 next-hop-tunnel 192.168.100.1 ipsec-vpn East-Branch;

SRX VPN Types | 267

 next-hop-tunnel 192.168.100.2 ipsec-vpn West-Branch;
 next-hop-tunnel 192.168.100.3 ipsec-vpn South-Branch;
 address 192.168.100.5/24;
 }
}

Point-to-multipoint NHTB

Point-to-multipoint VPNs allow you to bind multiple VPNs to a single interface on the
hub. For this to work properly, the SRX must know not only which VPN to send the
traffic into on the st0 interface to which it is bound, but also which next-hop will be
used for routing that traffic on the interface. To accomplish this, the SRX uses a mech-
anism called a Next-Hop Tunnel Binding (NHTB) table on the interface to map all of
this information.

On the SRX, if you are going to another SRX or ScreenOS device and you are using
static routing, the SRX can automatically exchange the next-hop tunnel information
with the peer as part of the optional vendor attribute exchanges in Phase 2 (also known
as auto NHTB). If you are not using an SRX or ScreenOS device, and the peer doesn’t
support these attributes (it should just ignore them), you will need to manually enter
the table mappings to show what the next-hop should be (also known as manual
NHTB). Alternatively, if you are using a dynamic routing protocol (such as RIP, OSPF,
or Border Gateway Protocol [BGP]), you will not need to make a manual mapping entry
because the SRX can build the table automatically from the routing updates matching
the next-hop to the tunnel it came out of.

Other SRX VPN Components
There are several other VPN components of the SRX platform, many of which are
optional enhancements, although some happen automatically and can be altered man-
ually if desired. It is important to have a thorough understanding of the individual
features before enabling them, because enabling the features in the incorrect fashion
may lead to undesirable effects. Knowledge is power, especially with a powerful device
such as the SRX.

Dead Peer Detection
One particular issue that IKE does not account for is if the VPN peer suddenly fails
during communication. Since the VPN gateway is not typically initiating traffic (except
in the case of dynamic routing protocols), it typically doesn’t notice if or when the VPN
has failed, at least, not until the IPsec keys expire and the VPN needs to be renegotiated.

To help improve the detection of such failures, a standards-based feature called Dead
Peer Detection (DPD) can be implemented. DPD essentially sends a User Datagram
Protocol (UDP) message at defined intervals, and if messages are not responded to, the

268 | Chapter 6: IPsec VPN

peer is considered to be down. By using DPD, a gateway can perform some alternative
action such as defaulting to another VPN whenever a failure is detected.

DPD is primarily used with VPNs where dynamic routing is not used
(such as OSPF), because dynamic routing protocols can both detect a
failure and default over to another path without the need for DPD.

VPN Monitoring
One issue with DPD is that it doesn’t necessarily mean the underlying VPN is up and
running, just that the peer is up and responding. VPN monitoring is not an IPsec
standard feature, but it utilizes Internet Control Message Protocol (ICMP) to determine
if the VPN is up. VPN monitoring allows the SRX to send ICMP traffic either to the
peer gateway, or to another destination on the other end of the tunnel (such as a server),
along with specifying the source IP address of the ICMP traffic. If the ICMP traffic fails,
the VPN is considered down.

An SRX VPN monitoring option, called Optimized, sends only the ICMP traffic through
the tunnel when there is an absence of user traffic. If user traffic is traversing the
tunnel, the SRX assumed it to be up, and does not send the ICMP messages. If the traffic
ceases, the SRX starts sending the ICMP messages until user traffic begins again.

Even though VPN monitoring is not an IPsec standard feature like DPD,
it can be used with other vendors’ devices and does not require the VPN
peer gateway. You can think of VPN monitoring as Track IP specifically
designed for VPNs.

XAuth
XAuth is an SRX feature that allows extensible authentication to IPsec VPN negotiation.
XAuth actually takes place between Phase 1 and Phase 2 processing, and is a standards-
based feature. Typically, XAuth is used with client remote access VPNs to provide
further authentication, such as authentication to a corporate directory service such as
Active Directory, which IKE does not allow. XAuth is used in addition to the authen-
tication which takes place in IKE Phase 1.

At the time of this writing, the SRX only supports authenticating XAuth
clients, but cannot act as an XAuth client itself. This is typically not an
issue, because XAuth authentication is usually used to authenticate re-
mote clients, not VPN peer gateways. Also, SRX XAuth authentication
is only supported for authenticating clients to remote authentication
sources, and does not support authenticating XAuth users locally.

Other SRX VPN Components | 269

NAT Traversal
One issue with terminating IPsec remote access clients on VPN gateways in contem-
porary networks is that often the users are located behind a device that performs source
Network Address Translation (source NAT). When performing source NAT on IPsec
traffic a device can modify the source address and UDP port in the packet, and therefore
make the hash (which was calculated on the original packet) invalid. To help resolve
this common scenario, NAT Traversal (NAT-T) was created.

NAT-T encapsulates the original ESP or AH traffic in an additional UDP packet. When
the VPN gateway receives the UDP traffic it will simply decapsulate the ESP or AH
packet from the UDP layer.

NAT-T also uses UDP port 4500 (by default) rather than the standard UDP port 500
(which is only used for IKE negotiations, not ESP or AH), because the VPN gateway
may try to process the traffic as IKE rather than as actual data traffic which is to be
processed. NAT-T works with either ESP or AH, and with either Tunnel or Transport
mode.

On the SRX, NAT-T support is enabled by default, and must be explic-
itly disabled on a VPN-by-VPN basis. It’s recommended that you ena-
ble NAT-T whenever remote access VPNs are deployed.

Anti-Replay Protection
One liability of IPsec VPNs is that an attacker can capture valid packets and replay
them into the network to try to confuse the VPN gateway or remote host. Although the
attacker cannot determine the contents of the IPsec message, he may be able to cause
a denial of service (DoS) by injecting the traffic.

IPsec protects against this attack by using a sequence of numbers which are built into
the IPsec packet—the system does not accept a packet for which it has already seen the
same sequence number. Each sequence number is unique and is not based on the orig-
inal data packet itself, but is maintained by the gateway; even in the case of TCP
retransmissions, the sequence number is different. If the remote gateway sees a packet
with a duplicate sequence number, it is considered to be replayed.

If Anti-Replay protection is enabled, and a duplicate is seen, the packet is dropped and
a log message is generated. If Anti-Replay protection is not enabled, the traffic is pro-
cessed (decrypted), although other security features such as stateful firewall, applica-
tion layer gateways (ALGs), and Intrusion Detection and Prevention (IDP) may drop
the decrypted packet later in the processing chain.

270 | Chapter 6: IPsec VPN

Anti-Replay protection can be enabled independently on each side of
the VPN. Since the IPsec messages always contain the sequence number,
the option for Anti-Replay is essentially whether or not the VPN gateway
monitors the connection to determine the existence of a replayed
packet.

Fragmentation
Data networks enforce maximum sizes for frames and packets. Originally, on multi-
access networks that shared a collision domain (such as systems connected by an
Ethernet hub), use of data sizes that were too large greatly increased the likelihood of
collisions, so limits were placed on packet size to optimize packet processing.

Collisions weren’t the only issue with regulating frame size, because when packets were
too large, small packets could be delayed for processing behind larger packets, and
systems couldn’t be optimized for efficient packet processing.

Maximum Transmission Unit (MTU) and Maximum Segment Size (MSS)
MTU can refer to the size of a Layer 2 frame or the size of a Layer 3 packet (depending
on the vendor). Juniper refers to the MTU as the complete Layer 2 frame, including the
header. Standard Ethernet uses an MTU of 1,500 bytes of Layer 3 (including the IP
header, Layer 4 header, and data), along with the 14-byte Ethernet header, for a total
of 1,514 bytes. The IP header takes up 20 bytes, and the Layer 4 header (either TCP or
UDP) will take up 20 bytes. This means that with a 1,514-byte Layer 2 MTU, and 54
bytes of Layer 2 through Layer 4 headers, there can be 1,460 bytes of user data. Note
that different media can employ different MTU sizes; for example, the SRX can support
Ethernet jumbo frames of up to 9,192 bytes.

Fragmentation comes into play when a packet is sent that is too large to meet the
constraints of the underlying transmission medium’s MTU. When a network device
receives a packet that is too large to be transmitted on the egress transmission medium,
it has a choice of either fragmenting the packet (chopping the packet into smaller mes-
sages) or dropping the packet.

It is common to employ fragmentation in VPN processing because there is additional
overhead in the messages sent over the VPN, including the ESP or AH header, and in
Tunnel mode the original packet is encapsulated in another IP packet. Furthermore, in
remote access VPNs with NAT-T, the packet is encapsulated yet again in a UDP packet.
So, when a gateway receives the original packet, if it is 1,500 bytes all of the additional
overhead of the IPsec headers will make it too big to be sent over a standard 1,514-byte
Ethernet network. In this case, the gateway must fragment the packet or drop it.

When configuring an SRX VPN it is important to be cognizant of the underlying MTU
and the MSS that is derived from the MTU (MTU – Layer 4 header overhead = MSS).

Other SRX VPN Components | 271

There is also an option for processing the Don’t Fragment (DF) bit in IP messages—the
bit can be ignored, set, or cleared when processing the original packet.

Differentiated Services Code Point
Differentiated Services Code Point (DSCP) is an 8-bit field in an IP header which helps
to classify the packet from a Quality of Service (QoS) perspective so that network de-
vices can properly provide the appropriate precedence when processing the packet.
DSCP bits don’t force the network devices to provide a certain level of service, but they
can be leveraged to do so.

The SRX automatically copies the DSCP bits from the original packet to the IPsec packet
so that the network devices between the two VPN gateways can provide the appropriate
processing on the encrypted traffic.

IKE Key Lifetimes
Keys are generated in both Phase 1 and Phase 2 IPsec. The keys in Phase 1 are generated
to create a secure channel for the Phase 2 keys to be negotiated. The Phase 2 keys are
the keys that are used to negotiate the user traffic. In both Phase 1 and Phase 2, the
keys are considered active for a certain period of time, known as the key lifetime. Phase
1 is always negotiated as a period of time, but Phase 2 can be either a period of time or
a certain amount of data that is transmitted in kilobytes. Key lifetimes are important
because the longer that keys are active, the more potential there is for compromised
security. That isn’t to say that IPsec is insecure—quite the opposite; however, the longer
the same keys are used the more potential there is to determine what those keys are
and decrypt the content that is transmitted. Again, when properly configured, this is
not a major concern, but something to keep in mind when selecting key lifetime.

Each phase allows the ability to configure the key lifetime for that indi-
vidual phase. The shorter the lifetime, the more often the keys are re-
negotiated. Although renegotiating often provides some security
advantage, it can be costly from a performance perspective on the VPN
gateways when operating on a large scale.

IPSec does not have any official default timers for IPsec key negotiation, but uses default
key lifetimes (if not explicitly defined) of 86,400 seconds for Phase 1 and 3,600 seconds
for Phase 2. This means Phase 2 times out before the Phase 1 key lifetime, which is an
ideal event because only the keys in Phase 2 are used to encrypt the actual data, whereas
the Phase 1 keys are only used to create a secure channel to negotiate the Phase 2 keys.

272 | Chapter 6: IPsec VPN

It’s important to understand that different vendors’ devices may choose
different key lifetimes, and that sometimes a mismatch in key lifetimes
may cause VPN establishment issues and even stability issues, so it’s
important to match the values wherever possible.

Network Time Protocol
Network Time Protocol (NTP) is not a strict requirement for IPsec VPNs, but there is
good cause for enabling it. First, the obvious need is to have the time properly syn-
chronized for many reasons related to management (timestamps, schedulers, etc.), so
this is just a best practice in general. But also, for IPsec with certificates, it is very
important because certificates are dependent on accurate time to ensure that they have
not expired. If the time is not synchronized, this could make the SRX think the certif-
icate has expired (or has been generated for a future time) when in reality it hasn’t.
Finally, the less obvious reason pertains to the high-end SRX. The high-end SRX is a
distributed processing system with Services Processing Units (SPUs) which operate
independently. This also means they may not maintain the same time, and this can
create some issues, particularly with VPNs and retrieving information from the SPUs.
To ensure no issues, you should always enable NTP on the platform to ensure that the
SPUs are synchronized (since the route engine [RE] will sync the time down to the SPUs
when NTP is enabled).

Certificate Validation
One of the strengths of certificate-based IPsec authentication is that the certificate can
be revoked should it be compromised in any way, in addition to the SRX being able to
validate the certificate itself to ensure that it has been signed by the correct CA certif-
icate. By default, if you only upload the CA certificate to the SRX, the SRX can only
determine whether the proposed certificate is signed by the CA certificate; it cannot
determine whether the certificate had been revoked or is on hold. A certificate on hold
is not permanently revoked, but in this state it cannot be used for authentication. To
determine if the certificate has been revoked, the SRX must poll the CA itself to deter-
mine which certificates have been revoked. Typically, there are two ways to do this: via
certificate revocation lists (CRLs) or via Online Certificate Status Protocol (OCSP).

CRL
With this method, the SRX will poll the CA for a list of all of the serial numbers of
the revoked or on-hold certificates. Typically, this is done either manually or on a
periodic basis. When the SRX needs to validate a certificate it will then check to
make sure the certificate is signed by the CA, and if that succeeds, it will check the
CRL to see if it includes the proposed certificate’s serial number. If the serial num-
ber is not on the CRL, the certificate will be considered valid; if it is on the CRL,
the certificate will be considered revoked and the authentication will fail. Also note
that a certificate that is expiring will not be on the CRL, although it will be

Other SRX VPN Components | 273

considered invalid if it has expired. Furthermore, the CRL itself has a lifetime which
can be used to ensure that the CRL is not valid after a long period of time.

At the time of this writing, the SRX supports CRL collection via HTTP or LDAP.
If configured to use CRL checking, the SRX will try to download the CRL that is
specified in the CA certificate itself, and if that fails, the SRX will follow the con-
figuration, which specifies the CRL path.

OCSP
OSCP is not supported at the time of this writing. It is primarily used to authenticate
X.509 certificates similar to CRL checking, but is slightly different in a few ways.
First, it doesn’t need to download the entire CRL (which is good when the CRL
grows very large), but instead queries the OCSP server to determine if an individual
certificate is valid, revoked, or on hold. Next, OCSP can query for certificate status
in real time, on an as-needed basis. This also helps to ensure that certificates have
not expired between CRL polling periods. Finally, OCSP can cache individual cer-
tificate authentication responses rather than having to poll for each certificate every
time (within a timeout, e.g., 10 minutes).

Simple Certificate Enrollment Protocol
When using large-scale certificate deployments, the simple task of deploying and man-
aging certificates can become a nightmare very quickly. To help alleviate the manage-
ment needs of large-scale certificate environments, the SRX supports the use of Simple
Certificate Enrollment Protocol (SCEP). SCEP is used on SRX devices to be able to
reach out to the CA for certificate-related management tasks. These include initial cer-
tificate enrollment (get the initial client certificate on the SRX), client certificate re-
newal, CA certificate renewal, and the ability to get new certificates before the old ones
expire. The CA is typically software which runs on a server such as Microsoft Certificate
Authority or INSTA-CA, and other CAs that are maintained by certificate signing or-
ganizations. When using SCEP the SRX simply acts as a client to update its own cer-
tificates and CA certificates; it is not used to authenticate other certificates like CRL or
OCSP checking is.

Group VPN
Starting in version 10.2 the branch SRX Series devices support a VPN technology called
Group VPN (also known by the Cisco implementation GETVPN), based on RFC 3547.
Group VPN is intended to solve the issue of large-scale IPsec implementations that
connect branch locations to central hub sites in a scalable and automated fashion over
a private network such as MPLS/virtual private LAN service (VPLS). The Juniper Group
VPN solution is largely compatible with the Cisco GETVPN solution, since they are
based on the same RFC. Covering Group VPN is outside the scope of this book (in part
because thorough coverage of the feature is enough to fill a book in itself). If you are
interested in gaining more information on this topic, it is covered in the Junos 10.2

274 | Chapter 6: IPsec VPN

documentation, and an AppNote will likely be posted on the Juniper website. Of
course, reading the RFC also provides a wealth of information as well.

Dynamic VPN
Dynamic VPN is a feature that is specific to branch SRX Series devices which allows
client systems to create remote access VPNs that are terminated on the branch SRX
Series gateways. Essentially, this provides a streamlined way to provision and connect
users to an SRX over the Internet or other private network. The client that is installed
on the user machine is downloaded from the SRX gateway’s web interface and is au-
tomatically installed. Then, when the user wishes to connect to the SRX, he simply does
so by logging in to the SRX’s Dynamic VPN Web Interface, which will trigger the VPN
session on the user’s PC. The administrator does not need to provision any software
or configuration as this is automatically installed on the user’s system. Additionally, if
upgrades to the client are required, this is automatically performed without the need
for administrative intervention.

It is important to understand a few things when it comes to Dynamic VPNs. The fol-
lowing limitations exist at the time of this writing:

• To use the Dynamic VPN feature you must purchase and install licenses for the
clients. This isn’t a limitation on the number of clients, but rather the number of
clients which can connect at the same time. See the data sheets for more informa-
tion on platform-specific limits.

• The Dynamic VPN client can only use IPsec to create a secure connection to the
SRX. SSL support will come at a later point in time.

• Only Windows XP and Vista (both 32- and 64-bit) are supported by the Dynamic
VPN client. Windows 7 support will come in the future, so stay tuned for the release
notes.

• Dynamic VPN requires XAuth, and XAuth does not support local authentication
in 10.2. This means you must use a RADIUS server to authenticate the remote
clients. Local XAuth authentication will be supported.

Selecting the Appropriate VPN Configuration
The previous sections of this chapter gave you a lot of information—some generalized,
some SRX-specific. It’s time to make use of that information and provide you with some
real-world guidance on how to select the appropriate properties for your SRX VPN
configuration.

As you’ve come to realize by now, there are many different VPN configuration options.
However, deciding which options to select is quite easy once you understand them.
Here we’ll detail 12 key configuration options with recommendations and tips on when
and where you might use them:

Selecting the Appropriate VPN Configuration | 275

AutoKey IKE versus manual keys
The first decision you should make when determining how to deploy your VPNs
is whether IKE will be used to negotiate the VPN keys, or whether to use manual
keys. For just about every scenario, AutoKey IKE should be used over manual key
encryption because AutoKey IKE is dynamic and renegotiates the keys used rather
than using the same key indefinitely. The only exception to this rule is if security
isn’t much of a concern, due to the impact that AutoKey negotiation would put on
your system. Although individual IKE negotiation may not put much load on the
system, negotiating lots of VPN tunnels simultaneously can be very computation-
ally intensive, thus making manual keys preferable.

ESP versus AH
ESP is the most widely deployed VPN protocol because it not only performs au-
thentication, but also provides security by encrypting the data. Although encrypt-
ing the data is a computationally intensive process, it typically can be offloaded by
using some hardware acceleration. Therefore, unless there is a specific reason to
only provide authentication, ESP should be used to provide both encryption and
authentication.

Tunnel mode versus Transport mode
Tunnel mode is the most common mode for VPN site-to-site encryption, particu-
larly when going over the Internet. Since Tunnel mode encapsulates the original
packet within the encrypted tunnel packet, it allows communication between two
privately addressed hosts over a public network (the Internet). Both Tunnel mode
and Transport mode allow for encryption, but Tunnel mode does have more over-
head in terms of packet size because it must add an additional IP header to the
packet on top of the ESP or AH header. Transport mode may be desirable when
there is host-to-host IPsec traffic rather than gateway-to-gateway traffic, or when
IPsec traffic is communicating over a private network. Transport mode has become
popular as a solution for IPsec encryption of multicast traffic, as the contents of
the data remain confidential, but the packets can be routed and replicated in the
network. If there is any doubt as to which mode should be used, Tunnel mode
should be selected.

Main mode versus Aggressive mode
The rule of thumb when it comes to Main mode versus Aggressive mode is that if
both nodes have a static IP address (or an address which can be resolved via Domain
Name System [DNS]), Main mode should be used. However, if a gateway or host
has a dynamic IP address, typically Aggressive mode should be used for the best
interoperability (although depending on the implementation of the VPN gateways
Main mode may be able to be used).

Diffie-Hellman group number
Diffie-Hellman key exchange is used to negotiate Phase 1 and PFS aspects of IPsec.
The larger the key, the more difficult it will be to compromise the security of the
negotiation, but the more computationally intensive the negotiation will be.

276 | Chapter 6: IPsec VPN

Typically, Diffie-Hellman Group 2 is considered secure at the time of this writing,
although larger key lengths (e.g., Group 5, 14, etc.) are more secure, but may be
unnecessary. Remember that Diffie-Hellman is used to negotiate the secure chan-
nel to negotiate the Phase 2 keys, but does not actually encrypt the data itself.

Preshared keys versus certificate authentication
As previously discussed, you can authenticate IPsec peers in two ways: via pre-
shared keys and via certificates. Preshared keys are easier to deploy, and are the
most common form of authentication. Certificates are a very powerful form of
authentication, as you can scale them to large implementations and you can revoke
certificates and authenticate certificates dynamically. Certificates do have a certain
amount of overhead when it comes to generation, signing, checking status, and
renewing, however, and therefore they are most commonly used for large imple-
mentations. When just using simple site-to-site VPNs, or VPNs between other
organizations, preshared keys are easier to use. If you are deploying site-to-site or
client VPNs within an organization on the scale of several hundred or several thou-
sand, certificates should be examined, as they provide some scaling advantages.

IKE identity
IKE identity is commonly overlooked as a major component of a VPN; however,
it is important to select the appropriate IKE identity. The IKE identity essentially
acts as the username for the IKE authentication in a roundabout way. Typically,
when both sides of a site-to-site VPN have static IP addresses, the IKE identity is
the IP address for both nodes. When a single node is using a dynamic IP address,
that node typically uses the Hostname attribute, which can be a simple name to
identify the peer. But when a user is connecting to a gateway, that user should use
the UFQDN. It is important to make sure both sides can properly authenticate the
other peer with the method that the other side is expecting, as a mismatch or
improper IKE identity causes failure.

Configure remote identity when you do not know the remote peer’s
IP address. Configure local identity if you do not have a static IP
address (e.g., your gateway uses Dynamic Host Configuration Pro-
tocol [DHCP]).

VPN encryption algorithm
When selecting the VPN encryption algorithm, the important things to remember
are the sensitivity of the data within the VPN, the amount of data that is sent over
the VPN in terms of throughput, and whether the algorithm that is used will be
accelerated by hardware. DES is largely considered to be an obsolete encryption
algorithm by today’s standards because the key space is only 56 bits and it can be
broken with modern computers in a few months’ time. 3DES and AES are widely
considered to be much better algorithms and are secure against attacks with mod-
ern computer hardware. If the data is extremely sensitive and needs to be protected

Selecting the Appropriate VPN Configuration | 277

against attacks under extremely powerful computing power, both now and in the
future, you should use an algorithm such as AES-256; otherwise, 3DES or AES-128
should be sufficient for most scenarios.

VPN authentication algorithm
The VPN authentication algorithm is used to create a hash of the traffic to ensure
that it has not been modified or forged. Two hash algorithms are implemented in
the SRX at the time of this writing: MD5 and SHA-1. SHA-1 is considered to be a
stronger hash algorithm than MD5, and since both are implemented in hardware,
it is recommended that you use SHA-1 rather than MD5, although MD5 isn’t nec-
essarily an obsolete algorithm.

Perfect Forward Secrecy
PFS is a mechanism used to renegotiate the Phase 1 keys over an established Phase
1 channel. It is primarily meant to help provide additional security to Aggressive
mode authentication where the IKE identities are negotiated in clear text, but it
can also be used to renegotiate Phase 1 for additional security. It is recommended
that you use PFS when using Aggressive mode, or in the most sensitive of security
environments, and it is very important to choose the correct preshared key (if you’re
using preshared keys), along with the proper encryption and authentication
algorithms.

Policy-based VPNs versus route-based VPNs
Policy-based VPNs are common when configuring simple site-to-site VPNs or re-
mote access VPNs, especially when interoperating with VPN products from other
vendors. When only a few VPNs are needed, or if the VPNs are simple, it might
make sense to use policy-based VPNs because they are easier to set up and have
fewer components (from a configuration perspective) than route-based VPNs.
When you’re setting up a VPN infrastructure with a large number of remote access
tunnels, or when multicast or dynamic routing protocols are used, you should use
route-based VPNs. In general, route-based VPNs are more powerful than policy-
based VPNs, so they are generally preferred over policy-based VPNs, but simple
implementations can still utilize policy-based VPNs.

Predefined proposal sets versus custom proposal sets
To help ease configuration, the SRX has predefined proposal sets for both Phase 1
and Phase 2 IKE negotiations. You can choose to use these predefined sets or create
your own. It is really just a matter of preference. There are three predefined pro-
posals: basic, standard, and compatible. Typically, it is best to just define your
own, since it takes the guesswork out of configuring the VPNs, especially if you
are establishing a VPN to another vendor (which may not use the same terminol-
ogy). Additionally, if you use predefined sets, you might have to go through several
proposals with the peer before finding a match (which would leave a log trail as
well), so it is best to just configure identical proposals as the peer.

278 | Chapter 6: IPsec VPN

IPsec VPN Configuration
Now that we have broken down the individual components of IPsec VPNs, let’s ex-
amine how to put these features into practice on the SRX with the configuration of a
hub and spoke VPN.

Since certain aspects of VPNs can only have single attributes (e.g., preshared key or
certificates, but not both), we will cover some configuration elements that do not apply
to our actual VPN infrastructure. Figure 6-6 shows a network diagram of the IPsec VPN
infrastructure that is being implemented. We’ll cover the various configuration ele-
ments in the order they should be configured, since certain elements reference other
aspects of the configuration.

Configuring NTP
Although we covered NTP configuration earlier in the book, it is a very important
function of VPN, so we will reiterate how to configure it here. The following configu-
ration assumes that you already have network connectivity and routing set up (you can
also use domain names as your NTP servers, so long as you have DNS configured; also,
note that the SRX will resolve the name and place it into the final configuration):

[edit]
root@SRX3600-1# set system name-server 4.2.2.2

[edit]
root@SRX3600-1# set system ntp server pool.ntp.org

[edit]
root@SRX3600-1# show system
host-name SRX3600-1;
domain-name jnpr.net;
name-server {
 4.2.2.2;
}
ntp {
 server 74.207.249.60;
}

Certificate Preconfiguration Tasks
When configuring your SRX for certificate authentication for Phase 1 you need to do
several things before you can use certificate authentication to its fullest advantage (if
you are using preshared keys only, this section does not apply).

In this example, we will do the following things to prepare our SRX for certificate
authentication. Not all of these are strictly required, but to cover all of the common
scenarios we will cover them in a single example.

• Generate a locally generated certificate called IPSEC.

IPsec VPN Configuration | 279

Figure 6-6. IPsec VPN infrastructure

280 | Chapter 6: IPsec VPN

• Create a CA profile called CAPROFILE. The CA profile should be configured to
use CRL checking and to download the CRL from http://172.31.100.50 every two
hours. The name of the CA server identifier is CASERVER.

• Configure SCEP to enroll a certificate to an SCEP server. SCEP should also be
configured to automatically grab the CA certificate, reenroll the certificate before
it expires, and download the new CA certificate before it expires. The SRX should
retry every 3,600 seconds to download a new certificate.

• Use HTTP-based CRL checking to ensure that certificates proposed by the client
are valid certificates that have not been revoked. This should be polled every two
hours for an updated CRL.

root@SRX3600-1> request security pki generate-key-pair certificate-id IPSEC
Generated key pair IPSEC, key size 1024 bits

root@SRX3600-1> edit

[edit]
root@SRX3600-1# edit security pki ca-profile CAPROFILE

[edit security pki ca-profile CAPROFILE]
root@SRX3600-1# set ca-identity CASERVER revocation-check crl refresh-interval 2
url http://172.31.100.50

[edit security pki ca-profile CAPROFILE]
root@SRX3600-1# set enrollment retry-interval 3600

[edit security pki ca-profile CAPROFILE]
root@SRX3600-1# up

[edit security pki]
root@SRX3600-1# set auto-re-enrollment certificate-id CAPROFILE ca-profile-name
qqq challenge-password aaa re-enroll-trigger-time-percentage 10
re-generate-keypair

[edit security pki ca-profile CAPROFILE]
root@SRX3600-1# run request pki ca-certificate enroll ca-profile CAPROFILE

Fingerprint:
75:1b:2f:a7:95:bc:2e:3b:54:d0:71:ae:86:42:09:e2:cc:75:34:d1 (sha1)
C1:4d:cc:fc:8f:10:d2:04:e9:80:09:68:4c:01:bd:42 (md5)
Do you want to load the above CA certificate ? [yes,no]

Enroll the Local Certificate to Microsoft SCEP Server##

[edit security pki ca-profile CAPROFILE]
root@SRX3600-1# set enrollment url http://172.31.100.50/certsrv/mscep/mscep.dll

[edit security pki ca-profile CAPROFILE]
root@SRX3600-1# run request security pki local-certificate enroll ca-profile
CAPROFILE
certificate-id qqq challenge-password aaa domain-name my.company.com

IPsec VPN Configuration | 281

email qqq@company.com ip-address 10.10.10.10 subject DC=company,
CN=SRX, OU=IT, O=my, L=sunnyvale, ST=california, C=us

Phase 1 IKE Configuration
Let’s begin with the Phase 1 configuration, which has several different configuration
elements (some optional, some required) for proper IPsec establishment. The impor-
tant thing to remember as part of the Phase 1 configuration is that Phase 1 is not actually
used to encrypt the data within the VPN, but rather to establish the secure channel to
negotiate the Phase 2 keys that will be used to establish the IPsec VPN.

One great thing about configuring VPNs in the SRX compared to ScreenOS is that the
configuration is not immediately applied and can be altered without removing all in-
stances of the configuration to edit elements. This means that as long as you don’t
commit the configuration, these settings can be made in any particular order—an
enormous advantage over ScreenOS and many other vendors’ products. Another major
advantage is that Junos separates the Phase 1 elements into three areas: proposal, pol-
icy, and gateway. This is advantageous when multiple gateways use the same policy
and/or proposals, and allows for template-like functionality for VPNs.

Our Phase 1 IKE configuration follows this process:

1. Configure the elements of the Phase 1 proposal, which defines the encryption and
authentication policies.

2. Define the Phase 1 mode, preshared key or certificate, and proposal.

3. Configure the actual Phase 1 gateway properties.

Configuring Phase 1 proposals

The Phase 1 proposal provides the framework for the encryption and authentication
parameters that are used in policy and gateway functionality. All Phase 1 proposals are
configured under the [security ike proposal <proposal-name>] level in the configu-
ration hierarchy. In our example, we will configure the following elements (they can
be configured in any order within the Phase 1 proposal):

Authentication method
The authentication method defines whether preshared keys or certificates are used
for Phase 1 authentication. Note that the rsa-signatures attribute signifies certif-
icates using RSA key generation. This step does not refer to the authentication
algorithm of Phase 1, but rather to how Phase 1 peers can authenticate each other.

Diffie-Hellman group
The Diffie-Hellman group defines which group or key length will be used for the
Phase 1 keys. The larger the key, the more secure it is, but also the more compu-
tationally complex it is to establish.

282 | Chapter 6: IPsec VPN

Encryption algorithm
The encryption algorithm determines which algorithm will be used to encrypt the
data within the Phase 1 secure channel. The SRX supports DES, 3DES, AES-128,
AES-192, and AES-256, which are the most powerful (in that order) and the most
demanding, although hardware acceleration makes this less of a concern. (Note
that CBC stands for Cipher Block Chaining and it has to do with the fact that these
algorithms are using block encryption rather than stream encryption, but it is not
a detail that you need to be concerned with.)

Authentication parameter
The authentication parameter defines what authentication algorithm is used to
ensure that data has been received from the correct VPN peer, and that it hasn’t
been modified.

Key lifetimes
Key lifetimes determine how long the VPN keys are active until they expire, and
then must be renegotiated when Phase 1 needs to be renegotiated.

Configure the following proper-
ties for the Remote-Office-PSK proposal:

• Preshared key authentication

• Diffie-Hellman Group 2

• 3DES-CBC encryption algorithm

• SHA-1 authentication algorithm

• Key lifetime of 86,400 seconds

[edit]
root@SRX5800#edit security ike proposal Remote-Office-PSK

[edit security ike proposal Remote-Office-PSK]
root@SRX5800#set authentication-method pre-shared-keys

[edit security ike proposal Remote-Office-PSK]
root@SRX5800#set dh-group group2

[edit security ike proposal Remote-Office-PSK]
root@SRX5800#encryption-algorithm 3des-cbc

[edit security ike proposal Remote-Office-PSK]
root@SRX5800#set authentication algorithm sha1

[edit security ike proposal Remote-Office-PSK]
root@SRX5800#set lifetime-seconds 86400

[edit security ike proposal Remote-Office-PSK]
root@SRX5800# show
authentication-method pre-shared-keys;
dh-group group2;
authentication-algorithm sha1;
encryption-algorithm 3des-cbc;

Configuration for Remote-Office1 proposal with preshared keys.

IPsec VPN Configuration | 283

lifetime-seconds 86400;

[edit security ike proposal Remote-Office-PSK]
root@SRX5800#top commit

Alternatively, configure the follow-
ing properties for the Remote-Office-Cert proposal:

• Certificate authentication

• Diffie-Hellman Group 2

• 3DES-CBC encryption algorithm

• SHA-1 authentication algorithm

• Key lifetime of 86,400 seconds

[edit]
root@SRX5800#edit security ike proposal Remote-Office-Cert

[edit security ike proposal Remote-Office-Cert]
root@SRX5800#set authentication-method certificates

[edit security ike proposal Remote-Office-Cert]
root@SRX5800#set dh-group group2

[edit security ike proposal Remote-Office-Cert]
root@SRX5800#encryption-algorithm 3des-cbc

[edit security ike proposal Remote-Office-Cert]
root@SRX5800#set authentication algorithm sha1

[edit security ike proposal Remote-Office-Cert]
root@SRX5800#set lifetime-seconds 86400

[edit security ike proposal Remote-Office-Cert]
root@SRX5800# show
authentication-method certificates;
dh-group group2;
authentication-algorithm sha1;
encryption-algorithm 3des-cbc;
lifetime-seconds 86400;

[edit security ike proposal Remote-Office-Cert]
root@SRX5800#top commit

Configuring Phase 1 policies

Phase 1 policies define the actual criteria of the VPN tunnel as well as which proposals
can be used as part of the Phase 1 negotiation. Note that Junos supports up to four
Phase 1 proposals in a single policy. Basically, if the peer initiates the VPN, the SRX
will allow any of the listed proposals. If the SRX is initiating the VPN, it will try the
different proposals in the order they are listed until either a proposal is accepted by the
peer, or negotiations fail. Keep in mind that for Phase 1, preshared keys or certificates

Configuration for Remote-Office1 proposal with certificates.

284 | Chapter 6: IPsec VPN

can be used with any combination of the parameters and proposals, but they are ex-
clusive in that only one method can be used, not both.

Configuring Phase 1 mode
Main mode or Aggressive mode should be selected depending on the configuration
of the tunnel.

Configuring preshared keys
Preshared keys are used for each peer to authenticate each other during Phase 1.
Preshared keys can be entered as either a clear-text string (ASCII text) or hexadec-
imal text. This must be specified when entering the preshared key. Typically, ASCII
text will be used to specify the password, since it can support human-readable
strings, whereas hexadecimal is 0–9, a–f text.

Configuring certificates
Certificates can be used as an alternative to preshared keys because they offer more
dynamic support for strong authentication than preshared keys. You need to spec-
ify a few parameters, including the local certificate to use, the Trusted CA with
which to authenticate the peer certificate (it must be loaded on the SRX), and the
peer certificate type which defines the peer’s certificate format.

Configuring the local certificate
This is the certificate to be presented to the IPsec peer.

Configuring the trusted CA
This is used to authenticate the peer’s certificate.

Configuring the peer certificate type
The SRX supports negotiation with either PKCS7 or X.509 signature encoding. A
peer certificate type must be defined for the certificates that are being negotiated.
The type of certificate depends on which encoding process the certificate is gen-
erated with and must be negotiated with the peer gateway.

Configuring proposals
A proposal or set of proposals must be chosen for the IKE policy to define which
encryption and/or authentication algorithms are used when negotiating the peer
IPsec VPN. Up to four proposals can be selected, although only a single proposal
is required. There are also some predefined proposals that can be used.

Configure the Remote-Office-
Static Phase 1 IKE policy using the following values:

• IKE Phase 1 Main mode

• A preshared key of $up3r$ecReT

• The Remote-Office-PSK proposal

[edit]
root@SRX5800#edit security ike policy Remote-Office-Static

[edit security ike policy Remote-Office-Static]

Configuring Phase 1 IKE policy with preshared key, Main mode.

IPsec VPN Configuration | 285

root@SRX5800#set mode main

[edit security ike policy Remote-Office-Static]
root@SRX5800#set pre-shared-key ascii-text $up3r$ecReT

[edit security ike policy Remote-Office-Static]
root@SRX5800#set proposals Remote-Office-PSK

[edit security ike policy Remote-Office-Static]
root@SRX5800#show
mode main;
proposals Remote-Office-PSK;
pre-shared-key ascii-text "9JTUHq5Tz9tO5QhSlex7bsYgoGiHm5zns2Q3";
SECRET-DATA

[edit security ike policy Remote-Office-Static]
root@SRX5800#top commit

Configure the Remote-Office-
Dynamic Phase 1 IKE policy for gateways with dynamic IP addresses using the following
values:

• IKE Phase 1 Aggressive mode

• A preshared key of $up3r$ecReT

• The Remote-Office1 proposal

[edit]
root@SRX5800#edit security ike policy Remote-Office-Dynamic

[edit security ike policy Remote-Office-Dynamic]
root@SRX5800#set mode aggressive

[edit security ike policy Remote-Office-Dynamic]
root@SRX5800#set pre-shared-key ascii-text $up3r$ecReT

[edit security ike policy Remote-Office-Dynamic]
root@SRX5800#set proposals Remote-Office-PSK

[edit security ike policy Remote-Office-Dynamic]
root@SRX5800#show
mode aggressive;
proposals Remote-Office-PSK;
pre-shared-key ascii-text "9JTUHq5Tz9tO5QhSlex7bsYgoGiHm5zns2Q3";
SECRET-DATA

For this example, we will create a Phase 1 IKE
policy using certificates that builds on our previous work creating a local certificate and
setting up the CA profile:

• Create an IKE policy called Remote-Office-Static-Cert which uses certificate au-
thentication rather than preshared key authentication.

• This policy should use Main mode for the Phase 1 IKE mode.

Configuring Phase 1 IKE policy with preshared key, Aggressive mode.

Configuring Phase 1 IKE policy with certificates.

286 | Chapter 6: IPsec VPN

• You should trust any valid certificate signed by a CA which you have configured
to trust.

• Use the local-certificate IPSEC which we generated earlier for authentication to
your peer. This certificate should be in the PKCS7 format.

• Use Remote-Office1 for the proposal.

[edit]
root@SRX5800#edit security ike policy Remote-Office-Static-Cert

[edit security ike policy Remote-Office-Static-Cert]
root@SRX5800#set mode main

[edit security ike policy Remote-Office-Static-Cert]
root@SRX5800#set certificate local-certificate IPSEC

[edit security ike policy Remote-Office-Static-Cert]
root@SRX5800#set certificate trusted-ca use-all

[edit security ike policy Remote-Office-Static-Cert]
root@SRX5800#set certificate peer-certificate-type pkcs7

[edit security ike policy Remote-Office-Static-Cert]
root@SRX5800#set Office1 proposals Remote-Office1

[edit security ike policy Remote-Office-Static-Cert]
root@SRX5800# show
mode main;
proposals Remote-Office1;
certificate {
 local-certificate IPSEC;
 trusted-ca use-all;
 peer-certificate-type pkcs7;
}

root@SRX5800#top commit

Configuring Phase 1 gateways

The last aspect of Phase 1 which must be configured is the actual gateway itself. The
gateway identifies the remote peer the IPsec VPN peers with, and defines the appro-
priate parameters for that IPsec VPN. As we discussed earlier in this chapter, there are
two types of gateways: those with static IP addresses and those with dynamic IP ad-
dresses (including remote clients).

The SRX allows you to define multiple gateways with the same policies, which is a
feature that can greatly simplify configuration, particularly if multiple gateways have
the same proposal and policy. Here we’ll cover the aspects of configuring both static
and dynamic IP gateways and the various properties for IPsec VPN gateways.

IPsec VPN Configuration | 287

Configuring remote gateways with a static IP address
The optimal setup for two VPN gateways is to have both of them use static IP
addresses. This simplifies the Phase 1 setup between the two gateways, as well as
potential troubleshooting since the IP address of the gateway is always known.

In addition to the primary IP address defined in the gateway defi-
nition, up to four backup gateways can also be defined should the
primary gateway fail.

Configuring remote gateways with a dynamic IP address
When the remote IPsec gateway does not have a static IP address, but rather is
assigned via DHCP, or is perhaps a gateway which moves between different loca-
tions, dynamic IKE identities are used rather than configuring a fixed IP address.
A few properties may have to be defined as part of this configuration:

Configuring local identities
Local identities are required when a device is using a dynamic IP address to
identify itself to the other gateway. This can be either a DN, an FQDN, an IP
address, or a UFQDN. Typically, for site-to-site VPNs, the FQDN or hostname
is used to define the local identity and the DN is used for certificate-based
authentication. UFQDN is typically used for remote client VPNs.

Configuring remote identities
Remote identities are required when the remote party does not have a static
IP address, and therefore must use a dynamic IKE identity. The identity types
are the same for the remote identities as they are for the local identities.

Configuring the external interface
The external interface is the interface on which the SRX terminates the IPsec VPN.
The interface that the traffic terminates on must match the interface defined for
that gateway or Phase 1 negotiations will fail. This is often overlooked in the con-
figuration and is a source of confusion when experiencing issues establishing the
VPN. Note that the interface must also include the IPsec unit number; if it is not
defined, it is set as unit 0, but if the unit is not correct, establishment issues will
occur. Note that prior to v10.4, termination of IPsec VPNs on non-Inet.0 VRs is
not supported.

Configuring interfaces and zones to allow IKE traffic
On top of configuring the external interface on which the IPsec VPN is terminated,
you must also make sure that IKE traffic is allowed on the interface and/or zone
on the SRX; otherwise, the SRX will drop the traffic before the IKE daemon can
process it. This is a security precaution to prevent DoS attacks against IKE gateways
on interfaces that shouldn’t be allowed to accept the IKE traffic. Additionally, fur-
ther restrictions can be made through the use of interface access lists that can

288 | Chapter 6: IPsec VPN

prevent IKE traffic based on stateless firewall filters, so it is important to make sure
such filters are not interfering with the traffic.

Configuring IKE policy
The IPsec VPN gateway must define the IKE policy previously configured. The IKE
policy defines the preshared key or certificates used, along with the other properties
of the IPsec tunnel such as the encryption and authentication algorithms. The name
of the IKE policy does not have to match the name of the gateway, but this is often
done for simplicity. Also, IKE policies can be reused by other gateways assuming
that the properties are the same.

Configuring NAT-T
NAT-T is required when the remote IPsec gateway or client is behind a device
performing NAT. By default, NAT-T is enabled on the SRX, so it must be explicitly
disabled to turn it off on a gateway-by-gateway basis.

Configuring NAT keepalives
NAT keepalives (also known as session keepalives) may be required when the re-
mote client or gateway is behind a device performing NAT. The NAT device main-
tains a table that maps the translations of each session (including that of the IPsec
VPN session). The sessions and their corresponding translations typically time out
after a certain period of time if no traffic is received (known as an idle timeout). If
the VPN is expected to have large periods of inactivity where the session and trans-
lation may time out, NAT keepalives should be enabled to generate “artificial”
traffic to keep the session active on the NAT device.

Configuring DPD
DPD allows the two gateways to determine if the peer gateway is up and responding
to the DPD messages which are negotiated during IPsec establishment.

Configure the Remote-Office1 IKE
gateway with the following parameters:

• IP address of 198.18.1.254

• External interface of ge-0/0/0.0

• Accept inbound IKE traffic on host ge-0/0/0.0 in the Untrust zone

• Remote-Office1 IKE policy

• Enable DPD with an interval of every 10 seconds and a threshold of 3

• Don’t have DPD always send keepalives; only send in the absence of traffic

[edit]
root@SRX5800#edit security ike gateway Remote-Office1

[edit security ike gateway Remote-Office1]
root@SRX5800#set address 198.18.1.254

[edit security ike gateway Remote-Office1]
root@SRX5800#set external-interface ge-0/0/0.0

Configuring an IKE gateway with static IP address and DPD.

IPsec VPN Configuration | 289

[edit security ike gateway Remote-Office1]
root@SRX5800#set ike-policy Remote-Office1

[edit security ike gateway Remote-Office1]
root@SRX5800#set dead-peer-detection interval 10

[edit security ike gateway Remote-Office1]
root@SRX5800#set dead-peer-detection threshold 3

[edit security ike gateway Remote-Office1]
root@SRX5800# show
ike-policy Remote-Office1;
address 198.18.1.254;
dead-peer-detection {
 interval 10;
 threshold 3;
}
external-interface ge-0/0/0.0;

[edit security ike gateway Remote-Office1]
root@SRX5800#top edit security zones security-zone untrust
interfaces ge-0/0/0.0 host-inbound-traffic system-services

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services]
root@SRX5800#set ike

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services]
root@SRX5800#show
ike;

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services]
root@SRX5800#top commit

Configuring dynamic gateways and remote access clients

Some properties of IKE Phase 1 apply only to remote clients connecting to the SRX.
These are primarily centered on XAuth and IKE IDs:

Configuring XAuth
XAuth negotiation technically takes place between Phase 1 and Phase 2 of the VPN
establishment, but is herewith discussed as part of the Phase 1 negotiation. The
SRX only supports authenticating clients with XAuth and not authenticating itself
to another XAuth-capable peer. Also, the SRX must use RADIUS to authenticate
remote users, and cannot use local XAuth users like ScreenOS can (at the time of
this writing). A few things must be configured as part of the XAuth configuration,
including the XAuth access profile, the XAuth RADIUS server configuration, and
the XAuth configuration within IKE. Also, when configuring remote users, an IKE
gateway must be configured to define the IKE identity of the user.

290 | Chapter 6: IPsec VPN

Configuring IKE connection sharing
IKE connection sharing allows an administrator to define a single IKE gateway
object that allows multiple users to connect to it with the same properties. This is
most commonly performed when using multiple remote clients that are also using
XAuth to authenticate; however, this is not a requirement. It is primarily used as
a matter of convenience for the administrator so that she doesn’t have to configure
multiple gateways as well as remote clients with separate configuration files, but
rather can use a single remote configuration and single gateway configuration. This
is known as a shared-IKE ID.

Configure the Remote-Office3 gateway
which uses a dynamic IP address with the following properties:

• Remote-Office-Dynamic IKE policy

• Remote-Office3.company.com used as identity of Remote-Office3

• External interface of ge-0/0/0.0

• IKE processing enabled on interface ge-0/0/0.0

[edit]
root@SRX5800#edit security ike gateway Remote-Office3

[edit security ike gateway Remote-Office3]
root@SRX5800#set dynamic hostname Remote-Office3.company.com

[edit security ike gateway Remote-Office3]
root@SRX5800#set external-interface ge-0/0/0.0

set security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services ike

[edit security ike gateway Remote-Office3]
root@SRX5800#set ike-policy Remote-Office-Dynamic

[edit security ike gateway Remote-Office3
root@5800# show
ike-policy Remote-Office-Dynamic;
dynamic hostname Remote-Office3.company.com;
external-interface ge-0/0/0.0;

[edit security ike gateway Remote-Office3]
root@SRX5800#top edit security zones security-zone untrust interfaces
ge-0/0/0.0 host-inbound-traffic system-services

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services]
root@SRX5800#set ike

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services]
root@SRX5800#show
ike;

Configuring an IKE gateway with a dynamic IP address.

IPsec VPN Configuration | 291

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services]
root@SRX5800#top commit

Configure the following properties for a remote client
connection:

• The remote client’s identity should be a shared IKE ID type, with up to 25 simul-
taneous connections.

• The user should use the UFQDN Remote-Client@company.com.

• The VPNs should be terminated on the ge-0/0/0.0 interface, and ensure that IKE
traffic can be processed on this interface.

• The Remote-Office-Dynamic IKE policy should be selected.

• XAuth will be used for this connection with an access profile of Remote-Client, via
RADIUS server 10.3.1.50, with a secret of RadiU$Secr3+.

[edit]
root@SRX5800# edit security ike gateway Remote-Client

[edit security ike gateway Remote-Client]
root@SRX5800# set dynamic user-at-hostname Remote-Client@company.com

[edit security ike gateway Remote-Client]
root@SRX5800# set external-interface ge-0/0/0.0

[edit security ike gateway Remote-Client]
root@SRX5800# set ike-policy Remote-Office-Dynamic

[edit security ike gateway Remote-Client]
root@SRX5800# set xauth access-profile Remote-Client

[edit security ike gateway Remote-Client]
root@SRX5800# set dynamic connection-limit 25

[edit security ike gateway Remote-Client]
root@SRX5800# set Dynamic dynamic ike-user-type shared-ike-id

[edit security ike gateway Remote-Client
root@SRX5800# show
ike-policy Remote-Office-Dynamic;
dynamic {
 user-at-hostname Remote-Client@company.com;
 connections-limit 25;
 ike-user-type shared-ike-id;
}
local-identity hostname HQ.company.com;
external-interface ge-0/0/0.0;
xauth access-profile Remote-Client;

[edit security ike gateway Remote-Client]
root@SRX5800#top edit security zones security-zone untrust interfaces

Configuring an IKE remote access client.

292 | Chapter 6: IPsec VPN

mailto:Remote-Client@company.com

ge-0/0/0.0 host-inbound-traffic system-services

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services
root@SRX5800#set ike

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services
root@SRX5800#show
ike;

[edit security zones security-zone untrust interfaces ge-0/0/0.0
host-inbound-traffic system-services
root@SRX5800# top edit access profile Remote-Client

[edit access profile Remote-Client]
root@SRX5800# set authentication-order radius

[edit access profile Remote-Client]
root@SRX5800# set radius-server 10.3.1.50 secret RaDiU$Secr3+

[edit access profile Remote-Client]
root@SRX5800# show
authentication-order radius;
radius-server {
 10.3.1.50 secret "9PTn9AtOEhyQFrKvWXxjik.PQn6AuBE/9Ec";
SECRET-DATA
 }

[edit access profile Remote-Client]
root@SRX5800#top commit

Phase 2 IKE Configuration
Phase 2 IKE configuration requires several parameters to be defined for the IPsec VPN
to establish. Phase 2 primarily deals with securing the data traffic located within the
IPsec VPN tunnel. This communication takes place on top of the secure communication
channel formed in Phase 1.

In this section, we will cover the following regarding Phase 2 configuration: Phase 2
proposal, Phase 2 policy, and common VPN components.

Configuring Phase 2 proposals

Phase 2 IKE proposals are similar to Phase 1 IKE proposals in that encryption and
authentication algorithms are selected, along with key lifetimes. As mentioned before,
the purpose of the Phase 2 encryption and authentication algorithms differs with that
of Phase 1 encryption and authentication algorithms, but the actual components of the
proposals are essentially the same. It is important to note that the names of the pro-
posals, policies, and VPNs do not have to match those of the Phase 1 policies used,

IPsec VPN Configuration | 293

since they will be referenced accordingly, but name matching is often done for sim-
plicity of management.

Configuring the encryption algorithm
The encryption algorithm defines which encryption algorithm is used to encrypt
the data within the IPsec VPN. This is only applicable when using ESP, as AH does
not encrypt the actual content of the VPN.

Configuring the authentication algorithm
The authentication algorithm is used to ensure that the data has arrived from the
correct source and has not been modified.

Configuring the IPsec protocol
ESP or AH must be selected for determining the type of VPN. ESP provides both
encryption and authentication, while AH only provides authentication.

Configuring the key lifetimes
Key lifetimes for Phase 2 can be configured in seconds or as kilobytes. If the goal
is to ensure that Phase 2 keys are active for only a certain period of time, seconds
is the appropriate choice; if the goal is to keep keys active until a certain amount
of data has been sent (based on VPN usage), kilobytes is preferred. If you do not
specify the value, by default 3,600 seconds (or one hour) will be used for the Phase
2 key lifetime.

Configure the following
properties for the Remote-Office Phase 2 proposal that will be used for all remote offices
and client connections:

• Use AES-256 for the encryption algorithm.

• Use SHA-1 for the authentication algorithm.

• Use ESP as the IPsec protocol.

• Set a lifetime of one hour for the Phase 2 keys.

[edit]
root@SRX5800# edit security ipsec proposal Remote-Office-Client

[edit security ipsec proposal Remote-Office-Client]
root@SRX5800# set encryption-algorithm aes-256-cbc

[edit security ipsec proposal Remote-Office-Client]
root@SRX5800# set authentication-algorithm hmac-sha1-96

[edit security ipsec proposal Remote-Office-Client]
root@SRX5800# set protocol esp

[edit security ipsec proposal Remote-Office-Client]
root@SRX5800# set lifetime-seconds 3600

[edit security ipsec proposal Remote-Office-Client]
root@SRX5800# show
protocol esp;

Configuring a Phase 2 proposal for remote offices and client connections.

294 | Chapter 6: IPsec VPN

authentication-algorithm hmac-sha1-96;
encryption-algorithm aes-256-cbc;
lifetime-seconds 3600;

[edit security ipsec proposal Remote-Office-Client]
root@SRX5800#top commit

Configuring Phase 2 IPsec policy

The Phase 2 IPsec policy defines how the VPN is established. A few properties are
defined in the IPsec policy, including which proposals are to be used, as well as whether
PFS is to be used on the VPN.

Configuring the IPsec proposals
Up to four proposals can be negotiated for the IPsec tunnel, although only one is
used for the actual IPsec traffic encryption and authentication. Essentially, the in-
itiator tries to negotiate each IPsec tunnel until a proposal is accepted by the peer
or there are no other IPsec proposals left to negotiate.

Configuring PFS
If PFS is to be used, it is configured in the IPsec policy, and actually takes effect
after Phase 1 but before Phase 2 is negotiated. As part of the configuration, the
Diffie-Hellman group must be defined to be negotiated for the PFS. It does not
have to match the Diffie-Hellman group negotiated in Phase 1.

You must configure an IPsec policy
which defines which Phase 2 proposal will be selected, and if PSK will be used for the
VPN, if applicable. Configure the Remote-Office-Client Phase 2 IPsec policy, which
will be used for all remote office and client connections with the following properties:

• Use the Remote-Office-Client proposal.

• Use PFS with Diffie-Hellman Group 5 for additional security.

[edit]
root@SRX5800# edit security ipsec policy Remote-Office-Client

[edit security ipsec policy Remote-Office-Client]
root@SRX5800# set proposals Remote-Office-Client

[edit security ipsec policy Remote-Office-Client]
root@SRX5800# set perfect-forward-secrecy keys group5

[edit security ipsec policy Remote-Office-Client]
root@SRX5800# show
perfect-forward-secrecy {
 keys group5;
}
proposals Remote-Office-Client;

[edit security ipsec policy Remote-Office-Client]
root@SRX5800#top commit

Configuring an IPsec policy defining the Phase 2 proposal.

IPsec VPN Configuration | 295

Configuring common IPsec VPN components

Now that the IPsec proposal and the policy have been configured, the VPN object can
be completed with the final configuration of Phase 2. This information includes the
proxy IDs, the IPsec policy, the tunnel binding (if route-based VPNs are used), and
other properties of the VPN tunnel including replay detection, fragmentation, and VPN
monitoring. We’ll begin with the VPN configuration components that are common to
both policy-based and route-based VPNs, and then cover the components specific to
policy- and route-based VPNs, respectively. Some of the components covered in this
section are optional and will be noted as such.

Configuring the IPsec VPN gateway
The IPsec VPN gateway must be configured in Phase 2. This references the IKE
VPN gateway object configured in Phase 1.

Configuring the IPsec policy
The IPsec policy defines the proposal and PFS configuration for the VPN.

Configuring VPN establishment
The VPN can be established immediately when the configuration is applied (and
subsequently whenever the VPN expires), or it can be established on-traffic when
there is user data traffic. By default, VPNs are established on-traffic.

Configuring fragmentation
Fragmentation may be required on VPN traffic because of the overhead associated
with IPsec VPNs (either ESP/AH overhead or overhead associated with Tunnel
mode) and the underlying MTU of the physical data links. A few options can be
selected for the fragmentation. You can alternatively clear the DF bit, set the DF bit,
and copy the DF bit. If fragmentation is required but the DF bit is set (and honored
by the SRX), that traffic will be dropped.

Configuring Anti-Replay detection
By default, Anti-Replay detection is enabled. It essentially consists of checking the
sequence numbers and enforcing the check, rather than just ignoring the sequence
numbers. Anti-Replay detection can be disabled manually if desired on a VPN-by-
VPN basis.

Configuring VPN monitoring
VPN monitoring is a proprietary method of ensuring that the VPN is actually es-
tablished (which goes beyond the VPN gateway availability of DPD to actually
ensure that the VPN itself is up). A few parameters must be configured as part of
VPN monitoring, including what device to ping, what source interface is used, and
whether the traffic is optimized. The optimized setting omits sending the pings
when user data is present.

Configure a VPN called East-Branch, which
will serve as the site-to-site VPN for the East Branch to Campus site:

• Use an IKE gateway called East-Branch.

Configuring a common site-to-site VPN component.

296 | Chapter 6: IPsec VPN

• Use an IPsec policy called Remote-Office-Client.

• Establish the VPNs immediately and automatically rekey.

• Disable Anti-Replay detection.

• Always clear the Don’t Fragment (DF) bit.

• Monitor the VPN by pinging the IP address 192.168.1.50 using a method in which
the pings are only sent in the absence of traffic every three seconds with a failure
threshold of 3.

[edit]
root@SRX5800# edit security ipsec vpn East-Branch

[edit security ipsec vpn East-Branch]
root@SRX5800# set ike gateway East-Branch

[edit security ipsec vpn East-Branch]
root@SRX5800# set ike ipsec-policy Remote-Office-Client

[edit security ipsec vpn East-Branch]
root@SRX5800# set establish-tunnels immediately

[edit security ipsec vpn East-Branch]
root@SRX5800# set df-bit clear

[edit security ipsec vpn East-Branch]
root@SRX5800# set ike no-anti-replay

[edit security ipsec vpn East-Branch]
root@SRX5800# set vpn-monitor optimized source-interface st0.0
destination-ip 192.168.1.50

[edit security ipsec vpn East-Branch]
root@SRX5800# show
df-bit clear;
vpn-monitor {
 optimized;
 destination-ip 192.168.1.50;
}
ike {
 gateway East-Branch;
 no-anti-replay;
}
ipsec-policy Remote-Office-Client;

[edit security ipsec vpn East-Branch]
root@SRX5800# up

[edit security ipsec]
root@SRX5800# set vpn-monitor-options inverval 3 threshold 3

[edit security ipsec]
root@SRX5800# show
vpn-monitor-options {

IPsec VPN Configuration | 297

 interval 3;
 threshold 3;
}

[edit security ipsec]
root@SRX5800#top commit

Configuring policy-based VPNs

The main thing that needs to be configured as part of policy-based VPNs is the tunnel
action of the appropriate security policy rule. One thing that is often forgotten when it
comes to configuring policy-based VPNs is that a route may still be needed to force the
traffic to go to the correct destination zone. This is not special to the VPN configuration,
as it also applies to standard traffic to determine the egress interface and egress zone.

In this example, we will
be configuring a policy-based VPN for the East Branch to the Central site VPN. Use
the following properties for creating this policy-based VPN:

• Allow any HTTP traffic to or from the 10.0.0.0/8 network to 192.168.1.0/24 for
the East-Branch VPN created in the previous steps.

• Log the connections on session close.

[edit]
root@SRX5800# set security zones security-zones trust address-book
address 10.0.0.0/8 10.0.0.0/8

[edit]
root@SRX5800# show security zones security-zone trust address-book
address 10.0.0.0/8 10.0.0.0/8

[edit]
root@SRX5800# set security zones security-zones untrust address-book
address 192.168.1.0/24 192.168.1.0/24

[edit]
root@SRX5800# show security zones security-zone untrust address-book
address 192.168.1.0/24 192.168.1.0/24

[edit]
root@SRX5800# edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# set match source-address 10.0.0.0/8 destination-address
192.168.1.0/24 application junos-http

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# set then permit tunnel ipsec-vpn East-Branch pair-policy
East-Branch-Inbound

Configuring a policy-based VPN for the East Branch to the Central site VPN.

298 | Chapter 6: IPsec VPN

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# set then log session-close

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# show
match {
 source-address 10.0.0.0/8;
 destination-address 192.168.1.0/24;
 application junos-http;
 }
 then {
 permit {
 tunnel {
 ipsec-vpn East-Branch;
 pair-policy East-Branch-Inbound;
 }
 }
 log {
 session-close;
 }
 }

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800#top edit security policies from-zone untrust to-zone
trust policy East-Branch-Inbound

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Inbound]
root@SRX5800# show
match {
 source-address 192.168.1.0/24;
 destination-address 10.0.0.0/8;
 application junos-http;
 }
 then {
 permit {
 tunnel {
 ipsec-vpn East-Branch;
 pair-policy East-Branch-Outbound;
 }
 }
 log {
 session-close;
 }
 }

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Inbound]
root@SRX5800#top commit

IPsec VPN Configuration | 299

Configuring route-based VPNs

Route-based VPNs require a few extra components over policy-based VPNs, as outlined
here:

Configuring secure tunnel interfaces
Secure tunnel interfaces are virtual interfaces that place all of the traffic that arrives
in them into VPNs that are bound to the tunnel interface. They are required for
route-based VPNs, where the traffic destined to the VPN is routed into the secure
tunnel interface. It is important to understand that just like standard logical inter-
faces, the units can be in different zones from each other, so they can be separate.

Configuring interface binding
Once the st0.x interface has been created, the VPN must be bound to the appro-
priate secure tunnel interface. This is done within the Phase 2 configuration.

Configuring proxy IDs
Proxy IDs must be configured for route-based VPNs since they cannot be derived
from anything like policy-based VPNs can. Policy-based VPNs can also be over-
written by defining the proxy IDs manually. At the time of this writing, only a single
proxy ID can be defined per VPN on the SRX.

Configuring routing
The SRX must know how to reach the destination networks. This can be done
through the use of static routing or dynamic routing. In this example configuration,
static routing is used.

Although route-based VPNs do not require a policy with the Tunnel action, security
policies to allow the traffic are still required. The policy is a regular policy, with the
standard Permit action. The following syntax shows the Then action of the policy,
followed by a complete example of a match policy:

[edit]
root@SRX5800# set interfaces st0 unit 0 family inet address 192.168.100.1/24

root@SRX5800# show interfaces st0
unit 0 {
 family inet {
 address 192.168.100.1/24;
 }
}

[edit]
root@SRX5800# edit security ipsec vpn East-Branch

[edit security ipsec vpn East-Branch]
root@SRX5800# set bind-interface st0.0

[edit security ipsec vpn East-Branch]
root@SRX5800# set ike proxy-identity local 10.0.0.0/8 remote 192.168.1.0/24
service junos-http

300 | Chapter 6: IPsec VPN

[edit security ipsec vpn East-Branch]
root@SRX5800# set ike gateway East-Branch

[edit security ipsec vpn East-Branch]
root@SRX5800# set ipsec-policy Remote-Office-Client

[edit security ipsec vpn East-Branch]
root@SRX5800# show
bind-interface st0.0;
ike {
 gateway East-Branch;
 proxy-identity {
 local 10.0.0.0/8;
 remote 192.168.1.0/24;
 service junos-http;
 }
 ipsec-policy Remote-Office-Client;
}

[edit security ipsec vpn East-Branch]
root@SRX5800# top

[edit]
root@SRX5800# set routing-options static route 192.168.1.0/24
next-hop 192.168.100.254

[edit]
root@SRX5800# show routing-options static route 192.168.1.0/24
next-hop 192.168.100.254

[edit]
root@SRX5800# set security zones security-zones trust address-book
address 10.0.0.0/8 10.0.0.0/8

[edit]
root@SRX5800# show security zones security-zone trust address-book
address 10.0.0.0/8 10.0.0.0/8

[edit]
root@SRX5800# set security zones security-zones untrust address-book
address 192.168.1.0/24 192.168.1.0/24

[edit]
root@SRX5800# show security zones security-zone untrust address-book
address 192.168.1.0/24 192.168.1.0/24

[edit]
root@SRX5800# edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# set match source-address 10.0.0.0/8 destination-address

IPsec VPN Configuration | 301

192.168.1.0/24 application junos-http

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# set then permit

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# set then log session-close

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800# show
match {
 source-address 10.0.0.0/8;
 destination-address 192.168.1.0/24;
 application junos-http;
 }
 then {
 permit
 log {
 session-close;
 }
 }

[edit security policies from-zone trust to-zone untrust policy
East-Branch-Outbound]
root@SRX5800#top edit security policies from-zone untrust to-zone trust policy
East-Branch-Inbound

[edit security policies from-zone untrust to-zone trust policy
East-Branch-Inbound]
root@SRX5800# set match source-address 192.168.1.0/24 destination-address
192.168.1.0/24 application junos-http

[edit security policies from-zone untrust to-zone trust policy
East-Branch-Inbound]
root@SRX5800# set then permit

[edit security policies from-zone untrust to-zone trust policy
East-Branch-Inbound]
root@SRX5800# set then log session-close

[edit security policies from-zone untrust to-zone trust policy
East-Branch-Inbound]
root@SRX5800# show
match {
 source-address 192.168.1.0/24;
 destination-address 10.0.0.0/8;
 application junos-http;
 }
 then {
 permit
 log {

302 | Chapter 6: IPsec VPN

 session-close;
 }
 }

[edit security policies from-zone untrust to-zone trust policy
East-Branch-Inbound]
root@SRX5800#top commit

Configuring Manual Key IPsec VPNs
In certain circumstances, an administrator may find that the benefits of IKE are not
worth the overhead in processing, and may elect to use manual key VPNs instead. The
configuration is much lighter with manual key VPNs because there are no Phase 1 or
Phase 2 negotiations; each side can just start sending the data at will with the admin-
istratively defined IPsec keys. Of course, both sides must be configured appropriately,
or else the data will be dropped by either side.

The following parameters must be defined for manual key encryption:

Gateway
This is the gateway object for the manual key encryption. This must be either an
IP address or a resolvable hostname.

Encryption
Encryption defines the encryption algorithm and the encryption key itself (in either
ASCII text or hexadecimal). The encryption algorithm can be DES-CBC, 3DES-
CBC, AES-128-CBC, AES-192-CBC, or AES-256-CBC. Note that the encryption
key length must be 8 bytes for DES, 24 bytes for 3DES, 16 bytes for AES-128, 24
bytes for AES-192, and 32 bytes for AES-256.

Authentication
Authentication defines the authentication algorithm and the authentication key to
be used (in either ASCII text or hexadecimal). The authentication algorithm can
be either HMAC-MD5-96 or HMAC-SHA1-96. Note that this key length must be
16 bytes for MD5 and 20 bytes for SHA-1.

External interface
This is the interface on which the IPsec VPN will terminate. This must be the correct
interface (including the correct unit) or the VPN negotiation will fail.

Protocol
The protocol must be defined as either ESP or AH.

Security Parameter Index (SPI)
The SPI is a number the VPN gateways use to identify which VPN keys are used
for the VPN. The SPIs must match or else there will be a decryption failure on the
peer device because it will not be able to identify which keys are applicable to
decrypt the traffic for the VPN. Remember that two peers can have more than one
active VPN at the same time, to each other, and therefore they must use SPIs to
identify which VPN the packet belongs to so that it can be decrypted accordingly.

IPsec VPN Configuration | 303

Configuring a manual key IPsec VPN

Build the following scenario using manual key encryption between two IPsec VPN
peers:

• Connect an SRX5800 to Remote-Office-Manual via manual key encryption.

• Configure the encryption algorithm to be AES-256-CBC and the authentication
algorithm to be HMAC-SHA1-96.

• Encryption keys should be EncryptionKey1234567890123456789.

• Authentication keys should be AuthenticationKey123.

• The protocol should be ESP.

• Use 1003 for the SPI.

• The external interface should be ge-0/0/0.0.

[edit]
root@SRX5800# edit security ipsec vpn Remote-Office-Manual manual

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set gateway 198.18.10.254

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set external-interface ge-0/0/0.0

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set protocol esp

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set spi 1003

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set authentication algorithm hmac-sha1-96

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set authentication key ascii-text AuthenticationKey123

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set encryption algorithm aes-256-cbc

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800# set encryption key ascii-text EncryptionKey1234567890123456789

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800#show
gateway 198.18.10.254;
external-interface ge-0/0/0.0;
protocol esp;
spi 1003;
authentication {
 algorithm hmac-sha1-96;
 key ascii-text "$9$7j-dwoJDqPQwYJDHmF3revWX-ws4aJDwYDkPQ9CylK8x-
Y2aZjqY25Qn6At"; ## SECRET-DATA
}

304 | Chapter 6: IPsec VPN

encryption {
 algorithm aes-256-cbc;
 key ascii-text "9fTznEhrvMXEcoGUDPfRhSrK8oaU.PQuOhreM-dHq.fFnCtuIhSpu7-
wYoaCtp0hSylKMLxhcwY24ZGCtpOhSWLx7Vwx7"; ## SECRET-DATA
}

[edit security ipsec vpn Remote-Office-Manual manual]
root@SRX5800#top commit

Dynamic VPN
In this example, we will demonstrate how to leverage the built-in Dynamic VPN client
on the branch SRX Series devices to connect remote clients to the corporate network.

Phase 1 proposal
Create a proposal called Dynamic-VPN that uses 3DES-SHA1, preshared keys,
Diffie-Hellman Group 2, and a lifetime of four hours, and set a description.

Phase 1 policy
Create a policy called Dynamic-VPN-Policy that uses aggressive mode, the pre-
shared key DialUp4123, and the Dynamic-VPN proposal, and set a description.

Phase 1 gateway
Create an IKE gateway called Dynamic-VPN-Gateway. You will use the XAuth
parameters that we defined earlier in the chapter for our XAuth profile called
XAuth. Limit the number of connections to five using a shared IKE ID of
dynvpn@company.com. This VPN should be terminated on interface ge-0/0/0.0
using the IKE policy Dynamic-VPN-Policy. Ensure that the ge-0/0/0.0 interface
allows inbound IKE and HTTP/HTTPS connections so that the user can access the
web interface and to make sure VPNs can establish properly.

Phase 2 proposal
Create a proposal called Dynamic-VPN using AES256-SHA1 with ESP as the IPsec
protocol, set the lifetime to 3,600 seconds, and provide a description for the
proposal.

Phase 2 policy
Create a policy called Dynamic-VPN-Policy which uses the Dynamic-VPN Phase
2 proposal with PDF Diffie-Hellman Group 2.

Phase 2 VPN
Create a Phase 2 VPN called Dynamic-VPN which uses Dynamic-VPN-Gateway
as the gateway and Dynamic-VPN-Policy as the Phase 2 policy.

Dynamic VPN client configuration
Create a Dynamic VPN client configuration called Dynamic-VPN-Clients which
uses the Dynamic-VPN configuration we defined for user dynvpn. This profile
should allow users to access the resource 10.0.0.0/8 behind the firewall when they
are connected. Use the XAuth profile XAuth, and also force the client to upgrade
if an upgrade to the client is necessary upon login.

IPsec VPN Configuration | 305

mailto:dynvpn@company.com

Local certificate
Finally, generate a local certificate which can be used to host HTTPS on the web
server on the ge-0/0/0.0 interface. This is needed so that we can allow users to log
in securely. You must also ensure that the ge-0/0/0.0 interface allows the HTTPS
connection inbound.

[edit]
root@SRX210# edit security ike proposal Dynamic-VPN

[edit security ike proposal Dynamic-VPN]
root@SRX210# set authentication-method pre-shared-keys dh-group group2
authentication-algorithm sha1 encryption algorithm 3des-cbc lifetime-seconds
12000 description "Dynamic VPN Proposal"

[edit security ike proposal Dynamic-VPN]
root@SRX210# show
description "Dynamic VPN Proposal";
authentication-method pre-shared-keys;
dh-group group2;
authentication-algorithm sha1;
encryption-algorithm 3des-cbc;
lifetime-seconds 12000;

[edit security ike proposal Dynamic-VPN]
root@SRX210#up

[edit security ike]
root@SRX210# edit policy Dynamic-VPN-Policy

[edit security ike policy Dynamic-VPN-Policy]
root@SRX210# set mode aggressive description "Dynamic-VPN IKE Policy" proposals
Dynamic-VPN pre-shared-key ascii-text DialUp4123

[edit security ike policy Dynamic-VPN-Policy]
root@SRX210# show
mode aggressive;
description "Dynamic-VPN IKE Policy";
proposals Dynamic-VPN;
pre-shared-key ascii-text "9K8zvWXY2aZGi7-.f5T9CM8LxVw24aUik"; ## SECRET-DATA

[edit security ike policy Dynamic-VPN-Policy]
root@SRX210# up

[edit security ike]
root@SRX210# edit gateway Dynamic-VPN-Gateway

[edit security ike gateway Dynamic-VPN-Gateway]
root@SRX210# set external-interface ge-0/0/0.0 ike-policy Dynamic-VPN-Policy
xauth access-profile XAuth

[edit security ike gateway Dynamic-VPN-Gateway]
root@SRX210# set dynamic connection-limit 5 user-at-hostname dynvpn@company.com
ike-user-type shared-ike-id

306 | Chapter 6: IPsec VPN

[edit security ike gateway Dynamic-VPN-Gateway]
root@SRX210# show
ike-policy Dynamic-VPN-Policy;
dynamic {
 user-at-hostname "dynvpn@company.com";
 connections-limit 5;
 ike-user-type shared-ike-id;
}
external-interface ge-0/0/0;
xauth access-profile XAuth;

[edit security ike gateway Dynamic-VPN-Gateway]
root@SRX210# top

[edit]
root@SRX210# show access-profile
XAuth;

[edit]
root@SRX210# show access profile XAuth
authentication-order radius;
radius-server {
 192.168.224.60 {
 port 1812;
 secret "9pf5hB1hrev7dbgoJDk.zFIEclMX"; ## SECRET-DATA
 source-address 192.168.224.3;
 }
}

[edit]
root@SRX210# show security zones security-zone trust
interfaces {
 ge-0/0/0.0 {
 host-inbound-traffic {
 system-services {
 http;
 https;
 ping;
 ike;
 }
 protocols {
 ospf;
 }
 }
 }
}

[edit]
root@SRX210# edit security ipsec proposal Dynamic-VPN

[edit security ipsec proposal Dynamic-VPN]
root@SRX210# set description "Dynamic VPN Proposal" authentication-algorithm
hmac-sha1-96 encryption-algorithm aes-256-cbc lifetime-seconds 3600 protocol esp

[edit security ipsec proposal Dynamic-VPN]

IPsec VPN Configuration | 307

root@SRX210# show
description "Dynamic VPN Proposal";
protocol esp;
authentication-algorithm hmac-sha1-96;
encryption-algorithm aes-256-cbc;
lifetime-seconds 3600;

[edit security ipsec proposal Dynamic-VPN]
root@SRX210# up

[edit security ipsec]
root@SRX210# edit policy Dynamic-VPN-Policy

[edit security ipsec policy Dynamic-VPN-Policy]
root@SRX210# set description "Dynamic VPN Phase 2 Policy" proposals Dynamic-VPN
perfect-forward-secrecy keys group2

[edit security ipsec policy Dynamic-VPN-Policy]
root@SRX210# show
description "Dynamic VPN Phase 2 Policy";
perfect-forward-secrecy {
 keys group2;
}
proposals Dynamic-VPN;

[edit security ipsec policy Dynamic-VPN-Policy]
root@SRX210 up

[edit security ipsec]
root@SRX210# edit vpn Dynamic-VPN

[edit security ipsec vpn Dynamic-VPN]
root@SRX210# set ike gateway Dynamic-VPN-Gateway ipsec-policy Dynamic-VPN-Policy

[edit security ipsec vpn Dynamic-VPN]
root@SRX210# show
ike {
 gateway Dynamic-VPN-Gateway;
 ipsec-policy Dynamic-VPN-Policy;
}

[edit security ipsec vpn Dynamic-VPN]
root@SRX210# up 2

[edit security]
root@SRX210# edit dynamic-vpn

[edit security dynamic-vpn
root@SRX210# set clients Dynamic-VPN-Clients remote-protected-resources
10.0.0.0/8

[edit security dynamic-vpn]
root@SRX210# set clients Dynamic-VPN-Clients user dynvpn

[edit security dynamic-vpn]

308 | Chapter 6: IPsec VPN

root@SRX210# set clients Dynamic-VPN-Clients ipsec-vpn Dynamic-VPN

[edit security dynamic-vpn]
root@SRX210# set force-upgrade

[edit security dynamic-vpn]
root@SRX210# set access-profile XAuth

[edit security dynamic-vpn]
root@SRX210# show
force-upgrade;
access-profile XAuth;
clients {
 Dynamic-VPN-Clients {
 remote-protected-resources {
 10.0.0.0/8;
 }
 ipsec-vpn Dynamic-VPN;
 user {
 dynvpn;
 }
 }
}

[edit security dynamic-vpn]
root@SRX210# top

[edit]
root@SRX210# run request security pki generate-key-pair certificate-id HTTPS
Generated key pair HTTPS, key size 1024 bits

[edit]
root@SRX210# set system services web-management https
system-generated-certificate interface ge-0/0/0.0

[edit]
root@SRX210# show system services web-management
https {
 system-generated-certificate;
 interface ge-0/0/0.0;
}

VPN Verification and Troubleshooting
Once the configuration of the VPN is complete and committed, you should take some
additional steps to ensure that the VPN is operational. You can also use these steps
whenever there appears to be an issue with VPN establishment or connectivity. This
section details the useful commands that can help provide information on the status of
VPNs, as well as troubleshooting steps and available facilities that can provide advanced
diagnostics for resolving VPN issues.

VPN Verification and Troubleshooting | 309

Useful VPN Commands
The SRX has several useful commands when it comes to determining the state of VPNs,
including commands that identify specific aspects of VPNs.

show security ike security-associations

The show security ike security-associations command shows any VPNs that have
passed Phase 1 and have an active IKE security association for Phase 1.

This command is important because if IKE fails to complete Phase 1, it can’t proceed
to Phase 2. (An exception is that if the IKE Phase 1 lifetime expires before the Phase 2
lifetime expires, there may not be a listing for the IKE security association while there
will be one for Phase 2. However, when the Phase 2 security association expires, the
Phase 1 IKE security association will need to be renegotiated first.)

The following output shows an actively established Phase 1 security association, first
without the detail argument and then with the detail argument. There are lots of
useful reasons for using the detail command to show the properties of the tunnel itself.
It’s often most useful to define the peer gateway before the detail to only show a specific
gateway’s status. When troubleshooting VPN establishment, you must first verify that
Phase 1 is completing successfully before moving on to Phase 2, and this command
helps provide that information.

root@SRX210> show security ike security-associations
Index Remote Address State Initiator cookie Responder cookie Mode
1484 198.18.1.1 UP 27c96e043fb9f80c 73ec1d49b689f198 Main

root@SRX210> show security ike security-associations detail
IKE peer 198.18.1.1, Index 1484,
 Role: Initiator, State: UP
 Initiator cookie: 27c96e043fb9f80c, Responder cookie: 73ec1d49b689f198
 Exchange type: Main, Authentication method: Pre-shared-keys
 Local: 198.18.1.254:500, Remote: 198.18.1.1:500
 Lifetime: Expires in 28239 seconds
 Algorithms:
 Authentication : sha1
 Encryption : aes-cbc (256 bits)
 Pseudo random function: hmac-sha1
 Traffic statistics:
 Input bytes : 780
 Output bytes : 992
 Input packets: 4
 Output packets: 5
 Flags: Caller notification sent
 IPSec security associations: 1 created, 0 deleted
 Phase 2 negotiations in progress: 0

310 | Chapter 6: IPsec VPN

show security ipsec security-associations

Once Phase 1 has been established, you might need to determine whether Phase 2 has
been successfully completed. A very useful command is the show security ipsec
security-associations command. It will show the established Phase 2 security asso-
ciations and applicable properties. There is also the detail command that provides
much more information regarding the state of the VPN.

root@SRX210> show security ipsec security-associations
 Total active tunnels: 1
 ID Gateway Port Algorithm SPI Life:sec/kb Mon vsys
 <131073 198.18.1.1 500 ESP:aes-256/sha1 20b3bf2e 1673/ unlim - 0
 >131073 198.18.1.1 500 ESP:aes-256/sha1 3958d177 1673/ unlim - 0

root@SRX210> show security ipsec security-associations detail
 Virtual-system: Root
 Local Gateway: 198.18.1.254, Remote Gateway: 198.18.1.1
 Local Identity: ipv4_subnet(any:0,[0..7]=172.31.0.0/16)
 Remote Identity: ipv4_subnet(any:0,[0..7]=192.168.0.0/16)
 DF-bit: clear
 Direction: inbound, SPI: 20b3bf2e, AUX-SPI: 0
 Hard lifetime: Expires in 1073 seconds
 Lifesize Remaining: Unlimited
 Soft lifetime: Expires in 436 seconds
 Mode: tunnel, Type: dynamic, State: installed, VPN Monitoring: -
 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: aes-cbc (256 bits)
 Anti-replay service: enabled, Replay window size: 64

 Direction: outbound, SPI: 3958d177, AUX-SPI: 0
 Hard lifetime: Expires in 1073 seconds
 Lifesize Remaining: Unlimited
 Soft lifetime: Expires in 436 seconds
 Mode: tunnel, Type: dynamic, State: installed, VPN Monitoring: -
 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: aes-cbc (256 bits)
 Anti-replay service: enabled, Replay window size: 64

show security ipsec statistics

It’s always useful to gather high-level information regarding how the platform is pro-
cessing security information, including issues with encryption and decryption. The
command show security ipsec statistics provides such useful information, includ-
ing the number of encrypted and decrypted ESP and AH packets, as well as the different
types of failures. You can check this command multiple times when trying to determine
if the number of failures and errors is increasing.

root@SRX210> show security ipsec statistics
ESP Statistics:
 Encrypted bytes: 192721984
 Decrypted bytes: 90699752
 Encrypted packets: 1535730
 Decrypted packets: 1646906
AH Statistics:
 Input bytes: 0

VPN Verification and Troubleshooting | 311

 Output bytes: 0
 Input packets: 0
 Output packets: 0
Errors:
 AH authentication failures: 0, Replay errors: 0
 ESP authentication failures: 0, ESP decryption failures: 0
 Bad headers: 0, Bad trailers: 0

You can clear the information with the clear security ipsec statis
tics command.

VPN Tracing and Debugging
When the information contained within the output of the show commands is not enough
to determine the root cause of VPN negotiation failures, more detailed information is
required to determine where the message breakdown occurs. The SRX offers detailed
breakdowns of the debugging of VPN establishment, even down to the individual IPsec
messages that are sent and received by the SRX. So, let’s cover the individual trouble-
shooting steps that you can use to help troubleshoot a VPN issue. Then we’ll discuss
how to perform tracing, and finally what to look for in the output.

VPN troubleshooting process

Follow these steps when troubleshooting a VPN issue:

1. Verify that the peer gateway is reachable.

If there is an issue with routing to the remote gateway, or if a device is limiting
access (e.g., IKE traffic, ESP/AH traffic, NAT-T tunneled traffic), VPN establish-
ment will fail. Basic tests could include ping and traceroute (assuming that these
services are available on the remote device) to ensure that routing is functioning
properly and there are no Internet service provider (ISP) issues. The following
services should not be blocked by any device between the SRX and the remote peer:

a. UDP port 500 (default port for IKE negotiation). If this is blocked, IKE nego-
tiation will fail, with messages on the initiating gateway indicating that the
connection limit has been reached. On the responder device, there will be no
messages at all because the IKE traffic will not have reached the gateway.

b. IP Protocol 50 (ESP) if using ESP. If this is blocked, IKE negotiation may com-
plete successfully, but VPN traffic will not be able to communicate when using
ESP.

c. IP Protocol 51 (AH) if using AH. If this is blocked, IKE negotiation may
complete successfully, but VPN traffic will not be able to communicate when
using AH.

312 | Chapter 6: IPsec VPN

d. UDP port 4500 (default port for NAT-T). If this is blocked, IKE negotiation
may complete successfully, but VPN traffic will not be able to communicate
when using NAT-T.

2. Check the access lists and zone settings.

On the SRX, if an access list is enabled on the external interface terminating the
VPN or the lo0 interface that blocks any of the services mentioned in step 1, the
VPN will not be able to establish. Additionally, the SRX requires IKE to be enabled
on the interface, or in the zone of the external interface as a host-inbound-traffic
system service (it can be at the zone or interface level, with the interface level over-
riding the zone level). Make sure this is enabled; otherwise, the VPN will fail to
establish.

3. Check whether hostnames are used for the gateway.

You can optionally define the gateway address as a DNS address rather than an IP
address. In this case, DNS must be enabled and functioning properly to be able to
identify the remote gateway. Configuring multiple DNS servers often helps in case
of a DNS server failure.

4. Check whether the VPN is terminating on the correct interface.

In Phase 1 of the VPN, you must define on which interface the VPN will terminate.
If the VPN is trying to terminate on a different interface (even if the logical unit is
wrong), the VPN will fail to establish.

5. Check whether the Phase 1 modes match on both gateways.

Both gateways must use the same Phase 1 mode, either Main mode or Aggressive
mode. If the modes don’t match, the VPN establishment will fail.

6. Check whether the Phase 1 proposals match.

The Phase 1 proposals must match on both VPN gateways. If they do not match,
negotiations will fail. The SRX supports up to four proposals, so if the first proposal
negotiation fails, it will try the other proposals if available, but if there are no
matches the negotiations will fail in Phase 1. Check the proper combination of
certificate versus PSK, encryption and authentication algorithms, along with the
proper Diffie-Hellman groups.

7. Check whether the IKE identities are configured correctly.

As mentioned, there are a few different types of IKE identities, namely, IP address,
FQDN, and UFQDN. You can define the local identity (to be presented to the peer)
and the peer identity (to be presented by the peer). The local/peer must match on
the respective systems or else Phase 1 will fail.

8. Check whether the Phase 1 authentication is properly configured.

There are two types of Phase 1 authentication: preshared keys and certificates. In
the case of preshared keys, the preshared keys must match on both VPN gateways
for the VPN to complete Phase 1. In the case of certificates, the certificate presented
must be signed by a trusted CA (configured to work for the VPN). Next, if certificate

VPN Verification and Troubleshooting | 313

revocation checking is enabled, the certificate must not be revoked for the authen-
tication to pass.

9. If XAuth is used, check whether authentication is succeeding.

XAuth occurs between Phase 1 and Phase 2 of the VPN establishment process. At
the time of this writing, XAuth is only supported for authentication of RADIUS
users, and not local users on the firewall. If XAuth authentication does not succeed,
authentication will fail before Phase 2.

10. Check whether PFS is configured.

If PFS is configured, it must be configured on both gateways. Additionally, the
same Diffie-Hellman groups must be used between the peers for PFS. Note that
the Diffie-Hellman groups do not need to be the same as what is used in Phase 1;
however, both peers must use the same in the PFS configuration.

11. Check whether Phase 2 proposals match.

Just like Phase 1, the Phase 2 proposals must match on both ends (including en-
cryption and authentication algorithms). If they don’t match, Phase 2 negotiations
will fail. Up to four proposals may be defined and will be negotiated in order of
definition if the previous proposal fails, but if no proposal matches, the Phase 2
proposals will fail.

12. Check whether the proxy IDs match.

This is probably the most common reason for VPN negotiations to fail, especially
when trying to establish VPNs between different vendors. Proxy IDs can be manually
defined in the Phase 2 IPsec VPN configuration, or they can be derived from the
respective policies which are used for the VPN in the case of policy-based VPNs.
Doing a trace will show whether the VPN is failing due to proxy ID mismatch, but
this is something to be aware of.

13. Check whether the key lifetimes match.

This isn’t an explicitly required parameter, but sometimes this may matter with
other vendors’ implementations of IPsec VPNs, so it is best to set the VPNs to
support the same key lifetimes to ensure proper interoperability.

14. If policy-based VPNs are enabled, check whether the correct policy is being
matched.

With policy-based VPNs, the traffic should match the correct policy. If it is not
matching the correct policy, this might be a result of the incorrect policy configu-
ration, or a routing issue or misconfiguration. Remember that even in the case of
policy-based VPNs, the SRX must know what the egress interface and, thus, the
egress zone is to match the correct From/To zone pair. It doesn’t matter whether
static or dynamic routing is used; the routing must be properly configured. Doing
a simple flow trace will identify whether the traffic is being matched to the correct
policy along with the correct routing information. Also, make sure the policy is
configured to tunnel the traffic to the correct VPN.

314 | Chapter 6: IPsec VPN

15. If route-based VPNs are configured, check whether proper routing and security
policies are configured.

With a route-based VPN, you still need to define the correct security policy to
permit the traffic. If the traffic is not being permitted by policy, it cannot enter the
VPN. You can determine this by doing a flow debug to enable logging on the pol-
icies to ensure that the traffic is being permitted. Additionally, with route-based
VPNs, the appropriate routing must be configured to route the traffic into the
correct tunnel interface. Both static and dynamic routing can be used, but in the
case of dynamic routing, you must make sure the applicable protocols are enabled
on the tunnel interface (from the protocol configuration, along with the host-
inbound-traffic protocol configuration).

16. If route-based VPNs are configured, check whether the VPN is bound to the correct
interface.

Route-based VPNs must be bound to the correct interface. If they are bound to the
wrong interface, VPN negotiation may establish, but the traffic will not go through
the right VPN.

17. Check whether NAT is occurring between the two VPN gateways.

If so, NAT-T must be enabled (primarily for remote access VPNs and not site-to-
site VPNs) because the ESP/AH packets will be modified, which will invalidate the
hash for integrity checking.

18. If all else fails, check the release notes to see if there are any known issues for the
release of Junos you are running, and check the Knowledge Base. If you still cannot
find an answer, contact the Juniper Networks Technical Assistance Center (JTAC)
for additional assistance in troubleshooting.

Configuring and analyzing VPN tracing

You can do a trace on a VPN in two different ways. The first option is to simply trigger
a trace between two VPN peers with a hidden command called request security ike
debug-enable. The second option is to turn on wholesale IKE debugging on the entire
platform. The first method is best if you know the IP address of your remote VPN which
you would like to trace for; the second method is good for other scenarios where you
might want to troubleshoot more than just a single IPsec negotiation. Another
difference is that the first method is done by operational mode commands, whereas the
second is done by the standard tracefile configuration. The following output shows
how to briefly troubleshoot between two hosts, the local SRX 192.168.100.5 and the
remote peer 192.168.100.3, and logs the output to /var/log/kmd:

root@SRX5800> request security ike debug-enable local 192.168.100.5 remote
192.168.100.3 level 15

root@SRX5800> show log kmd

root@SRX5800> request security ike debug-disable

VPN Verification and Troubleshooting | 315

By default, Junos logs some information related to VPN establishment to the file /var/
log/kmd. The tracing configuration is the same regardless of the type of VPN.

Here are a few additional configuration options you can enable to provide more
information:

Enable IKE tracing
By default, IKE tracing is not enabled. IKE tracing allows you to view the infor-
mation in Phase 1. Although this can be logged to a file other than /var/log/kmd,
direct all logs to that file for simplicity.

Enable IPsec tracing
IPsec tracing will allow more detailed information to be logged to the .kmd file, but
note that the destination is not configurable. If IPsec tracing is not enabled,
the /var/log/kmd file will only show high-level VPN status.

Trigger VPN establishment (on traffic)
If the VPN is not configured to automatically establish (using the “establish im-
mediately” Phase 2 option), some traffic must be generated before the VPN will
attempt to establish.

View VPN trace output
After the VPN has attempted to establish, view the output of the trace log.

Disable tracing after solving the issue
It is important to disable tracing when you are not using it. In the case of VPN
tracing, it isn’t so much a matter of performance; rather, it generates a lot of logs,
so when it’s not needed, it is best to disable it.

Troubleshoot traffic flows
If you have determined that the VPN is properly established, but the traffic is not
passing through the VPN as expected (whether using policy- or route-based VPNs),
refer to the discussion of flow tracing in Chapter 3.

Here are the configurations to enable the additional VPN tracing options:

[edit]
root@SRX5800# edit security ike traceoptions

[edit security ike traceoptions]
root@SRX5800# set flag ike

[edit security ike traceoptions]
root@SRX5800# set file kmd

[edit security ike traceoptions]
root@SRX5800# top edit security ipsec traceoptions

[edit security ike traceoptions]
root@SRX5800# show
file kmd;
flag ike;

316 | Chapter 6: IPsec VPN

[edit security ipsec traceoptions]
root@SRX5800# set flag all

[edit security ipsec traceoptions]
root@SRX5800#show
flag all;

[edit security ipsec traceoptions]
root@SRX5800#top commit and-quit

Troubleshooting a site-to-site VPN

After the VPN establishment has been triggered, you can look at the /var/log/kmd file
to determine exactly what is happening.

The file contains a lot of information regarding the particular IKE entries. Use the
following sample output to help you sift through the file and find the relevant infor-
mation to extract the root cause of the failure:

Phase 1 Proposal Failure

root@SRX5800> show log kmd

##
Use the sample output below to help you sift through it and find the relevant
information to extract the root cause of the failure.

Received first packet from peer 198.18.1.1
##

Aug 14 21:06:11 jnp_ike_connect: Start, remote_name = 198.18.1.1:500, xchg = 2,
flags = 00000000
Aug 14 21:06:11 ike_sa_allocate: Start, SA = { a677627c 13dce62b - 00000000
00000000 }
Aug 14 21:06:11 ike_init_isakmp_sa: Start, remote = 198.18.1.1:500, initiator = 1
Aug 14 21:06:11 jnp_ike_connect: SA = { a677627c 13dce62b - 00000000 00000000},
nego = −1
Aug 14 21:06:11 ike_st_o_sa_proposal: Start
Aug 14 21:06:11 ike_policy_reply_isakmp_vendor_ids: Start
Aug 14 21:06:11 ike_st_o_private: Start
Aug 14 21:06:11 ike_policy_reply_private_payload_out: Start
Aug 14 21:06:11 ike_encode_packet: Start, SA = { 0xa677627c 13dce62b - 00000000
00000000 } / 00000000, nego = −1

##
Send response to source packet with src-ip 198.18.1.3
##

Aug 14 21:06:11 ike_send_packet: Start, send SA = { a677627c 13dce62b - 00000000
00000000}, nego = −1, src = 198.18.1.3:500, dst = 198.18.1.1:500,
routing table id = 0

##
Got second exchange from the peer, start decoding it
##

VPN Verification and Troubleshooting | 317

Aug 14 21:06:11 ike_get_sa: Start, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e } / 00000000, remote = 198.18.1.1:500
Aug 14 21:06:11 ike_sa_find: Not found SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e }
Aug 14 21:06:11 ike_sa_find_half: Found half SA =
{ a677627c 13dce62b - 00000000 00000000 }
Aug 14 21:06:11 ike_sa_upgrade: Start, SA =
{ a677627c 13dce62b - 00000000 00000000 } -> { ... - 2b282cfa fb5b7e9e }
Aug 14 21:06:11 ike_alloc_negotiation: Start, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e}
Aug 14 21:06:11 ike_decode_packet: Start
Aug 14 21:06:11 ike_decode_packet: Start, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e} / 00000000, nego = 0

##
No valid proposal was choosen. At this point you should contact the peer to
make sure that the Phase 1 proposal matches exactly, including the following
properties: Main/Aggressive Mode, Encryption and Authentication Algorithims,
Preshared Key/Certificate, Diffie-Hellman Group
##

Aug 14 21:06:11 ike_st_i_n: Start, doi = 1, protocol = 1,
code = No proposal chosen (14), spi[0..16] = a677627c 13dce62b ...,
data[0..8] = 00080004 00000000 ...
Aug 14 21:06:11 198.18.1.3:500 (Responder) <-> 198.18.1.1:500
{ a677627c 13dce62b - 2b282cfa fb5b7e9e [0] / 0x00000000 }
Info; Received notify err = No proposal chosen (14) to isakmp sa, delete it

##
Message has been sent to inform the peer that no proposal has been chosen,
now SRX will delete its current negotiation and await another attempt
##

Aug 14 21:06:11 ike_st_i_private: Start
Aug 14 21:06:11 ike_send_notify: Connected, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e}, nego = 0
Aug 14 21:06:11 ike_delete_negotiation: Start, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e}, nego = 0
Aug 14 21:06:11 ike_free_negotiation_info: Start, nego = 0
Aug 14 21:06:11 ike_free_negotiation: Start, nego = 0
Aug 14 21:06:11 ike_remove_callback: Start, delete SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e}, nego = −1
Aug 14 21:06:11 198.18.1.3:500 (Initiator) <-> 198.18.1.1:500
{ a677627c 13dce62b - 2b282cfa fb5b7e9e [-1] / 0x00000000 } IP;
Connection got error = 14, calling callback
Aug 14 21:06:11 ike_delete_negotiation: Start, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e}, nego = −1
Aug 14 21:06:11 jnp_ike_tunnel_table_entry_delete: Deleting tunnel_id:
1748 from IKE tunnel table
Aug 14 21:06:11 ike_sa_delete: Start, SA =
{ a677627c 13dce62b - 2b282cfa fb5b7e9e }

Phase 2 Proxy-ID Failure

318 | Chapter 6: IPsec VPN

root@SRX5800> show log kmd

##
Receive first packet in IKE negotiation, decode and evaluate
##

Aug 14 20:48:43 ike_sa_find_ip_port: Remote = 198.18.1.1:500,
Found SA = { 07a7f08c 798b8bd8 - d94d344c 834c287f}
Aug 14 20:48:43 ike_alloc_negotiation: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}
Aug 14 20:48:43 jnp_ike_create_delete_internal: SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 0
Aug 14 20:48:43 ike_encode_packet: Start, SA =
{ 0x07a7f08c 798b8bd8 - d94d344c 834c287f } / 78353525, nego = 0
Aug 14 20:48:43 ike_send_packet: Start, send SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 0, src = 198.18.1.3:500,
dst = 198.18.1.1:500, routing table id = 0
Aug 14 20:48:43 ike_delete_negotiation: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 0
Aug 14 20:48:43 ike_free_negotiation_info: Start, nego = 0
Aug 14 20:48:43 ike_free_negotiation: Start, nego = 0
Aug 14 20:48:43 Group/Shared IKE ID VPN configured: 2
Aug 14 20:48:43 jnp_ike_connect_ipsec: Start, remote_name = 198.18.1.1:500,
flags = 00010000
Aug 14 20:48:43 ike_sa_find_ip_port: Remote = 198.18.1.1:500,
Found SA = { 07a7f08c 798b8bd8 - d94d344c 834c287f}
Aug 14 20:48:43 ike_alloc_negotiation: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}
Aug 14 20:48:43 jnp_ike_connect_ipsec: SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 0

##
Phase 1 has completed IKE negotiations, start Phase 2 Quick Mode
##

Aug 14 20:48:43 ike_init_qm_negotiation: Start, initiator = 1,
message_id = 65c239c7
Aug 14 20:48:43 ike_st_o_qm_hash_1: Start
Aug 14 20:48:43 ike_st_o_qm_sa_proposals: Start
Aug 14 20:48:43 ike_st_o_qm_nonce: Start
Aug 14 20:48:43 ike_policy_reply_qm_nonce_data_len: Start
Aug 14 20:48:43 ike_st_o_qm_optional_ke: Start
Aug 14 20:48:43 ike_st_o_qm_optional_ids: Start
Aug 14 20:48:43 ike_st_qm_optional_id: Start
Aug 14 20:48:43 ike_st_qm_optional_id: Start
Aug 14 20:48:43 ike_st_o_private: Start
Aug 14 20:48:43 ike_policy_reply_private_payload_out: Start
Aug 14 20:48:43 ike_policy_reply_private_payload_out: Start
Aug 14 20:48:43 ike_st_o_encrypt: Marking encryption for packet
Aug 14 20:48:43 ike_encode_packet: Start, SA =
{ 0x07a7f08c 798b8bd8 - d94d344c 834c287f } / 65c239c7, nego = 0
Aug 14 20:48:43 ike_finalize_qm_hash_1: Hash[0..20] = 23467739 e92dd45f ...
Aug 14 20:48:43 ike_send_packet: Start, send SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 0, src = 198.18.1.3:500,

VPN Verification and Troubleshooting | 319

dst = 198.18.1.1:500, routing table id = 0

##
Initial quick mode packet has been sent, waiting for reply
##

Aug 14 20:48:43 kmd_diff_config_now, configuration diff complete
Aug 14 20:48:43 ike_get_sa: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f } / 170e3079, remote = 198.18.1.1:500
Aug 14 20:48:43 ike_sa_find: Found SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f }
Aug 14 20:48:43 ike_alloc_negotiation: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}
Aug 14 20:48:43 ike_init_qm_negotiation: Start, initiator = 0,
message_id = 170e3079

##
Reply from peer has arrived, decode it
##

Aug 14 20:48:43 ike_decode_packet: Start
Aug 14 20:48:43 ike_decode_packet: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f} / 170e3079, nego = 1
Aug 14 20:48:43 ike_decode_payload_sa: Start
Aug 14 20:48:43 ike_decode_payload_t: Start, # trans = 1
Aug 14 20:48:43 ike_st_i_encrypt: Check that packet was encrypted succeeded
Aug 14 20:48:43 ike_st_i_qm_hash_1: Start, hash[0..20] = 0fe63361 f217367a ...
Aug 14 20:48:43 ike_st_i_qm_nonce: Nonce[0..32] = 7762f152 69ac6961 ...
Aug 14 20:48:43 ike_st_i_qm_ke: Ke[0..128] = 8150e601 70a4fab9 ...
Aug 14 20:48:43 ike_st_i_qm_sa_proposals: Start
Aug 14 20:48:43 KMD_INTERNAL_ERROR: Phase2 finish: No sa_cfg found!
Aug 14 20:48:43 KMD_PM_P2_POLICY_LOOKUP_FAILURE: Policy lookup for Phase-2
[responder] failed for p1_local=ipv4(udp:500,[0..3]=198.18.1.3)
p1_remote=ipv4(udp:500,[0..3]=198.18.1.1)
p2_local=ipv4_subnet(any:0,[0..7]=172.31.0.0/16)
p2_remote=ipv4_subnet(any:0,[0..7]=192.168.0.0/16)

##
Previous messages indicate that there has been a Phase 2 lookup error and
it shows what Proxy-ID's the peer is trying to propose Local-ID=172.31.0.0/16,
Remote-ID=192.168.0.0/16. At this point you should contact the peer
and make sure that their proxy-ID configuration matches what you are expecting,
or modify your configuration to match this proxy-ID. The above message
also seems to implicitly indicate that the Phase 2 Proposal (Encryption/
Authentication/PFS &c) is ok, but that the negotiations failed
on the Proxy-ID negotiation. The SRX will now send a message to the peer
indicating that the Phase 2 negotiations were not successful, although it
will not explicitly state why, this information is only located on
the responder. The SRX will then clear the state of the negotiation and await
another attempt.
##

Aug 14 20:48:43 ike_qm_sa_reply: Start
Aug 14 20:48:43 198.18.1.3:500 (Responder) <-> 198.18.1.1:500
{ 07a7f08c 798b8bd8 - d94d344c 834c287f [1] / 0x170e3079 } QM;

320 | Chapter 6: IPsec VPN

= No proposal chosen (14)
Aug 14 20:48:43 ike_alloc_negotiation: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}
Aug 14 20:48:43 ike_encode_packet: Start, SA =
{ 0x07a7f08c 798b8bd8 - d94d344c 834c287f } / a0a22239, nego = 2
Aug 14 20:48:43 ike_send_packet: Start, send SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 2, src = 198.18.1.3:500,
dst = 198.18.1.1:500, routing table id = 0
Aug 14 20:48:43 ike_delete_negotiation: Start, SA =
{ 07a7f08c 798b8bd8 - d94d344c 834c287f}, nego = 2

Disable Tracing

root@SRX5800> edit

[edit]
root@SRX5800#rollback 1

[edit]
root@SRX5800#commit comment "Disabling VPN Tracing by reverting to config
without it" and-quit

Troubleshooting a remote access VPN

After the VPN establishment has been triggered, you can look at the /var/log/kmd file
to determine exactly what is happening.

The file contains a lot of information for the particular IKE entries. Just as we did for
the site-to-site VPN, use the following sample output to help you sift through the remote
access VPN and find the relevant information to extract the root cause of the failure:

root@SRX5800> show log kmd

Aug 14 21:07:38 ike_get_sa: Start, SA =
{ d3622295 fb67acf0 - 00000000 00000000 } / 00000000, remote = 198.18.1.100:500
Aug 14 21:07:38 ike_sa_allocate: Start, SA = { d3622295 fb67acf0 - 8980eab2 eb47
3562 }
Aug 14 21:07:38 ike_init_isakmp_sa: Start, remote = 198.18.1.100:500,
initiator = 0
Aug 14 21:07:38 ike_decode_packet: Start
Aug 14 21:07:38 ike_decode_packet: Start, SA = { d3622295 fb67acf0 - 8980eab2 eb
473562} / 00000000, nego = −1
Aug 14 21:07:38 ike_decode_payload_sa: Start
Aug 14 21:07:38 ike_decode_payload_t: Start, # trans = 1
Aug 14 21:07:38 ike_st_i_vid: VID[0..44] = 47bbe7c9 93f1fc13 ...
Aug 14 21:07:38 ike_st_i_vid: VID[0..8] = da8e9378 80010000 ...
Aug 14 21:07:38 ike_st_i_vid: VID[0..16] = afcad713 68a1f1c9 ...
Aug 14 21:07:38 ike_st_i_vid: VID[0..8] = 09002689 dfd6b712 ...
Aug 14 21:07:38 ike_st_i_vid: VID[0..16] = 4485152d 18b6bbcd ...
Aug 14 21:07:38 ike_st_i_vid: VID[0..16] = 90cb8091 3ebb696e ...

##
Use the sample output below to help you sift through it and find the relevant
information to extract the root cause of the failure.

VPN Verification and Troubleshooting | 321

Here the first IKE packet is received and the SRX begin the IKE decode
##

Aug 14 21:07:38 ike_st_i_id: Start
Aug 14 21:07:38 ike_st_i_sa_proposal: Start
Aug 14 21:07:38 ike_isakmp_sa_reply: Start
Aug 14 21:07:38 ike_st_i_nonce: Start, nonce[0..32] = 35c16d86 b96558c9 ...
Aug 14 21:07:38 ike_st_i_cert: Start
Aug 14 21:07:38 ike_st_i_hash_key: Start, no key_hash
Aug 14 21:07:38 ike_st_i_ke: Ke[0..128] = 817323c0 1a4eefbe ...
Aug 14 21:07:38 ike_st_i_cr: Start
Aug 14 21:07:38 ike_st_i_private: Start
Aug 14 21:07:38 ike_st_o_sa_values: Start
Aug 14 21:07:38 ike_st_o_ke: Start
Aug 14 21:07:38 ike_st_o_nonce: Start
Aug 14 21:07:38 ike_policy_reply_isakmp_nonce_data_len: Start
Aug 14 21:07:38 ike_st_o_id: Start
Aug 14 21:07:38 ike_policy_reply_isakmp_id: Start
Aug 14 21:07:38 ike_st_o_certs_base: Start
Aug 14 21:07:38 ike_st_o_sig_or_hash: Start, auth_method = 4
Aug 14 21:07:38 ike_st_o_hash: Start
Aug 14 21:07:38 ike_find_pre_shared_key: Find pre shared key key for
198.18.1.1:500, id = ipv4(udp:500,[0..3]=198.18.1.1) -> 198.18.1.100:500, id =
usr@fqdn(udp:500,[0..18]=johndoe@company.com)
Aug 14 21:07:38 ike_policy_reply_find_pre_shared_key: Start
Aug 14 21:07:38 ike_calc_mac: Start, initiator = false, local = true
Aug 14 21:07:38 ike_policy_reply_isakmp_vendor_ids: Start
Aug 14 21:07:38 ike_st_o_status_n: Start
Aug 14 21:07:38 ike_st_o_private: Start
Aug 14 21:07:38 ike_policy_reply_private_payload_out: Start
Aug 14 21:07:38 ike_policy_reply_private_payload_out: Start
Aug 14 21:07:38 ike_policy_reply_private_payload_out: Start
Aug 14 21:07:38 ike_st_o_calc_skeyid: Calculating skeyid
Aug 14 21:07:38 ike_encode_packet: Start, SA =
{ 0xd3622295 fb67acf0 - 8980eab2 eb473562 } / 00000000, nego = −1
Aug 14 21:07:38 ike_send_packet: Start, send SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = −1, src = 198.18.1.1:500,
dst = 198.18.1.100:500, routing table id = 0

##
In the previous statements the SRX determines that the IKE packet is from
198.18.1.100 destined to 198.18.1.1 (our interface) with an IKE ID of
type user at hostname (or UFQDN) johndoe@company.com. The SRX also checks
the value in the preshared key to make sure that it matches properly.
##

Aug 14 21:07:38 ike_get_sa: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562 } / 00000000, remote = 198.18.1.100:500
Aug 14 21:07:38 ike_sa_find: Found SA = { d3622295 fb67acf0 - 8980eab2 eb473562 }
Aug 14 21:07:38 ike_decode_packet: Start
Aug 14 21:07:38 ike_decode_packet: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562} / 00000000, nego = −1
Aug 14 21:07:38 ike_st_i_hash: Start, hash[0..20] = 52e59171 a54dad00 ...
Aug 14 21:07:38 ike_calc_mac: Start, initiator = false, local = false
Aug 14 21:07:38 ike_st_i_cert: Start

322 | Chapter 6: IPsec VPN

Aug 14 21:07:38 ike_st_i_status_n: Start, doi = 1, protocol = 1,
code = Replay status notification (24577),
spi[0..16] = d3622295 fb67acf0 ..., data[0..4] = 00000000 00000000 ...
Aug 14 21:07:38 ike_st_i_status_n: Start, doi = 1, protocol = 1, code = Initial
contact notification (24578), spi[0..16] = d3622295 fb67acf0 ..., data[0..0] =
00000000 00000000 ...
Aug 14 21:07:38 ike_st_i_private: Start
Aug 14 21:07:38 ike_st_o_wait_done: Marking for waiting for done
Aug 14 21:07:38 ike_st_o_all_done: MESSAGE: Phase 1 { 0xd3622295 fb67acf0 -
0x8980eab2 eb473562 } / 00000000, version = 1.0, xchg = Aggressive,
auth_method = Pre shared keys with XAuth (initiator), Responder,
cipher = aes-cbc, hash = sha1, prf = hmac-sha1, life = 0 kB /
Aug 14 21:07:38 198.18.1.1:500 (Responder) <-> 198.18.1.100:500
{ d3622295 fb67acf0 - 8980eab2 eb473562 [-1] / 0x00000000 } Aggr; MESSAGE:
Phase 1 version = 1.0, auth_method = Pre shared keys with XAuth (initiator),
= aes-cbc, hash = sha1, prf = hmac-sha1, life = 0 kB /

##
The previous statements show that the SRX is using Aggressive Mode, with
Pre-Shared Keys and XAuth for client negotiation. The proposed Cipher is AES128-
SHA1 (128 is implied) and that the key lifetime is not defined. This
negotiation is clearly for a remote client VPN, typical IPSec Site-to-site would
show Main Mode, and would not typically have XAuth.
##

Aug 14 21:07:38 ike_send_notify: Connected, SA = { d3622295 fb67acf0 - 8980eab2
eb473562}, nego = −1
Aug 14 21:07:38 jnp_ike_connect_cfg: Start, remote_name = 198.18.1.100:500,
flags = 00008000
Aug 14 21:07:38 ike_sa_find_ip_port: Remote = 198.18.1.100:500,
Found SA = { d3622295 fb67acf0 - 8980eab2 eb473562}
Aug 14 21:07:38 ike_alloc_negotiation: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}
Aug 14 21:07:38 jnp_ike_connect_cfg: SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 0
Aug 14 21:07:38 ike_init_cfg_negotiation: Start, initiator = 1,
message_id = 3fdb5840
Aug 14 21:07:38 ike_st_o_gen_hash: Start
Aug 14 21:07:38 ike_st_o_cfg_attr: Start
Aug 14 21:07:38 ike_st_o_private: Start
Aug 14 21:07:38 ike_st_o_encrypt: Marking encryption for packet
Aug 14 21:07:38 ike_encode_packet: Start, SA =
{ 0xd3622295 fb67acf0 - 8980eab2 eb473562 } / 3fdb5840, nego = 0
Aug 14 21:07:38 ike_send_packet: Start, send SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 0, src = 198.18.1.1:500,
dst = 198.18.1.100:500, routing table id = 0

##
The SRX responds to the IKE message from the client
##

Aug 14 21:07:43 ike_retransmit_callback: Start,
retransmit SA = { d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 0
Aug 14 21:07:43 ike_send_packet: Start, retransmit previous packet SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 0, src = 198.18.1.1:500,

VPN Verification and Troubleshooting | 323

dst = 198.18.1.100:500, routing table id = 0
Aug 14 21:07:44 ike_get_sa: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562 } / 3fdb5840, remote = 198.18.1.100:500
Aug 14 21:07:44 ike_sa_find: Found SA = { d3622295 fb67acf0 - 8980eab2 eb473562 }
Aug 14 21:07:44 ike_st_o_done: ISAKMP SA negotiation done
Aug 14 21:07:44 ike_send_notify: Connected, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = −1
Aug 14 21:07:44 ike_free_negotiation_isakmp: Start, nego = −1
Aug 14 21:07:44 ike_free_negotiation: Start, nego = −1
Aug 14 21:07:44 ike_decode_packet: Start
Aug 14 21:07:44 ike_decode_packet: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562} / 3fdb5840, nego = 0
Aug 14 21:07:44 ike_decode_payload_attr: Start
Aug 14 21:07:44 ike_st_i_encrypt: Check that packet was encrypted succeeded
Aug 14 21:07:44 ike_st_i_gen_hash: Start, hash[0..20] = f431a256 ac900477 ...
Aug 14 21:07:44 ike_st_i_cfg_attr: Start
Aug 14 21:07:44 ike_st_i_private: Start
Aug 14 21:07:44 ike_st_o_cfg_wait_done: Marking for waiting for done
Aug 14 21:07:44 ike_st_o_cfg_wait_done: MESSAGE: CFG Mode wait done
Aug 14 21:07:44 198.18.1.1:500 (Initiator) <-> 198.18.1.100:500
{ d3622295 fb67acf0 - 8980eab2 eb473562 [0] / 0x3fdb5840 } CFG; MESSAGE: CFG Mode wait done

##
At this point Phase 1 establishment is completed, the SRX begins Phase 2
negotiation
##

Aug 14 21:07:44 ike_send_notify: Connected, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 0
Aug 14 21:07:44 jnp_ike_connect_cfg: Start, remote_name = 198.18.1.100:500,
flags = 00008000
Aug 14 21:07:44 ike_sa_find_ip_port: Remote = 198.18.1.100:500,
Found SA = { d3622295 fb67acf0 - 8980eab2 eb473562}
Aug 14 21:07:44 ike_alloc_negotiation: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}
Aug 14 21:07:44 jnp_ike_connect_cfg: SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 1
Aug 14 21:07:44 ike_init_cfg_negotiation: Start, initiator = 1,
message_id = 7e56b115
Aug 14 21:07:44 ike_st_o_gen_hash: Start
Aug 14 21:07:44 ike_st_o_cfg_attr: Start
Aug 14 21:07:44 ike_st_o_private: Start
Aug 14 21:07:44 ike_st_o_encrypt: Marking encryption for packet
Aug 14 21:07:44 ike_encode_packet: Start, SA =
{ 0xd3622295 fb67acf0 - 8980eab2 eb473562 } / 7e56b115, nego = 1
Aug 14 21:07:44 ike_send_packet: Start, send SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 1, src = 198.18.1.1:500,
dst = 198.18.1.100:500, routing table id = 0
Aug 14 21:07:44 ike_get_sa: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562 } / 7e56b115, remote = 198.18.1.100:500
Aug 14 21:07:44 ike_sa_find: Found SA = { d3622295 fb67acf0 - 8980eab2 eb473562 }
Aug 14 21:07:44 ike_decode_packet: Start
Aug 14 21:07:44 ike_decode_packet: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562} / 7e56b115, nego = 1
Aug 14 21:07:44 ike_decode_payload_attr: Start

324 | Chapter 6: IPsec VPN

Aug 14 21:07:44 ike_st_i_encrypt: Check that packet was encrypted succeeded
Aug 14 21:07:44 ike_st_i_gen_hash: Start, hash[0..20] = dfcaa88c 40f3697e ...
Aug 14 21:07:44 ike_st_i_cfg_attr: Start
Aug 14 21:07:44 ike_st_i_private: Start
Aug 14 21:07:44 ike_st_o_cfg_wait_done: Marking for waiting for done
Aug 14 21:07:44 ike_st_o_cfg_wait_done: MESSAGE: CFG Mode wait done
Aug 14 21:07:44 198.18.1.1:500 (Initiator) <-> 198.18.1.100:500
{ d3622295 fb67acf0 - 8980eab2 eb473562 [1] / 0x7e56b115 } CFG; MESSAGE: CFG Mode wait done
Aug 14 21:07:44 ike_send_notify: Connected, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}, nego = 1
Aug 14 21:07:44 ike_get_sa: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562 } / c8ef4ee3, remote = 198.18.1.100:500
Aug 14 21:07:44 ike_sa_find: Found SA = { d3622295 fb67acf0 - 8980eab2 eb473562 }
Aug 14 21:07:44 ike_alloc_negotiation: Start, SA =
{ d3622295 fb67acf0 - 8980eab2 eb473562}
Aug 14 21:07:44 ike_init_qm_negotiation: Start, initiator = 0,
message_id = c8ef4ee3

##
In the above lines the SRX has received the first packet for Phase 2 Quick Mode
negotiation, the SRX decrypts the packet (which matches a SA negotiated in
Phase 1) and parse out the fields to begin checking whether the Phase 2 Proposal
matches a configured proposal
##

Aug 14 21:07:44 ike_decode_packet: Start
Aug 14 21:07:44 ike_decode_packet: Start, SA = { d3622295 fb67acf0 - 8980eab2
eb473562} / c8ef4ee3, nego = 2
Aug 14 21:07:44 ike_decode_payload_sa: Start
Aug 14 21:07:44 ike_decode_payload_t: Start, # trans = 1
Aug 14 21:07:44 ike_st_i_encrypt: Check that packet was encrypted succeeded
Aug 14 21:07:44 ike_st_i_qm_hash_1: Start, hash[0..20] = f5431c9c 5a41ae04 ...
Aug 14 21:07:44 ike_st_i_qm_nonce: Nonce[0..32] = 847152b6 e30c41d0 ...
Aug 14 21:07:44 ike_st_i_qm_ke: Ke[0..128] = 5591055a 49022ca1 ...
Aug 14 21:07:44 ike_st_i_qm_sa_proposals: Start
Aug 14 21:07:44 KMD_INTERNAL_ERROR: Phase2 finish: No sa_cfg found!
Aug 14 21:07:44 KMD_PM_P2_POLICY_LOOKUP_FAILURE: Policy lookup for Phase-2
[responder] failed for p1_local=ipv4(udp:500,[0..3]=198.18.1.1)
p1_remote=usr@fqdn(udp:500,[0..18]=johndoe@company.com)
p2_local=ipv4_subnet(any:0,[0..7]=192.168.100.0/24)
p2_remote=ipv4(any:0,[0..3]=198.18.1.100)

##
The output below shows the Phase 2 proposal is failing policy lookup.
Please see the end of this debug for steps to take to determine what the
root cause can be. In this output, the SRX shows the proposal. In this case,
the lookup failure has to do with the fact that the VPN is attempting to
terminate on the wrong interface. Below is the output that you should see
if the connection succeeds Phase 2:
##

Aug 14 17:09:22 198.18.1.1:500 (Responder) <-> 198.18.1.100:500
{ cdf1c372 0f946928 - ad6b9fbb 4594cb35 [2] / 0xf4f71bbc } QM; MESSAGE: Phase 2
connection succeeded, No PFS, group = 0
Aug 14 17:09:22 ike_qm_call_callback: MESSAGE: Phase 2 connection succeeded, No

VPN Verification and Troubleshooting | 325

PFS, group = 0
Aug 14 17:09:22 198.18.1.1:500 (Responder) <-> 198.18.1.100:500
{ cdf1c372 0f946928 - ad6b9fbb 4594cb35 [2] / 0xf4f71bbc } QM; MESSAGE:
SA[0][0] = ESP 3des, life = 0 kB/0 sec, group = 0, tunnel, hmac-sha1-96,
key len = 0, key rounds = 0
Aug 14 17:09:22 ike_qm_call_callback: MESSAGE: SA[0][0] = ESP 3des,
life = 0 kB/0 sec, group = 0, tunnel, hmac-sha1-96, key len = 0, key rounds = 0
Aug 14 17:09:22 ike_st_o_qm_wait_done: Marking for waiting for done

Disable Tracing

root@SRX5800> edit

[edit]
root@SRX5800#rollback 1

[edit]
root@SRX5800#commit comment "Disabling VPN Tracing by reverting to config
without it" and-quit

Case Studies
Although there are truly limitless combinations of VPN configurations that we could
discuss, most often VPN configurations will be quite similar. This section discusses the
two main types of VPNs: a site-to-site VPN (with multiple remote sites) and a VPN that
connects a remote IPsec client.

Case Study 6-1: Site-to-Site VPN
The goal of this case study is to establish site-to-site VPNs between the Campus Core
and the three remote offices (East, West, and South Branches). The following properties
should be present for this configuration, as shown in Figure 6-7:

• VPNs should use Main mode in a point-to-multipoint configuration.

• OSPF should be used as a dynamic routing protocol for this example on the tunnel
interfaces, with all st0 interfaces in Area 0. Since this isn’t true broadcast, define
neighbors in the configuration.

326 | Chapter 6: IPsec VPN

Figure 6-7. Case study network diagram

Case Studies | 327

• The architecture will be hub and spoke (utilizing point-to-multipoint VPNs).

• The st0 interface should be in the VPN zone. Use the following IP addressing for
the st0 interfaces on the Campus Core and the remote offices:

— Campus Core: 192.168.100.5/24

— East Branch: 192.168.100.1/24

— West Branch: 192.168.100.2/24

— South Branch: 192.168.100.3/24

• Only the respective networks for each side should be allowed through the VPN,
with any service allowed between the networks.

• The Phase 1 proposal should use 3DES SHA-1 with preshared keys. The key will
be 8aifMhau%% using Diffie-Hellman Group 2.

• Phase 2 of the VPN should use AES128-SHA1 as the proposal, and no PFS.

• Branch VPN gateways should use 198.18.5.254 as the primary VPN connection
and 198.18.4.254 as the backup.

• Ensure that IKE can be terminated on the external interfaces in the Untrust zone.

• For the proxy ID just use local-id 0.0.0.0/0, remote-id 0.0.0.0, and service Any to
simplify the IKE configuration to the respective gateways, and demonstrate that
proxy IDs only impact negotiation by making sure both sides match, but not what
traffic can pass through the VPN.

/*This Phase 1 Proposal is Applied to Campus and Remote Offices*/
[edit security ike proposal Remote-Office-PSK]
root@SRX5800# show
authentication-method pre-shared-keys;
dh-group group2;
authentication-algorithm sha1;
encryption-algorithm 3des-cbc;

/*This Phase 1 Policy is Applied to Campus and Remote Offices*/
[edit security ike policy Remote-Office-Static]
root@SRX5800#show
mode main;
proposals Remote-Office-PSK;
pre-shared-key ascii-text "9hA7cvWLX-VwgEc7dVsJZUjHqT3AtuREc"; ## SECRET-DATA

/*Getway Configuration on the Campus Core SRX*/
[edit security ike gateway Eastbranch-Remote-Office]
root@SRX5800# show
ike-policy Remote-Office-Static;
address 198.18.1.254;
dead-peer-detection {
 interval 10;
 threshold 3;
}
no-nat-traversal;
external-interface ge-0/0/0.0;

328 | Chapter 6: IPsec VPN

[edit security ike gateway Westbranch-Remote-Office]
root@SRX5800# show
ike-policy Remote-Office-Static;
address 198.18.2.254;
dead-peer-detection {
 interval 10;
 threshold 3;
}
no-nat-traversal;
external-interface ge-0/0/0.0;

[edit security ike gateway Southbranch-Remote-Office]
root@SRX5800# show
ike-policy Remote-Office-Static;
address 198.18.3.254;
dead-peer-detection {
 interval 10;
 threshold 3;
}
no-nat-traversal;
external-interface ge-0/0/0.0;

/*Gateway Configuration on the Remote Offices*/
[edit security ike gateway Eastbranch-Remote-Office]
root@SRX650# show
ike-policy Remote-Office-Static;
address [198.18.5.254 198.18.4.254];
dead-peer-detection {
 interval 10;
 threshold 3;
}
no-nat-traversal;
external-interface ge-0/0/0.0;

/*This Zone Configuration is Applied to Campus and Remote Offices*/
[edit security zones security-zone untrust host-inbound-traffic system-services]
root@SRX5800#show
ike;

/*Phase 2 Proposal is applied to Campus and Remote Offices*/
[edit security ipsec proposal Remote-Offices]
root@SRX5800# show
protocol esp;
authentication-algorithm hmac-sha1-96;
encryption-algorithm aes-128-cbc;

/*Phase 2 Proposal is applied to Campus and Remote Offices*/
[edit security ipsec policy Remote-Offices]
root@SRX5800# show
proposals Remote-Offices

/*Phase 2 VPN Configuration for Campus Core*/
[edit security ipsec vpn East-Branch]
root@SRX5800# show

Case Studies | 329

bind-interface st0.0;
ike {
 gateway East-Branch;
 proxy-identity {
 local 0.0.0.0/0;
 remote 0.0.0.0/0;
 service any;
 }
 ipsec-policy Remote-Offices;
}

[edit security ipsec vpn West-Branch]
root@SRX5800# show
bind-interface st0.0;
ike {
 gateway West-Branch;
 proxy-identity {
 local 0.0.0.0/0;
 remote 0.0.0.0/0;
 service any;
 }
 ipsec-policy Remote-Offices;
}

[edit security ipsec vpn South-Branch]
root@SRX5800# show
bind-interface st0.0;
ike {
 gateway South-Branch;
 proxy-identity {
 local 0.0.0.0/0;
 remote 0.0.0.0/0;
 service any;
 }
 ipsec-policy Remote-Offices;
}

/*Phase 2 VPN Configuration for Remote Gateways*/
[edit security ipsec vpn Campus-Core]
root@SRX650# show
bind-interface st0.0;
ike {
 gateway Campus-Core;
 proxy-identity {
 local 0.0.0.0/0;
 remote 0.0.0.0/0;
 service any;
 }
 ipsec-policy Remote-Offices;
}

/*ST0 Configuration for Campus Core*/
[edit interfaces st0]

330 | Chapter 6: IPsec VPN

root@SRX5800#
unit 0 {
 multpoint;
 family inet {
 address 192.168.100.5/24;
 }
}

/*ST0 Configuration for East-Branch*/
[edit interfaces st0]
root@SRX650#
unit 0 {
 family inet {
 address 192.168.100.1/24;
 }
}

/*ST0 Configuration for West-Branch*/
[edit interfaces st0]
root@SRX240#
unit 0 {
 family inet {
 address 192.168.100.2/24;
 }
}

/*ST0 Configuration for South-Branch*/
[edit interfaces st0]
root@SRX210#
unit 0 {
 family inet {
 address 192.168.100.3/24;
 }
}

/*ST0 Zone Configuration Configuration for Campus Core and Remote Offices*/
[edit security zones security-zones vpn]
root@SRX5800#show
interfaces {
 st0.0 {
 host-inbound-traffic {
 system-services {
 ike;
 }
 protocols {
 ospf;
 }
}

/*OSPF Protocol Configuration Configuration for Campus Core*/
[edit protocols]
root@SRX5800#show
ospf {
 area 0.0.0.0 {
 interface st0.0 {

Case Studies | 331

 neighbor 192.168.100.1;
 neighbor 192.168.100.2;
 neighbor 192.168.100.3;
 interface-type p2mp;
 dynamic-neighbor
 }
 }
}

/*OSPF Protocol Configuration Configuration for Remote Offices*/
[edit protocols]
root@SRX5800#show
ospf {
 area 0.0.0.0 {
 interface st0.0 {
 neighbor 192.168.100.5;
 dynamic-neighbor;
 }
 }
}

/*Security Policies for Route Based VPN Campus Core*/

[edit]
root@SRX5800# show security zones security-zone trust address-book
address 10.0.0.0/8 10.0.0.0/8;

[edit]
root@SRX5800# show security zones security-zone vpn address-book
address 192.168.1.0/24 192.168.1.0/24;
address 192.168.2.0/24 192.168.2.0/24;
address 192.168.3.0/24 192.168.3.0/24;

[edit security policies from-zone trust to-zone vpn policy Remote-Offices]
root@SRX5800# show
match {
 source-address 10.0.0.0/8;
 destination-address [192.168.1.0/24 192.168.2.0/24 192.168.3.0/24];
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

[edit security policies from-zone vpn to-zone trust policy Remote-Offices]
root@SRX5800# show
match {
 source-address [192.168.1.0/24 192.168.2.0/24 192.168.3.0/24];

332 | Chapter 6: IPsec VPN

 destination-address 10.0.0.0/8;
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

/*Security Policies for Route Based VPN East-Branch Core*/

[edit]
root@SRX650# show security zones security-zone vpn address-book
address 10.0.0.0/8 10.0.0.0/8;
address 192.168.2.0/24 192.168.2.0/24;
address 192.168.3.0/24 192.168.3.0/24;

[edit]
root@SRX650# show security zones security-zone trust address-book
address 192.168.1.0/24 192.168.1.0/24;

[edit security policies from-zone trust to-zone vpn policy Remote-Offices]
root@SRX650# show
match {
 source-address 192.168.1.0/24;
 destination-address [10.0.0.0/8 192.168.2.0/24 192.168.3.0/24];
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

[edit security policies from-zone vpn to-zone trust policy Remote-Offices]
root@SRX650# show
match {
 source-address [10.0.0.0/8 192.168.2.0/24 192.168.3.0/24];
 destination-address 192.168.1.0/24;
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

Case Studies | 333

/*Security Policies for Route Based VPN West-Branch Core*/

[edit]
root@SRX240# show security zones security-zone vpn address-book
address 10.0.0.0/8 10.0.0.0/8;
address 192.168.1.0/24 192.168.1.0/24;
address 192.168.3.0/24 192.168.3.0/24;

[edit]
root@SRX240# show security zones security-zone trust address-book
address 192.168.2.0/24 192.168.2.0/24;

[edit security policies from-zone trust to-zone vpn policy Remote-Offices]
root@SRX240# show
match {
 source-address 192.168.2.0/24;
 destination-address [10.0.0.0/8 192.168.1.0/24 192.168.3.0/24];
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

[edit security policies from-zone vpn to-zone trust policy Remote-Offices]
root@SRX240# show
match {
 source-address [10.0.0.0/8 192.168.1.0/24 192.168.3.0/24];
 destination-address 192.168.2.0/24;
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

/*Security Policies for Route Based VPN South-Branch Core*/

[edit]
root@SRX210# show security zones security-zone vpn address-book
address 10.0.0.0/8 10.0.0.0/8;
address 192.168.1.0/24 192.168.1.0/24;
address 192.168.2.0/24 192.168.2.0/24;

334 | Chapter 6: IPsec VPN

[edit]
root@SRX210# show security zones security-zone trust address-book
address 192.168.3.0/24 192.168.3.0/24;

[edit security policies from-zone trust to-zone vpn policy Remote-Offices]
root@SRX210# show
match {
 source-address 192.168.3.0/24;
 destination-address [10.0.0.0/8 192.168.1.0/24 192.168.2.0/24];
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

[edit security policies from-zone vpn to-zone trust policy Remote-Offices]
root@SRX210# show
match {
 source-address [10.0.0.0/8 192.168.1.0/24 192.168.2.0/24];
 destination-address 192.168.3.0/24;
 application any;
 }
 then {
 permit
 log {
 session-close;
 }
 }

Case Study 6-2: Remote Access VPN
The goal of this case study is to configure an IPSec client VPN on the SRX. The con-
figurations will largely be the same as in the preceding case study, except where noted.
The configuration should be set up as follows:

• Phase 1 should use Aggressive mode, and PFS (Diffie-Hellman Group2) should be
used to secure the VPN, terminated on the ge-0/0/0 Untrust interface.

• For the standard-based IPSec client, use an IKE identity of
ipsecike@company.com. No specific client software will be examined here; how-
ever, any standards-based client implementation should interoperate with this
example.

• Phase 1 should use 3DES-MD5 for the proposal with Diffie-Hellman Group 2.

• Use the preshared key 71hajfy44.

• Phase 2 should use AES128-SHA1 with ESP Tunnel mode for the proposal.

Case Studies | 335

mailto:ipsecike@company.com

• Use a policy-based VPN for this configuration to allow the clients access to the
Campus Core networks (10.0.0.0/8).

/* IPSec Remote Client*/
[edit security ike proposal Remote-Client]
root@SRX5800# show
authentication-method pre-shared-keys;
dh-group group2;
authentication-algorithm md5;
encryption-algorithm 3des-cbc;

[edit security ike policy Remote-Client]
root@SRX5800#show
mode aggressive;
proposals Remote-Office-PSK;
pre-shared-key ascii-text "9VWYJGDikqmTX74ZDif5revM7-s24"; ## SECRET-DATA

[edit security ike gateway Remote-Client]
root@SRX5800# show
ike-policy Remote-Client;
dynamic {
 user-at-hostname ipsecike@company.com;
}
external-interface ge-0/0/0.0;

[edit security ipsec proposal Remote-Client]
root@SRX5800# show
protocol esp;
authentication-algorithm hmac-sha1-96;
encryption-algorithm aes-128-cbc;

[edit security ipsec policy Remote-Client]
root@SRX5800# show
perfect-forward-secrecy {
 keys group2;
}
proposals Remote-Client;

[edit security ipsec vpn Remote-Client]
root@SRX5800# show
ike {
 gateway Remote-Client;
}
ipsec-policy Remote-Client;

[edit security zones security-zones trust address-book]
root@SRX5800# show
address 10.0.0.0/8 10.0.0.0/8;

[edit security policies from-zone untrust to-zone trust policy Remote-Client]
root@SRX5800# show
match {
 source-address any;
 destination-address 10.0.0.0/8;
 application any;

336 | Chapter 6: IPsec VPN

 }
 then {
 permit {
 tunnel {
 ipsec-vpn Remote-Client;
 }
 }
 log {
 session-close;
 }
 }

[edit security zones security-zone untrust host-inbound-traffic system-services]
root@SRX5800#show
ike;

Summary
IPsec VPNs provide a secure mechanism to connect remote networks together. Al-
though many concepts and components apply to IPsec VPNs, many VPNs follow very
similar configuration techniques which can be easily scaled and replicated. In the past,
IPsec VPNs were primarily used to secure remote sites and clients over the Internet,
but in contemporary networks, there is also a growing trend to secure intra-
organizational traffic with IPsec VPNs. This applies not only to traffic crossing leased
lines and private networks, but also traffic within LANs. It is clear that IPsec VPNs will
continue to play a very important role for securing networks and the valuable infor-
mation carried over them for the foreseeable future.

Chapter Review Questions
1. What is the purpose of Phase 1 in IPsec negotiations?

2. What is the difference between Main and Aggressive modes, and in which phase
of negotiations do they occur?

3. Why would Aggressive mode be necessary instead of Main mode?

4. How many Phase 1 and Phase 2 proposals can be configured on the SRX, and how
are they evaluated?

5. What is PFS and what purpose does it serve?

6. What are the advantages and disadvantages of policy-based VPNs versus route-
based VPNs?

7. What is the difference between point-to-point and point-to-multipoint VPNs?

8. What is the difference between DPD and VPN monitoring?

9. What is NAT-T and when must NAT-T be used?

10. What are the advantages and disadvantages of certificate Phase 1 authentication
versus preshared key Phase 1 authentication?

Chapter Review Questions | 337

11. What is a proxy ID, how is it used in IPsec negotiations, and why is it a common
cause of VPN establishment issues?

Chapter Review Answers
1. Phase 1 is used to create a secure channel to negotiate the Phase 2 encryption keys

which will be used to secure the traffic.

2. Both Main and Aggressive modes occur in Phase 1 of IPsec negotiations. The dif-
ference is that Main mode negotiates the Phase 1 security with a six-message ex-
change with the IKE identities encrypted, whereas Aggressive mode negotiates
them in a three-message exchange with the IKE identities in clear text.

3. Aggressive mode is necessary when the IP address of the remote peer is dynamic
and another mechanism such as dynamic DNS is not used to help identify the host.

4. The SRX supports up to four Phase 1 and four Phase 2 IPsec proposals per gateway.
They are evaluated in order from first to last, until a proposal can be matched with
the peer, or negotiations fail because a proposal cannot be chosen.

5. PFS stands for Perfect Forward Secrecy and is an optional configuration option
which can be used to trigger a renegotiation of Phase 1 keys after Phase 1 has been
completed. This is most often performed when using Aggressive mode for Phase 1
authentication.

6. Policy-based VPNs are good for simple VPNs where dynamic routing and a com-
plex policy configuration are not required. Route-based VPNs are more powerful,
with the ability to not only control traffic, but also interact with dynamic routing
protocols, provide automatic failover, and integrate more generally into the net-
work architecture.

7. Point-to-point VPNs map a single VPN to a single st0 interface, while point-to-
multipoint VPNs map multiple VPNs to a single st0 interface, where all VPNs will
be in the same zone and the st0 interfaces will be in the same subnet.

8. DPD stands for Dead Peer Detection and is a standard IKE capability to detect if
the peer gateway is up by sending IKE pings. It is negotiated in Phase 1. VPN
monitoring is not a standard IKE component, but rather relies on sending peers
from the gateway through the IPsec tunnel to determine if it is up. It is a more
reliable mechanism because it allows one to take into account not only whether
the peer is up, but also whether the VPN is up. VPN monitoring and DPD results
can then be used by the SRX to consider the VPN up or down, and make alternative
arrangements if available to send the traffic over another VPN.

9. NAT-T is a technique for encapsulating IPsec traffic in UDP traffic so that it can
pass through a NAT device (most commonly used for remote clients that are behind
a NAT gateway). This is required because NAT can alter fields that will then make
the authentication invalid. By encapsulating the IPsec traffic in a UDP packet, the

338 | Chapter 6: IPsec VPN

UDP packet is NATed, and then, when it arrives at the gateway, the UDP headers
are stripped off and the IPsec traffic is processed as normal.

10. Preshared keys are simple to implement, with little overhead. They are best used
for site-to-site VPNs where only a few VPNs are used, or for remote access VPNs
when there are only a few clients. The disadvantage of preshared key VPNs is that
they don’t scale easily without compromising security (by using the same key).
Certificates have the ability to dynamically update a certificate’s status, along with
the ability to provide a unique certificate to each client. More overhead is associated
with certificate authentication because it requires a CA to be generated, also called
certificate generation (revocation and expiry). Other mechanisms such as CRL/
OCSP can be used to ensure the validity of a certificate.

11. Proxy IDs are negotiated in Phase 2 and are meant to provide information about
the type of traffic that will be carried over the VPN. In reality, proxy IDs do not
enforce any real control over the actual traffic that passes over the VPN; however,
they must match in order to establish the VPNs. Proxy IDs are a common source
of issues when establishing IPsec VPNs, particularly when establishing them be-
tween different vendors, because the IKEv1 standard did not specify exactly how
the proxy IDs should be derived, and therefore different vendors derive them dif-
ferently. This means the proxy IDs might not match, and therefore will require
tuning for proper configuration.

Chapter Review Answers | 339

CHAPTER 7

High-Performance Attack Mitigation

Attack prevention and mitigation is what separates a high-end, state-of-the-art firewall
from your basic run-of-the-mill firewall. Firewalls have been around for a long time,
and these days even routers and load balancers can do basic stateful IP filtering and
vendors claim their device is a “firewall.” But the SRX has some of the most advanced
attack prevention capabilities on the market today. With such built-in features as
screens, AppDoS, and AppDDoS, the SRX is capable of blocking most well-known
attacks extremely efficiently and can even mitigate huge amounts of denial-of-service
(DoS) traffic and distributed denial-of-service (DDoS) attacks without any interruption
to normal traffic processing.

Over the course of this chapter, you’ll learn about the various SRX screens and some
of the major types of attacks seen in the real world, and how to mitigate those attacks
with screens. You’ll learn how to protect the SRX’s control plane from direct attacks
and how to protect critical services behind the SRX via screens, firewall filters, and
Intrusion Detection and Prevention (IDP).

To simplify the discussion, we have categorized the types of attacks into five major
areas. Realize that some attacks may be included in multiple categories, depending on
how the attacks are implemented.

The following is a high-level summary of the five different types of malicious traffic:

Network reconnaissance
Network recon is the first thing an attacker does when attempting to break into
the network. Attackers use network reconnaissance to gain knowledge of or access
to the network and the elements within by essentially probing the network to map
it, gain as much information as possible, and find different vectors to attack or
breach. Network reconnaissance includes port scanning, version scanning, Inter-
net Control Message Protocol (ICMP) sweeps, and firewalking.

Basic IP attacks
These attacks take advantage of the lack of security within TCP/IP and are often
meant to bypass perimeter security measures or cause harm to end hosts via

341

malicious packets. Some basic IP attacks include SYN/FIN packets, IP spoofing
packets, and SYN fragments. These types of packets should never be seen on a
production network and can almost always be safely blocked.

Canned DoS attacks
These basic attacks are 10 to 15 years old at this point. However, they can still be
seen in IDS logs on many large networks. Old attacks such as Teardrop and Land
attacks can still cause a poorly written application or platform to behave in unex-
pected ways. So, although these are very old and are not a major risk, they can still
be used, and you need to ensure that these attacks never reach your internal trusted
networks or servers.

Application layer attacks
Application attacks are typically higher-end attacks that take advantage of appli-
cation vulnerabilities or design issues with the intent to take end hosts or services
offline. Typically, they are legitimate requests, but with malicious intentions of
flooding or consuming resources. A simple example of this is a Skinny Client Con-
trol Protocol (SCCP) call flood.

Flooding and resource exhaustion
One of the oldest forms of DoS attacks, flooding is used to take a host or service
offline or to impair it, degrading the service it provides. A good example of this is
a large contingent of infected hosts sending requests or bogus packets to a server
or network in an attempt to fill up the network bandwidth or consume sockets/
connections so that legitimate users or requests cannot access the resources.

In this chapter, we will discuss how the SRX can block, stop, and guard against these
types of attacks. First we’ll look at the tools at our disposal and then we’ll discuss how
to configure them and create production profiles. We’ll round out our discussion with
details on how to harden the SRX and protect against attacks made directly to the SRX
and its resources.

Network Protection Tools Overview
There are methods to protect and block bad stuff from your network. Although there
is no single solution for all types of attacks, many different tools are available for dif-
ferent layers of protection. You can use these methods in combination to form a com-
plete layered network security solution. Learning how to properly use the features
available to you on the SRX will better protect your network and the performance of
your SRX.

Firewall Filters
Firewall filters are stateless filters that can block or drop traffic based on Layer 2 or
Layer 3 header information. For those of you who are familiar with the Cisco IOS
firewalls, firewall filters are the equivalent of access control lists (ACLs). Firewall filters

342 | Chapter 7: High-Performance Attack Mitigation

are applied to the ingress or the egress interface, and you can use them to drop traffic
as quickly and efficiently as possible.

It’s highly recommended that you apply firewall filters to the inbound
port to control traffic before the SRX processes it. Why spend cycles
processing traffic just to drop it as it exits the interface?

You can use firewall filters to block unwanted traffic altogether. For example, on the
perimeter of many networks, firewall filters block large network segments from which
attacks tend to originate, such as APNIC; during the days of the SQL Slammer attack,
many networks blocked port 1434 to prevent a flood of propagation attempts from
infected hosts.

Although it’s possible to block this type of traffic with security policies, it’s simply more
efficient to block it with stateless firewall filters. Firewall filters are applied as traffic
enters the interface before any kind of session, screen, route, or policy lookup is done,
as shown in Figure 7-1. This means the SRX spends as little effort as possible to drop
this traffic.

Figure 7-1. Where firewall filters take place in the SRX packet flow

Network Protection Tools Overview | 343

If you experience a large-scale attack that impacts your SRX’s performance, often you
can put a firewall filter in place to mitigate and block the traffic more efficiently.

A firewall filter is composed of the following:

Match condition
Much like a security policy, you must tell the SRX the kind of traffic to which you
want this firewall filter applied. A firewall filter can match on Layer 3, Layer 2,
TCP, and ICMP header fields.

Action
This portion of the firewall filter tells the SRX what action it should take if the
match conditions are met. You can count, pass, drop, analyze, or even police the
packets.

Interface
Much like an ACL, a firewall filter is applied on the physical interface. You can
apply the firewall filter inbound or outbound to the interface.

Firewall filters cannot be used on aggregate Ethernet interfaces.

The following snippets show some quick examples of matching different traffic and
taking actions. Obviously, firewall filters are very customizable and can be configured
in hundreds of different ways. These examples simply show you at a high level the ways
in which you can use firewall filters.

In the following output, a firewall filter is used to count ICMP packets and pass them
along:

juniper@SRX5800# show firewall filter count_icmp
term 1 {
 from {
 protocol icmp;
 }
 then {
 count icmp_packets;
 accept;
 }
}
term 2 {
 then accept;
}

Here is an example of a firewall filter to block a source network. If a large number of
attacks are coming from a netblock, it might make sense to block them at a firewall
filter level.

344 | Chapter 7: High-Performance Attack Mitigation

juniper@SRX5800# show firewall filter badnetwork
term 1 {
 from {
 source-address {
 198.133.219.0/24;
 }
 }
 then {
 count badnet;
 discard;
 }
}
term 2 {
 then accept;
}

Here is a quick firewall filter to block the SQL Slammer worm. In this example, anything
matching the destination port of 1434 will be dropped to a bit bucket.

juniper@SRX5800# show firewall filter block_slammer
term 1 {
 from {
 destination-port 1434;
 }
 then {
 discard;
 }
}
term 2 {
 then accept;
}

Screens
A screen is a built-in tunable protection mechanism that performs a variety of security
functions to keep the network safe. Screens are extremely efficient and can be tuned to
operate in a small enterprise or in the largest carrier networks. Screens are widely used
to add additional protections both at the edge of the network and to internal segments
to protect the network from attacks and internal misconfigurations that could impact
network availability. Screens are good at detecting and preventing many types of ma-
licious traffic.

Screen checks take place very early in packet processing to make mitigation as efficient
and fast as possible. Although they take more processing power than a firewall filter,
they are able to look deeper into the packet and at the entire session flow, essentially
enabling the SRX to block very large and complex attacks. On the higher-end SRX
models, many of these screens are handled in hardware, so the traffic is dropped ex-
tremely close to the ingress interface.

When you compare the packet processing in Figure 7-1 to that in Figure 7-2 you may
notice that the screen checks take place on both the slow path and the fast path. Once

Network Protection Tools Overview | 345

a session is permitted by policy and is established, the SRX continues to monitor that
connection for signs of any malicious traffic or flooding beyond its preconfigured
thresholds. If it sees any malicious traffic, it blocks and drops the packets.

Screens are evaluated on the inbound zone. So, as a session is created, only the source
zone’s screens are applied to the traffic. When traffic comes into the Untrust zone
destined for the Trust zone, only the Untrust screens are evaluated.

Screens are grouped into screen profiles, and those profiles are then applied to a zone.
This is different from the NetScreen way of applying screens and allows for a single
profile to be applied to multiple interfaces.

Be careful when designing screens, as even return traffic will not be
evaluated by the Trust’s screens since the traffic is a part of the initial
session that was created with a source zone of Untrust. Additionally,
you can use alarm-without-drop when deploying any new screens to
research what traffic would potentially be dropped by the screen profile.

Figure 7-2. Where screen checks take place in the SRX packet flow

346 | Chapter 7: High-Performance Attack Mitigation

Security Policy
We covered security policies in detail in Chapter 4. However, since they are part of the
multiple layers of security that the SRX can apply to the network, we will briefly cover
them again here. Security policies are stateful and can drop traffic based on Layer 3
header information. They are less efficient than firewall filters and screens, but they
can be more powerful in terms of evaluating entire flows of traffic at a Layer 3 level,
and thus enforce states based on that information, as shown in Figure 7-3. You can use
security policies to allow certain types of connections from specific sources or networks.

Figure 7-3. Where security policy lookups take place in the SRX packet flow

Say you wanted to block port 1434 inbound, but you needed to allow the network’s
SQL servers to initiate communication or allow a specific host inbound. In this situa-
tion, a firewall filter might not be the best option; the easiest solution would be to write
a security policy allowing the traffic from the internal trusted SQL server outbound.
This would permit return traffic for any SQL connection initiated from the internal
SQL server, but would still deny any inbound requests from the outside.

That’s just a quick example of a security policy. For all the depth you might wish on
security policies, refer to Chapter 4.

Network Protection Tools Overview | 347

IPS and AppDoS
IPS and AppDoS are the most powerful, and thus, the least efficient method of dropping
traffic on the SRX, because IPS and AppDoS tend to take up the most processing cycles.
That’s because they take place after the policy lookup (see Figure 7-4) and they look
deep into the packet or the entire packet flow to try to determine if the traffic is
malicious.

Figure 7-4. Where IPS and AppDoS take place in the SRX packet flow

IPS and AppDoS have the ability to dig deep into the packet flow and compare it with
known attacks or known patterns of attacks. This enables the SRX to block attacks all
the way up to Layer 7 flow information.

For example, you can use IPS instead of dropping all inbound port 80 or HTTP traffic
into your network so that you can drop malicious attempts at performing a SQL in-
jection attack that could potentially compromise your backend databases.

AppDoS, on the other hand, has the ability to look at patterns of traffic-and-block based
on known behaviors. For example, in a DDoS attack with legitimate infected hosts or
a botnet, a protection mechanism such as a SYN cookie or SYN proxy just isn’t enough
because the infected hosts will respond to the SYN-ACK. Instead, AppDoS can evaluate

348 | Chapter 7: High-Performance Attack Mitigation

the traffic patterns and determine that these 10,000 hosts are all doing a simple HTTP
request every two minutes. Since it’s not normal human behavior to wait precisely 120
seconds before repeatedly requesting data, the AppDoS process starts blocking those
attempts from getting to the internal server, mitigating the DDoS attempt.

For more information on IPS and AppDoS see Chapter 8.

Protecting Against Network Reconnaissance
Before breaking into your network, bad guys will scan and probe various parts of the
network, looking for attack vectors or weak points of security. With easy-to-use tools
such as Nmap and Firewalk, mapping a network from the outside is simple. Nmap can
scan an entire network in minutes or probe a single host for open sockets.

Although the first of our five types of network attacks, network reconnaissance, is
nearly impossible to stop altogether, it can be limited, throttled, or obscured.

The first location to harden is the perimeter of the network. In this book’s example
network (see Figure P-1 in the Preface), it’s the Campus Core SRX5800 cluster. How-
ever, this is only the starting point, as network reconnaissance could come from not
only outside your network, but also inside it. Internal threats also need to be taken into
account and protected against—the threat could be the result of a breach of the actual
physical network, or it could have come from a malicious employee or contractor.

The SRX has multiple built-in protection mechanisms to prevent and mitigate many
common types of reconnaissance. Keep in mind that there is no single cookie-cutter
solution for preventing reconnaissance—security is always a compromise, and to make
something completely secure you have to unplug it and store it in a safe. The moment
you bring a server or network online, it will be vulnerable to attack. So, many of the
methods that prevent network reconnaissance also prevent network and system ad-
ministrators from being able to map out their own network, and potentially limit their
troubleshooting tools.

For example, in some situations you might not be able to block all ICMP packets, so
the compromise is to rate-limit the number of ICMP packets to a reasonable amount
and size. This enables users to run standard pings, but a rapid ping or a large ping
packet will fail.

If blocking inbound ICMP is an option, it is highly recommended that
you deploy, as it can prevent many types of network reconnaissance and
remove a large number of attack vectors on the network infrastructure,
as well as on the end nodes themselves.

Protecting Against Network Reconnaissance | 349

Firewall Filtering
Although you can block all ICMP packets with security policies, to do it more efficiently
you can block them on the inbound interface via a firewall filter such as the following:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> edit firewall filter
[edit firewall filter]
juniper@SRX5800> set block-icmp term 1 from protocol icmp
juniper@SRX5800> set block-icmp term 1 then count
juniper@SRX5800> set block-icmp term 1 then discard
juniper@SRX5800> set block-icmp term 2 then accept

Since this is the first firewall filter you’ve seen in this book, let’s go over the basics.

Firewall filters consist of a basic match condition. In our example, from protocol
icmp is our match condition. Then, much like a security policy, there is a then action.
In term 1 there are two actions: the first is a count to count the number of packets that
match protocol ICMP, and the second is a discard to discard these packets. Counting
the number of packets is useful when understanding how much traffic is being dropped
and/or at what rate. You can view these firewall counters via the show log filter
command.

The second of two actions is in the term 2 that has an action of accept. This is critical,
as firewall filters will discard by default, unless there is an accept at the end of the filter.

Although firewall filters can be very powerful and you can use them to block all kinds
of specific traffic such as ICMP codes of certain ICMP types, a more detailed discussion
of them is out of the scope of this chapter. For more information on specific filtering
and matching conditions, please review Juniper’s technical documentation on firewall
filter match conditions at http://www.juniper.net/techpubs. The documentation will
provide you with an extensive list of what types of packets you can match and filter on.

Once you have built the firewall filter, you need to apply it to the interface. In our case,
you want to apply the firewall filter on the Internet-facing interface blocking ingress
traffic, or in plain English, traffic coming from the Internet into the interface. For
example:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set interface ge-0/0/0 unit 0 family inet filter
input block-icmp

Screening
In the event that ICMP must be allowed on the network, or certain hosts need to be
permitted, a screen can add an additional layer of protection to keep any rogue or
misconfigured hosts from scanning or flooding the network.

350 | Chapter 7: High-Performance Attack Mitigation

http://www.juniper.net/techpubs

The first thing to limit is what’s called an IP sweep. IP sweeps are used to compile a list
of hosts that are online on the network and actively respond to traffic. Typically, an
ICMP echo request is used in an IP sweep in an attempt to get an ICMP response. Once
the attacker gathers a list of hosts, his next step may be additional port scanning and
OS fingerprinting.

The ICMP sweep screen is configured with a threshold per source IP. In other words,
a single source IP can generate 10 ICMP packets to different destinations per configured
threshold (in microseconds). This can be configured from 1,000 microseconds to
1 million microseconds. For reference, 1,000 microseconds is 1 millisecond. So, you
can allow as few as 10 ICMP packets per millisecond or as many as 10 ICMP packets
per second. The larger the threshold, the longer the duration and the less ICMP packets
that are permitted:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set security screen ids-option untrusted-internet
icmp ip-sweep threshold 1000000

Sending 10 ICMP packets per second to different hosts seems like a lot for a single host.
So, that is what we’ll block. With this screen configured, a single host out on the Internet
would only be able to ping 10 hosts per second. This would hardly prevent the attacker
from mapping out your network nodes, but it may skew the results, or slow them down,
as the SRX will silently drop above the configured threshold, limiting any potential
impact to the network from these sweeps.

A new set of screens in Junos 10.2 expands on IP sweep protection. Juniper has added
two additional screens to protect against TCP and UDP sweeps. Most advanced re-
connaissance will avoid ICMP altogether, as bad guys tend to know that ICMP is limi-
ted/blocked at the perimeter of the network. However, by sending a SYN sweep or UDP
sweep, it’s possible to find more interesting results and map out services in the process.
Tools such as Nmap are extremely good at doing precisely this.

The TCP and UDP sweeps are configured the same way as ICMP sweep screens. The
threshold value, like the ICMP sweep screen, is in microseconds.

The following configuration enables protection against these types of sweeps:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set security screen ids-option untrusted-internet
tcp tcp-sweep threshold 1000000
[edit]
juniper@SRX5800> set security screen ids-option untrusted-internet
udp ucp-sweep threshold 1000000

Protecting Against Network Reconnaissance | 351

Port Scan Screening
Once a network has been scanned for responding hosts, the attacker typically gathers
more information about these up hosts. Attackers often want to know what version of
OS they’re running, and what open ports or services they have. This is called port
scanning, or scanning for open sockets to potentially attack.

The SRX has the ability to limit the number of SYN packets a single source can send
per microsecond. Now, this doesn’t come close to blocking all types of port scans, as
Nmap has the ability to do many different types of scans, but it does limit the majority
of port scanning.

Let’s add port-scan to our untrusted-internet screen profile. port-scan has the same
upper and lower durations as the IP sweep screen:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set security screen ids-option untrusted-internet
tcp port-scan threshold 1000000

Here, the port scan screen is configured with a threshold of 1 second. This means a
single source host can send one SYN packet to 10 different ports per second. Again,
this does not block all port scan attempts, but it will limit the attack and hopefully
prevent the system from taking any kind of performance hit.

FIN scans are another method of port scanning. An attacker typically sends a FIN
packet to a port and then listens. The end host, assuming the socket is listening, sees
a FIN packet arrive for a connection that it does not have established, so it responds
with a “reset packet.”

Blocking this type of scan is easy. Here, it is added to our untrusted-internet screen
profile:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set security screen ids-option untrusted-internet tcp fin-no-ack

Ideally, this type of scan, and other types such as the null scan, is already prevented by
the SRX’s tcp-syn-checking system. However, if that is disabled, the SRX does not
require a SYN packet to create a new TCP connection, and it would allow for these
types of attacks.

Additional reconnaissance methods include the use of record route, timestamp, stream
ID, source route, and security. These are all IP options that have no place or right to
be in most networks, so we’ll block them from entering our perimeter:

juniper@SRX5800> edit

[edit]
juniper@SRX5800> edit security screen ids-option

[edit security screen ids-option]

352 | Chapter 7: High-Performance Attack Mitigation

juniper@SRX5800# set untrusted-internet ip record-route-option

[edit security screen ids-option]
juniper@SRX5800# set untrusted-internet ip timestamp-option

[edit security screen ids-option]
juniper@SRX5800# set untrusted-internet ip security-option

[edit security screen ids-option]
juniper@SRX5800# set untrusted-internet ip stream-option

[edit security screen ids-option]
juniper@SRX5800# set untrusted-internet ip loose-source-route-option

[edit security screen ids-option]
juniper@SRX5800# set untrusted-internet ip strict-source-route-option

[edit security screen ids-option]
juniper@SRX5800# set untrusted-internet ip source-route-option

Sometimes these IP options are ways to map out the network by requesting return traffic
to take different network paths. As stated previously, they are typically not used inside
a network and should especially get dropped when coming inbound from the Internet.

So far, here is what our untrusted-internet screen profile looks like:

juniper@SRX5800# show | compare
[edit security screen]
+ ids-option untrusted-internet {
+ icmp {
+ ip-sweep threshold 1000000;
+ }
+ ip {
+ record-route-option;
+ timestamp-option;
+ security-option;
+ stream-option;
+ source-route-option;
+ loose-source-route-option;
+ strict-source-route-option;
+ }
+ tcp {
+ fin-no-ack;
+ port-scan threshold 1000000;
+ }
+ }

Summary
Blocking network reconnaissance is not always 100% possible. You can gain an addi-
tional layer of security by using IPS to block advanced sweeps, scans, and other
information-gathering attempts. It’s also possible to shun or blackhole a host that has
been caught attempting to gather information about the network.

Protecting Against Network Reconnaissance | 353

Ideally, firewall filters, screens, security policy, and IPS would be used
in an efficient security design to prevent as much network reconnais-
sance as possible. When designing each layer, try to block as much as
possible at the lower levels. If all ICMP is blocked at a firewall filter, the
security policy blocking ICMP from the Internet zone does not have to
process any traffic; the same goes for the IPS signatures for ICMP in-
formation gathering. And they can work harder at other security
processes.

Each design needs to be tailored to the needs and flows of your network. Remember,
traffic flows can be immensely different from an ISP’s network-to-enterprise network.
Additionally, certain troubleshooting methods of services may rely on ICMP or routing
options.

It’s not possible to configure a cookie-cutter security design to protect all the different
network types and sizes out there, but the SRX is as close as you can get to applying
security solutions as fast as you need them.

Protecting Against Basic IP Attacks
In the preceding section, we addressed many of the basic IP attacks. This section dis-
cusses how to block additional common attacks, and the tricks you can use to circum-
vent other prevention mechanisms.

Blocking these basic IP attacks at a screen level lessens the load on the IPS layer (as
many of these attacks can also be blocked there, albeit at the expense of more processing
and evaluation).

Basic IP Protections
One common IP attack is the malformed packet. Attackers and security researchers
have found that incorrectly formatting packets or sending incomplete packets can pro-
duce unintended consequences on both network infrastructure and end hosts. It is not
unheard of to witness these types of packets crashing services or even the server itself.
Today’s operating systems tend to prevent this from happening, but it is a best practice
to block such packets before they enter your network and reach your end hosts. Let’s
enter the security screen:

juniper@SRX5800> edit

[edit]
juniper@SRX5800# edit security screen

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet ip bad-option

354 | Chapter 7: High-Performance Attack Mitigation

Along the same lines as the malformed packet that should never be seen as legitimate
traffic entering the network, it is also best to block IP packets with an unknown protocol
ID:

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet ip unknown-protocol

Fragments are often used to circumvent attack preventions and detections by splitting
an attack payload across multiple fragmented packets—and sending a large number of
fragmented packets can harm any session-aware device or end node, as the device or
end node has to reassemble those packets to evaluate them. The SRX has the ability to
block fragmented IP packets altogether to prevent these types of attacks.

Although it is potentially dangerous, you have the ability to block all fragmented IP
packets using the set security screen ids-option untrusted-internet ip block-
frag command. But since our network has IP fragments, let’s leave this screen disabled.
It’s a good example of the things you need to consider when configuring screens, be-
cause not all of them should be used on every network. Each screen should be evaluated
and the flows and traffic of the network should be taken into account when applying
the screen.

The last and most important of the basic IP protections that you’ll apply is the spoof-
ing screen. The spoofing screen attempts to prevent an attacker from falsifying his
source IP address. The SRX checks the source IP address in the packet header and then
compares that to its routing table. If it knows that network segment or host exists
elsewhere, it determines that the IP packet it is evaluating is spoofed. This is based on
Reverse Path Forwarding (RPF) loose checking.

In other words, and as shown in Figure 7-5, if a packet arrives on the outside Internet-
facing interface with a source IP address of an internal network—say, 10.1.0.201 des-
tined for 172.31.100.60—the SRX determines that 10.1.0.201 exists within the internal
network, and therefore it must be a spoof attack.

Let’s configure our SRX to block these spoofing attempts:

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet ip spoofing

You must be careful with asymmetric routing, as it can cause the spoofing screen to
drop legitimate traffic. You can configure additional granular protections from specific
IP packets via firewall filters. A quick and simple example of this is to block the record
route IP options:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> edit firewall filter
[edit firewall filter]
juniper@SRX5800> set block-recordroute term 1 from ip-options record-route
juniper@SRX5800> set block-recordroute term 1 then count
juniper@SRX5800> set block-recordroute term 1 then discard
juniper@SRX5800> set block-recordroute term 2 then accept

Protecting Against Basic IP Attacks | 355

Remember that then accept is critical before applying the firewall filter to the interface:

juniper@SRX5800> edit
[edit]
juniper@SRX5800> set interface ge-0/0/0 unit 0 family inet filter input block-
recordroute

Basic ICMP Protections
You can defend yourself against ICMP abuse by limiting the size and fragmentation of
ICMP packets. ICMP is a tool used to test network performance and stability, so lim-
iting ICMP’s size and ability to fragment will potentially limit ICMP tunneling problems
and protect against large ICMP packet floods or fragmentation attacks:

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet icmp fragment
[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet icmp large

Figure 7-5. The spoof attack

356 | Chapter 7: High-Performance Attack Mitigation

Basic TCP Protections
The misuse of TCP is a common occurrence and it is often used to attack network hosts.
The SRX can protect against many of the basic TCP attacks via screens, with additional
protection coming from the IPS. Screens can do some basic sanity checks of the TCP
flags to ensure that they are legitimate packets.

The fin-no-ack screen was already enabled in “Protecting Against Network Recon-
naissance” on page 349 to prevent FIN packets from illegitimately entering the network.
In addition to blocking TCP packets with the FIN flag but not the ACK flag set, the
SRX has screens to prevent TCP packets with no flags and SYN-FIN flags set. Both of
these types of packets should never be seen in a working network such as ours, and can
therefore be blocked via the screens:

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet tcp tcp-no-flag

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet tcp syn-fin

The SRX also has the ability to block packets with a SYN flag that is configured as a
fragment. Again, this type of packet should never be seen on a production network, so
it’s safe to block at our border:

[edit security screen]
juniper@SRX5800# set ids-option untrusted-internet tcp syn-frag

Now, let’s look at our current untrusted-internet profile thus far:

juniper@SRX5800# show security screen ids-option untrusted-internet
icmp {
 ip-sweep threshold 1000000;
 fragment;
 large;
}
ip {
 bad-option;
 record-route-option;
 timestamp-option;
 security-option;
 stream-option;
 spoofing;
 source-route-option;
 loose-source-route-option;
 strict-source-route-option;
 unknown-protocol;
}
tcp {
 syn-fin;
 fin-no-ack;
 tcp-no-flag;
 syn-frag;
 port-scan threshold 1000000;
}

Protecting Against Basic IP Attacks | 357

You can use most of these IP screens and filters on all networks; however, you must
closely evaluate items such as the fragmentation screen and spoofing to ensure that
they do not impact legitimate traffic flows.

It’s always recommended when applying new screens, or a new screen
profile, that you closely monitor the logs for any unexpected drops or
false positives.

Basic Denial-of-Service Screens
Let’s start our coverage of defense from the second general category of attacks with a
blast from the past. Juniper has also implemented screens for you to use to block many
of the popular attacks from the 1990s. Yes, the 1990s. Although these attacks were
patched many, many years ago, Juniper wrote screens to protect against them because
they do show up as hackers attempt to cash in on a newer generation of network security
engineers. For more up-to-date protections against exploits and attacks from this grand
decade of the Internet, use of the IPS system is recommended.

Winnuke is an attack screen that blocks an attack on the Windows 95/NT/3.1 plat-
forms. Winnuke attacked port 139 (NetBIOS) with some out-of-band data in an
attempt to crash the system. You can block winnuke using the set security screen
ids-option untrusted-internet tcp winnuke command.

A second attack from the mid-1990s is the Ping of Death attack. This attack involves
sending a ping packet at the maximum possible size, which is 65,535 bytes. Sending a
ping packet of this size would cause the end host to crash. To block this attack use the
set security screen ids-option untrusted-internet icmp ping-death command.

A more sophisticated DoS attack from the 1990s that seems to come back to life every
now and again is the Teardrop attack. The Teardrop attack was most recently found
to crash Windows 7 boxes by attacking the SMB2 protocol. The Teardrop attack is two
fragmented packets that overlap each other, as shown in Figure 7-6. The idea is that
when the end application that is listening reassembles the two fragmented packets, it
causes the application or host to crash.

This is the only DoS screen that we’ll apply to our screen profile:

[edit security screen]
juniper@SRX240# set ids-option untrusted-internet ip tear-drop

Our last attack from the past is the Land attack. This attack, much like Teardrop, seems
to come back every now and then as Microsoft seems to forget it exists. Most recently,
Windows XP SP2 and Windows 2003 were found to be vulnerable to a Land attack. A
Land attack is typically a SYN packet with a source IP/port that is the same as the
destination IP/port. The theory is that when the destination IP attempts to process the
packet it will cause unexpected behavior when it sees that the packet is from itself, as

358 | Chapter 7: High-Performance Attack Mitigation

shown in Figure 7-7. In most cases, the spoof screen prevents this attack from occurring;
however, let’s add it to our untrusted-internet profile for the next time Microsoft is
vulnerable:

[edit security screen]
juniper@SRX240# set ids-option untrusted-internet tcp land

Although not all of the basic DoS screens are applicable to today’s threats, you can put
some of them in place as safeguards against future potential vulnerabilities. Attacks
such as Teardrop and Land appear to be timeless and continue to pop up every now
and again, while others seem to provide a history lesson for younger administrators
working network security.

If you want to prevent current-day DoS attacks and other such exploits,
use the built-in IPS functionality on the SRX.

Figure 7-6. The old Teardrop attack

Basic Denial-of-Service Screens | 359

So far, our updated untrusted-internet screen profile looks like this:

juniper@SRX240# show security screen ids-option untrusted-internet
icmp {
 ip-sweep threshold 1000000;
 fragment;
 large;
}
ip {
 bad-option;
 record-route-option;
 timestamp-option;
 security-option;
 stream-option;
 spoofing;
 source-route-option;
 loose-source-route-option;
 strict-source-route-option;
 unknown-protocol;
 tear-drop;

Figure 7-7. The Land attack

360 | Chapter 7: High-Performance Attack Mitigation

}
tcp {
 syn-fin;
 fin-no-ack;
 tcp-no-flag;
 syn-frag;
 port-scan threshold 1000000;
 land;
}

Let’s move on to the more advanced DoS attacks and the years coming right at us.

Advanced Denial-of-Service and Distributed Denial-of-Service
Protection
Here we’ll look at various methods in which the SRX can prevent or mitigate advanced
DoS and DDoS flooding attacks. A DoS flood is a flood of packets to a host or network
that is meant to depredate or reduce the availability of the service/network. There are
many types of DoS flooding attacks, but they can be categorized into two main flavors:

Service flood
A DoS flood is an attempt to overrun a system or service with requests (valid or
invalid) which overrun the system’s ability to process legitimate requests. An ex-
ample is an HTTP request flood, as shown in Figure 7-8. The idea of the HTTP
flood is to overrun the web server with thousands (or millions) of bogus requests,
knocking the website offline and preventing it from serving its customers.

Figure 7-8. A service flood attack

Advanced Denial-of-Service and Distributed Denial-of-Service Protection | 361

Bandwidth flood
A bandwidth flood is similar to a service flood, with the exception that the band-
width flood may not be attacking a single destination; instead, it’s attempting to
fill up the network links or network infrastructure’s processing capacity. Typically,
you see these types of floods as large UDP packets with spoofed sources, as shown
in Figure 7-9. Assuming the destination node or network’s smallest link in the
network path is an OC3, which is approximately 155 Mb, to attack the availability
of this network and its ability to serve legitimate customers an attack simply has
to send, at most, 155 Mb of UDP packets.

Figure 7-9. A bandwidth flood attack

Both bandwidth floods and service floods are very common attacks. They are trivial to
execute yet can be dangerous when distributed. Presently, there are two major methods
for flooding a target. The first involves cloud computing and the second is the DDoS
attack.

362 | Chapter 7: High-Performance Attack Mitigation

Today it is becoming increasingly common to leverage the cloud computing phenom-
enon in attack scenarios. A malicious user can rent a very large server farm with ex-
tremely large Internet links within these cloud computing services, and all for a small
fee. With a precanned program or a custom script, this malicious user could then do a
lot of damage.

In the DDoS attack, a small army of compromised hosts are used on high-speed band-
width connections that combine their data connections to overrun the destination net-
work’s connection. DDoS attacks were made popular in early 2000, and made the
mainstream news when a young Canadian attacker took down many popular sites,
including Yahoo!, Amazon, Dell, eBay, and CNN. The compromised hosts that per-
form the attack are typically called bots, and a collection of these bots is referred to as
a botnet.

Botnets are extremely dangerous. They have the unique ability to connect to a central
location for instructions. Originally, these bots would just flood a site; however, they
can delay their connections or attempt to download items from the target.

Botnet owners historically were bored teenagers, experimenting hackers, or possibly a
malicious person seeking revenge. Today’s botnet owners are much more devious and
are driven by money—they use their botnets and bots for extortion: click fraud,
identity/service theft, and spam.

How do you mitigate these major types of DoS floods on the SRX? Keep in mind that
a DoS attack only has to be effective as the weakest link in the chain. Having an SRX5800
on the network perimeter is great for mitigating huge numbers of floods, but if your
uplink to the Internet is only a 25 MB circuit the attacker simply has to fill that 25 MB
uplink to get the desired results. So, analyze your network from the outside in, looking
at the external facing links, inline devices (routers, load balancers, switches), and
external facing services.

You should place weaker servers and load balancers behind an SRX for protection,
whereas most routers can typically defend themselves via ACLs, reverse ACLs, and
other built-in mechanisms.

ICMP Floods
An ICMP flood is one of the easiest and most preventable types of floods. ICMP is often
processed differently than normal packets, and in many cases, such as ICMP echo-reply
or traceroute, it requires a response packet. These floods are often referred to as ping
floods.

The most obvious way to mitigate a ping flood is to block ICMP altogether at the
perimeter of your network via firewall filters, if this is possible. Assuming it’s not, you
can leverage some of the built-in ICMP flood protection features within the SRX, such
as configuring IP sweep protection and blocking large ICMP packets, which we already

ICMP Floods | 363

discussed in this chapter. You can improve on this, however, by limiting the rate at
which a single source can send ICMP packets.

Unlike previous screens that apply on a per-source basis, the flood
screens are zone-wide. So, it’s important to understand what is consid-
ered normal as far as number of ICMP packets seen, and not to set the
threshold too low. If any ICMP packets are used for keepalives or device
state monitoring, that makes ICMP flood protection even riskier.

In your perimeter zone screen profile, you should limit the number of ICMP packets
to what you determined to be a normal number. This threshold is per second, unlike
previous thresholds, which were per microsecond. After careful analysis, the following
configuration is applied:

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet
icmp flood threshold 8000

Your configured threshold is set for 8,000 ICMP packets per second. This is across the
entire zone for the untrusted-internet screen. This should allow for enough valid ICMP
traffic to pass through the zone from the Internet without impacting any legitimate
traffic, while limiting the impact of any potential inbound ICMP floods.

UDP Floods
UDP packet floods tend to be one of the more popular generic floods out there. It seems
that all basic bots or attackers who are not very familiar with networking or program-
ming tend to use UDP floods, probably due to UDP’s simplistic stateless nature. But
UDP floods can be very effective at getting through firewall rules and ACLs, and large
packet UDP floods can clog circuits at a rapid pace. Hence, they carry a large risk when
leveraged properly. Even greater is the risk of blocking legitimate UDP traffic over your
network due to thresholds being set too low on your screen profile.

Again, this UDP threshold value is zone-wide and per-second. You must be extremely
cautious when enabling this screen, as it has the very real ability to drop legitimate UDP
traffic. Think for a moment about what type of UDP traffic can traverse your network:
streaming video and audio, webcasts, VoIP services, Domain Name System (DNS)
traffic, authentication traffic, IP Security (IPsec) traffic, and more. The list of critical
services using UDP is long and must be taken into consideration; when that threshold
is met for the UDP flood screen, anything above that is dropped, legitimate or not. So,
let’s go through a mini case study.

Let’s say you have evaluated your company’s traffic loads over the course of a few weeks
and determined that 500 UDP packets per second during peak are the most that are
ever seen over this zone. Just to be safe, you double that value to 1,000 UDP packets
per second. This configuration runs fine for months without a problem, and then a

364 | Chapter 7: High-Performance Attack Mitigation

small UDP flood is pointed at one of your servers. The UDP flood isn’t enough to soak
up the bandwidth on your Internet links, nor is it large enough to impact the firewall,
but it gets capped by that new UDP flood screen. Crisis adverted? Not really.

Shortly after noticing the screen alarms and the increase in UDP traffic, you receive
calls from various users and system administrators across the network. DNS is working
intermittently, VoIP calls are failing, and the company’s webcast demo for sales is fail-
ing. Everyone is mad and business is being adversely affected.

Understanding the risks involved with capping an entire protocol such as UDP must
be taken into account. In most cases, the upper threshold should be set for the worst-
case scenario. What is the absolute maximum amount of UDP traffic that the servers
and network can handle before other things start to be impacted? When this UDP
threshold is hit it should be triggered at the point at which the network or service must
be saved, and all UDP traffic going over this zone has now been deemed optional.

After careful evaluation and monitoring, the following configuration is applied for UDP
flood protection:

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet
udp flood threshold 50000

Wow, 50,000 UDP packets per second? Why so high? When would this ever get hit?

Well, the answer is “hopefully never.” Hopefully, you’ll never see a UDP flood great
enough to cause your infrastructure to have to start blocking all UDP traffic, but it will
do so in order to protect the network. By using various test equipment to generate a
large number of UDP packets, it is determined that the supporting equipment behind
the SRX can handle up to 70,000 UDP packets per second without failing. So, setting
the threshold just below that allows for normal, or even elevated, traffic loads.

If this screen was ever hit hard, you would want to evaluate the sources
and/or the destination IP addresses or ports, and perhaps manually
block them via a firewall filter. You could even automate this to some
level via event scripts.

SYN/TCP Floods
SYN floods are, by far, the most common type of DDoS attacks, and they are typically
directed at a service such as HTTP. A SYN packet is the first packet sent from the host
to a server requesting a connection via TCP. All TCP connections must be set up via
the three-way handshake per TCP RFC 793. Figure 7-10 shows an example of a normal
TCP setup.

The SYN flood attack is attempting to exploit the way TCP sets up its connections.
Once a SYN packet is sent, the server sends a SYN/ACK packet in return and listens

SYN/TCP Floods | 365

for the acknowledgment. This causes the server to hang as it listens and waits for that
ACK packet.

Multiple vectors are being attacked with a SYN flood. The first major vector concerns
the fact that the server is processing the initial SYN request and creating a SYN/ACK
packet to reply with, which obviously exhausts resources. The second major vector is
the number of idle and hanging sockets that are opened while waiting for the ACK
packet to come back from the originating source. This could be an issue on any item
that keeps state, such as load balancers, firewalls, proxies, servers, and so on.

So, how do you prevent these types of SYN floods from impacting your elements and
infrastructure? The first preventive measure, as with every other flood configuration,
is to understand how your network flows. Traffic should be monitored via JFlow/Net-
Flow sniffers to understand the normal level of TCP traffic. How many SYNs per second
is the baseline? You should understand the average number of new TCP connection
requests per second, as well as the peak number of connections per second.

The SYN flood protection screen has the following configuration options:

Attack threshold
This is the number of SYN packets per predestination address and port number
per second. Once this number is reached, the SRX begins proxying TCP connection
attempts to that destination or port. This threshold is on a per-destination and per-
service basis. (We will discuss the proxying process in more detail shortly.)

Alarm threshold
This is the number of SYN packets per second that will send an alarm to the event
log. This is useful for notifications and alarms in addition to testing your attack
threshold values.

Source threshold
This is the number of SYN packets per IP address, and it can be to any destination
IP address or port number. The source threshold blocks any SYN packets above
the threshold, instead of proxying, like the attack threshold does.

Figure 7-10. TCP Three-way handshake

366 | Chapter 7: High-Performance Attack Mitigation

Destination threshold
This is the number of SYN packets per destination IP address, and it can be from
any source IP address or port number. The destination threshold operates like the
source threshold; it blocks any SYN packets above the threshold, instead of proxy-
ing, like the attack threshold.

Timeout
The timeout value is the amount of time the embryonic or initial sessions (sessions
that haven’t created a three-way handshake) are in the session table. By default,
this value is 20 seconds. You can set this value more aggressively if there is a risk
of your session table filling up.

A SYN flood looks something akin to Figure 7-11.

Figure 7-11. An example SYN flood to the HTTP web server

SYN/TCP Floods | 367

Figure 7-12 shows what it looks like when the SYN attack threshold is met. Note that
the attack threshold was hit after the second SYN—this is extremely low and only for
diagram purposes.

Figure 7-12. The same SYN flood with SYN protection enabled

The first two SYN packets are allowed through. Once the threshold of 2 is met, the
SRX proxies the connection, sending a SYN/ACK back to the source. This is used to
determine if it is a legitimate request or just a drone flooding SYN requests.

In the source- and destination-based SYN flooding protections, the SYN packets are
not proxied but dropped to the floor. Anything above that configured threshold is
dropped. This is a dangerous setting, and you must be cautious when designing these
thresholds. Figure 7-13 shows an example of the SRX’s source and destination
behavior.

Here is the configuration that was applied to our perimeter SRXs. These values were
set very high due to the web-based frontend servers and the large traffic load seen on

368 | Chapter 7: High-Performance Attack Mitigation

the network. As stated before, you need to design these settings carefully for your own
particular network and requirements.

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet tcp
syn-flood timeout 10

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet tcp
syn-flood attack-threshold 1500

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet tcp
syn-flood source-threshold 200

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet tcp
syn-flood destination-threshold 10000

Figure 7-13. The same SYN flood hitting the threshold

SYN/TCP Floods | 369

SYN Cookies
The next layer of security that the SRX can provide is called SYN cookie protection,
shown in Figure 7-14. SYN cookie protection is a stateless SYN proxy that you can use
to defend against SYN floods from spoofed source IP addresses. A SYN cookie doesn’t
add much value if the source IP addresses are legitimate and reply to the SYN/ACK
packet.

Figure 7-14. How a SYN cookie works

370 | Chapter 7: High-Performance Attack Mitigation

A SYN cookie is very efficient due to the fact that it’s stateless. No route lookups or
policy lookups are performed upon receipt of the SYN packet.

When a SYN cookie is enabled the SRX proxies all TCP negotiations for the destina-
tions. The SRX replies to all incoming SYN packets with a specially marked SYN/ACK
packet containing the original source and destination addresses and port numbers via
a Message-Digest algorithm 5 (MD5) hash.

To configure SYN cookie protection, add the following configurations to your SRX:

[edit]
juniper@SRX5800# set security flow syn-flood-protection-mode syn-cookie

SYN-ACK-ACK Proxies
Another type of TCP attack is the SYN-ACK-ACK proxy. Remembering our three-way
handshake, once the SYN/ACK is sent in Figure 7-10 an attack will continue to send
acknowledgment packets over and over again in an attempt to flood the host or con-
nection table. You can prevent this type of attack with the SYN-ACK-ACK screen,
which again applies a threshold for the number of connections from a single source.

Figure 7-15 shows an example of this type of attack.

Figure 7-15. An example of a SYN-ACK-ACK proxy

SYN Cookies | 371

The solution is easy enough, by configuring a screen under our untrusted-internet
profile:

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet tcp
syn-ack-ack-proxy threshold 500

Session Limitation
Now that we have our base screens set to protect against the various types of flooding,
let’s configure some session limitations. A session screen is configured in two ways:

Source-based
The source-based session limitation is the number of connections a source IP is
allowed to have. For example, if the limit was 100, traffic entering this zone would
only be permitted 100 connections per source IP. This is useful for limiting inbound
Internet traffic and restricting the number of connections external IPs can open to
your hosts or servers.

Destination-based
This is the total number of sessions to a single destination. This is typically used
to limit the number of connections to a server or service. You must be careful when
applying this screen. Remember, these are zone-wide specific settings. So, for ex-
ample, 5,000 sessions to a single IP address may seem abnormal until all the
employees concurrently log on to the domain at the same time, or all users click
the company intranet page for the latest company announcement at the same time.

Both source- and destination-based screen limitations can protect your session table
while keeping any single host from generating a large number of connections and pos-
sibly flooding other hosts or parts of the network with connection attempts. It could
be a misconfigured device, a malicious user, or just an extremely abnormal flood of
legitimate traffic. The session-limiting settings should be there to regulate your session
table and keep things running smoothly.

Like all limiting features of the SRX, you must be careful when using session limitation.
You need to understand the number of connections an average source uses, as well as
the number of connections per average destination. You also must take into account
and plan for any abnormalities or peaks. When a session threshold is hit any additional
sessions that fall into that threshold are silently dropped—and that, from a user stand-
point, would mean intermittent connectivity or sporadic failures.

The source and destination session limitation screens are applied on the inbound zone,
like all screen settings. So, as you apply this to your Internet-facing zone, the source
session screens apply to traffic on the Internet coming inbound. The destination screens
are your internal network or servers. Traffic initiated from the inside and heading out-
bound does not hit this set of screens.

372 | Chapter 7: High-Performance Attack Mitigation

As always, after careful evaluation and monitoring of traffic, you have determined that
any single destination inbound to your network should receive, at most, 10,000 con-
current sessions. To be safe, set this at 20,000 to accommodate any influx in traffic to
your web server. Also, let’s say you found that the average source IP only had two
connections inbound to your network. To be safe, and to prevent an impact to your
customers who are possibly behind a proxy, let’s set the source screen limit at 200:

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet
limit-session limit-session destination-ip-based 20000

[edit]
juniper@SRX5800# set security screen ids-option untrusted-internet
limit-session limit-session source-ip-based 200

So, in this design, a single-source IP address on the Internet would be able to initiate
up to 200 inbound connections at any given time. All the Internet IP addresses would
be able to generate up to 20,000 connections to any single destination concurrently.

This helps us prevent the flood of connections from flooding the network or servers
and potentially filling up the session tables. It also helps throttle traffic inbound into
our network. With 200 connections, that would not stop attackers from scanning,
sweeping the network, or mirroring our website, but it would limit them and keep them
from impacting our availability.

It’s worth mentioning again that it’s possible to just alarm on a screen hit versus drop-
ping the traffic. This is handy when deploying a new untested screen profile:

juniper@SRX5800# set security screen ids-option untrusted-internet
alarm-without-drop

Let’s take a moment to review what our screen profile looks like at this point:

juniper@SRX5800# show security screen
ids-option untrusted-internet {
 icmp {
 ip-sweep threshold 1000000;
 fragment;
 large;
 flood threshold 8000;
 }
 ip {
 bad-option;
 record-route-option;
 timestamp-option;
 security-option;
 stream-option;
 spoofing;
 source-route-option;
 loose-source-route-option;
 strict-source-route-option;
 unknown-protocol;
 tear-drop;
 }

Session Limitation | 373

 tcp {
 syn-fin;
 fin-no-ack;
 tcp-no-flag;
 syn-frag;
 port-scan threshold 1000000;
 syn-ack-ack-proxy threshold 500;
 syn-flood {
 attack-threshold 1500;
 source-threshold 200;
 destination-threshold 20000;
 timeout 10;
 }
 land;
 }
 udp {
 flood threshold 50000;
 }
 limit-session {
 source-ip-based 200;
 destination-ip-based 10000;
 }
}

[edit]

To view the configured screens and their thresholds issue a show security screen ids-
option untrusted-internet command:

juniper@SRX5800> show security screen ids-option untrusted-internet
Screen object status:

Name Value
 ICMP flood threshold 8000
 UDP flood threshold 50000
 TCP port scan threshold 1000000
 ICMP address sweep threshold 1000000
 IP tear drop enabled
 TCP SYN flood attack threshold 1500
 TCP SYN flood alarm threshold 512
 TCP SYN flood source threshold 200
 TCP SYN flood destination threshold 20000
 TCP SYN flood timeout 10
 IP spoofing enabled
 IP source route option enabled
 TCP land attack enabled
 TCP SYN fragment enabled
 TCP no flag enabled
 IP unknown protocol enabled
 IP bad options enabled
 IP record route option enabled
 IP timestamp option enabled
 IP security option enabled
 IP loose source route option enabled
 IP strict source route option enabled
 IP stream option enabled

374 | Chapter 7: High-Performance Attack Mitigation

 ICMP fragmentation enabled
 ICMP large packet enabled
 TCP SYN FIN enabled
 TCP FIN no ACK enabled
 TCP SYN-ACK-ACK proxy threshold 500
 Session source limit threshold 200
 Session destination limit threshold 10000

Once you have reviewed the configured screens and confirmed that they are set at the
correct thresholds, apply the screen profile to the outside zone:

[edit]
juniper@SRX5800# set security zones security-zone internet screen
untrusted-internet

You can see which screen profiles are bound to the different zones by issuing a show
security zones command. Notice the screen profile untrusted-internet is bound to
the Internet security zone:

juniper@SRX5800> show security zones | find Internet

Security zone: Internet
 Send reset for non-SYN session TCP packets: Off
 Policy configurable: Yes
 Screen: untrusted-internet
 Interfaces bound: 0
 Interfaces:

Security zone: web-dmz
 Send reset for non-SYN session TCP packets: Off
 Policy configurable: Yes
 Interfaces bound: 1
 Interfaces:
 fe-0/0/2.0

You can view the screen counters at a zone level or an interface level. To view the screens
for the profile just applied, issue a show security screen statistics zone internet
command:

juniper@SRX5800> show security screen statistics zone internet
Screen statistics:

 IDS attack type Statistics
 ICMP flood 147
 UDP flood 0
 TCP winnuke 0
 TCP port scan 0
 ICMP address sweep 0
 IP tear drop 0
 TCP SYN flood 10
 IP spoofing 0
 ICMP ping of death 0
 IP source route option 0
 TCP land attack 0
 TCP SYN fragment 0
 TCP no flag 0

Session Limitation | 375

 IP unknown protocol 0
 IP bad options 0
 IP record route option 0
 IP timestamp option 0
 IP security option 0
 IP loose source route option 0
 IP strict source route option 0
 IP stream option 0
 ICMP fragment 0
 ICMP large packet 0
 TCP SYN FIN 0
 TCP FIN no ACK 24
 Source session limit 0
 TCP SYN-ACK-ACK proxy 0
 IP block fragment 0
 Destination session limit 3

You can view the same statistics at the interface level. It’s the same information, so you
can use whichever method you prefer for viewing data:

juniper@SRX5800> show security screen statistics interface ge-0/0/0
Screen statistics:

 IDS attack type Statistics
 ICMP flood 147
 UDP flood 0
 TCP winnuke 0
 TCP port scan 0
 ICMP address sweep 0
 IP tear drop 0
 TCP SYN flood 10
 IP spoofing 0
 ICMP ping of death 0
 IP source route option 0
 TCP land attack 0
 TCP SYN fragment 0
 TCP no flag 0
 IP unknown protocol 0
 IP bad options 0
 IP record route option 0
 IP timestamp option 0
 IP security option 0
 IP loose source route option 0
 IP strict source route option 0
 IP stream option 0
 ICMP fragment 0
 ICMP large packet 0
 TCP SYN FIN 24
 TCP FIN no ACK 0
 Source session limit 0
 TCP SYN-ACK-ACK proxy 0
 IP block fragment 0
 Destination session limit 3

376 | Chapter 7: High-Performance Attack Mitigation

You can find the statistics on SYN protection and address spoofing under the statistics
detail command. Here the flow error pipe is used to only show the packet-dropped
counters:

juniper@SRX5800> show interfaces ge-0/0/0 statistics detail | find "flow error"
 Flow error statistics (Packets dropped due to):
 Address spoofing: 12
 Authentication failed: 0
 Incoming NAT errors: 0
 Invalid zone received packet: 0
 Multiple user authentications: 0
 Multiple incoming NAT: 0
 No parent for a gate: 0
 No one interested in self packets: 0
 No minor session: 0
 No more sessions: 0
 No NAT gate: 0
 No route present: 0
 No SA for incoming SPI: 0
 No tunnel found: 0
 No session for a gate: 0
 No zone or NULL zone binding 0
 Policy denied: 956
 Security association not active: 0
 TCP sequence number out of window: 0
 Syn-attack protection: 602
 User authentication errors: 0
 Protocol inet, MTU: 1500, Generation: 152, Route table: 0
 Flags: Is-Primary
 Addresses, Flags: Is-Default Is-Preferred Is-Primary
 Destination: 192.168.1/24, Local: 192.168.1.254, Broadcast:
192.168.1.255, Generation: 142

AppDoS
Another method to protect against floods and DoS/DDoS attacks is called AppDoS
(and in the case of DDoS attacks, AppDDoS). AppDoS is a groundbreaking new feature
from Juniper that is intended to analyze large traffic patterns and look for suspicious
trends or activities. This goes beyond basic proxying and flood prevention. AppDoS
takes a detailed look at the traffic behaviors over a period of time and uses an intelligence
engine to determine if the traffic is legitimate or is part of an attack. AppDoS is covered
in depth in Chapter 8.

Application Protection
We covered application layer gateways (ALGs) in Chapter 4, but we didn’t cover the
built-in SRX protection mechanisms for the different ALGs. The SRX has many built-
in application protections that can, for example, protect against the flooding of calls
on your VoIP system. Protecting your internal infrastructure from misconfiguration or

Application Protection | 377

rogue users is critical to providing the percentage of uptime that current network users
demand from their applications and services.

SIP
A proxy server is one of the most important pieces of equipment in a Session Initiation
Protocol (SIP) setup. As such, the SRX can provide some level of protection to ensure
availability of the proxy server to its users. The SIP DoS protection monitors invite
requests and the proxy server replies. Any invite requests that are redirected, errored,
or failed are placed into a table that is denied for a predefined duration. This prevents
any invite floods to your proxy servers.

This SIP DoS protection is a global configuration and is not tied to a
single zone.

The following configuration applies specifically to our VoIP server (you can leave this
not configured to apply to all SIP proxy servers) and places users into the blocked table
for 20 seconds:

[edit]
juniper@SRX5800# set security alg sip application-screen protect deny
destination-ip 172.31.100.50

[edit]
juniper@SRX5800# set security alg sip application-screen protect deny timeout 20

Figure 7-16 illustrates an example of the blocking table process. As 10.1.1.140 makes
an INVITE request to the VoIP PBX 172.31.100.50, the server sends back a 400 Error
or client error. The SRX monitors this response and then adds the source 10.1.1.140
to its blocked list for 20 seconds. During this time, the proxy server will not forward
the source address’s invite requests.

MGCP
Media Gateway Control Protocol is used between the media gateway and the media
controller. The SRX can add a layer of protection in front of the media gateway by
limiting the number of remote access service (RAS) messages and connections per sec-
ond. The MGCP flood threshold drops any messages above the configured threshold.

You can configure two flood thresholds on the MGCP application screen. The first is
for RAS messages with a value between 2 and 50,000 messages per second per gateway;
the second is the number of create connection commands with a value of 2 to 10,000
connection requests per second.

378 | Chapter 7: High-Performance Attack Mitigation

Our example here limits the number of RAS messages to 15,000 and the number of
connections per second to 2,000:

[edit]
juniper@SRX5800# set security alg mgcp application-screen message-
flood threshold 15000

[edit]
juniper@SRX5800# set security alg mgcp application-screen connection-
flood threshold 2000

To view the flood counters for MGCP for evidence of being hit or dropping any traffic,
issue a show security alg mgcp counters command to display the data. Filtering on
the keyword flood displays only the flood counters:

juniper@SRX5800> show security alg mgcp counters | match flood

 Connection flood drop : 15
 Message flood drop : 28

Figure 7-16. Blocking table process

Application Protection | 379

SCCP
SCCP is a VoIP protocol used by Cisco for its CallManager call signaling. The SCCP
ALG application screens can limit the number of calls per client per second. This is
extremely useful for protecting your CallManager infrastructure from attacks and net-
work floods. Since this configuration is on a per-client basis when this threshold is hit
only the client is blocked. The threshold can be configured from two calls to 1,000 call
attempts per second.

The following configuration limits our SCCP setup to just 10 calls per second. This
seems more than reasonable for our environment.

[edit]
juniper@SRX5800# set security alg sccp application-screen call-flood
threshold 10

As the SRX becomes more Layer 7 state aware with the ALGs, we will see more appli-
cation screens from Juniper. This is a very exciting area of development, as it adds a
good additional level of security to some very critical aspects of the network. The avail-
ability of a VoIP system is absolutely crucial and is one of those services that tend to
get a lot of visibility and cause a major impact to a business when they’re down. Pro-
viding 100% availability ensures that everyone is happy and that the network admin-
istrators get a good night’s rest.

Here is our application screen configuration:

juniper@SRX5800# show security alg
mgcp {
 application-screen {
 message-flood threshold 15000;
 connection-flood threshold 2000;
 }
}
sccp {
 application-screen {
 call-flood threshold 10;
 }
}
sip {
 application-screen {
 protect {
 deny {
 destination-ip {
 172.31.100.50;
 }
 timeout 20;
 }
 }
 }
}

380 | Chapter 7: High-Performance Attack Mitigation

Protecting the SRX
Thus far in this chapter, we have covered how to protect the network and services
behind the SRX. This section covers how to protect the SRX itself from attack. It’s
critical to harden the SRX’s control plane from any potential attacks and to ensure
availability.

The first item to put in place is a firewall filter applied to the loopback interface. All
traffic destined for the route engine (RE) goes through the loopback interface. To
throttle and limit traffic that can enter the RE, we can apply a firewall filter to the
loopback interface.

This acts much like a receive ACL on Cisco Systems routers.

The first thing you need to do when designing a loopback firewall filter is to document
the traffic types that enter the RE. Traffic such as Simple Network Management Pro-
tocol (SNMP), Network Time Protocol (NTP), management protocols, and syslog
should be examined. For the ScreenOS crowd, firewall filters are the only way to re-
produce the manager-ip settings and restrict what IP addresses or segments can access
the management plane of the SRX.

Here are the different devices and networks that need to talk to the SRX:

Management network: 10.1.10.1/24
SNMP server: 10.1.30.101
NTP server: 10.1.20.100
Backup NTP server: 10.1.30.100

So, let’s configure the traffic types that need to enter the RE. Yours may be different,
of course, depending on your network and configuration, so pay attention to the
process:

[edit]
juniper@SRX5800# edit firewall filter SRX_Protection

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term in-ssh from source-address 10.1.20.1/24

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term in-ssh from protocol tcp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term in-ssh from destination-port ssh

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term in-ssh then accept

Protecting the SRX | 381

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term snmp from source-address 10.1.30.101/32

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term snmp from protocol udp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term snmp from port snmp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term snmp then accept

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term ntp from source-address 10.1.20.100/32

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term ntp from source-address 10.1.30.100/32

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term ntp from protocol udp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term ntp from port ntp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term ntp then accept

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-ssh from protocol tcp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-ssh from port ssh

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-ssh from port telnet

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-ssh from port ftp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-ssh from port ftp-data

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-ssh then discard

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-udp from protocol udp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-udp from port snmp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-udp from port snmptrap

382 | Chapter 7: High-Performance Attack Mitigation

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-udp from port ntp

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term deny-any-other-udp then discard

[edit firewall filter SRX_Protection]
juniper@SRX5800# set term allow-everything-else then accept

Now, the firewall filter needs to be applied to the loopback interface:

[edit]
juniper@SRX5800# set interface lo0 unit 0 family inet filter input SRX_Protection

Although this is an example loopback filter that limits the different services that are
allowed to talk with the RE, you can gain additional security from rate-limiting traffic
inbound to the RE. Here is an example rate-limited policy:

 [edit]
firewall {
 policer lo-police1 {
 loopback-interface-policer;
 if-exceeding {
 bandwidth-limit 100m;
 burst-size-limit 500k;
 }
 then {
 discard;
 }
 }
}

Now that the management plane has been protected, we need to address the services
and allow inbound traffic. To configure the interface to, for example, respond to pings
and traceroutes, we need to configure what’s called a host-inbound-traffic system
service. This is done at the interface level, although it’s highly recommended if you do
allow services such as ping and traceroute that you apply a policer to reduce the chance
of any potential attacks leveraging ICMP.

[edit]
juniper@SRX5800# set security zones security-zone trust interfaces
ge-0/0/0.0 host-inbound-traffic system-services ping

Ping and traceroute are just a sample of the full services available for configuration that
you can find on your SRX model of system services allowed. Use the help prompt in
this manner:

juniper@SRX5800# set security zones security-zone trust interfaces
ge-0/0/0.0 host-inbound-traffic system-services ?
Possible completions:
 all All system services
 any-service Enable services on entire port range
 bootp Bootp and dhcp relay-agent service
 dhcp Dynamic Host Configuration Protocol
 dns DNS and DNS-proxy service

Protecting the SRX | 383

 finger Finger service
 ftp FTP
 http Web management service using HTTP
 https Web management service using HTTP secured by SSL
 ident-reset Send back TCP RST to IDENT request for port 113
 ike Internet Key Exchange
 lsping Label Switched Path ping service
 netconf NETCONF service
 ntp Network Time Protocol service
 ping Internet Control Message Protocol echo requests
 reverse-ssh Reverse SSH service
 reverse-telnet Reverse telnet service
 rlogin Rlogin service
 rpm Real-time performance monitoring
 rsh Rsh service
 sip Enable Session Initiation Protocol service
 snmp Simple Network Management Protocol service
 snmp-trap Simple Network Management Protocol traps
 ssh SSH service
 telnet Telnet service
 tftp TFTP
 traceroute Traceroute service
 xnm-clear-text JUNOScript API for unencrypted traffic over TCP
 xnm-ssl JUNOScript API service over SSL

Additionally, all routing protocols that you’re going to run need to be configured under
that interface. Let’s run an example. Assume you’re going to run Border Gateway Pro-
tocol (BGP) on the outside interface that needs to be configured, so it can be allowed
in the interface and zone:

[edit]
juniper@SRX5800# set security zones security-zone trust interfaces
ge-0/0/0.0 host-inbound-traffic protocols bgp

Here’s a full list of allowed protocols. Of course, there is an all option, but that is not
recommended—it’s always best to only allow the specific protocols and services that
are needed for your network.

juniper@SRX5800# set security zones security-zone trust interfaces
ge-0/0/0.0 host-inbound-traffic protocols ?
Possible completions:
 all All protocols
 bfd Bidirectional Forwarding Detection
 bgp Border Gateway Protocol
 dvmrp Distance Vector Multicast Routing Protocol
 igmp Internet Group Management Protocol
 ldp Label Distribution Protocol
 msdp Multicast Source Discovery Protocol
 nhrp Next Hop Resolution Protocol
 ospf Open Shortest Path First
 pgm Pragmatic General Multicast
 pim Protocol Independent Multicast
 rip Routing Information Protocol
 router-discovery Router Discovery
 rsvp Resource Reservation Protocol

384 | Chapter 7: High-Performance Attack Mitigation

 sap Session Announcement Protocol
 vrrp Virtual Router Redundancy Protocol

To protect the session table from filling up, Juniper has provided a feature called
aggressive ageout. Under normal situations, the SRX would use its service timeouts to
remove idle connections from the connection table. However, in situations where the
session table is reaching capacity, the SRX can start aggressively aging out idle sessions
dynamically.

Let’s configure the early ageout time to be 20 seconds. During this time in which the
session table is at risk of being filled up, what would normally be a five-minute idle
timeout for HTTP would now be 20 seconds:

[edit]
juniper@SRX5800# set security flow aging early-ageout 20

This has the potential to age out valid sessions very quickly with the intent to protect
the session table, because if the session table fills up, the SRX no longer is able to build
any new sessions and new traffic would start to fail. The idea is to prevent, at all costs,
the session table from filling up to provide availability to new connections.

Finally, you need to configure when you want the aggressive aging out to take effect
and at what point it can return to normal ageout times. These are called high water-
mark and low watermark.

The high watermark is the percentage of the session table that must be filled before
aggressive aging out is activated. Once it’s activated, the low watermark is the per-
centage that the session table must reduce to before aggressive ageout is disabled.

[edit]
juniper@SRX5800# set security flow aging high-watermark 90 low-watermark 70

Protecting your SRX from attacks and limiting the vectors of attacks on the SRX itself
is critical to providing availability to the network the SRX serves. Although many net-
work administrators tend to overlook security screens and may even view them as
optional, hardening the SRX and protecting it from attacks should never be overlooked
or skipped.

Summary
In this chapter, we covered how to protect the perimeter of your network from recon-
naissance, basic attacks, floods, and applications. Keep in mind that as important as it
is to apply these protections to the perimeter, it is also very important to configure these
protections on the other, more trusted zones. Internal segments, DMZs, server farms,
and backend systems also should be evaluated. Although the same screens and limita-
tions may not apply, putting thresholds on floods and sessions prevents any foul play
or misconfigurations from adversely impacting the network and protects other
segments.

Summary | 385

Careful design and configuration of firewall filters, screens, security policies, and IPS
signatures is an excellent start to layered network security design. Blocking unwanted
traffic at the most efficient point will keep your SRX healthy and enable you to add the
more performance-intensive security layers such as AppDoS and IPS without running
out of capacity on your SRX.

Chapter Review Questions
1. What are the various ways to prevent a TCP DoS/DDoS attack?

2. What is the most efficient way to prevent infected SQL Slammer hosts from trying
to propagate on your network?

3. What two methods can be used to protect the SRX session table from running out
of capacity?

4. When a screen profile is applied to a zone what traffic does the screen evaluate?

5. What screens should I use to protect my network?

6. How do you enable a screen profile to log screen hits but not drop traffic?

7. How do you protect the routing engine/management plane from attacks?

8. What kind of IP sweeps can the SRX protect against?

9. What are some common network reconnaissance tools used by bad guys?

10. How does a SYN cookie work?

Chapter Review Answers
1. You can set some basic screens out of the gate to prevent some TCP misbehaviors:

-tcp-no-flag
-syn-fin
-syn-frag

You can also set more advanced configurations. You do need to tweak and tune
these settings, but they provide an excellent layer of protection against many TCP
DoS/DDoS attacks:

-syn-flood protection
-syn cookie
-syn-ack-ack proxy

Although not specific to TCP session limiting, screens could be used to limit the
number of connections a DoS/DDoS attack can take, creating a bottleneck.

386 | Chapter 7: High-Performance Attack Mitigation

2. A firewall filter configured to block TCP port 1434 is the most efficient way to
prevent infected SQL Slammer hosts from trying to propagate on your network.
Slammer could be blocked by a security policy, or an IPS signature; however, a
firewall filter would be the most efficient method. A good-layered security design
tries to block these at the lowest level. With that in mind, maintaining a large
firewall filter set is more difficult and less straightforward when compared to se-
curity policies, and you should limit their use to only the “heavy hitters” that you
see on your network.

3. If you use a combination of source and destination session screen limits to prevent
a single IP or destination from filling up your session table, along with early or
aggressive ageout, filling up the SRX session table will be very difficult, even for a
wily hacker.

4. When a screen profile is applied to a zone the screen evaluates all ingress traffic.
At this time, you cannot set exceptions for screens. Any traffic coming inbound to
that zone will be evaluated by the screen profile. If traffic is initiated in the Trust
zone with a screen profile of protect_trust and then exits the Untrust zone with a
screen profile of protect_untrust, only the protect_trust screen profile will be
evaluated, not both. This also applies to return traffic of that same session.

5. There is no simple canned configuration to prevent attacks. Each network has
different flows and patterns and careful planning is necessary to understand the
traffic profiles and potential threats. Analyze your network for attack vectors. What
needs to be protected? This could include DNS servers, DHCP servers, NTP serv-
ers, web servers, Active Directory servers, core switches, VoIP PBX systems, and
so on.

What are the normal loads like? What are they during abnormal but legitimate
loads? If you’re a major online retailer, your traffic load for 50 weeks per year will
be much lower than the 2 weeks before Christmas. The last thing you want is the
protections you put in place to cause an impact to your legitimate traffic flow.

6. Screen profiles can be configured with the alarm-without-drop flag. This will allow
a new screen profile to be evaluated with real-world traffic before it is configured
to drop anything. This would enable a network administrator to test items such as
traffic failover, heavy abnormal (but legitimate) load, and other such situations
before any blocking is done.

7. You can protect the management plane by placing a firewall filter on the loopback
interface. All traffic going to the management plane must traverse the loopback
interface, also known as lo0. Applying a firewall filter that limits who can talk to
the SRX and how will limit the scope of any potential attack vectors.

8. Since the 10.2 code version, the SRX can protect against ICMP, TCP, and UDP
sweeps with screens.

Chapter Review Answers | 387

9. The good news is that most of the tools used by bad guys can be found with very
little effort. You can use them to take a look at your network and try to evaluate
security from an outsider’s view, as well as test any reconnaissance protections that
you’ve put in place. Here are the websites for a few of these tools:

Nmap: http://nmap.org/ or http://insecure.org/
Hping/Hping2: http://www.hping.org/
Xprobe: http://ofirarkin.wordpress.com/xprobe/
Firewalk: http://www.packetstormsecurity.org/UNIX/audit/firewalk/

10. SYN cookie protection is a stateless SYN proxy. A SYN cookie proxies all initial
TCP negotiations for the destination to add a layer of security and protect the
destination. For details, refer back to Figure 7-14.

388 | Chapter 7: High-Performance Attack Mitigation

http://nmap.org/
http://insecure.org/
http://www.hping.org/
http://ofirarkin.wordpress.com/xprobe/
http://www.packetstormsecurity.org/UNIX/audit/firewalk/

CHAPTER 8

Intrusion Prevention

Although stateful firewall technology is a powerful mechanism for controlling cyber
threats and preventing denials of service, controlling targeted exploitation requires
deeper inspection and control of the application layer traffic itself. The SRX platform
integrates the power of stateful firewalling, routing, Network Address Translation
(NAT), and virtual private networks (VPNs), along with the power of Juniper Intrusion
Detection and Prevention (IDP) technology, into a single unit. Make no mistake: this
is true IPS, not a subset of inspection capabilities, and it’s all done within integrated
network purposed hardware so that additional types of components are not needed.

This chapter details the Juniper IPS functionality built into the SRX. It starts with an
overview of IPS—what it does, why it’s necessary, and how it compares to other tech-
nologies, including Juniper’s standalone IDP and ISG with IDP platforms. Then we
have some fun configuring IPS on the SRX, as well as IPS tuning and troubleshooting.
After that, we’ll look at a real-world case study to help solidify the concepts we’ve
discussed. And as with all the chapters in this book, questions at the end of the chapter
should help those taking Juniper’s security certification to prepare for their exam.

The Need for IPS
Despite what some flashy vendor advertisements and blogs may say, stateful firewalling
is not dead, nor will it be anytime soon. Stateful firewalling provides a core layer of
security, to ensure that network traffic is restricted to only that which a policy dictates
from the networking layer and the transport layer (Layers 3 and 4, respectively). It also
goes a step further to ensure that the exchanges follow the exchanges that are expected
in Layers 3 and 4.

This is a critical layer of network security; however, it should not be the only layer of
network security you apply to protect a network infrastructure. The problem with
stateful firewalling by itself is that it can go only so far to limit which source IP addresses
can communicate to which destination IP addresses, and on which Layer 3 and Layer
4 protocols the communication can be exchanged. See Figure 8-1.

389

Stateful firewalling cannot actually limit what can be exchanged within the channels
of permitted Layer 3 and Layer 4 communication. For instance, if your organization
hosts a public web server to serve as the portal for the Internet (say, to get information
about your company), assuming you’re using standard ports and protocols you would
need to open a firewall rule that would allow any source IP address to be able to connect
to the destination IP address of your web server on TCP port 80. From that perspective,
the firewall would ensure that (barring no additional configuration to permit otherwise)
only Internet connections to your web server on TCP port 80 would be allowed (no
File Transfer Protocol [FTP], Domain Name System [DNS], Simple Mail Transfer Pro-
tocol [SMTP], Server Message Block [SMB], etc.).

Limiting access to only the essentials is very important; however, the capabilities of
stateful firewalling alone do little to control what is actually exchanged within these
connections. You can make the analogy that IPS is to networking what airport screening
checkpoints are to physical security. (Although we like to think that network-based IPS
can do an even better job than airport security, and won’t take your 3.5 ounce bottle
of shampoo away either!) In airport screening, not only are you inspected to determine
where you are coming from and where you are going, but also your contents are
searched via a combination of X-rays, metal detectors, chemical analysis, and some-
times airport security personnel. Although determining where you are coming from
and where you are going may be important to security at some level, the items you carry
with you are also extremely important to security. Computer networking is no different
from physical airport security in the need to inspect and secure communications.

Luckily, although the task of security computer network communications is daunting,
powerful tools within the SRX exist to make this task practical for security
administrators.

Figure 8-1. Firewall versus IPS

390 | Chapter 8: Intrusion Prevention

How Does IPS Work?
At a high level, IPS works by scrutinizing all of the bits contained within packets to
look for both known and unknown attacks, as shown in Figure 8-2. Traditional fire-
walls primarily look only at Layers 3 and 4 when it comes to security, and ignore the
actual contents of the payloads themselves. This makes for efficient processing, which
can be accelerated in hardware, but it alone does not provide protection for traffic that
is permitted by firewall policies.

Figure 8-2. Firewall inspection of attack versus IPS

So, why do we still need stateful firewalling at all if we can just use IPS to ensure that
traffic is “scrubbed” to only permit desired traffic, regardless of where it comes from
or what port it is on?

That’s an excellent question, and one that some vendors claim the use of their IPS
products will answer. The fact of the matter is that no security is perfect, and although
in a perfect world using only IPS might be a valid solution, this is not a perfect world.
By utilizing firewalling as a layer of security, you can weed out undesired traffic early
in the process so that you don’t have to utilize any more resources than are necessary
for processing traffic that you know early on you don’t want. It’s important, because
IPS is a very computationally expensive process that cannot be easily assisted through
the use of application-specific integrated circuit (ASIC)-based inspection. By blocking
traffic early on, you ensure that neither the IPS nor the destination servers have to
process traffic unnecessarily. Resources are always going to be finite, and often
expensive.

Eliminate processing of undesired traffic as early in the process as pos-
sible to ensure that no more resources than necessary are required.

The Need for IPS | 391

Licensing

Licenses are required to download the Juniper attack objects and policy templates. If
you are just using the IPS functionality and you want to only use your own attack
objects, you can do so without the need for a license (although you will see a license
warning).

Note that the IPS licenses have a lifetime plan. Typically, licenses are distributed in one-
year increments (including multiyear licenses), and if the license expires the ability to
download attack object updates is prevented. Contact your Juniper reseller for infor-
mation on getting licenses.

IPS and antivirus

If you have IPS, do you still need antivirus?

The short answer to this question is “yes”; as mentioned before, best practice rules that
IPS is not a substitute for antivirus. Cyber threats come in many different forms, but
let’s classify them as network-based or file-based protection.

Traditionally, IPS is primarily concerned with network-based threats and securing
communication between different hosts as shown in Figure 8-4. File-based protection
is another story. Although files can certainly be exchanged over networks, they can also
be exchanged through other mechanisms such as USB drives, CD/DVDs, and some-
times secure communication channels such as IP Security (IPsec) VPNs that are not
terminated on the IPS itself. This is true both for network-based antivirus servers and
for IPS.

True security is best executed by providing layered security (see Figure 8-3); that is,
using IPS for what it is best at, by securing communications between hosts, but on those
hosts providing additional security through the use of host-based IPS and antivirus
protection. Network-based antivirus is an excellent perimeter tool as well, but just like
IPS, it doesn’t completely remove the need for host-based protection because it is often
difficult to inspect encrypted files and not all files may be exchanged over the network.

It is important to understand that, at the time of this writing, the Juniper SRX does not
focus on inspecting the content of files, so it cannot serve as a network-based antivirus
appliance. The IPS can search for patterns within communication, so technically it can
detect patterns within the payloads of files; however, specific signatures are not written
to perform this type of functionality. For the most precise antivirus matching, the files
must be fully reassembled before they can be scanned. To provide inline antivirus pro-
tection, TCP proxying must be used, and this is not a goal of the IPS system.

Although the SRX does not focus on inspecting the contents of files, most contemporary
threats try to spread themselves over the network, or “phone home” to command and
control servers. Here the SRX can be used to not only identify these types of infection
and control attempts, but also to actually block them and alert administrators to this
activity. (See Figure 8-4.)

392 | Chapter 8: Intrusion Prevention

What is the difference between full IPS and deep inspection/IPS lite?

Previous generations of Juniper firewalls such as the NetScreen and SSG series (along
with many other competitors) offer deep inspection or IPS lite functionality. This pro-
vides a limited subset of inspection capability by inspecting the traffic at Layer 7, but
it is for only a handful of signatures. Deep inspection/IPS lite does not provide full
inspection; therefore, it isn’t really geared toward true security, and it has become more

Figure 8-3. Layered security

Figure 8-4. Infected host attempting to propagate

The Need for IPS | 393

of a checkbox security feature that auditors tend to look for. If you are truly concerned
about providing real security for your environment, full IPS should be a requirement.
When evaluating solutions, it is important to determine exactly what level of IPS is
performed. On the SRX platforms (from the SRX100 to the SRX5800), IPS is a full-
featured inspection technology that cuts no corners.

Is it IDP or IPS?

Many SRX administrators may be familiar with the previous generations of IPS products
offered by Juniper Networks, including the standalone IDP appliance and the ISG with
IDP security modules. In the past, these products referred to IPS functionality as IDP
or intrusion detection and prevention, which originated from SecureOne (developer of
the first IPS [rather than IDS] platform). SecureOne was later acquired by NetScreen,
which was acquired by Juniper.

To move more in line with industry-standard terms, Juniper Networks has begun to
call its IDP IPS. You can still find a lot of references to “IDP” in the SRX configuration,
but over the lifetime of this book, this will be migrated to IPS.

Juniper does not typically change command-line interface (CLI) con-
figuration statements without a formal process, so for the short and
medium terms, you might notice that IDP is referenced rather than IPS.
You can effectively refer to these terms equally.

False positives and false negatives in IPS

Some network administrators are weary of IPS because of the risk of false positives. A
false positive is when something legitimate is detected as something malicious. If the
administrator has configured protection against malicious attacks, it is likely that IPS
might actually block legitimate traffic, which we all know can cause a few headaches.
A false negative is when a real attack is deemed as legitimate traffic, and therefore is not
detected. False negatives are as much a concern as false positives, although without an
IPS in place, they would get through anyway.

False positives occur for several reasons, one of which may be that it isn’t a false positive
at all; that is, the IPS may detect the traffic accurately as it is instructed to do. Often,
particularly in the case of protocol anomaly protection, if a vendor does not follow a
standard implementation (e.g., an RFC or manufacturer spec) of a protocol, the IPS
detects this as an attack, just like it is programmed to do. In other cases, a signature
may be too broad in detection and may identify both malicious and legitimate traffic.
And finally, false negatives might occur because the IPS isn’t actually inspecting for
such activity, the detection may be disabled, or the signatures may not detect particular
iterations of an attack.

The good news is that the SRX goes to great lengths to minimize both false positives
and false negatives, and this chapter details how the SRX does this through the use of

394 | Chapter 8: Intrusion Prevention

intelligent application matching, protocol decoding, and context-based inspection.
This chapter also discusses fine-tuning of the SRX so that you can minimize occurrences
of false positives.

Management IPS functionality on the SRX

Administrators familiar with prior generations of Juniper IPS products such as the
standalone IDP appliance and the ISG with IDP security modules know that the Net-
work and Security Manager (NSM) management platform was required to manage the
IPS functionality on the IDP and ISG, respectively. The SRX is different in that it does
not require the NSM for any IPS functionality at all, although the NSM can certainly
manage the SRX IPS functionality. The SRX allows you to fully manage the SRX IPS
via the CLI, and most functions are available via J-Web as well. Although some tasks,
such as viewing the contents of attack objects, are easier on the NSM than on the
platform itself, the functionality is completely in the platform and doesn’t require any
additional software systems to manage it.

Stages of a system compromise

Understanding the stages of an attack is critical to being able to provide comprehensive
security. Many security books go into great detail regarding the different stages of an
attack, but for our purposes let’s simplify them into four common stages or aspects of
an attack. Note that not all stages are necessary for an attack, but are common to most
attacks.

Reconnaissance
The first phase of an attack typically identifies vulnerable hosts. Often, this includes
port scanning, banner grabbing, and other techniques to get information to leak
from the system regarding what platform it is and its respective software.

The SRX can help to protect against different types of sweeps and scans through
the use of screens, but also there are a large number of attack objects in the IPS
that are associated with information leakage attempts. You can also use IP actions
(discussed later in this chapter) to shun traffic from sources that are attempting
such reconnaissance techniques.

Vulnerability exploitation
Once a vulnerable system is identified, the attacker tries to exploit the vulnerability
in the system. There is a lot of confusion about this stage, because technically, the
vulnerability exploitation does one of two things: it crashes the system or service
(a denial of service or DoS), or it changes the control of execution on the system.
As part of the latter case, the attacker often injects code known as shellcode which
allows for further exploitation.

The SRX provides comprehensive protection of vulnerability exploitation with
thousands of attack objects that protect against exploitation using both protocol
anomaly and signature-based attack objects. These attack objects can protect

The Need for IPS | 395

against both attacks that cause a system or service to crash, and attacks that try to
compromise the system.

Shellcode execution
Assuming that the attack is meant to compromise the system rather than simply
crash it, the attacker typically injects shellcode as part of the vulnerability exploi-
tation stage. Shellcode is code that is executed in place of the regular application,
to further compromise the system. Examples of what shellcode can do include
opening a backdoor on the system, creating outbound control connections, mod-
ifying the system by creating users or elevating access, and injecting malicious ap-
plications. Without the use of shellcode, the exploited system would not likely be
compromised (controlled) even if the vulnerability was exploited.

Not only does the SRX detect and prevent the exploitation of vulnerabilities, but
it can also detect shellcode, so even if it somehow missed the actual exploit, it
would likely be able to detect the shellcode. Numerous shellcode attack signatures
can be blocked in addition to the actual exploit itself.

Infection attempts/phone-home traffic
Once a system is compromised, it typically tries to infect other machines, or phone
home to the control servers, or do both.

The SRX can detect these infection and phone-home techniques, depending on the
nature of the infection method and the communication to the command and con-
trol system. The SRX can often detect attempts to infect other machines, with the
ability to block those attempts and identify compromised machines. Additionally,
the SRX may be able to identify command and control and phone-home traffic.
Sometimes this traffic is encrypted, so the SRX may not be able to identify what
the machine is controlled by, but the SRX can identify encrypted traffic streams
(and block them if so desired).

As you can see, the SRX can do quite a lot to prevent attacks, minimize their impact,
and identify and control the spread of machines that may be infected (such as a laptop
that is infected in a foreign network). By implementing a layered security approach, the
SRX can offer real security to the networks that it protects.

IPS Packet Processing on the SRX
To understand how IPS processing on the SRX works, you must first understand where
IPS sits in the path of packet processing, what components are utilized for IPS pro-
cessing, and the actual composition of the IPS functionality itself. Let’s examine how
SRX IPS fits into the big picture of your network security exactly in that order.

Packet processing path

We already discussed the packet flow on the SRX when it comes to session setup, steady
state processing, and session close. Now let’s focus in more depth on what happens to

396 | Chapter 8: Intrusion Prevention

packet processing in terms of the IPS. It is important to remember that for the high-
end SRX, a session is always anchored to a single Services Processing Unit (SPU) for
the duration of its lifetime. The same holds true in the case of IPS. IPS is always going
to be inspected on the same SPU as that of the firewall flow. Unlike previous generations
of Juniper IDP platforms and many other vendors’ products, the SRX does not require
special hardware to perform its IPS processing. Instead, all IPS services are processed
in the SPU itself. If additional IPS processing power is required, the administrator need
only add additional SPUs.

In the case of the branch SRX Series, there is only one network processor
where all processing is performed.

The SRX IPS functionality is tightly tied to its firewall functionality.

In the case of the branch SRX Series, if packet mode is used, that traffic
cannot be inspected by the IPS engine. At the time of this writing, the
high-end SRX does not support selective processing; it only supports
flow mode.

Figure 8-5 illustrates a high-level flowchart of how packet processing operates in the
SRX with regard to the different services. Note that IPS is one of the last things to be
processed in the services chain. That means if the traffic is not permitted by a firewall
policy (which must also reference it to be inspected by IPS) the traffic never hits the IPS
engine. This is intentional, because you don’t want to burden the IPS with inspecting
traffic that is ultimately going to be dropped by some other mechanism anyway.

One of the great things about the SRX IPS implementation is that it offers a great deal
of granularity. Unlike many other vendors’ implementations, the SRX allows you to
enable IPS processing on a firewall rule-by-rule basis, rather than just turning on in-
spection across the board. This means traffic that is not marked by a firewall rule to be
processed by IPS completely bypasses the IPS altogether. Traffic that is marked for IPS
processing is then handed off to the IPS engine.

In addition to referencing IPS processing on a firewall rule-by-rule basis,
within the IPS rulebase you still have extremely granular rulebase con-
trol over how the IPS is enforced. We will cover this in depth later in the
chapter.

As I mentioned, all IPS-bound traffic must be processed by the stateful firewall flow
engine first (known as flowd). For now, suffice it to say that if the IPS engine needs to
process traffic, the traffic will be handed off after the firewall has completed its

The Need for IPS | 397

processing (and only for permitted traffic). Within the IPS engine there are several stages
of processing, as illustrated in Figure 8-6.

IPS processing on the SRX can be broken down into eight general stages of processing:

Stage 1: Fragmentation processing
The first thing that must happen before you can really get to the inspection is that
the SRX must process fragmented traffic (if present). To ensure that common IDS
evasion techniques using fragmentation are not effective, it rebuilds any fragmen-
ted traffic from a Layer 3 perspective. This stage also provides countermeasures
against fragment-based attacks such as missing fragments, underlapping or over-
lapping fragments, duplicate fragments, and other fragment-based anomalies.
Many of these values are also configurable in the IPS sensor configuration section,
although defaults should suffice in most cases.

Stage 2: IPS flow setup
After any Layer 3 fragments are processed, the SRX examines the traffic to see
whether it has an existing session for it or if there is an existing session which might
need some special processing. The IPS session table is different from the firewall
session table, because additional IPS state related to the traffic is required.

Figure 8-5. First path packet processing

398 | Chapter 8: Intrusion Prevention

Stage 3: SSL decryption (if applicable)
If SSL decryption is configured, and traffic is destined to a web server that is con-
figured to be decrypted, decryption happens in this phase. See “SSL Inspec-
tion” on page 421 for more information.

Stage 4: Serialization and reassembly
For accurate IPS processing, all messages must be processed in order, in a flow,
and the messages must be reassembled if they span multiple packets. Without
reassembly, an IPS engine can be easily evaded, which would result in lots of false
positives. The SRX IPS engine ensures that before traffic is processed, it is ordered
and reassembled in this stage of the processing.

Stage 5: Application identification
The SRX has the ability to detect what application is running on any Layer 4 port.
This is important because it allows the device to determine what traffic is running
in a given flow regardless of whether it is running on a standard port. Even if the

Figure 8-6. IPS processing flowchart

The Need for IPS | 399

application cannot be identified, the SRX can still inspect it as a bytestream. This
stage typically happens within the first couple of kilobytes of traffic, and the SRX
utilizes both directions of the traffic to identify the application.

Starting with 10.2 of the High End SRX, the Application Identifi-
cation portion of the appID detection has been moved from the IPS
module into the firewall module for future support of AppSecure
functionality, which can perform application-based enforcement
and services.

Stage 6: Protocol decoding
Once the application is identified (or is simply classified as a stream), the SRX
decodes the application from a protocol level, a process known as protocol decod-
ing. Protocol decoding allows the SRX to chop up the traffic into contexts, which
are specific parts of different messages. Contexts are very important to IPS pro-
cessing because they allow the SRX to look for attacks in the specific location where
they actually occur, not just blindly by byte matching across all traffic that passes
through the SRX. After all, you wouldn’t want the SRX to block an email conver-
sation between you and a peer discussing the latest exploit; you would only want
the SRX to block the exploit in the precise location where it actually occurs. At the
time of this writing, the SRX supports almost 600 application contexts. Contexts
are one of the ways that the SRX seeks to eliminate false positives. The protocol
decoding stage is also where the SRX performs protocol anomaly protection and
Application Distributed Denial of Service (AppDDoS) protection, both of which
we will discuss later in this chapter.

Stage 7: Stateful signature detection
The attack objects that rely on signatures (rather than anomaly detection) are pro-
cessed in the stateful signature stage of the device’s processing. These signatures
are not blind pattern matches, but are highly accurate stateful signatures that not
only match attacks within the contexts in which they occur, but also can be com-
posed of multiple match criteria (using Boolean expressions between individual
criteria). Typically, the attack signatures do not seek to detect a specific exploit,
but rather protect against the vulnerability itself. This is important because attack
exploits can vary, so writing signatures around a particular exploit is not a great
tactic, but protecting against the actual vulnerability is much more powerful.

Stage 8: IDP/IP actions
Once an attack object in the IPS policy is matched, the SRX can execute an action
on that specific session, along with actions on future sessions. The ability to execute
an action on that particular session is known as an IDP action. IDP actions can be
one of the following: No-Action, Drop-Packet, Drop-Connection, Close-Client,
Close-Server, Close-Client-and-Server, DSCP-Marking, Recommended, or Ignore.
IP actions are actions that can be enforced on future sessions. These actions include

400 | Chapter 8: Intrusion Prevention

IP-Close, IP-Block, IP-Notify, and IP-Ratelimit, which we will cover in more depth
later in the chapter.

Direction-specific detection

One theme in IPS processing that reoccurs throughout this chapter (and in other
references) is the notion of client-to-server versus server-to-client traffic. There are typ-
ically two directions of traffic flow in modern client/server applications (with the ex-
ception of, say, multicast, which is primarily the multicast server sending to the clients).
The client is always considered the device that initiates the connection (the source)
while the server is the device that is accepting the connection (the destination). This is
true even if the client is uploading data to the server.

This is important to know as an IPS administrator, and it’s very important for creating
custom attack objects. With said explanation, let’s explore the significance of client-
to-server versus server-to-client attacks:

Client-to-server attacks
These are what most administrators think IPS does, which is to protect their server
infrastructure from attacks generated by malicious clients to compromise or DoS
a system. These attacks primarily work only when the client has access to the server,
and firewalls can help mitigate access to unnecessary services on that server. IPS
can help to detect and prevent attacks that are generated on permitted services
(such as a web server listening on HTTP, TCP port 80).

In this case, the attack is in the traffic generated from the client-to-server direction.

Server-to-client attacks
Although attacking servers with client-to-server attacks allows attackers to pick
their targets, most organizations use firewalls to limit inbound connections to only
necessary systems wherever possible. As a result, attackers have changed their tac-
tics, since they can’t directly connect to the assets they are trying to compromise.
Now, attackers make their victims come to them. There are many different ways
to get a victim to come to the attacker (e.g., spam emails with malicious links, social
networking, and other social engineering-based attempts). An example of this type
of attack is when an attacker is running a web server that serves malicious HTML
pages that exploit a JavaScript vulnerability in Internet Explorer, such as the Aurora
exploit. Although the attacker may not always have control over which victims visit
his malicious site, he typically doesn’t have to worry about firewalls blocking this
access because users are usually allowed to make connections outbound.

In this case, the attack is in the traffic generated from the server-to-client direction.

SRX IPS modes

Three different modes can be configured in SRX IPS: integrated, dedicated, and inline
tap modes.

The Need for IPS | 401

At the time of this writing, the branch SRX Series platform only supports
integrated mode. However, the high-end SRX supports all three (but
only one mode at a time).

Integrated mode
Traffic processed by the firewall process within the Network Processing Unit or
NPU (branch) and SPU (high end), and any traffic that is destined to be sent to
have IPS processing, is handled by the firewall process itself. This means the firewall
process, rather than a separate process, handles the IPS processing. Because SRX
processors are multicore, multithreaded processors, multiple flows can be pro-
cessed concurrently. This is the default option for the high-end SRX.

Advantages
Integrated mode is the only choice for the branch SRX Series, but on the high-
end SRX it is good for situations where the IPS engine needs to process only a
little bit of traffic. This mode also has the advantage of inline tap mode, in that
all IPS-bound traffic is inspected before being passed out the unit, so it will not
allow attacks that it is configured to block if they are single packet attacks.

Disadvantages
Integrated mode IPS processing can impact the performance of both firewall
and IPS processing if the IPS engine becomes exceptionally busy, since all pro-
cessing (firewall and IPS) is done directly in the firewall process. Also, if the
firewall process crashes (due to either a firewall-related issue or an IPS-related
issue), the entire data plane will be restarted. If high availability (HA) clustering
is configured, this will trigger a failure of the data plane to the other node,
while the data plane is restarted. Finally, for the high-end SRX, each flow SPU
can support 1 million firewall sessions, but in integrated mode, although 1
million firewall sessions are supported, only 128,000 of those sessions can be
processed by IPS. Finally, in integrated mode there is additional latency when
processing traffic with IPS compared to the firewall.

Dedicated mode (high end only)
In dedicated mode, the firewall and IPS are handled by separate processes. (Keep
in mind that a single session will be processed by both the firewall and IPS in the
same SPU for the high-end SRX.) Dedicated mode also allows the administrator to
define how much of the SPU is dedicated to the firewall versus the IPS. There are
three different weights: equal (half firewall, half IPS), firewall (two-thirds firewall,
one-third IPS), and IPS (one-third firewall, two-thirds IPS). Traffic is first processed
by the firewall process, and traffic marked for IPS processing is then passed to the
IPS process; assuming everything checks out, it is then handed back to the firewall
process for forwarding. While the IPS is processing the packets, the firewall process
is kept busy processing other packets, so resources do not sit idle. Note that at the
time of this writing, no SPU can be dedicated exclusively to firewall or to IPS pro-
cessing, and the allocation is the same across all SPUs in the SRX.

402 | Chapter 8: Intrusion Prevention

Advantages
Dedicated mode insulates the performance impact of IPS processing from fire-
wall-only traffic, if the IPS engine becomes busy. In dedicated mode, all 1
million sessions can be processed both as firewall and as IPS in each flow SPU.
The SRX can be configured to define how much of the processor is allocated
to firewall versus IPS to allow the administrator to customize the processor
implementation to best suit the needs of the environment. This mode also has
the advantage of inline tap mode in that all IPS-bound traffic will be inspected
before being passed out the unit, so it will not allow attacks that it is configured
to block if they are single packet attacks.

Disadvantages
If only a little bit of IPS is needed, integrated mode might be the best choice—
or dedicated mode balanced to firewall. Otherwise, if only a little bit of IPS is
required and dedicated mode is used, IPS resources are wasted, while firewall
resources may be overutilized. Although firewall processing is insulated from
the IPS, should the IPS become busy, IPS traffic will still be impacted (unlike
inline mode). Finally, in dedicated mode, there is additional latency when
processing traffic with IPS compared to firewall.

Inline tap mode (high end only)
In inline tap mode, the same separation of processing exists as in dedicated mode,
but instead of passing IPS-bound traffic to the IPS engine and waiting for the IPS
engine to complete processing before forwarding it on, the firewall process makes
a copy of the packet and sends it to the IPS engine, and then directly processes the
traffic without waiting for the IPS engine to send the traffic back for forwarding.

Advantages
Both firewall and IPS traffic are insulated from performance issues if the IPS
engine becomes busy because the firewall traffic is directly processed, and IPS-
bound traffic is copied to the IPS engine while the original packets are
forwarded. There is no additional latency using inline tap mode. Failures in
the IPS engine do not result in interruptions of traffic because the IPS traffic is
copied to the IPS engine and then forwarded. If there is a failure of the IPS
engine, traffic in that SPU will be processed by the firewall only while the
IPS engine is restarted. All new IPS-bound flows will then be processed by the
IPS engine.

Disadvantages
Since traffic is forwarded before being inspected there is a possibility that some
attacks might pass through the SRX; however, additional actions can still be
taken on the flows themselves (e.g., drop/close the flow, along with IP actions).
If only a little bit of traffic needs to be processed by the SRX, the firewall
resources might be overutilized.

When using a high-end SRX, the question of which mode to use arises. Integrated mode
is the default and is appropriate for implementations that require only a small amount

The Need for IPS | 403

of IPS processing. If you want to maximize IPS performance and don’t want to allow
for the possibility that an attack that is configured to be blocked might pass through
the SRX, dedicated mode is recommended because all traffic is processed by the IPS
engine before being forwarded. If performance (and lack of impact to traffic if the IPS
engine gets busy) is the primary concern, inline tap mode is the right choice.

SRX deployment options

Traditionally, there are a few different modes for deploying an IPS in the network. In
the past, often an IPS was a device that sat transparently in the network, simply in-
specting traffic as it passed through. Another option was that you could use sniffer
mode, which passively listened for attacks out-of-band from the network traffic. This
is typically accomplished via SPAN port or network tap. Rarely was an IPS deployed
in routed mode, although some standalone IPS systems support that.

The SRX is a different story, because it is a full-featured router, firewall, and IPS device
that can fill all of these needs. On the branch SRX Series, only Layer 3 mode is sup-
ported, so you can deploy the branch SRX in Layer 3. On the high-end SRX, both Layer
2 and Layer 3 modes are supported for IPS. You can deploy multiple segments con-
currently on the SRX, even separating the security policy of the different segments (via
zones).

One thing that is missing on the SRX is support for true sniffer mode.
You can accomplish this functionality by mirroring traffic to an SRX
and putting the interface on the SRX in promiscuous mode. You will
still need to configure routing on the SRX to “route” the traffic to an
egress interface, which can be the same as the ingress interface, and then
you just need to configure the appropriate policy (e.g., Trust to Trust,
with a rule permitting anything for IDP processing). In this mode, you
should also disable “SYN” and “Sequence checking” under “Set security
flow” because these settings can interfere with session establishment.

Attack Object Types
Attack objects can be categorized into two different types: protocol anomaly and state-
ful signature-based attack objects. Both types of attack objects come bundled with the
SRX signature updates and provide security against both known and unknown (zero-
day) attacks.

Protocol anomaly attack objects
These are predefined objects developed by the Juniper Security Team to detect
activity that is outside the bounds of a protocol. Typically, the enforcement for
what is considered acceptable behavior for protocols is based on an RFC specifi-
cation; or a manufacturer spec if there is no RFC. Protocol anomaly detection is
built into the detector engine and is not based on any specific pattern.

404 | Chapter 8: Intrusion Prevention

Administrators cannot create protocol anomaly objects, as this is code that is built
into the detector engines; however, you can configure custom attack objects that
utilize protocol anomaly objects as part of a compound attack object.

Signature-based attack objects
These are provided by the Juniper Security Team along with protocol anomaly
attack objects, firmware, and detector engine updates. Signature-based attack ob-
jects are attack objects that actually match specific patterns through the use of a
regular expression engine. The use of a regular expression engine provides the
ability to match a range of patterns rather than a specific pattern. Additionally, a
single attack object can be composed of multiple patterns that can be evaluated as
a Boolean expression to make complex matches. As mentioned earlier in the chap-
ter, signature-based attack objects are stateful signatures that match the attack
object within the specific location in which it actually occurs in the attack itself
(known as a context). You can create custom signature-based attack objects to use
alongside predefined attack objects, as we will discuss in “Custom attack objects
and groups” on page 406.

Application contexts

To aid in the accuracy and performance of IPS inspection, the SRX uses a concept called
contexts to match an attack in the specific place where it occurs in the application
protocol. This helps to ensure that performance is optimized by not searching for at-
tacks where they would not occur, and it limits false positives. There may be many
contexts within a single message. The SRX supports about 600 contexts at the time of
this writing. Here is an example of an HTTP Header message and the associated values
and contexts (in bold, not found in the actual message) in that message:

GET /index.html Http1.1 http-get-url
Host: www.company.com http-header-host
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg http-header-accept
Accept-Language: en http-header-accept-language
Accept-Encoding: gzip, deflate http-header-content-encoding
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
http-header-user-agent

Juniper maintains documentation that describes all of the different contexts and their
associated function. You can find the documentation by searching the Juniper Support
Knowledge Base.

Predefined attack objects and groups

Juniper provides predefined attack objects (both protocol anomaly and signatures) in-
dividually and in predefined groups to customers who have active licenses. The pre-
defined attack objects cannot be edited for the most part; however, you can use these
as a basis for creating custom attack objects. At the time of this writing, there are about
6,000 predefined attack objects, and the number is growing every day as new threats
emerge. Another feature of Juniper predefined attack objects is that customers can view

The Need for IPS | 405

the actual patterns that are used for signature-based attack objects. Many other vendors
keep their signatures closed, which impacts customers because they cannot view how
the IPS is matching patterns (particularly with pattern matching). Juniper keeps only
some signatures closed if they are providing protection prior to when the vendor has a
chance to patch the vulnerability to ensure that the protection is not going to impact
the community.

Custom attack objects and groups

In addition to the vast number of predefined attack objects that are provided as part of
the IPS license, you also have a great deal of control over creating your own signature-
based attack objects in the SRX. Additionally, you can create custom objects for ap-
plication identification on the SRX so that you can identify not only custom attacks,
but also custom applications. We covered this in greater detail in “Attack Object
Types” on page 404.

Two types of custom attack groups can be configured in the SRX: static attack groups
and dynamic attack groups. The primary difference is that static attack groups are
exactly that: you must manually add or remove any attacks into this group. The only
thing that will change is if an attack object itself is changed as part of an update, and
then its contents will be updated; otherwise, the group does not change. Dynamic
attack groups give you the ability to define filters that select which attacks are added
into the attack group. The filters can be complex and can consist of multiple factors to
identify attack objects to be selected for the dynamic attack group.

Severities

Multiple severity levels are used to define the impact an attack can have on a system:

Critical
Critical attacks are attacks that try to gain “root” level access to a system to crash
the entire system. Critical attacks are also certain malicious evasion techniques that
are clearly used for nefarious purposes.

Major
Major attacks are attacks that try to gain “user” level access to a system to crash a
particular service or application.

Minor
Minor attacks are attacks that try to perform information leakage techniques, in-
cluding those that exploit vulnerabilities to reveal information about the target.

Warning
Warning attacks are attacks that are suspicious in nature, such as scans and other
reconnaissance attempts. Juniper also may drop the severity of legacy attacks to
Warning after they are no longer deemed a threat (e.g., Windows 3.1 and 95
vulnerabilities).

406 | Chapter 8: Intrusion Prevention

Information
Information attacks are not typically malicious activity, but rather can provide
valuable information about activity on the network, such as applications that are
running, potential vulnerable software, and best-practice violations.

Signature performance impacts

A common question that many IPS administrators have concerns what impact different
signatures have on the performance of their IPS (or in this case, the SRX). There is no
simple answer to this question, in part because the impact that individual signatures
have is not linear and based on the number of signatures, as some signatures have more
of a performance impact than others. Generally speaking, the signatures that perform
“context”-based matching are going to be the most efficient, since they only perform
inspection based on specific locations of protocols; these would be followed by stream
signatures, which inspect the entire stream up to a certain limit (e.g., 1 Kb). Signatures
that inspect the entire stream for the duration of the session will generally have the
worst performance. Juniper attempts to take the guesswork out of signature perform-
ance by classifying the signatures with the greatest impact on performance as being
low-performing. These signatures are placed under the MISC category, and also have
a field called Performance. You can filter on the Performance values in dynamic attack
groups, or just avoid the MISC signatures wherever possible.

It is important to understand that when you add signatures into the policy, regardless
of whether you are permitting, blocking, or exempting them, you are performing in-
spection first and then determining what to do once an attack is found. For instance,
the traffic is examined by the detector engine, and then it is examined again after a
signature is matched based on what has been compiled into the policy. After a signature
has been matched, the SRX will do a policy lookup to determine what the action should
be for the respective traffic (based on the rulebase). This is the case regardless of the
action or of whether it is exempted in the policy. The key takeaway is that by having a
signature anywhere in the policy, you are going to take a performance hit for traffic
matching that protocol. If you do not add an attack object into the policy, it will not
be compiled into the policy, and therefore it won’t impact performance. As mentioned
earlier, attack objects don’t all have the same performance impacts. The reason is that
some signatures require more pattern matching than others, resulting in more compu-
tational cycles being spent on packet processing.

Understanding the performance impacts of the signatures is not meant to discourage
you from deploying a sensible policy, but rather to empower you to understand how
policies are impacted by their contents. When performance is the primary concern, you
should craft your policy to only the essential attack objects that are necessary to inspect
the traffic and provide adequate coverage. Rather than deploying a broad policy, you
should create a policy which is very specific in the attack objects that are included. You
can do this by using both static and dynamic attack object groups to select the signatures
that should be added based on the components of the traffic itself. If your concerns are

The Need for IPS | 407

more around coverage rather than security, you can deploy a policy which has broader
protection, but also signatures that are meant to provide protection or visibility for the
traffic. As we progress through this chapter, we will explore the mechanisms to con-
figure and tune an effective policy for the SRX.

IPS Policy Components
A key feature that sets the SRX apart from other platforms that perform firewall and
other services together is that the SRX provides extremely granular configuration and
application of IPS inspection against processed traffic. The SRX offers exact control
over what traffic is processed by the IPS engine, as well as within the IPS policy itself.

You should understand several components in order to create and apply effective se-
curity policies on the SRX, including rulebases, match criteria, actions, and packet
logging. Let’s cover the various components and how to apply them.

Rulebases

The IPS functionality in the SRX is composed of rulebases. Each rulebase consists of
rules that define what traffic to match, and then what action to take on that traffic. At
the time of this writing, three rulebases are part of the SRX IPS policy:

IPS rulebase
The IPS rulebase defines what traffic should be inspected and what measures
should be taken for traffic that matches the IPS attack objects defined in the policy.
This is the traditional IPS rulebase used to define attacks and other applications
that are enforced by the policy.

Application-DDoS rulebase
The Application-DDoS rulebase is part of the AppDDoS suite that is only offered
on the high-end SRX at the time of this writing. The Application-DDoS rulebase
essentially defines the policy to be enforced to protect servers from application-
level DoS attacks. We will cover Application-DDoS protection in detail in “AppD-
DoS Protection” on page 423.

Exempt rulebase
The Exempt rulebase complements the IPS rulebase and provides a simple mech-
anism to override detected attacks. The Exempt rulebase provides a rulebase for a
single location to bypass actions taken by the IPS engine in the IPS rulebase. Rather
than having to make a complex IPS rulebase with these overrides, the Exempt
rulebase provides a separate location to do this so that the IPS rulebase remains
clean and focused on the attacks. Most often, the Exempt rulebase is used to ignore
false positives or certain attack scenarios—traffic is first matched in the IPS rule-
base, but then also examined in the Exempt rulebase, and if it matches a rule in
the Exempt rulebase, it is permitted and nothing will be logged. We will cover
examples of this at length in this chapter.

408 | Chapter 8: Intrusion Prevention

Match criteria

Each rule has match criteria to identify which traffic will have a particular action applied
to it. There are several components of the match criteria, many of which are also present
in the firewall policy. These criteria are not redundant, since the firewall policy iden-
tifies what traffic is to be sent to the IPS engine, and then the IPS engine applies IPS
inspection based on the contents of that traffic. The following criteria are evaluated as
part of the different rulebases:

From zone
Matches traffic based on the zone from which the traffic originates. This can be
used to match traffic arriving on a particular logical interface, including per-virtual
LAN (VLAN) matching.

To zone
Matches traffic based on which zone the traffic is going to as it leaves the SRX. The
To zone is determined by a route lookup, or in the case of transparent mode, by a
bridge lookup to determine what the egress interface is, and therefore the egress
zone.

Source address
The source address defines the IP address of the client, and is defined in the address
book for the respective From zone. It is important to remember that IPS processing
happens after NAT transformations, so you must configure your source address
to match the translated addresses. You can use individual source address objects,
address sets, or any combination of object and group in this field.

Destination address
The destination address defines the IP address of the server and is defined in the
address book for the respective To zone. It is important to remember that IPS
processing happens after NAT transformations, so you must configure your des-
tination address to match the translated address. You can use individual destina-
tion address objects, address sets, or any combination of object and group in this
field.

Application
The SRX IPS engine has the ability to match attacks on any port for the given Layer
4 protocol (TCP/UDP). By default, an attack is tied to a particular application
(Layer 4 protocol) which may or may not have a specific list of ports on which the
application will be detected. When the IPS is set to match the Application Default,
it inspects the traffic for specific protocols on the ports they are listed for in the
application-id object for that attack. You can override checking for applications
on the default ports on a rule-by-rule basis.

Attacks
This applies to the IPS and Exempt rulebases only. The Attacks field defines what
attacks to match as part of this rule. You can combine predefined and custom

The Need for IPS | 409

attacks within a single rule, along with using any combination of static or dynamic
groups.

Application-DDoS
This applies to the Application-DDoS only. The Application-DDoS field defines
the Application-DDoS profiles that are used to enforce the connection and appli-
cation thresholds used for the Application-DDoS enforcement. Since Application-
DDoS protection does not provide IPS, but rather is protecting against Application-
DDoS attacks, the Attacks field is not required in the Application-DDoS rulebase,
just like Application-DDoS is not required in the IPS or Exempt rulebase.

Then actions

On an IPS rule-by-rule basis, you can define what actions should be taken when the
appropriate criteria are matched in the IPS engine. You can enforce two types of actions
on the traffic: IPS actions and IP actions.

IPS actions perform an action on the offending traffic, while IP actions can take actions
on future sessions (such as preventing them). They are exclusive of each other, so you
can configure one, or the other, but it usually makes sense to configure IPS actions if
you are using IP actions for a session. Additionally, you can configure logging and
packet capture on a rule-by-rule basis.

The following lists define the IPS and IP actions available for the SRX. Note that these
are available for the IPS and the Application-DDoS rulebases, since the Exempt rulebase
simply defines scenarios for which no action should be taken when an attack is
matched. Although you can essentially do the same in the IPS and Application-DDoS
rulebase, it is much simpler to have the exemptions in one place.

The following IPS actions are available for the SRX:

No-Action
No-Action means exactly what it says: no action will be taken on the session for
this match. That isn’t to say that another rule might not perform a drop or close
on the traffic, since even when a rule matches, the IPS processing is not complete.
So, you need to be aware of the fact that even with a No-Action defined, that doesn’t
mean other rules might not block this traffic.

Ignore-Connection
Ignore-Connection means the traffic will be permitted, but also that the IPS engine
will ignore the rest of the connection and will not process it at all. This is useful
for identifying connections (such as custom applications) that you do not want to
inspect. After a session has been marked Ignore-Connection, the IPS engine will
not process it. It’s important to keep that in mind, because an attack could be
present later in the connection, but the IPS would not see it. If you only want to
ignore a specific attack, but not ignore the rest of the connection, either put that
attack in the Exempt rulebase (recommended) or configure the rule with
No-Action.

IPS actions.

410 | Chapter 8: Intrusion Prevention

Drop-Packet
Drop-Packet will drop an individual offending packet, but not the rest of the ses-
sion. Typically, you want to use the Drop-Connection action when malicious ac-
tivity is detected on a flow, but in some cases, you might just want to prevent a
particular activity which might be contained within a session (such as a file transfer)
without dropping the entire session. Of course, this is highly dependent on the
application’s architecture, so when in doubt, either research the application or just
use Drop-Connection. Drop-Packet may be useful for attacks that consist of only
a single packet (such as SQL Slammer), but this isn’t very common. Note that
Drop-Packet will not have any impact in inline tap mode, since the original packet
(not the copied one to the IPS engine) has already made it through the SRX and
will be recorded as action DISMISS in the logs.

Drop-Connection
Drop-Connection drops all packets (including the offending ones) of a connection,
so essentially, if an attack is triggered, all packets of the session will be silently
dropped. This is effective for all supported protocols. If inline tap mode is used,
the original offending packet might make it through, but all future packets are
dropped by the SRX. Drop-Connection is useful for silently dropping the connec-
tion without alerting the client or server that the session is being dropped.

Close-Client
If TCP is used as the protocol, the SRX can send a TCP Reset to the client (which
will appear to be from the server, but is actually spoofed by the SRX) along with
blocking all future packets in the flow. With the Close-Client option, the server
will not be alerted that the session has been closed. This is useful when you want
to protect a client from an attack from the server (such as an Internet Explorer
exploit generated by the server). Since you are sending a TCP Reset, the web client
won’t just sit there and time out, but will immediately inform the user that the
connection was reset. If the Layer 4 protocol of the flow is not TCP, and the action
is Close-Client, the action will effectively be Drop-Connection, as there will be no
TCP Reset, but the traffic for the offending flow will still be silently dropped.

Close-Server
If TCP is used as the protocol, the SRX can send a TCP Reset to the server (which
will appear to be from the client, but is actually spoofed by the SRX) along with
blocking all future packets in the flow. With the Close-Server option, the client
will not be alerted that the session has been closed. This is useful for protecting
the server from client-based attacks such as resource utilization attacks against the
server. By sending a reset, the server does not spend any more time holding the
connection open and immediately closes the session out. If the Layer 4 protocol of
the flow is not TCP, and the action is Close-Server, the action will effectively be
Drop-Connection, as there will be no TCP Reset, but the traffic for the offending
flow will still be silently dropped.

The Need for IPS | 411

Close-Client-and-Server
If TCP is used as the protocol, the SRX can send a TCP Reset to both the client and
the server. The resets are spoofed by the SRX and appear to be from the client (from
the server’s perspective) and from the server (from the client’s perspective). Addi-
tionally, the SRX blocks all future packets in the connection. This is useful when
you want to close the connections, and inform both the client and the server so
that they don’t continue to retransmit packets or believe that the connection is still
open when it really isn’t (which can cause application issues). If the Layer 4 pro-
tocol of the flow is not TCP, and the action is Close-Client-Server, the action will
effectively be Drop-Connection, as there will be no TCP Reset, but the traffic for
the offending flow will still be silently dropped.

Mark-Diffserv
The SRX is capable of rewriting the Differentiated Services Code Point (DSCP) bits
of an IP header to a defined value within the IPS rulebase. This is useful if you want
to use the IPS to identify applications such that upstream or downstream devices
can perform Quality of Service (QoS) processing on the flows (such as on a router).
At the time of this writing, the SRX does not honor the DSCP marking performed
in the IPS engine because the classification phase of QoS on the SRX happens when
traffic arrives, not after it has been processed by the IPS. DSCP marking is most
useful for identifying actual applications from a Layer 7 perspective, which a
standard router or switch would not be able to do. In the near future, and depend-
ing on when you are reading this, the SRX will be able to enforce its own DSCP
policy along with shaping traffic based on the IPS policy.

Recommended
Recommended uses the Whatever action and is defined within a predefined attack
object (or within a custom attack object, whatever is configured by the adminis-
trator). Predefined attack objects come with a Recommended action set by the
Juniper Security Team based on the nature of the attack and the suggested action
to perform.

The following notification actions are available for the SRX:

Log attacks
On a rule-by-rule basis, you can configure logging similar to how it is done on a
rule-by-rule basis in a firewall policy. Additionally, the alert flag can be set to help
security engineers identify significant events.

Severity
The severity level can be configured on a rule-by-rule basis to signify events in the
logs and to override the default severity levels defined within the attack objects.

Notification actions.

412 | Chapter 8: Intrusion Prevention

Packet logging
Packet logging is configured under the notification section of a rule and it is covered
in detail in the next section.

Starting in Junos 10.2, you can collect packet captures when IPS events
are triggered. When an IPS rule is triggered, it collects the appropriate packets and puts
them in PCAP format which is then sent to an external device via DMI. Support for
packet logging to the STRM will be coming soon; please check the release notes or
contact your Juniper sales staff. Juniper is working with other vendors to provide sup-
port for this as well.

The packet capture feature is flexible. You can configure it on an IPS rule-by-rule basis,
and also define how many packets both before and after the attack should be included.
You do need to exercise some caution when enabling packet captures. When packet
captures are enabled, you can log packets both prior to and following the attack. To
accommodate this functionality, the SRX must buffer packets in all flows prior to and
following an attack. This requires memory and other system resources to maintain this
information. On top of that, if you are logging lots of attacks, you must also send the
packet captures externally. For all of these reasons, packet logging should be strictly
applied, and not applied across the board with all attacks. Besides the ability to apply
packet captures on an IPS rule-by-rule basis, there are also a few parameters that you
can configure:

Host
This is the host that receives the PCAP information. You also define the UDP port
that will be used to send the data. This configuration is required.

Source-Address
This is part of the configuration for sending the PCAP information to the logging
host. This IP address is arbitrary, and you do not have to have it be the IP address
of the SRX, but typically it’s a best practice to do so.

Max Sessions
You can configure a percentage value (1% to 100%) of sessions that are tracked
with packet logs. This is an important way to limit how many sessions are processed
for resource purposes.

Total-Memory
You can define the percentage of memory that can be allocated to the packet cap-
ture feature.

Packet logging.

The Need for IPS | 413

Policy Configuration
Within an IPS security policy, you can define how the packets should be logged on
the SRX. And within the rule, you can define the following values (which should
be used with care to ensure that memory is not overused for buffering and pro-
cessing the packets):

Pre-Attack
You can capture from one to 255 packets before an attack is triggered. This is
accomplished by buffering all packets for the session up to the number of
packets logged for the pre-attack limit for that particular rule.

Post-Attack
You can log from zero to 255 packets after an attack occurs. Note that if the
attack triggers a drop or close connection, there may not be any more packets
in the attack.

Post-Attack-Timeout
When an attack is triggered, the SRX may not know how many packets will
follow the attack (e.g., if you configure 20 packets to be logged after the attack,
the SRX will not send the PCAP until it has all 20 packets). To ensure that the
SRX does not hold on to the packets indefinitely, you configure a Post-Attack-
Timeout to define how long the SRX should wait while holding on to the
packets before sending them out.

The following IP actions are available for the SRX:

IP-Notify
IP-Notify will simply generate a log when a connection is detected from a host that
was previously identified for IP actions. This is useful if you don’t want to block
future connections that are identified by IP action, but you do want to identify any
future connections made by that host based on the target/timeout.

IP-Block
IP-Block allows you to silently block (drop) future connections made by hosts
which were marked by IP-Block in a previous attack. This is tracked based on the
target and timeout that are defined in the rule on which the attack was triggered.

IP-Close
IP-Close is similar to IP-Block, except TCP Resets will be sent in addition to drop-
ping all of the packets as part of that flow. This is tracked based on the target and
timeout that are defined in the rule on which the attack was triggered. If the Layer
4 protocol is not TCP, a silent Drop-Connection will be applied.

IP Connection-Rate-Limit
This is used to rate-limit how many connections per second a host can initiate in
the future after it has been added to the IP Action Table. Particularly with DDoS
scenarios, you may want to limit the number of connections a host can make rather
than block them outright. You can use the same strategy when certain attacks are

IP actions.

414 | Chapter 8: Intrusion Prevention

detected so that you don’t block all future connections, but rather limit how many
can be initiated.

Targets define which hosts have IP actions applied to them based
on the information matched in the attack that triggered the IP action.

Destination-Address
This performs the appropriate IP action on the destination address of the connec-
tion, so if IP-Block is the action, connections to the Destination-Address are
blocked. This is good for blacklisting traffic to a botnet server, or other restricted
destinations.

Service
This performs the appropriate IP action on the source IP, destination IP, destina-
tion port, and protocol, so it’s very selective in which connections are blocked.
This is good if you want to prevent future connections from a source to a destina-
tion on a particular service (destination port and protocol such as TCP port 80).

Source-Address
This matches future connections from a particular source address (regardless of
which zone is used). This is useful if you want to protect a server from clients that
attempt malicious activity. By using IP-Block or IP-Close with the Source-Address
target, you can prevent future connections until the timeout expires.

Source-Zone
This is somewhat of a legacy feature, which will actually block the entire source
zone at the time of this writing (that’s right, we confirmed this with the develop-
ers!). It originally came out of the ISG with IDP feature set. Note that there is talk
of improving this to take the source address itself into account, but at the time of
this writing, if you enable this target it will enforce it on the entire source zone on
which the attack was triggered.

Zone-Service
This is similar to Service, but is also takes into account the Source-Zone in the event
of IP overlaps.

The timeout defines how long the IP action is in effect for a given target—for instance,
how long a connection will be blocked with IP-Block. You can configure this on a rule-
by-rule basis in the IPS engine, so it’s not a global configuration, but rather can be
applied very granularly. If a timeout of 0 is configured, the timeout will not automati-
cally expire, but rather will only be cleared via a manual clear of the IP action entry or
a reboot.

Terminate Match

Terminate Match is somewhat of a legacy feature that arose from the earlier days of the
standalone IDP to make it function similar to a firewall. By default, for IPS processing
(both standalone IDP and SRX), even after a match is made for an attack, the rulebase

Targets and timeouts.

The Need for IPS | 415

continues to process that traffic to see if any other rules match. The IPS will always take
the most stringent action (e.g., drop connection if a rule with Drop-Connection and
No-Action is matched), but some customers may want to restrict this even further. By
enabling Terminate Match, the IPS rulebase acts more like a firewall, in that once it
finds a rule which matches the To/From zones, source IP, destination IP, and
application, it will do whatever that rule says if the attack is detected; if not, it will not
process that traffic any further. Generally, you should not use Terminate Match, espe-
cially with No-Action rules, because it can cause you to overlook potentially malicious
traffic. Use this feature with caution unless you really know what you’re doing!

Security Packages
Cyber threats are dynamic in nature and require vigilance to provide up-to-date pro-
tection. To provide up-to-date security capabilities, attack updates are provided on a
daily basis (if new signatures are required) and as emergencies if a zero-day threat is
released.

The important thing to note is that a new attack object may not be required for new
attacks, as the Juniper Security Team tries to create attack objects to protect against
vulnerabilities and anomalous behavior rather than writing signatures against specific
exploits (which may change very frequently). For instance, the Aurora Internet Explorer
exploit which was discovered in December 2009 was already covered by the
HTTP:STC:SCRIPT:FUNC-REASSIGN attack object (released August 2009, well
ahead of the exploit), so customers were fully protected from this zero-day attack.

The security packages themselves are composed of several different components which
are updated when a new version of the signature database and detector engines is
available. You can either manually trigger the SRX to download the attack objects, or
configure the SRX to automatically go and retrieve the updates. The following subsec-
tions describe the different components of Juniper security packages.

Attack database

The attack database contains all of the attack objects (both signature- and protocol
anomaly-based) and is provided by the Juniper Security Team. New updates are typi-
cally posted daily, although sometimes there may not be a new exploit (which isn’t
already covered by existing signatures). When the attack database is downloaded, it
contains the full attack database in a compressed form. If the attack database is down-
loaded directly to the SRX, it is stored in /var/db/idpd/sec-download for staging. If it is
downloaded from the NSM, it is stored in /var/db/idpd/nsm-download. The /var/db/idpd/
sec-repository folder contains the attack, groups, applications, and detector engine files.

416 | Chapter 8: Intrusion Prevention

You can sign up for Technical Bulletins on the Juniper Support page so
that you receive email updates on the release of new attack databases,
detector engines, and Junos firmware. See http://kb.juniper.net/KB9890.

Attack object updates versus full updates

You can perform two types of updates for attack objects.

A standard update downloads the complete attack database to the SRX. You can au-
tomate this process so that it occurs at predefined intervals, or you can manually trigger
it at your leisure.

Full updates include both the attack database and the latest detector engine. Typically,
detector engine updates are released once per quarter, while attack databases are re-
leased daily (if there are updates to attack objects). Detector engine updates will provide
bug fixes for the detector engine, new inspection capabilities, and new support for
different application decoding.

Policy template updates are something that you must manually perform
and are not included as part of the attack object updates.

Application objects

Starting with Junos 10.1, the SRX provides objects that detail applications which are
used for application ID matching, called application objects. These are stored separately
from the attack objects, even though there isn’t much difference between application
ID objects and attack objects.

Application objects primarily detect applications by using signature-based pattern
matching for well-known transactions initiated by the respective applications, rather
than looking for an actual exploit attempt. The mechanisms are virtually identical,
but they are defined separately for administrative organization. The application objects
are released with the attack updates; however, typically there are not as many appli-
cations being created as there are discovered exploits and vulnerabilities for those ap-
plications, so new application objects are released only when there are new Layer 7
applications.

Detector engines

The detector engine is a module run by the IPS process on the SRX to execute protocol
anomaly protection as well as signature-based pattern matching. Detector engine
updates are released quarterly, and provide new protocol decoding capabilities, en-
hancements to protocol anomaly protection, and bug fixes. The detector engine is not
installed by default with a signature update; rather, you must trigger a manual “full

The Need for IPS | 417

http://kb.juniper.net/KB9890

update” to download the detector engine and install it. The SRX allows for two detector
engines to be installed concurrently when an update is applied so that all new sessions
utilize the new detector engine, while the old sessions will still be processed by the
previous detector engine. When all sessions from the old detector engine are closed,
the original detector engine is removed. The installation of the new detector engine
does not have any performance impact because of this graceful installation process.
Just like the signature updates, you can sign up for notifications when new detector
engines are available. The notifications also include release notes that detail all of the
new features, addressed issues, and known limitations for that detector engine.

Policy templates

To assist administrators with new IPS installations, Juniper provides several different
predefined policies that administrators can download and install. Although these are
helpful to understand the basic mechanics of the IPS policies, every environment is
going to be different, with different applications and different administrative goals. So,
best practice recommends creating a customized policy for true enforcement.

The good news is that this chapter details how to deploy and tune an IPS policy effec-
tively, minimizing false positives and providing real security. But in the meantime, you
might want to take a look at the policy templates for examples. The policy templates
are updated informally by the Juniper Security Team, so you need to stay tuned to the
version numbers for new policy templates.

Scheduling updates

Updates can be scheduled to automatically download and optionally install attack ob-
ject updates which include application object updates. When attack updates are sched-
uled, you can define the interval and schedule for when they should be downloaded,
along with whether the SRX should install the new version. Of course, if you are using
a central management system such as NSM or Junos Space, you can also trigger instal-
lations automatically from there.

Sensor Attributes
Although the SRX’s predefined sensor attributes should be just fine for most environ-
ments, in some situations you may want to override the default behavior for the IPS
sensor to better fit your environment. A large number of attributes can be modified,
and covering them all is simply outside the scope of this book. Instead, we will provide
their location and discuss what you can configure under the sensor configuration hi-
erarchy. Then, if necessary, you can investigate what you need to change and make
those changes accordingly.

418 | Chapter 8: Intrusion Prevention

As the following output shows, all of the options for sensor attributes are configured
under the [edit security idp sensor-configuration] hierarchy level:

{primary:node0}[edit security idp sensor-configuration]
root@SRX5800-2# set ?
Possible completions:
> log IDP Log Configuration
> application-identification Application identification
> flow Flow configuration
> re-assembler Re-assembler configuration
> ips Ips configuration
> global Global configuration
> detector Detector Configuration
> ssl-inspection SSL inspection

Let’s briefly examine each one.

Logging sensor attributes

The SRX provides the ability to customize the behavior of the SRX IPS logging facility.
By default, logs are suppressed should the same event occur rapidly. This is to prevent
both the SRX and the syslog server from having to process the same information. You
can override the default settings by configuring the threshold of events to start logging,
how large to set the buffer for log messages, or even to disable log suppression
altogether.

Application identification attributes

By default, the SRX attempts to use application identification to identify what the actual
traffic is within a flow so that the protocol decoding engine can accurately detect attacks
You can optionally disable application identification processing if you would like to
perform the protocol decoding strictly on a Layer 4 port basis. Additionally, a number
of parameters can be tuned for optimal memory use for application identification, ses-
sion table size, application caching, and whether to look for nested applications (e.g.,
the ability to look for Facebook as an application, since normally it would be detected
as the parent application HTTP).

Typically, you should not alter memory attributes unless the Juniper
Networks Technical Assistance Center (JTAC) has recommended that
you do, as doing so might result in IPS inspection issues.

Flow attributes

The SRX IPS functionality is flow-based, and classifies traffic into flows very similar to
how the IPS session table it set up in the firewall session table. You can configure
additional attributes in the IPS around flow processing such as queue sizes, behavior
of UDP timeouts, flow table size, and other timers and behaviors related to policy
installation.

The Need for IPS | 419

Typically, you should not configure queue and flow table sizes without
consulting JTAC, as this can cause IPS inspection issues.

Reassembler attributes

Before true IPS inspection can occur, application traffic must be reassembled into the
complete state that it normally would be processed (on the client and server). This is
particularly true when the application transactions span several packets. As a part of
this processing, internal values are set for the amount of memory used and different
queue sizes to be implemented.

Typically, you should modify these values only with recommendation
from JTAC, as the default values should be appropriate for most
environments.

IPS attributes

There are a few settings under the IPS hierarchy, but it is more of a miscellaneous field
than anything else. Typically, you shouldn’t need to modify these values, such as ig-
noring server-to-client traffic, shellcode, and regular expression processing.

Global attributes

Similar to the IPS attributes, these attributes typically do not need to be modified. There
are a few attributes around policy caching and memory limits, but usually you can just
leave them alone.

Detector attributes

You may need to occasionally change certain default values around inspection thresh-
olds. These thresholds are available on a protocol-by-protocol basis, and will not be
the same across different protocols. For instance, HTTP has several predefined thresh-
olds, such as how many failed login attempts should trigger an attack, or how long a
cookie can be (in bytes). For most users, the predefined values should be just fine, but
there is no such thing as a default network, so you may need to adjust your detector
engine attributes accordingly if you are noticing that certain threshold-based attacks
are being generated incorrectly.

SSL inspection attributes

If you are using the SSL decryption functionality to inspect Secure Sockets Layer (SSL)
encrypted traffic, you may need to tweak values under the SSL Inspection Attributes
section of the configuration, especially if you are very demanding about performance.

420 | Chapter 8: Intrusion Prevention

At the time of this writing, SSL decryption is supported only for the high-
end SRX, and is not supported in the branch SRX Series devices. You
should modify these values only with recommendations from JTAC.

SSL Inspection
Web services are a critical piece of infrastructure for most organizations today. Web
presence for many started as a way to provide information for customers, but even for
modest organizations that aren’t web-focused, many have deployed web applications
that are critical to their infrastructure. To help ensure that customer data is not com-
promised, many of these web applications are delivered via HTTPS which provides
encryption for standard HTTP sessions. The problem is that the encrypted traffic be-
tween the client and the web server cannot be simply inspected for attacks, other than
attacks against SSL itself. Further, SSL does nothing to prevent attacks against web
services; if anything, it makes it harder to detect because the IPS cannot simply view
the information.

To help counteract a potential hole in network security, you can configure the SRX to
inspect SSL encrypted traffic between the client and the server to protect against client-
to-server attacks.

Note the following limitations:

Platform support
At the time of this writing, SSL decryption is supported only on the high-end SRX
devices, and not on the branch.

Inspection of traffic
This is supported for both client-to-server and server-to-client directions, if the SSL
key is installed; otherwise, only attacks on SSL itself can be detected.

SSL server keys
For the SRX to inspect encrypted traffic, it must have the private keys for the web
servers whose traffic it is inspecting prior to the session being establish. These keys
are installed on the SRX for this configuration. Note that forward proxy support
(where clients terminate their SSL connections on the SRX) is not available on the
SRX at the time of this writing, but is available on the Juniper standalone IDP
product. This functionality should arrive on the SRX during the print life of this
book.

Only HTTPS support
Today, HTTPS is the only SSL encapsulated application that is supported, so there
is no support for other protocols, such as FTP Secure (FTPS); however, such sup-
port is possible in the future.

The Need for IPS | 421

SSL decryption/inspection overview

Before we see how to configure SSL inspection, a few things should be mentioned
regarding implementation of the SSL decryption functionality to give you a better idea
of how it works, and the benefits of using it:

Hardware-assisted
The actual SSL decryption is performed in the SPU processor via encryption/de-
cryption hardware, so the heavy lifting is offloaded to separate hardware rather
than being processed by software. This greatly improves the performance of SSL
decryption (I clocked in at 1 Gbps of decryption + inspection for an SPU with the
Recommended IPS policy!)

Automatic port detection
The SRX uses application ID to identify traffic when the SSL private key is known
by the SRX, to decrypt the traffic, so no configuration is necessary to define the
ports which the SRX should listen to for the SSL traffic.

Decryption and inspection
For sessions that are flagged for SSL processing, the SSL decrypts the traffic, while
queuing the original SSL traffic. The decrypted traffic is inspected, and if there is
an attack, the appropriate action is taken. If there is no attack, the original SSL
packets are forwarded (this helps with throughput). Of course, packets do need to
be exchanged throughout the communication, so packets are passed as needed for
proper bidirectional communication.

Configuration
The configuration is quite simple for SSL decryption and inspection. The only
additional configuration that is required beyond standard IPS configuration is the
private key that is loaded and associated with a server. Any traffic that is decrypted
by SSL is inspected according to the standard IPS policy.

Supported modes
Integrated, dedicated, and inline tap modes are all supported for SSL decryption.

Alternatives to SSL decryption and inspection

Not all SRX platforms support SSL decryption, but the good news is that you can still
inspect SSL traffic with the assistance of other devices. For instance, in the case of a
branch SRX Series device, client-to-server SSL connections can be terminated on a re-
verse proxy, such as an Apache Web Server, or on another device. The SRX sits between
the reverse proxy and the actual web server that transmits HTTP which the SRX can
inspect, as shown in Figure 8-7. This also has the advantage of off-loading the encryp-
tion/decryption from the web server, and alleviating the SRX from having to decrypt it.

Inspecting client SSL traffic is a bit more complex, because the SRX does not know the
server private keys, like it would for specific server inspection. To inspect client SSL
traffic you need to use proxy server chaining so that clients terminate their SSL con-
nections on an HTTPS proxy (such as Squid), which then passes the traffic to an egress

422 | Chapter 8: Intrusion Prevention

proxy over HTTP (so that the SRX can inspect it), where the egress proxy would initiate
the HTTPS connection to the destination server. Also note that on the Juniper stand-
alone IDP platforms (IDP 75, IDP 250, IDP 800, and IDP 8200) running 5.0r2+ SSL,
forward proxy is supported, where the client proxies its connection on the IDP itself.
SSL forward proxy is not supported on the SRX at the time of this writing, but it likely
will be in the near future, or perhaps by the time you are reading this.

AppDDoS Protection
AppDDoS is a relatively new breed of attacks that do not exploit a specific vulnerability,
but rather try to inundate an application service with lots of activity to make it un-
available. AppDDoS attacks are not simple packet floods, or malicious traffic; they are
seemingly valid traffic that is replicated on a large scale to bring down a victim server.
Because the traffic won’t match any malicious attack objects, nor is it a flood that
triggers most thresholds, it is a very difficult attack to block. Or was; AppDDoS pro-
tection is a solution that is integrated into the IPS engine to profile the servers that
AppDDoS is protecting, and can identify hosts that cross the application thresholds to
enforce an action on them.

AppDDoS essentially takes place in the protocol decoding phase of IPS processing, by
matching on contexts within the application and then enforcing rate limiting on the
application contexts. To understand how this works, let’s examine how AppDDoS
protection is triggered, and then how it is enforced.

1. Firewall policy: First, traffic must match a permitted rule in the firewall policy
which has the Application-Service IDP. This triggers the traffic to be sent to the
IPS engine.

2. IPS engine: Once the traffic is passed to the IPS engine, it is inspected as usual.
During the protocol decoding phase, the SRX will attempt to determine if the

Figure 8-7. Reverse proxy

The Need for IPS | 423

thresholds have been met or surpassed in the Application-DDoS rulebase. The
following stages occur for AppDDoS processing:

a. Connection threshold monitoring (stage 1): The first phase of AppDDoS pro-
cessing is to monitor for a connection rate threshold (at the Layer 4 level)
against a particular server. This is measured in connections per second. Until
this threshold is reached, no additional monitoring is performed for
AppDDoS.

b. Context profiling (stage 2): Once the connection rate threshold has been passed
in stage 1, the SRX begins to monitor the connections for a rate limit for context
matching. If a certain number of contexts are met (within 60 seconds) along
with a certain threshold for an individual value for that threshold, one of two
things can happen:

Application screening: Strict application limits can be placed on the traffic to
limit the absolute number of connections that match the associated context
and values. These connections can be dropped, closed, or permitted.

Botnet protection: The SRX advances to the beginning of the next stage,
stage 3.

3. Botnet protection (Stage 3): Once the threshold of context and value has been met
for the monitored server (for all connections matching the AppDDoS profiles), final
action can be taken against offenders. The botnet protection stage monitors clients
on a source IP basis, to see if individual source IPs go over the threshold. Because
normal users typically would not request the same web page 50 times in two sec-
onds (thresholds are configurable and granular), the AppDDoS protection can
identify automated hosts performing attacks, versus legitimate users. Source IPs
that have been identified as botnet clients will have whatever action is defined for
that rule.

a. Actions: Actions are taken on the flow that crosses the threshold defined for
AppDDoS. Four actions can be taken as part of AppDDoS at the time of this
writing.

The Close-Server action sends a TCP RST to the destination web server moni-
tored by AppDDoS and blocks all further traffic from being transmitted in this
flow. There is only a Close-Server action, and not a Close-Client or Close-
Client-and-Server action, because the device is primarily trying to protect the
servers from malicious clients, and to do so, it must minimize the resources
consumed by the malicious activity on the server.

The Drop-Connection action silently drops the connection in both directions.

The Drop-Packet action silently drops the packet that crossed the threshold
in the flow (typically used only for UDP/non-TCP flows).

The No-Action action performs no action on the offending flow.

b. IP Actions: IP Actions are the actions that can be taken on future flows. In the
case of AppDDoS, these are always taken on the source IP, which is unlike the

424 | Chapter 8: Intrusion Prevention

IPS rulebase that performs these actions according to a number of other factors.
The reason for this is that the device is primarily concerned with protecting
servers from malicious clients with AppDDoS, so the configuration and func-
tionality reflect that. IP Actions also have the timeout value configurable to
determine how long the offending hosts should have the IP Action enforced.
This is configurable in seconds on an AppDDoS rule-by-rule basis. Finally, IP
Actions can be logged (IP-Notify will implicitly log) if logging is enabled for
that IP Action rule.

The IP-Block action silently prevents any connections from the offending
source from being established until the timeout period has expired in the IP
Action Table.

With the IP-Close action, any future connections made by the offending source
are closed (and all traffic is blocked, so no session will be passed to the server)
until the timeout associated with that host has expired. This is useful for ex-
plicitly notifying the host that the connection is being closed, rather than si-
lently dropping it.

With the IP-Rate-Limit action, as of Junos 10.1 administrators can rate-limit
connections from offending sources from being established (in connections
per second) once the threshold has been met. This action can be enforced on
the source until the timeout has expired.

The IP-Notify action simply generates a log when a source that has been placed
in the IP Action Table has surpassed its connection limit, and tries to create
new sessions. The new sessions will be permitted but a log is generated. It’s a
useful tool for allowing administrators to investigate suspicious hosts without
interfering with the traffic.

Note that IPS inspection can be combined with AppDDoS. IPS inspection happens after
AppDDoS for any given flow, and can provide additional protection against exploit-
specific attacks. AppDDoS performs much better than IPS because it does not require
as much in-depth packet processing (where IPS must do extensive attack matching),
but adding AppDDoS in addition to IPS processing does not have as significant an
impact compared to just IPS itself, since AppDDoS inspection is built on the infra-
structure that IPS would normally perform anyway.

AppDDoS profiles

AppDDoS profiles are to the Application-DDoS rulebase what attack objects are to the
IPS rulebase. Just as attack objects define what to match as part of the IPS rulebase,
AppDDoS profiles define the thresholds that should be met as part of the Application-
DDoS rulebase. As mentioned in the preceding section, there are three stages of
AppDDoS processing within the IPS engine.

The Need for IPS | 425

Here are the properties of the AppDDoS profile:

Connection-Rate-Threshold
This defines the number of connections per second to move from stage 1 to stage
2 of AppDDoS processing.

Service
This defines the Layer 7 application that this profile is inspecting. As of Junos 10.2,
only HTTP and DNS are officially supported, and therefore the rest of the appli-
cations are hidden, but may still be configured. More support for applications
should be coming in future Junos releases, so check the release notes and
documentation.

Context
One or more application contexts can be defined for a single AppDDoS profile.
This is the application context described earlier in the chapter (such as http-url-
get) and is used to define threshold setting for different contexts. Within a context
there are several values that can, or must, be configured, to define the stage 2 and
stage 3 behaviors:

Hit-Rate-Threshold
This defines how many times the context must be “hit” within a 60-second
period, also known as a tick. For instance, if the Hit-Rate-Threshold was 100
for http-url-get, 100 matches would have to be executed on http-url-get
that matched that application profile defined in the AppDDoS rulebase. This
is mandatory to configure.

Value-Hit-Rate-Threshold
Whereas Hit-Rate-Threshold refers to a context match, Value-Hit-Rate-
Threshold defines the threshold that a “value” within a context is hit in 60
seconds before passing the threshold. It is used in conjunction with Hit-Rate-
Threshold to move from stage 2 to stage 3 of processing, and it is a mandatory
component. For example, in the case of the http-url-get context, the value
within that context would be the URL of the resource that is being requested,
such as “index.html” or “story.html”. Note that you do not configure what
contexts to match, because the system automatically tracks those contexts
individually as part of Value-Hit-Rate-Threshold. Once Hit-Rate-Threshold
(on a context) and Value-Hit-Rate-Threshold (on the value within a context)
have surpassed the thresholds defined, the AppDDoS protection can either
perform an action to rate-limit access across the board, or move from stage 2
to stage 3. This is mandatory to configure.

Max-Context-Values
As mentioned in the description for Value-Hit-Rate-Threshold, the system au-
tomatically tracks the values within a context for you, and no additional con-
figuration is needed. The problem here is that it can take a lot of resources for
the SRX to monitor if AppDDoS is inspecting a lot of contexts and servers. To
help focus on the most important values to track, you can define how many

426 | Chapter 8: Intrusion Prevention

contexts to track with the Max-Context-Values parameter. Think of this as the
top X values that are tracked. For instance, if you defined this as 100, the top
100 values within that context are tracked. Up to 10,000 values are supported.
This configuration is optional.

Exclude-Context-Values
Since the system automatically classifies the values, you may have some spe-
cific values that you don’t want to track. The Exclude-Context-Values com-
mand allows you to explicitly define which values to ignore, so these won’t
impact the tracking of the different thresholds. For instance, on a web server,
you might be most interested in matching the most computationally expensive
requests, but ignoring the others. You can define regular expression values for
which contexts to ignore. This configuration is optional.

Time-Binding-Count
Once Hit-Rate-Threshold and Value-Hit-Rate-Threshold of stage 2 have been
hit, if stage 3 botnet protection is enabled the time-binding-count will define
how many times an individual source host triggers the context/value pair
before it is in violation of the thresholds. This goes hand in hand with Time-
Binding-Period to define the threshold. Essentially, the system tracks each in-
dividual source IP for how many times it hits the context/value pairs, and if it
goes above Time-Binding-Count within Time-Binding-Period, it is flagged for
being in violation of the AppDDoS profile and the actions defined in the
AppDDoS rule are taken. This is mandatory when doing stage 3 botnet
protection.

Time-Binding-Period
This is the period in seconds that is used to define the threshold that must be
surpassed for stage 3. The threshold is expressed as Time-Binding-Count/Time-
Binding-Period.

Custom Attack Groups and Objects
SRX IPS offers an extremely powerful feature that enables you to define your own
groups (of both predefined and custom attack objects) along with your own custom
attack objects. Although the casual IPS administrator may not need to define custom
attack objects, the ability to customize attacks into groups is key to being able to make
the administration of an IPS policy much easier to enforce.

Static attack groups

A static attack group is essentially a group that you manually add attack objects and
groups to (both predefined and custom) which will not add members during attack
updates. If attack objects are modified as part of an attack update, they are updated in
the group; if they are deleted, they are removed from the group. But no new attack
objects are added to this group. Static groups are very useful if you want strict control

The Need for IPS | 427

over adding new attacks into attack groups during signature updates to ensure that you
don’t cause unexpected results with new attack objects. The only things you need to
define for static groups are the members that are added to this group.

Dynamic attack groups

Dynamic attack groups provide administrators with a powerful ability to adjust to new
threats when new attack objects are downloaded from Juniper. Whereas static attack
groups allow you to create groups that don’t automatically change with signature attack
updates, dynamic attack groups do change. And they have very intelligent controls for
defining what should be added or removed with attack updates. Dynamic attack groups
utilize filters to define the attributes of attack objects that would select them to be
implemented in the group. Additionally, you can override members in the groups to
exclude them if need be.

You can use filter categories to select the attacks for the group. When you define mul-
tiple filters, they essentially form a logical AND between filters. For instance, if you
define Category=HTTP and Severity=Critical, only attacks that are of that category and
severity are present in this group. When new attacks are downloaded, if they fit this
criterion they are added to the group. Here’s more detail on filter fields you can dial:

Category
Category defines the Juniper-defined categories for attacks. These are one of the
most useful filters to define because they are the applications themselves, such as
HTTP, FTP, DNS, and other types of attacks, such as spyware, viruses, Trojan
horses, and worms.

Direction
Direction defines the direction in which the attack takes place, either client-to-
server or server-to-client.

False-Positives
False-Positives is a field that is defined for each object, which defines how fre-
quently false positives are likely to occur with the individual object. Juniper defines
these for predefined attack objects; you can configure this field in your custom
attack objects.

Performance
Juniper tries to specify the attack object performance for the attack objects. This
is not an exact science, and performance is typically holistic for the policy as a
whole, rather than for an individual attack object. You can also specify this for
custom attack objects and you can use this filter to only select the appropriate
attacks based on performance impacts. The performance impact of signatures is
as follows: 0 = Unknown, 1 = Fast, 5 = Normal, and 9 = Slow. You can use per-
formance filtering in the dynamic attack groups to filter out slow-performing attack
objects. Note that generally, Juniper will put slow-performing attack objects under
the MISC attack group.

428 | Chapter 8: Intrusion Prevention

Products
Juniper defines products to which the predefined attack objects apply—for in-
stance, protecting against attacks on specific operating systems, services, applica-
tions, and other software.

Recommended
This filter is simply a field. If Recommended is selected, only attacks that are
marked with the Recommended attribute are selected. Juniper defines the
Recommended flag for attacks that are part of the recommended policy, and you can
specify this flag for custom attacks as well.

Service
Service defines the actual application protocol (e.g., HTTP, FTP, DNS, SMB,
SMTP, etc.) that the attack belongs to. This is similar to some of the attacks defined
under the category configuration.

Severity
You can use the Severity field (as we did earlier in this chapter) to define what traffic
should be selected based on the severity defined for the attack object.

Custom attack objects

Thousands of predefined attack objects are available from Juniper as part of the com-
pany’s security subscription services, but sometimes you may need to define your own
custom attack signatures. For instance, if you have in-house developed applications or
applications that use specialized protocols that are not standard, Juniper may not have
any protection for these types of applications. Additionally, you may want to use the
IPS to prevent against certain communication, such as users accessing certain websites
or downloading certain types of files. You can control all of these easily through the
SRX IPS functionality, but it may take just a bit of work upfront to configure. Once you
understand the process, it is simple to create new attack objects, and you can do so
quite quickly.

Juniper also has a comprehensive signature creation guide that is available by searching
the Juniper Support Knowledge Base for custom attack objects.

Finally, if you are having an issue creating a custom signature, and you have a valid
Juniper IPS support agreement, you can open a case with JTAC. Be sure to include your
configuration and a PCAP of the traffic you are trying to classify so that they can better
assist you.

The following parameters are part of the IPS configuration for custom attack objects:

Recommended Action
Recommended Action allows you to define the recommended action that is used
should this attack object be selected in an IPS rule which says that the action should
be recommended. This is not a required field.

The Need for IPS | 429

Severity
Severity defines the severity at which this attack should be listed. This can have
significance on more than just the logs themselves; it can also impact the object’s
placement if referencing severities elsewhere such as in dynamic attack groups.

Time-Binding
Time-Binding is an optional attribute you can use to define events that may not be
malicious, but if triggered multiple times (such as through an authentication fail-
ure) should be considered malicious. As part of Time-Binding, you can define the
count (or events per minute) that the attack must be triggered before considering
the attack valid, and the Scope, which defines whether the binding is based on a
source (one source, multiple destinations), a destination (multiple sources, one
destination), or peer (one source, one destination). For authentication failures, it
is typically based on the “peer” scope. IP actions are useful when Time-Bindings
are met to prevent the same attacker from initiating new connections.

Attack-Type
The Attack-Type defines whether the attack is a protocol anomaly, a signature, or
a compound (chain) attack object:

Protocol anomaly
Protocol anomaly attack detection must be programmed into the detector en-
gine, but you can still create your own custom attack objects based on the
predefined protocol anomaly objects.

Direction specifies in which stream of the communication the detection should
be applied. This can be Client to Server, Server to Client, or Both. It is recom-
mended that you only apply the custom signature in the direction that it occurs
to improve performance.

Service defines the Layer 7 application within which the protocol anomaly
attack object should be checking for a condition.

Shellcode defines the platform that the victim is running to determine the ap-
plicable shellcode for that platform.

Test defines the actual protocol anomaly test condition that is used within the
attack object to define a violation condition to trigger the attack object.

Signature
Signature-based attack objects will be the most common form of attack object
to configure. This is where you use regular expression matching to define what
attack objects should be matched by the detector engine.

Direction specifies in which stream of the communication the detection should
be applied. This can be Client to Server, Server to Client, or Both. It is recom-
mended that you only apply the custom signature in the direction that it will
occur to improve performance.

Contexts are for signature-based attack objects to define where to look in the
message for the attack. About 600 contexts are available at the time of this

430 | Chapter 8: Intrusion Prevention

writing. Specifying the correct context is important to ensure accuracy and
performance. You also have generic contexts such as “streams” which identify
where in the bytestream to search for the attack objects.

Pattern is the actual regular expression used to detect the signature within the
context within which it occurs. This is mandatory for signature-based attack
objects.

There is a lot of confusion over RegExp and Pattern. Pattern is required to
provide matching within the context. Technically, Pattern is not based on Perl
Compatible Regular Expressions (PCREs), although it is very similar. RegExp
allows you to add an additional layer of matching using PCRE on top of Pattern
to match attacks. This comes at a decrease in performance compared to pattern
matching. If you don’t need RegExp, you should omit it.

Protocol defines additional parameters that might be found in the IP, ICMP,
TCP, or UDP headers. This allows you to provide additional factors for attack
detection. For instance, you can match specific TCP flags such as SYN, ACK,
FIN, Window Size, Sequence Number, and so forth.

Protocol-Binding defines the Layer 7 application in which the attack should
be detected. This information is used with the application ID engine to select
the relevant contexts and attacks that can be detected in that flow. Addition-
ally, starting in Junos 10.1, nested applications are supported, such as Layer
7 applications that run over another Layer 7 application. The most common
example of this is web applications running over HTTP, such as Facebook,
YouTube, and other web apps.

Shellcode defines what platform the victim will be running so that the associ-
ated shellcode can be checked for. This is not mandatory.

Negate allows you to specify that the attack object should be triggered if none
of the specified criteria are matched. This should be used with caution, and is
typically done in chain objects.

Chain
Chain attack objects are objects that reference multiple attack objects (custom
or predefined) and can be composed of protocol anomaly and/or signature-
based attack objects. Chains allow you to define Boolean expressions and or-
dering to make complex matching on a single criterion as well as on multiple
factors.

Expression defines a Boolean expression to use to evaluate the defined mem-
bers and find a match. For instance, this could be an expression with AND,
OR, NOT logic among the attack members.

Member defines other predefined or custom attack objects that are evaluated
as part of this chain attack object. Up to 32 members can be defined for a single
chain object. If no expression is used, all members must be matched for the
chain object to be triggered.

The Need for IPS | 431

Order is just a flag in the chain object to define whether the “order” in which
the members are defined should be the order in which they are detected. This
can go hand in hand with Expression, but remember that if you are using both
Order and Expression, the order in which the attacks are detected must be the
order the attack objects are listed (top to bottom) in addition to satisfying the
Expression. If you are only using Order, all attack members must be matched
in the order they are listed.

Protocol-Binding defines the Layer 7 application in which the attack should
be detected. This information is used with the application ID engine to select
the relevant contexts and attacks that can be detected in that flow. Addition-
ally, starting in Junos 10.1, nested applications are supported, such as Layer
7 applications that run over another Layer 7 application. The most common
example of this is web applications running over HTTP, such as Facebook,
YouTube, and other web apps.

The reset flag indicates that multiple matches in the same flow should trigger
a new alert.

Two scopes can be defined: known as Session and Transaction. Session
matches items within the same flow, but across actual transactions (e.g., dif-
ferent Layer 7 messages), while Transaction is the attacks within the same
transaction (Layer 7 message). When in doubt, use Session.

Although creating custom signatures may seem like an advanced task,
especially with the use of regular expressions, lots of content on building
effective regular expressions is available and it can be very helpful. Of
course, you can always search the Internet, but the widely acclaimed
regular expression book, Mastering Regular Expressions by Jeffrey E.F.
Friedl (O’Reilly), may be your best source.

Configuring IPS Features on the SRX
Wow. If you have read this far, you’ve gone through a detailed explanation of just about
every component of SRX IPS functionality. Now you can learn how to actually configure
these different features within the SRX.

From here on out, you will learn the configuration of the individual elements, as well
as focus on common “real-world” implementations of these features. Let’s get started.

Getting Started with IPS on the SRX
We should perform a few steps before we configure SRX IPS. Here is a list of things to
do before configuring the SRX for IPS functionality:

432 | Chapter 8: Intrusion Prevention

http://oreilly.com/catalog/9780596528126/

1. Install the license.

You must install an IDP license before you can download any attack objects. If you
are using only custom attack objects, you don’t need to install a license (earlier
versions had a bug where they required it), but if you want to download Juniper
predefined attack objects, you must have this license. Juniper provides you with
the ability to download a 30-day trial license to permit this functionality for a brief
period of time to evaluate the functionality. We covered license installation earlier
in the book; all you need is the request system license add command either spec-
ifying a file, or copying and pasting it into the terminal.

2. Configure network access.

Before you can download the attack objects, you must have network connectivity
to either the Juniper download server or a local server from which the signatures
can be downloaded. This typically requires network configuration (IP/Netmask,
routing, and DNS) and permitted access to reach the server. At the time of this
writing, HTTP proxies are not supported, but you can configure a local web server
from which to serve the files.

3. Download attack objects.

Before deploying the IPS, you must first download the attack objects from which
the policy will be compiled. Triggering a manual download does not configure the
SRX to download them in the future, so you must configure automatic updates to
download them.

4. Install attack objects.

Once the download has been completed, you must install the attack updates before
they are actually used in a policy. If you already have a policy configured, you do
not need to recommit the policy—installing the updates adds them to the policy.
The installation process compiles the attack objects which have been downloaded
to a stage directory into the configured policy.

5. Download policy templates (optional).

You can optionally download and install predefined IPS policies known as policy
templates provided by Juniper to get started. After finishing this chapter, you
should be able to configure your own policy, so you probably won’t need policy
templates.

If you are attempting to download the attack objects in an HA chassis
cluster, you should use the fxp0 interface configuration as described in
Chapter 4 If you do not use the fxp0 interface, the secondary control
plane will not be able to download its update.

Configuring IPS Features on the SRX | 433

Getting started example

Our first example shows the basic configuration and download of attack objects and
how to install them prior to actually configuring a security policy. The steps in this
example are as follows:

1. Check IPS status.

2. Download attack objects including sensor updates.

3. Install attack objects and sensor updates.

4. Download policy templates.

5. Install policy templates.

root@SRX5800-1> show security idp security-package-version
node0:
--

 Attack database version:1551(Thu Feb 25 13:37:46 2009)
 Detector version :10.2.140100209

root@SRX5800-1> request security idp security-package download full-update
node0:
--
Will be processed in async mode. Check the status using the status checking CLI

root@SRX5800-1> request security idp security-package download status
node0:
--
Done;Successfully downloaded from
(https://services.netscreen.com/cgi-bin/index.cgi).
Version info:1621(Fri Mar 5 12:56:13 2010, Detector=10.3.140100209)

root@SRX5800-1> request security idp security-package install
node0:
--
Will be processed in async mode. Check the status using the status checking CLI

root@SRX5800-1> request security idp security-package install status
node0:
--
Done;Attack DB update : successful - [UpdateNumber=1621,ExportDate=Fri
Mar 5 12:56:13 2010,Detector=10.3.140100209]
 Updating control-plane with new detector : successful
 Updating data-plane with new attack or detector : successful

root@SRX5800-1> show security idp status
node0:
--
State of IDP: 2-default, Up since: 2010-03-04 13:25:32 PST (4d 03:45 ago)

434 | Chapter 8: Intrusion Prevention

Packets/second: 5601 Peak: 7289 @ 2010-03-04 13:25:32 PST
KBits/second : Peak: 2219660 @ 2010-03-04 13:25:32 PST
Latency (microseconds): [min: 67] [max: 105] [avg: 96]

Packet Statistics:
 [ICMP: 0] [TCP: 0] [UDP: 0] [Other: 0]

Flow Statistics:
 ICMP: [Current: 17] [Max: 26 @ 2010-03-04 13:25:32 PST]
 TCP: [Current: 460] [Max: 851 @ 2010-03-04 13:25:32 PST]
 UDP: [Current: 623] [Max: 694 @ 2010-03-04 13:25:32 PST]
 Other: [Current: 15] [Max: 22 @ 2010-03-04 13:25:32 PST]

Session Statistics:
 [ICMP: 17] [TCP: 460] [UDP: 623] [Other: 15]

Number of SSL Sessions : 0

 Policy Name : SRX5800-IDP
 Running Detector Version : 10.3.1400100209

Forwarding process mode : regular

It’s important to understand that compiling and applying an IPS policy can take time
(up to 20 minutes depending on the number of attack objects and the size of the policy).
On the SRX, when you update attack objects or commit a new IPS configuration the
SRX essentially triggers a job to start to compile the IPS attack objects into a policy that
the detector engine understands. This is done by a low-priority process in the control
plane, and no change is made to the data plane until the policy has been fully compiled,
at which point the new policy is applied to the data plane. Running the show security
idp status command gives some insight regarding whether the new policy has been
successfully compiled, but if you want more detail, you need to run a trace on the IDP
process to determine if it finished compiling (we will cover this in “Troubleshooting
IPS” on page 457).

Configuring automatic updates

Although updating the SRX manually is a powerful way to inspect the new signatures
before actually deploying them, it does require much more administrative dedication
to keep signatures updated. You can configure the SRX to automatically update itself
on an interval of your choosing to ensure that the SRX has up-to-date signatures without
administrative intervention. This example demonstrates how to configure this func-
tionality with the following objectives:

Enable automatic downloads to start May 7 at midnight, and attempt to download
every 24 hours if there is an update. If the update stalls for more than five minutes, after
a new version has been downloaded the SRX should install it.

{primary:node0}[edit]
root@SRX5800-1# edit security idp security-package

Configuring IPS Features on the SRX | 435

{primary:node0}[edit security idp security-package]
root@SRX5800-1# set install automatic start-time 05-07.00:00 interval 24
download-timeout 5 enable

Useful IPS files

At the time of this writing, Juniper was still enhancing the CLI and J-Web to make
them more usable for viewing predefined IPS objects (attacks, groups, applications,
etc.). The exception is NSM, which has these laid out nicely in a table. Until then, all
of the information is available on the SRX. You just need to know where to look.

You should download the attack signatures before viewing these files
for the updated version.

/var/db/idpd/sec-download/SignatureUpdate.xml
This file is the entire attack database. It details every attack, and for signature-based
attack objects, it also provides the patterns used to match signatures. This file is
the motherload of the attack objects and provides you with the most information,
but it’s in XML format, so you will need to either load it into an XML browser or
look at the file with a text editor.

/var/db/idpd/sec-download/groups.xml
This file is the list of different predefined groups and the attack objects that fit into
them. It’s essentially a list of dynamic attack object groups that define the proper-
ties that attack objects should match to be part of the group.

/var/db/idpd/sec-repository/attack.list
This file lists all attacks known by the SRX in their appropriate name format.

/var/db/idpd/sec-repository/attack-group.list
This file lists all attack groups on the SRX based on their categories.

/var/db/idpd/sec-repository/application.list
This file lists all the AppID applications that are known to the system and their
respective standard ports.

Here’s how to access each file, and include a snippet of the content within it:

root@SRX5800-1> file show /var/db/idpd/sec-download/SignatureUpdate.xml |
find Metasploit
 <Name>SCAN:METASPLOIT:LSASS</Name>
 <DisplayName>SCAN: Metasploit LSASS Exploit</DisplayName>
 <Severity>Major</Severity>
 <Category>SCAN</Category>
 <Keywords>metasploit</Keywords>
 <Recommended>true</Recommended>
 <RecommendedAction>Drop</RecommendedAction>
 <Description>This signature detects the security-audit tool Metasploit

436 | Chapter 8: Intrusion Prevention

as it uses the LSASS Exploit to attack a host. This can be a probe from a
security test, or it could be an attacker using Metasploit to compromise your
network.</Description>
 <References>
 <CVE>CVE-2003-0533</CVE>
 <BugTraq>10108</BugTraq>
 <URL>http://www.microsoft.com/technet/security/bulletin/MS04-011.mspx</URL>
 </References>
 <Supersedes />
 <Attacks>
 <Attack>
 <Type>chain</Type>
 <InternalID>917</InternalID>
 <ExportID>3</ExportID>
 <LastModified>2009-11-18</LastModified>
 <ActivationDate>2005-08-08</ActivationDate>
 <FalsePositives>unknown</FalsePositives>
 <Performance>0</Performance>
 <Service>SMB</Service>
 <TimeBinding>
 <Scope>none</Scope>
 <Count>1</Count>
 </TimeBinding>
 <Hidden>false</Hidden>
 <Port />
 <Application />
 <Expression />
 <Order>no</Order>
 <Reset>no</Reset>
 <ScopeOption />
 <Members>
 <Attack>
 <Member>m01</Member>
 <Type>Signature</Type>
 <Direction>CTS</Direction>
 <Flow>control</Flow>
 <Shellcode>no</Shellcode>
 <Context>smb-open-filename</Context>
 <Negate>false</Negate>
 <Offset>0</Offset>
 <Pattern><![CDATA[\\?\[lsarpc\].*]]></Pattern>
 <Regex />
 </Attack>
 <Attack>
 <Member>m02</Member>
 <Type>Signature</Type>
 <Direction>CTS</Direction>
 <Flow>control</Flow>
 <Shellcode>no</Shellcode>
 <Context>smb-native-lanman</Context>
 <Negate>false</Negate>
 <Offset>0</Offset>
 <Pattern><![CDATA[(Metasploit\sFramework|LameCiscoIDSDevelopers)]]></Pattern>
 <Regex />
 </Attack>

Configuring IPS Features on the SRX | 437

 </Members>
 <Versions>
 <Version>idp-srx9.2</Version>
 </Versions>
 </Attack>
 </Attacks>
 <Direction>
 <Value>CTS</Value>
 </Direction>
 <FalsePositives>
 <Value>unknown</Value>
 </FalsePositives>
 <Performance>
 <Value>0</Value>
 </Performance>
 <Service>
 <Value>smb</Value>
 </Service>
 <Type>
 <Value>Signature</Value>
 </Type>
 </Entry>
 <Entry>

root@SRX5800-1> file show /var/db/idpd/sec-download/groups.xml | find
"HTTP - Critical"
 <Name>HTTP - Critical</Name>
 <Type>dynamic</Type>
 <Filters>
 <Filter>
 <Field>Category</Field>
 <Values>
 <Value>HTTP</Value>
 </Values>
 </Filter>
 <Filter>
 <Expression>And</Expression>
 <Field>Direction</Field>
 <Values>
 <Value>cts</Value>
 <Value>!stc</Value>
 <Value>!any</Value>
 </Values>
 </Filter>
 <Filter>
 <Field>Performance</Field>
 <Values>
 <Value>0</Value>
 <Value>1</Value>
 <Value>5</Value>
 </Values>
 </Filter>
 <Filter>
 <Field>Severity</Field>
 <Values>

438 | Chapter 8: Intrusion Prevention

 <Value>Critical</Value>
 </Values>
 </Filter>
 </Filters>
 </Group>

root@SRX5800-1> file show /var/db/idpd/sec-repository/attack.list
"APP:AFP-LEN-OF"
"APP:AI:NO-MATCH"
"APP:AI:PARTIAL-MATCH"
"APP:AJP12-SHUTDOWN"
"APP:AMANDA:AMANDA-ROOT-OF1"
"APP:AMANDA:AMANDA-ROOT-OF2"
"APP:APT-WWW-PROXY:AWPLOG-DOS"
"APP:ARKEIA:AGENT-ACCESS"
"APP:ARKEIA:AGENT-CONFIG"
"APP:ARKEIA:DEFAULT-ADMIN-PW"
"APP:ARKEIA:DEFAULT-PASSWORD"
"APP:ARKEIA:TYPE-77-OF"
"APP:BAKBON-NETVAULT-INT-OF"
"APP:BORLAND:VISIBROKER"
"APP:BRG-MAIL-US-PASS"
"APP:CA:ALERT-SRV-OF"
"APP:CA:ARCSRV:BCK-MSG"
"APP:CA:ARCSRV:CAMEDIASRV"
"APP:CA:ARCSRV:DIRTRAV"
"APP:CA:ARCSRV:FILE-UPLOAD"
"APP:CA:ARCSRV:HSM-OF"
"APP:CA:ARCSRV:LND-FILE-MANIP"
"APP:CA:ARCSRV:LND-OF"
---(more)---

root@SRX5800-1> file show /var/db/idpd/sec-repository/attack-group.list
"APP"
"APP - All"
"APP - Critical"
"APP - Info"
"APP - Major"
"APP - Minor"
"APP - Warning"
"Additional Web Services - Critical"
"Additional Web Services - Info"
"Additional Web Services - Major"
"Additional Web Services - Minor"
"Additional Web Services - Warning"
"All Attacks"
"Anomaly"
"Anomaly - All"
"Anomaly - Critical"
"Anomaly - Info"
"Anomaly - Major"
"Anomaly - Minor"
"Anomaly - Warning"
"Attack Type"
"BSD"

Configuring IPS Features on the SRX | 439

"BSD - Services - All"
---(more)---

root@SRX5800-1> file show /var/db/idpd/sec-repository/application.list
"ApplicationID:AIM" 61
"ApplicationID:APPLEJUICE" 125
"ApplicationID:ARES" 95
"ApplicationID:BGP" 201
"ApplicationID:BITTORRENT" 60
"ApplicationID:BITTORRENT-DHT" 131
"ApplicationID:BITTORRENT-TRACKER-URL" 68
"ApplicationID:CHARGEN" 39
"ApplicationID:CUPS" 146
"ApplicationID:CVS" 147
"ApplicationID:DHCP" 34
"ApplicationID:DIRECTCONNECT" 98
"ApplicationID:DISCARD" 13
"ApplicationID:DNP3" 175
"ApplicationID:DNS" 191
"ApplicationID:DOT-NET" 182
"ApplicationID:DRDA" 183
"ApplicationID:ECHO" 12
"ApplicationID:EDONKEY" 100
"ApplicationID:EDONKEY-TCP" 189
"ApplicationID:FINGER" 8
"ApplicationID:FREECAST" 163
"ApplicationID:FTP" 63
---(more)---

The output of these commands shares lot of details regarding the individual compo-
nents and the different predefined lists available on the SRX. At the time of this writing,
the only graphical way to view this information is through the NSM. In the future, the
attacks and the attack groupings will likely be added into J-Web and Junos Space to
improve the user experience so that you can graphically view, modify, and create the
objects, as well as the groups themselves.

Configuring static and dynamic attack groups

Unless you are going to use predefined attack groups, or the attack objects themselves,
you should find yourself configuring static and dynamic attack groups prior to defining
the policies. Defining these groups is quite simple, especially when you are familiar
with the predefined attack object groups and attacks. This example shows how to
configure the following groups:

• A static attack group named Aurora which includes the attacks
HTTP:STC:SCRIPT:UNI-SHELLCODE and HTTP:STC:SCRIPT:FUNC-
REASSIGN, which are two known attack objects that are triggered by the Aurora
Internet Explorer exploit

• A static attack group named Protect-FTP which contains the predefined attack
groups FTP – Critical, FTP – Major, and FTP – Minor

440 | Chapter 8: Intrusion Prevention

• A dynamic attack group called Malicious-Activity that contains all shellcode,
worms, spyware, viruses, and Trojan horse signatures of severity Critical, Major,
and Minor

• A dynamic attack group called Protect-Internal-Clients that contains all server-to-
client attacks that are of severity Critical, Major, and Minor

{primary:node0}[edit]
root@SRX5800-1# edit security idp custom-attack-group Aurora

{primary:node0}[edit security idp custom-attack Aurora]
root@SRX5800-1#set group-members [HTTP:STC:SCRIPT:UNI-SHELLCODE
HTTP:STC:SCRIPT:FUNC-REASSIGN]

{primary:node0}[edit security idp custom-attack Aurora]
root@SRX5800-1# show
group-members [HTTP:STC:SCRIPT:UNI-SHELLCODE HTTP:STC:SCRIPT:FUNC-REASSIGN];

{primary:node0}[edit security idp custom-attack-group Aurora]
root@SRX5800-1# up

{primary:node0}[edit security idp]
root@SRX5800-1# edit custom-attack-group Protect-FTP

{primary:node0}[edit security idp custom-attack-group Protect-FTP]
root@SRX5800-1# set group-members ["FTP - Critical" "FTP - Major"
"FTP - Minor"]

{primary:node0}[edit security idp custom-attack-group Protect-FTP]
root@SRX5800-1# show
group-members ["FTP - Critical" "FTP - Major" "FTP - Minor"];

{primary:node0}[edit security idp custom-attack-group Protect-FTP]
root@SRX5800-1# up

{primary:node0}[edit security idp]
root@SRX5800-1# edit dynamic-attack-group Malicious-Activity

{primary:node0}[edit security idp dynamic-attack-group Malicious-Activity]
root@SRX5800-1# set filters severity values [critical major minor]

{primary:node0}[edit security idp dynamic-attack-group Malicious-Activity]
root@SRX5800-1# set category values [SHELLCODE VIRUS WORMS SPYWARE TROJAN]

{primary:node0}[edit security idp dynamic-attack-group Malicious-Activity]
root@SRX5800-1# show
filters {
 severity {
 values [critical major minor];
 }
 category {
 values [SHELLCODE VIRUS WORMS SPYWARE TROJAN];
 }
}

Configuring IPS Features on the SRX | 441

{primary:node0}[edit security idp dynamic-attack-group Malicious-Activity]
root@SRX5800-1# up

{primary:node0}[edit security idp]
root@SRX5800-1# edit dynamic-attack-group Protect-Internal-Clients

{primary:node0}[edit security idp dynamic-attack-group Protect-Internal-Clients]
root@SRX5800-1# set filters direction values server-to-client

{primary:node0}[edit security idp dynamic-attack-group Protect-Internal-Clients]
root@SRX5800-1# set filters severity values [critical major minor]

{primary:node0}[edit security idp dynamic-attack-group Protect-Internal-Clients]
root@SRX5800-1# show
filters {
 direction {
 values server-to-client;
 }
 severity {
 values [critical major minor];
 }
}

{primary:node0}[edit security idp dynamic-attack-group Protect-Internal-Clients]
root@SRX5800-1# top

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

Creating a custom attack object

There are many cases in which a customer might want to block against a behavior that
may not exploit an actual vulnerability, or perhaps protect an in-house application from
an exploit which was discovered internally, while the development team works on
correcting the application. For these types of scenarios, you typically have to develop
your own signatures to prevent the undesirable conditions. In this example, two dif-
ferent custom attack objects are configured, one a signature-based attack object and
the other a compound attack object. Note that we are going to assume a fundamental
understanding of regular expressions, as the actual theory behind regular expressions
is outside the scope of this book.

• Create a signature-based attack object called Block-Facebook. This attack object
is used to block any HTTP traffic going to *.facebook.com from internal users. Set
the severity to Warning.

442 | Chapter 8: Intrusion Prevention

• Create a compound signature called Compound-Attack which is composed of
three members: FTP-User, FTP-DMG, and FTP-EXE. FTP-User is a custom attack
object which matches any FTP account with the name User. FTP-DMG matches
any request to get a file with the .dmg extension, and FTP-EXE does the same but
for .exe files. This attack should match any session where the login is “user” and
they are trying to download a file with an extension of either *.exe or *.dmg. Set the
severity to Major.

[edit]
root@SRX5800-1# edit security idp custom-attack Block-Facebook

[edit security idp custom-attack Block-Facebook]
root@SRX5800-1# set attack-type signature context http-header-host pattern
".*\.\[facebook\.com\]" direction client-to-server

[edit security idp custom-attack Block-Facebook]
root@SRX5800-1# set severity warning

[edit security idp custom-attack Block-Facebook]
root@SRX5800-1#up

[edit security idp]
root@SRX5800-1# edit custom-attack Compound-Attack

[edit security idp custom-attack Compound-Attack]
root@SRX5800-1# set attack-type chain member FTP-DMG attack-type signature
context ftp-get-filename pattern ".*\.\[dmg\]" direction client-to-server

[edit security idp custom-attack Compound-Attack]
root@SRX5800-1# set attack-type chain member FTP-EXE attack-type signature
context ftp-get-filename pattern ".*\.\[exe\]" direction client-to-server

[edit security idp custom-attack Compound-Attack]
root@SRX5800-1# set attack-type chain member FTP-USER attack-type signature
context ftp-username pattern "^user$" direction client-to-server

[edit security idp custom-attack Compound-Attack]
root@SRX5800-1# set attack-type chain expression "(FTP-EXE OR FTP-DMG) AND
FTP-USER"

[edit security idp custom-attack Compound-Attack]
root@SRX5800-1# set severity major

[edit security idp custom-attack Block-Facebook]
root@SRX5800-1#up

[edit security idp]
root@SRX5800-1# show | find custom-attack

[edit security idp]
root@SRX5800# show | find custom-attack
custom-attack Block-Facebook {
 severity warning;
 attack-type {

Configuring IPS Features on the SRX | 443

 signature {
 context http-header-host;
 pattern ".*\.\[facebook\.com\]";
 direction client-to-server;
 }
 }
}
custom-attack Compound-Attack {
 severity major;
 attack-type {
 chain {
 expression "(FTP-EXE OR FTP-DMG) AND FTP-USER";
 member FTP-DMG {
 attack-type {
 signature {
 context ftp-get-filename;
 pattern ".*\.\[dmg\]";
 direction client-to-server;
 }
 }
 }
 member FTP-EXE {
 attack-type {
 signature {
 context ftp-get-filename;
 pattern ".*\.\[exe\]";
 direction client-to-server;
 }
 }
 }
 member FTP-USER {
 attack-type {
 signature {
 context ftp-username;
 pattern "^user$";
 direction client-to-server;
 }
 }
 }
 }
 }
}

[edit security idp custom-attack Compound-Attack]
root@SRX5800-1# top

[edit]
root@SRX5800-1# commit

Let’s examine some of the patterns used in this example. In the Block-Facebook ex-
ample, we have the pattern ".*\.\[facebook\.com\]". All patterns are surrounded by
quotations to indicate where the expression starts and stops for the Junos CLI.
The .* in the beginning indicates that anything can precede or follow the example. The
\. means we use the \ escape character to take the regular expression literally rather

444 | Chapter 8: Intrusion Prevention

than as a control character. Next we have the \[, which means this will be the beginning
of a case-insensitive match (since we don’t want to be evaded by any changes in case).
Then we have the string facebook, followed by \.com\], which indicates that we want
to match .com, and we close out the case-insensitive match.

In the compound attack example, we use a chain attack composed of three members.
The FTP-DMG and FTP-EXE members are essentially the same, just different exten-
sions, so we’ll just cover the FTP-EXE example. The pattern ".*\.\[exe\]" begins
with .* to indicate that anything can precede or follow the pattern, which is then fol-
lowed by \.\[exe\], which is used to indicate that we should take the . literally as a
character rather than as a control character. This is followed by \[exe\], where the
\[and \] indicate that the characters within the boundary will be matched case-
insensitively so that we can’t be fooled by changes in case. Next, we match the username
user exactly. We want to ensure that we are not matching a username that merely has
the string user in it, but rather that the string is exactly user, so we use the ^ character
to indicate the beginning of the match and the $ to indicate that there is nothing else
in the match. In this example, we don’t care about the case, since the username user is
going to be authenticated by our system. Finally, we use the Boolean expression (FTP-
EXE OR FTP-DMG) AND FTP-USER to indicate that we will only match when the filename
has an .exe or .dmg extension (since a file will only have one of these) and that the name
is user for that flow.

Creating, activating, and referencing IPS

Before you can actually perform any inspection, you must define an IPS rulebase, apply
it as the active IPS policy (at this time only one IPS policy can be active at a time), and
reference this policy in the SRX security policy (firewall) rulebase. Although you could
use a predefined policy template for your rulebase, you are going to create your own,
since it’s much more fun that way.

In this example, you will do the following:

• Create an IPS rulebase called Protect-Everything. You are going to be using the IPS
rulebase. For all rules, you should match from Untrust to Trust, log events, and
match any source, destination, or default application.

• The first rule should match any attack for the two static groups that you created,
and silently drop their connections. Call this rule Static-Groups.

• For the two dynamic groups you created, you’ll create a rule to match their con-
nections and close both the client and the server, as well as silently drop traffic
from future flows for 120 seconds. Call this rule Dynamic-Groups.

• You’ll perform all of this from the Untrust to Trust direction for any traffic, and
then log all of these events.

{primary:node0}[edit]
root@SRX5800-1# edit security idp idp-policy Protect-Everything rulebase-ips

Configuring IPS Features on the SRX | 445

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Static-Groups match from-zone untrust to-zone trust
source-address any destination-address any application default attacks custom-
attack-groups [Aurora Protect-FTP]

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Static-Groups then action drop-connection

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Static-Groups then notification log-attacks

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# show
rule Static-Groups {
 match {
 from-zone untrust;
 source-address any;
 to-zone trust;
 destination-address any;
 application default;
 attacks {
 custom-attack-groups [Aurora Protect-FTP];
 }
 }
 then {
 action {
 drop-connection;
 }
 notification {
 log-attacks;
 }
 }
}

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Dynamic-Groups match from-zone untrust to-zone trust
source-address any destination-address any application default attacks dynamic-
attack-groups [Malicious-Activity Protect-Internal-Clients]

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Dynamic-Groups then action close-client-and-server

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Dynamic-Groups then ip-action ip-block log target
source-address timeout 120

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# set rule Dynamic-Groups then notification log-attacks

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# show rule Dynamic-Groups
match {
 from-zone untrust;
 source-address any;
 to-zone trust;

446 | Chapter 8: Intrusion Prevention

 destination-address any;
 application default;
 attacks {
 dynamic-attack-groups [Malicious-Activity Protect-Internal-Clients];
 }
}
then {
 action {
 close-client-and-server;
 }
 ip-action {
 ip-block;
 target source-address;
 log;
 timeout 120;
 }
 notification {
 log-attacks;
 }
}

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ips]
root@SRX5800-1# up 2

{primary:node0}[edit security idp]
root@SRX5800-1# set active-policy Protect-Everything

{primary:node0}[edit security idp]
root@SRX5800-1# show active-policy
active-policy Protect-Everything;

{primary:node0}[edit security idp]
root@SRX5800-1# top

{primary:node0}[edit]
root@SRX5800-1# edit security policies from-zone untrust to-zone trust

{primary:node0}[edit security policies from-zone untrust to-zone trust]
root@SRX5800-1# set policy Inspect-IPS match source-address any
destination-address any application any

{primary:node0}[edit security policies from-zone untrust to-zone trust]
root@SRX5800-1# set policy Inspect-IPS then permit application-services idp

{primary:node0}[edit security policies from-zone untrust to-zone trust]
root@SRX5800-1# set policy Inspect-IPS then log session-close

{primary:node0}[edit security policies from-zone untrust to-zone trust]
root@SRX5800-1# show
policy Inspect-IPS {
 match {
 source-address any;
 destination-address any;
 application any;

Configuring IPS Features on the SRX | 447

 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
}

{primary:node0}[edit security policies from-zone untrust to-zone trust]
root@SRX5800-1# top

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

A lot is going on in this example. You have configured your IPS policy and rules, and
configured the IPS to assign the active policy and associated firewall rules to send traffic
to the IPS engine. Without these steps, the traffic would never be sent to the IPS. One
important thing to note is that when you apply this in your environment, it may take
some time to compile and apply the IPS policy. It all happens automatically, and no
traffic will be disrupted. The best thing to do is to check the output of the show security
idp status command to see if your active policy (in our case, Protect-Everything) has
been applied and is active.

Exempt rulebase

Even with the best of intentions, you may find yourself in an IPS scenario where you
have unexpectedly blocked legitimate traffic. For instance, if you are running protocol
anomaly protection and you have mistaken some nonstandard application behavior
that is not really malicious as an attack, it will be dropped according to your policy. To
help make a clean IPS rulebase, with simple yet granular overrides, Juniper employs
the Exempt rulebase to ensure that we can easily ignore certain scenarios, and at the
same time not ignore inspection for the entire connection. In this example, you’ll per-
form the following:

After applying the IPS policy in the last example, some users are complaining that they
are not able to access the web server. It turns out that their machines are infected with
the FunWebProducts spyware, which adds a toolbar in Internet Explorer applications.
It is more of a nuisance than actual malicious software, so you don’t want to block your
customers from accessing your web server at 172.31.100.60. Create an Exempt policy

448 | Chapter 8: Intrusion Prevention

to not block this attack from the Internet to the 172.31.100.60 web server with the
FunWebProducts attack object.

{primary:node0}[edit]
root@SRX5800-1# set security zones security-zone trust address-book address
Web-Server-172.31.100.60/32 172.31.100.60/32

{primary:node0}[edit security zones security-zone trust address-book]
root@SRX5800-1# show
address Web-Server-172.31.100.60/32 172.31.100.60/32;

{primary:node0}[edit]
root@SRX5800-1# edit security idp idp-policy Protect-Everything rulebase-exempt

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-exempt]
root@SRX5800-1# set rule FunWebProducts match from-zone untrust to-zone trust
source-address any destination-address Web-Server-172.31.100.60/32 attacks
predefined-attacks SPYWARE:BH:FUNWEBPRODUCTS

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-exempt]
root@SRX5800-1# show
rule FunWebProducts {
 match {
 from-zone untrust;
 source-address any;
 to-zone trust;
 destination-address Web-Server-172.31.100.60/32;
 attacks {
 predefined-attacks SPYWARE:BH:FUNWEBPRODUCTS;
 }
 }
}

{primary:node0}[edit security policies from-zone untrust to-zone trust]
root@SRX5800-1# top

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

AppDDoS protection

DoS attacks against applications are very difficult attacks to prevent; however, the SRX
has the ability to implement a powerful mechanism to protect against these attacks.

AppDDoS is supported only on the high-end SRX at this time.

Configuring IPS Features on the SRX | 449

In this example you are going to use the following parameters:

• Protect the web server defined in the Exempt example from attacks against its
HTTP web server.

• Typically, there should be no more than 100 connections per second from clients
to the web server.

• The web server is providing static content. Typically, no more than 200 accesses
against the HTTP-URL-PARSED context will be triggered, with fewer than 20 hits
against a specific value.

• Only track the top 20 values for this profile.

• No client should be accessing the content more than three times within 60 seconds.
If a client accesses the content more than three times per minute, you should drop
their connection, and reset future connections for 10 minutes.

{primary:node0}[edit]
root@SRX5800-1# edit security idp application-ddos Protect-Web-Server

{primary:node0}[edit security idp application-ddos Protect-Web-Server]
root@SRX5800-1# set service http

{primary:node0}[edit security idp application-ddos Protect-Web-Server]
root@SRX5800-1# set connection-rate-threshold 100

{primary:node0}[edit security idp application-ddos Protect-Web-Server]
root@SRX5800-1# set context http-url-parsed hit-rate-threshold 200
value-hit-rate-threshold 20 max-context-values 20 time-binding-count 3 time-
binding-period 60

{primary:node0}[edit security idp application-ddos Protect-Web-Server]
root@SRX5800-1# show
service http;
connection-rate-threshold 100;
context http-url-parsed {
 hit-rate-threshold 200;
 value-hit-rate-threshold 20;
 max-context-values 20;
 time-binding-count 3;
 time-binding-period 60;
}

{primary:node0}[edit security idp application-ddos Protect-Web-Server]
root@SRX5800-1# up

{primary:node0}[edit]
root@SRX5800-1# edit idp-policy Protect-Everything rulebase-ddos

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ddos]
root@SRX5800-1# show
rule Protect-Web-Server {
 match {
 from-zone untrust;

450 | Chapter 8: Intrusion Prevention

 source-address any;
 to-zone trust;
 destination-address Web-Server-172.31.100.60/32;
 application default;
 application-ddos {
 Protect-Web-Server;
 }
 }
 then {
 action {
 drop-connection;
 }
 ip-action {
 ip-close;
 log;
 timeout 600;
 }
 }
}

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ddos]
root@SRX5800-1# set rule Protect-Web-Server match from-zone untrust to-zone
trust source-address any destination-address Web-Server-172.31.100.60/32
application default application-ddos Protect-Web-Server

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ddos]
root@SRX5800-1# set rule Protect-Web-Server then action drop-connection

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ddos]
root@SRX5800-1# set rule Protect-Web-Server then ip-action
ip-close log timeout 600

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ddos]
root@SRX5800-1# top

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

SSL decryption

Many modern web applications deal with sensitive information such as credit card and
Social Security numbers, medical and financial records, and other forms of authenti-
cation that require privacy. The problem from a security perspective is that when SSL
is used, if it is terminated on the web server itself the IPS device (in this case, the SRX)
can’t simply view the traffic within that communication. To help provide inspection
for the secured traffic, the SRX supports the ability to inspect the SSL secured traffic

Configuring IPS Features on the SRX | 451

for servers in which you install the SSL private keys. In this example, you’ll perform
the following configuration:

• Configure SSL inspection for the web server at 172.31.100.60. Use the private
key /var/tmp/Web-Server-Private-Key.cert which has a password to secure the pri-
vate key: Unahy371.

• Enable SSL inspection in the configuration for up to 100,000 sessions (per SPU).

{primary:node0}[edit]
root@SRX5800-1# run request security idp ssl-inspection key
add Private-Server-Key file /var/tmp/Web-Server-Private-Key.cert server
172.31.100.60 password Unahy371

{primary:node0}[edit]
root@SRX5800-1# set security idp sensor-configuration ssl-inspection
sessions 100000

root@SRX5800-1# show security idp sensor-configuration
ssl-inspection {
 sessions 10000;
}

{primary:node0}[edit security idp idp-policy Protect-Everything rulebase-ddos]
root@SRX5800-1# top

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
configuration check succeeds
node1:
commit complete
node0:
commit complete

One nifty thing to note for SSL decryption is that it automatically detects on which port
to decrypt the SSL for any server for which it is providing SSL inspection. It does this
by utilizing AppID on those ports to determine if the traffic is SSL, and therefore if it
should inspect it.

Configuring IPS modes

The high-end SRX platform has the ability to define three different modes for operating:
integrated, dedicated (9.6+), and inline tap (10.2+). Integrated mode is the default, but
you can optionally configure the other modes. With dedicated and inline tap modes,
you can also adjust the SRX to allocate more resources for firewall versus IPS processing.

Changing modes requires a reboot (both members, if in a cluster, but
this can be staggered).

452 | Chapter 8: Intrusion Prevention

In this example you’ll demonstrate the following:

• The configuration for integrated mode (or the lack of configuration)

• Dedicated mode weighted Equally

• Dedicated mode weighted Firewall

• Dedicated mode weighted IPS

• Inline tap mode weighted Equally

• Inline tap mode weighted Firewall

• Inline tap mode weighted IPS

Integrated Mode, Delete IDP Maximize Sessions
{primary:node0}[edit]
root@SRX5800-1# delete security forwarding-process application-services maximize-
idp-sessions

Dedicated Mode, Equal Weighting
{primary:node0}[edit]
root@SRX5800-1# set security forwarding-process application-services
maximize-idp-sessions weight equal

Dedicated Mode, Firewall Weighting
{primary:node0}[edit]
root@SRX5800-1# set security forwarding-process application-services
maximize-idp-sessions weight firewall

Dedicated Mode, IPS Weighting
{primary:node0}[edit]
root@SRX5800-1# set security forwarding-process application-services
maximize-idp-sessions weight idp

Inline Tap Mode, Equal Weighting
{primary:node0}[edit]
root@SRX5800-1# set security forwarding-process application-services
maximize-idp-sessions inline-tap weight equal

Inline Tap Mode, Firewall Weighting
{primary:node0}[edit]
root@SRX5800-1# set security forwarding-process application-services
maximize-idp-sessions inline-tap weight firewall

Inline Tap Mode, IPS Weighting
{primary:node0}[edit]
root@SRX5800-1# set security forwarding-process application-services
maximize-idp-sessions inline-tap weight idp

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
configuration check succeeds
node1:
commit complete
node0:

Configuring IPS Features on the SRX | 453

commit complete

{primary:node0}[edit]
root@SRX5800-1# run request system reboot
Reboot the system ? [yes,no] (no) yes

Of course, you would only select one of those modes at a time, but this example was
to demonstrate how to configure the different modes. You can also view the current
configured mode with the show security idp status operational mode command.

Deploying and Tuning IPS
Deploying IPS requires a slight learning curve. You could memorize every command
and feature by heart, and still have a rocky deployment. The challenge is that every
environment is different, just like a fingerprint or DNA. There are different applications,
different volumes of the applications, different policies on what is accepted activity,
and different resources to protect; all which can make for different goals for the IPS.
Although this book can’t tell you exactly what your policy should be, it can certainly
help you to build and deploy that policy.

First Steps to Deploying IPS
Before you get too caught up in the actual deployment do a bit of legwork and map out
the policy which you want to deploy. Think of it as brainstorming for your IPS. You
should identify the assets you want to protect, and identify the systems and applications
and how they interact with others in your network. You may need to contact the ap-
plication owners beforehand to identify this information. You should also determine
your IPD protection goals. This would include the types of threats you want to prevent,
and any other factors that might limit the scope of the deployment. (Often this involves
management approval so that there aren’t any surprises.)

Building the Policy
Once you have identified the assets and the goals of the IPS, and you have gotten all of
the necessary approvals, you should be ready to build your IPS policy on the SRX.
Remember that if you are using predefined attack objects, you must purchase and install
the IPS license. You should then download and install the latest and greatest attack
objects and detector engine using the full update. This ensures that you have all of the
latest attack objects when writing your policy. With those prerequisite tasks taken care
of you should create your policy based on the skills you gained earlier in the chapter.
If you want a decent place to start, you can download and install the policy templates,
and then modify them to suit your needs. Don’t apply the policy just yet, though…

454 | Chapter 8: Intrusion Prevention

Testing Your Policy
The authors would like to tell you to just deploy your IPS policy and let it go from there,
but this is not the case for IPS (in our combined broad experience, with many com-
petitor IPS systems, it is no different for them, either).

As mentioned, different environments with different applications make it difficult to
make a one-size-fits-all policy with no adverse effects. The best thing that you can do
is to test your policy before actually deploying it into production.

This can mean different things for different organizations. If you are a large organization
which has lots of resources, you probably have a production lab in which you can
replicate your production environment. You could place your SRX in that environment
with the appropriate policy deployed and then see what happens. Since it is a lab, you
can work out any of the kinks (such as false positives) there, without impacting pro-
duction. Alternatively, you might be able to make a mirrored segment of the production
segments on which you want to deploy the SRX using switchport mirroring (SPAN) or
network taps so that even if the SRX has a false positive, it is on the mirrored segment
rather than on the production segment.

On the other hand, many organizations don’t have the luxury of full test labs. Fear not,
because even in these environments you can still deploy with caution and confidence.
The other option (which is a good idea to use even if you have the production lab) is
to deploy the SRX, but not block anything in the IPS engine. You can do this by using
the No-Action actions in the SRX IPS policy so that the SRX is not interfering with any
traffic, but is still performing all of the inspection. In this configuration, you should
have the SRX log the output to a syslog server such as the STRM so that you can evaluate
the output and determine if any false positives are occurring, and if there is anything
that should be tuned.

As part of the tuning process, you will likely be adding exceptions into the Exempt
rulebase, tuning thresholds (especially if using AppDDoS protection), and getting ac-
customed to the facilities that provide visibility into the SRX IPS and the actual traffic
itself. Just like IPS policies, there is no standard length of time to perform this phase;
however, typically you want to ensure that you have a good cycle of traffic. This means
if you have certain applications which only run at certain times you want to wait until
they have been given a chance to run with IPS enabled to see if there are any adverse
effects. If you are pressed for a single time frame, best practice says to let it run a month
before enabling blocking (vary this shorter or longer depending on the environment),
but any time frames can be worked with as something is better than nothing.

By carefully performing this measured approach, you are going a long way toward
ensuring the success of the SRX IPS deployment, and mitigating the risk of issues that
might occur in production.

Deploying and Tuning IPS | 455

Actual Deployment
After you have completed your testing phase you are ready to deploy in an active
blocking mode; unless your goal is just to keep it in an IDS state, in which case your
work is finished.

If you did all of the legwork upfront to build and tune the policy, typically the only
thing to do here is to change the actions on the appropriate rules to the appropriate
actions, rather than just taking no action. If all goes well, there really shouldn’t be any
surprises in this process. IPS is always going to be in somewhat of a state of evolution,
since the threats themselves are always evolving, so it is not a set-and-forget technology
as an unmanaged switch would be.

Day-to-Day IPS Management
Once you have completed the initial deployment, you (or your coworkers or external
monitoring party) must still maintain the IPS and examine incidents. In terms of main-
tenance, it comes down to keeping the attack database on the SRX properly updated
(not necessarily with the latest and greatest updates, but you should make sure you
investigate updates and don’t let them lapse too long) with detector engines and new
features to help protect against new attacks.

Keeping the device updated can be automated. If you are concerned about new attacks
being false positives, you should use static groups for the rules in which you block
attacks, and only monitor new attacks with the no-action parameter so that you don’t
block new exploits without ensuring that it is safe to do so first. This means you have
to manually add the new attack objects that you want to block into the static groups,
but it provides the best balance of updated protection and stability.

The next thing you will likely do on a day-to-day basis is to monitor the IPS logs. Since
you will probably see thousands of events per day (maybe more in large environments),
you need a rational way to manage the alerts and to somehow investigate only the
important ones. The authors recommend that you use reporting, such as that in the
STRM, which can not only generate a report, but also allow you to drill down into that
report (all the way to the offending logs themselves). This way, you will not go blind
watching logs whiz by on the screen, but rather start from a high-level human-readable
report that summarizes the pertinent events. Typically, you will have lots of different
reports (e.g., worms, shellcode, server-to-client exploits, and more), but they will at
least provide a good starting point. Then you can drill down where necessary to identify
events that should be investigated in more detail.

Of course, simply logging and reporting all by itself probably does not provide every-
thing you need. Generally, you are going to want to layer your implementation to pro-
vide different functionality for different events. For instance, some attacks you want to
block when they occur, to protect the system’s infrastructure, and other attacks you
may not want to block, but you want to be notified when they occur. This can typically

456 | Chapter 8: Intrusion Prevention

be accomplished with logging plus action on the syslog server to generate an email, or
trap of some sort, to alert you that an event has occurred. (Be careful that you don’t
trigger a DoS yourself with too many alerts!) Next, you will have events that you don’t
want to block, and you don’t need to be alerted right when they happen, but they are
of interest (such as users running unauthorized games). This is where logging and re-
porting come in handy. You can review your logs at a later point to determine if further
action is required.

Troubleshooting IPS
The SRX has a wealth of facilities that you can use to gain lots of information about
IPS functionality and the security state of the inspection events for traffic that is passing
through the SRX. So, in addition to the security events of the SRX there are also trou-
bleshooting facilities to look at in the IPS policy commit process. In this section, we
have broken down troubleshooting into several sections with examples of the com-
mands, their output, and things to look for.

Checking IPS Status
First off, it is important to make sure the SRX is up and running with an active IPS
policy and that it is seeing traffic. If you don’t see the information, the SRX is not
inspecting traffic.

This first example shows the SRX without the IPS configured; the second example uses
an active configuration. Note that on top of these steps, you can also add flow debug-
ging to the list of things to examine. Although flow debugging won’t get into the gory
details of IPS debugging, it will give you a good idea of what is happening prior to IPS
processing.

Inactive IPS example, note Policy Name, No Detector Engine
root@SRX5800-1> show security idp status
node0:
--
State of IDP: 2-default, Up since: 1987-07-02 12:00:52 UTC (1179w6d 06:24 ago)

Packets/second: 0 Peak: 0 @ 1987-07-02 12:00:52 UTC
KBits/second : 0 Peak: 0 @ 1987-07-02 12:00:52 UTC
Latency (microseconds): [min: 0] [max: 0] [avg: 0]

Packet Statistics:
 [ICMP: 0] [TCP: 0] [UDP: 0] [Other: 0]

Flow Statistics:
 ICMP: [Current: 0] [Max: 0 @ 1987-07-02 12:00:52 UTC]
 TCP: [Current: 0] [Max: 0 @ 1987-07-02 12:00:52 UTC]
 UDP: [Current: 0] [Max: 0 @ 1987-07-02 12:00:52 UTC]
 Other: [Current: 0] [Max: 0 @ 1987-07-02 12:00:52 UTC]

Troubleshooting IPS | 457

Session Statistics:
 [ICMP: 0] [TCP: 0] [UDP: 0] [Other: 0]

Number of SSL Sessions : 0

 Policy Name : none

Forwarding process mode : maximizing sessions

Active IPS policy, note detector engine and active stats

Checking Security Package Version
It is important to keep track of the active IPS security update version and the detector
engine version. It’s easy to check, by simply issuing the following command:

{primary:node0}
root@SRX5800-1> show security idp security-package-version
node0:
--

 Attack database version:1621(Fri Mar 5 12:56:13 2010)
 Detector version :10.3.140100209
 Policy template version :1

IPS Attack Table
Viewing the list of attacks detected will not give you the specifics of the attacks, so it’s
very useful to view the numbers to give you a better idea of your environment. You can
also use modifiers to count or only match specific attacks, as shown here:

root@SRX5800-1> show security idp attack table
node0:
--
IDP attack statistics:

 Attack name #Hits
 TCP:OPTERR:NONSYN-MSS 9496
 TCP:AUDIT:S2C-OLD-ESTB 1923
 TCP:AUDIT:C2S-FUTURE-ACK 516
 HTTP:AUDIT:URL 120
 POP3:AUDIT:REQ-NESTED-REQUEST 83
 TCP:AUDIT:OPTIONS-UNNEGOT-TS 74
 POP3:AUDIT:REQ-INVALID-STATE 62
 IMAP:AUDIT:REQ-INVALID-STATE 56
 TCP:AUDIT:OLD-3WH-ACK 56
 TCP:AUDIT:S2C-FUTURE-ACK 40
 SMTP:AUDIT:REQ-NESTED-REQUEST 27
 APP:AI:PARTIAL-MATCH 19
 FTP:AUDIT:REQ-UNKNOWN-CMD 17
 PROTOCOLS:TRAFFIC:NOT-FTP 16
 HTTP:SQL:INJ:SQL-INJ-URL 15

458 | Chapter 8: Intrusion Prevention

 HTTP:SQL:INJ:CMD-CHAIN-1 14
 HTTP:SQL:INJ:CMD-IN-URL 14
 HTTP:SQL:INJ:CMD-CHAIN-2 10
 HTTP:REQERR:REQ-MALFORMED-URL 9
 HTTP:SQL:INJ:GENERIC 6
 HTTP:STC:SCRIPT:UNI-SHELLCODE 6
 CHAT:IRC:NICK 5
 HTTP:STC:ACTIVEX:UNCOMMON-AX 5
 CHAT:IRC:SRV-RESPONSE 4
 HTTP:STC:SCRIPT:UNICODE-SLED 4
 HTTP:EXT:METAFILE 3
 NNTP:AUDIT:NESTED-REQ 3
 HTTP:AUDIT:LENGTH-OVER-256 2
 HTTP:AUDIT:LENGTH-OVER-512 2
 HTTP:INFO:HTTPPOST-GETSTYLE 2
 HTTP:STC:STREAM:CONTENT-TYPE 2
 LPR:AUDIT:PORT 2
 POP3:EXT:DOT-WMF 2
 PROTOCOLS:PORT:FTP 2
 RTSP:EXPLOIT:INVALID-PORT 2
 VNC:SESSION 2
 CHAT:AUDIT:IRC-CMD 1
 CHAT:IRC:OVERFLOW:LINE 1
 FTP:CISCO-VPN-ACCESS 1
 FTP:OVERFLOW:LINE-TOO-LONG 1
 HTTP:AUDIT:LENGTH-OVER-1024 1
 HTTP:AUDIT:LENGTH-OVER-2048 1
 HTTP:AUDIT:LENGTH-OVER-4096 1

{primary:node0}
root@SRX5800-1> show security idp attack table | count
Count: 124 lines

{primary:node0}
root@SRX5800-1> show security idp attack table | match HTTP | match SQL
 HTTP:SQL:INJ:SQL-INJ-URL 15
 HTTP:SQL:INJ:CMD-CHAIN-1 14
 HTTP:SQL:INJ:CMD-IN-URL 14
 HTTP:SQL:INJ:CMD-CHAIN-2 10
 HTTP:SQL:INJ:GENERIC 6

Application Statistics
Just like the attack tables, it’s often helpful to the administrator to get a bird’s eye view
of the application distributions that the SRX is processing. Of course, other mechanisms
such as AppTrack can provide this detailed information as well. The following output
is but a snippet of the application lists (since they would be quite long to print here):

{primary:node0}
root@SRX5800-1> show security idp application-statistics
node0:
--
IDP applications:

Troubleshooting IPS | 459

 application type packet count
 ECHO 0
 DISCARD 0
 CHARGEN 0
 FTP 724
 SSH 0
 TELNET 108
 SMTP 4305
 DNS 23
 GOPHER 0
 FINGER 0
 HTTP 8016
 POP3 3634
 PORTMAPPER 1658
 IDENT 0
 SMB 518
 IMAP 5012
 REXEC 0
 RLOGIN 40

IPS Counters
Several IPS counters are valuable to examine when determining the status of the IPS,
the traffic that the IPS is processing, and the events that the IPS is taking. Several coun-
ters are worthwhile to examine, but we’ll focus on the flow output in this example:

{primary:node0}
root@SRX5800-1> show security idp counters ?
Possible completions:
 application-ddos Show the Application DDOS counters
 application-identification Show Application Identification counters
 dfa Show IDP DFA counters
 flow Show IDP Flow counters
 ips Show IPS counters
 log Show IDP Log counters
 node Show IDP counters on specific node
 packet Show IDP Packet counters
 policy-manager Show IDP Policy counters
 ssl-inspection Show SSL Inspection counters
 tcp-reassembler Show IDP Reassembler counters

{primary:node0}
root@SRX5800-1> show security idp counters flow node 0 | no-more
node0:
--
IDP counters:

 IDP counter type Value
 Fast-path packets 53655
 Slow-path packets 2289
 Session construction failed 0
 Session limit reached 0
 Memory limit reached 0

460 | Chapter 8: Intrusion Prevention

 Not a new session 0
 Invalide index at ageout 0
 Packet logging 0
 Busy packets 0
 Busy packet Errors 0
 Dropped queued packets (async mode) 0
 Reinjected packets (async mode) 0
 Policy cache hits 802
 Policy cache misses 1771
 Maximum flow hash collisions 0
 Flow hash collisions 0
 Gates added 0
 Gate matches 0
 Sessions deleted 2052
 Sessions aged-out 0
 Sessoins in-use while aged-out 0
 TCP flows marked dead on RST/FIN 1670
 Policy init failed 0
 Number of Sessions exceeds high mark 0
 Number of Sessions drops below low mark 0
 Memory of Sessions exceeds high mark 0
 Memory of Sessions drops below low mark 0
 Sessions constructed 2289
 SM Sessions ignored 1890
 SM Sessions interested 0
 SM Sessions not interested 0
 SM Sessions interest error 0
 Sessions destructed 2138
 SM Session Create 2289
 SM Packet Process 0
 SM Session close 0
 SM Client-to-server packets 0
 SM Server-to-client packets 0
 SM Client-to-server L7 bytes 13395204
 SM Server-to-client L7 bytes 25598889

IP Action Table
When a violation occurs (IPS or AppDDoS) the administrator has the option to perform
an action not only on that connection, but also on future connections depending on
configuration. This is known as IP Action, and you can view the contents of this table,
including using modifiers to select specific entries:

{primary:node0}
root@SRX5800-1>show security flow ip-action

Src-Addr Src-Port Dst-Addr Proto/Dst-Port Timeout(sec)
 16.0.80.0 0 0.0.0.0 0/0 598/600 0 close

 16.0.66.15 0 0.0.0.0 0/0 596/600 0 close

 16.0.74.17 0 0.0.0.0 0/0 595/600 0 close

 16.0.0.47 0 0.0.0.0 0/0 596/600 0 close

Troubleshooting IPS | 461

 16.0.80.56 0 0.0.0.0 0/0 596/600 0 close

 16.0.22.59 0 0.0.0.0 0/0 596/600 0 close

 16.0.78.76 0 0.0.0.0 0/0 598/600 0 close

From the output of the show security flow ip-table command you can determine if
a host has been shunned (source, destination, protocol, destination port) and the time-
out remaining in the maximum time. In this example, the shunned host shows a timeout
of 600 seconds which counts down. The entries remain in the table until they time out.

AppDDoS Useful Commands
AppDDoS is the next generation of protection against DDoS attacks. It has very pow-
erful functionality, but it is not a one-size-fits-all component, and you must tune it to
the appropriate thresholds of your environment. You can easily determine what the
appropriate thresholds should be for your environment by enabling AppDDoS protec-
tion without blocking traffic to determine a baseline threshold. The following com-
mands highlight different areas of importance:

{primary:node0}
root@SRX5800-1# show security idp application-ddos application http-url-parsed
node0:
--

Zone Server Application Conn/sec Context Contexts/tick
trust 172.31.100.60 http-url-parsed 2197/sec http-url-parsed 26179/60sec

The preceding output shows that our 172.31.100.60 web server is receiving 2,197 con-
nections per second, with 26,179 hits against the http-url-parsed context in a
60-second period. You can use these values to further tune your AppDDoS profile to
define the appropriate thresholds.

{primary:node0}
root@SRX5800-1# show security idp application-ddos application http-url-parsed
detail
node0:
--

 Zone: trust Server: 172.31.100.60 Application: http-url-parsed Connections/sec:
44/sec

Context: http-url-parsed Contexts/tick: 10423/60sec
 Value: 2f 69 6e 64 65 78 2e 68 74 6d 6c /index.html
 Context values/tick : 12/60sec

You can also get the output for individual values and thresholds, as shown in the fol-
lowing output, where the value is /index.html and it is hitting that 12 times every
60 seconds:

462 | Chapter 8: Intrusion Prevention

root@SRX5800-1# run show security idp counters application-ddos
node0:
--
IDP counters:

 IDP counter type Value
 App-DDOS inspected flows 1011519
 App-DDOS failed flows 0
 App-DDOS ignored flows 6121
 App-DDOS first path failed 0
 App-DDOS first path succeeded 1017640
 App-DDOS dropped packets 15452
 App-DDOS processed packets 2692028
 App-DDOS connection table process succeeded 1017611
 App-DDOS connection table process failed 0
 App-DDOS context process succeeded 221232
 App-DDOS context process failed 0
 App-DDOS ignore context 1
 App-DDOS context values excluded 0
 App-DDOS context value process succeeded 221232
 App-DDOS context value process failed 0
 App-DDOS context value prune failed 0
 App-DDOS no action 0
 App-DDOS drop connection action 0
 App-DDOS drop packet action 0
 App-DDOS close server action 15452
 App-DDOS IP Action notify 0
 App-DDOS IP Action rate-limit 0
 App-DDOS IP Action block 0
 App-DDOS IP Action close 15452
 App-DDOS logs sent 0

Here the output displays a high-level overview of the different activity and associated
actions that have taken place. This is useful output, particularly when troubleshooting,
to see if values are increasing.

Troubleshooting the Commit/Compilation Process
It is pretty rare to have the IPS compilation process fail. In most cases, it is just taking
a while to fully compile. The compilation process occurs in the control plane, and then
once it is complete, it pushes down to each flow SPU on the data plane. There are several
ways to troubleshoot the IPS compilation process.

The first thing to do is to check the IPS status to ensure that the IPS is running with an
active policy. If this does not show an active policy and detector engine, the compilation
process has not been completed. This can happen after a reboot, or when you are
applying an initial policy. It will just take some time to apply.

{primary:node0}
root@SRX5800-1> show security idp status
node0:
--
State of IDP: 2-default, Up since: 1987-07-02 12:00:51 UTC (1180w0d 02:06 ago)

Troubleshooting IPS | 463

Packets/second: 4 Peak: 196837 @ 1987-07-03 03:12:24 UTC
KBits/second : 1 Peak: 502775 @ 1987-07-03 03:12:29 UTC
Latency (microseconds): [min: 0] [max: 0] [avg: 0]

Packet Statistics:
 [ICMP: 13] [TCP: 64555645] [UDP: 16157404] [Other: 263]

Flow Statistics:
 ICMP: [Current: 0] [Max: 18 @ 1987-07-02 12:43:32 UTC]
 TCP: [Current: 238] [Max: 410084 @ 1987-07-03 03:11:57 UTC]
 UDP: [Current: 0] [Max: 174756 @ 1987-07-03 03:10:45 UTC]
 Other: [Current: 0] [Max: 4 @ 1987-07-02 12:40:55 UTC]

Session Statistics:
 [ICMP: 0] [TCP: 119] [UDP: 0] [Other: 2]

Number of SSL Sessions : 0

 Policy Name : Brad-IDP
 Running Detector Version : 10.3.140100209

Forwarding process mode : maximizing sessions

This output shows that there is an active policy and detector engine. If you are com-
mitting a new policy, this new policy may not have completed yet. If you wish, you can
apply a trace on the IPS process; this primarily traces the compilation process, but not
the actual IPS inspection. Here the trace file is given the name IDP-Debug, but it doesn’t
really matter what you call it:

{primary:node0}[edit]
root@SRX5800-1# set security idp traceoptions flag all

{primary:node0}[edit]
root@SRX5800-1# set security idp traceoptions level all

{primary:node0}[edit]
root@SRX5800-1# set security idp traceoptions file IDP-Debug

{primary:node0}[edit]
root@SRX5800-1# show security idp traceoptions
file IDP-Debug;
flag all;
level all;

{primary:node0}[edit]
root@SRX5800-1# commit
node0:
commit complete

Now that you have applied the trace, you can either manually view the file or “tail” the
logs to the terminal window using the monitor start command:

464 | Chapter 8: Intrusion Prevention

{primary:node0}
root@SRX5800-1> show log IDP-Debug
Feb 11 13:51:49 idpd_need_policy_compile:467 Active policy path
/var/db/idpd/sets/Brad-IDP.set
Feb 11 13:51:50 Active Policy (Brad-IDP) rule base configuration is changed
so need to recompile active policy
Feb 11 13:51:51 Compiling policy Brad-IDP....
Feb 11 13:51:51 Apply policy configuration, policy ops bitmask = 41
Feb 11 13:51:52 Starting policy(Brad-IDP) compile with compress dfa...

{primary:node0}
root@SRX5800-1> monitor start IDP-Debug

While this process is executing, you can check the process table to get a good idea if
the process is still running while you’re waiting for the compilation to complete. High
utilization on the IDPD process will indicate that the IDPD process is still compiling.

{primary:node0}
root@SRX5800-1> show system processes extensive
node0:
--
last pid: 4121; load averages: 0.99, 0.65, 0.30 up 0+19:23:25 13:55:36
132 processes: 5 running, 110 sleeping, 17 waiting

Mem: 361M Active, 128M Inact, 112M Wired, 297M Cache, 69M Buf, 1101M Free
Swap: 2048M Total, 2048M Free

 PID USERNAME THR PRI NICE SIZE RES STATE TIME WCPU COMMAND
 4111 root 1 130 0 219M 147M RUN 3:32 92.14% idpd
 1145 root 1 8 0 42528K 18288K nanslp 38:27 1.90% chassisd
 20 root 1 −68 −187 0K 12K RUN 4:35 0.15% irq10: em0 em1+++*
 13 root 1 −20 −139 0K 12K WAIT 2:46 0.05% swi7: clock sio
 11 root 1 171 52 0K 12K RUN 17.9H 0.00% idle
 1164 root 1 96 0 206M 148M select 19:35 0.00% idpd
 12 root 1 −40 −159 0K 12K WAIT 3:15 0.00% swi2: net
 1030 root 1 76 0 0K 12K 1:52 0.00% bcmLINK.0
 15 root 1 −16 0 0K 12K - 0:55 0.00% yarrow
 1313 root 1 4 0 0K 12K peer_s 0:52 0.00% peer proxy
 1163 root 1 96 0 72812K 17792K select 0:43 0.00% appidd
 1288 root 1 96 0 25192K 22028K select 0:28 0.00% snmpd

When you see the following information (either by manually showing the IDP log or
by using the monitor start command), the successful compilation has occurred. If you
used the monitor start command, you can issue the monitor stop command to stop
the tailing:

Feb 11 13:59:07 IDP policy[/var/db/idpd/bins/Brad-IDP.bin.gz.v] and
detector[/var/db/idpd/sec-repository/installed-detector/
libidp-detector.so.tgz.v] loaded successfully.

{primary:node0}
root@SRX5800-1> monitor stop

Troubleshooting IPS | 465

Case Study 8-1
There is a lot to be said for putting the theory of IPS into action in a production network.
The good news is that we will look at a few example policies that can be used to secure
an enterprise network against internal and external threats. In this case study, we will
examine the ability to provide protection under three different scenarios:

DMZ network
In the DMZ, several servers must be protected against attacks by clients, including
HTTP, HTTPS, FTP, SMTP, and DNS servers. We also want to make sure these
machines are not compromised and start to infect other machines in the network
or the Internet at large with spyware, worms, Trojan horses, and viruses. The DMZ
server can only talk outbound on HTTP and HTTPS for updates. All logs should
be taken in this example. Assume that the DMZ zone uses the interface Reth4.

Internal clients
We want to protect internal clients against attacks from malicious servers in the
wild. These hosts will only be allowed to communicate over HTTP, HTTPS, FTP,
IM, and out to the Internet; all other services are restricted by the firewall policy
itself. We also want to identify and block any hosts that are infected by spyware,
worms, Trojan horses, or viruses for two hours, along with setting the alert flag
in the logs. Assume that the Internal-Clients zone is composed of Dept-A and Dept-
B with interfaces Reth2 and Reth3, respectively.

Internal servers
Clients are permitted to access a wide variety of services on the internal servers.
Currently, your organization does not restrict services between internal clients and
servers, but it does wish to provide additional security. At this time, management
is hesitant to interfere with internal traffic, but they would like to provide visibility,
so you should just log the attacks at this point. The internal servers are allowed to
talk out to the Internet via HTTP and HTTPS for updates. Additionally, we want
to identify any servers which may be infected by spyware, worms, Trojan horses,
or viruses. Assume that the Internal-Servers zone uses interface Reth5.

For these examples, we will leverage the power of dynamic groups. The most significant
attacks will be located in the Critical, Major, and Minor severities. We will also use
category, direction, and performance filters as well to ensure that our policy is as specific
and lean as possible, while still providing serious coverage. Figure 8-8 shows an over-
view of the case study.

First, we will define our network elements, their zones, and the firewall policy which
will be used to pass the traffic to the IPS for inspection. We will assume that the NAT
has already been taken care of, since it will not change the objects in our policies.

[edit]
root@SRX5800# edit security zones security-zone DMZ

[edit security zones security-zone DMZ]

466 | Chapter 8: Intrusion Prevention

Figure 8-8. Case Study 8-1

Case Study 8-1 | 467

root@SRX5800# set address-book address DMZ-Server-172.31.100.0/24 172.31.100.0/24

[edit security zones security-zone DMZ]
root@SRX5800# set interfaces reth4

[edit security zones security-zone DMZ]
root@SRX5800# up

[edit security zones]
root@SRX5800# edit security-zone Dept-A

[edit security zones security-zone Dept-A]
root@SRX5800# set address-book address Dept-A-10.1.0.0/16 10.1.0.0/16

[edit security zones security-zone Dept-A]
root@SRX5800# set interfaces reth2

[edit security zones security-zone Dept-A]
root@SRX5800# up

[edit security zones]
root@SRX5800# edit security-zone Dept-B

[edit security zones security-zone Dept-B]
root@SRX5800# set address-book address Dept-B-10.2.0.0/16 10.2.0.0/16

[edit security zones security-zone Dept-B]
root@SRX5800# up

[edit security zones]
root@SRX5800# edit security-zone Internal-Servers

[edit security zones security-zone Internal-Servers]
root@SRX5800# set address-book address Internal-Servers-10.3.0.0/16 10.3.0.0/16

[edit security zones security-zone Internal-Servers]
root@SRX5800# set interfaces reth5

[edit security zones security-zone Internal-Servers]
root@SRX5800# up

[edit security zones]
root@SRX5800# show
security-zone DMZ {
 address-book {
 address DMZ-Server-172.31.100.0/24 172.31.100.0/24;
 }
 interfaces {
 reth4.0;
 }
}
security-zone Dept-A {
 address-book {
 address Dept-A-10.1.0.0/16 10.1.0.0/16;
 }

468 | Chapter 8: Intrusion Prevention

 interfaces {
 reth2.0;
 }
}
security-zone Dept-B {
 address-book {
 address Dept-B-10.2.0.0/16 10.2.0.0/16;
 }
}
security-zone Internal-Servers {
 address-book {
 address Internal-Servers-10.3.0.0/16 10.3.0.0/16;
 }
 interfaces {
 reth5.0;
 }
}

[edit security zones]
root@SRX5800# top

[edit]
root@SRX5800# set applications application-set DMZ-Services application
junos-http

[edit]
root@SRX5800# set applications application-set DMZ-Services application
junos-https

[edit]
root@SRX5800# set applications application-set DMZ-Services application
junos-ftp

[edit]
root@SRX5800# set applications application-set DMZ-Services application
junos-smtp

[edit]
root@SRX5800# set applications application-set DMZ-Services application
junos-dns-udp

[edit]
root@SRX5800# set applications application-set Allowed-Outbound application
junos-http

[edit]
root@SRX5800# set applications application-set Allowed-Outbound application
junos-https

[edit]
root@SRX5800# set applications application-set Allowed-Outbound application
junos-ftp

[edit]
root@SRX5800# set applications application-set Allowed-Outbound application

Case Study 8-1 | 469

junos-aol

[edit]
root@SRX5800# set applications application-set Allowed-Outbound application
junos-ymsg

[edit]
root@SRX5800# show applications
application-set DMZ-Services {
 application junos-http;
 application junos-https;
 application junos-ftp;
 application junos-smtp;
 application junos-dns-udp;
}
application-set Allowed-Outbound {
 application junos-http;
 application junos-https;
 application junos-ftp;
 application junos-aol;
 application junos-ymsg;
}

[edit]
root@SRX5800# edit security policies from-zone Dept-A to-zone DMZ

[edit security policies from-zone Dept-A to-zone DMZ]
root@SRX5800# set policy Dept-A-to-DMZ match source-address Dept-A-10.1.0.0/16
destination-address DMZ-Server-172.31.100.0/24 application DMZ-Services

[edit security policies from-zone Dept-A to-zone DMZ]
root@SRX5800# set policy Dept-A-to-DMZ then permit application-services idp

[edit security policies from-zone Dept-A to-zone DMZ]
root@SRX5800# set policy Dept-A-to-DMZ then log session-close

[edit security policies from-zone Dept-A to-zone DMZ]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone Dept-B to-zone DMZ

[edit security policies from-zone Dept-B to-zone DMZ]
root@SRX5800# set policy Dept-B-to-DMZ match source-address Dept-B-10.2.0.0/16
destination-address DMZ-Server-172.31.100.0/24 application DMZ-Services

[edit security policies from-zone Dept-B to-zone DMZ]
root@SRX5800# set policy Dept-B-to-DMZ then permit application-services idp

[edit security policies from-zone Dept-B to-zone DMZ]
root@SRX5800# set policy Dept-B-to-DMZ then log session-close

[edit security policies from-zone Dept-B to-zone DMZ]
root@SRX5800# up

470 | Chapter 8: Intrusion Prevention

[edit security policies]
root@SRX5800# edit from-zone Dept-A to-zone Internal-Servers

[edit security policies from-zone Dept-A to-zone Internal-Servers]
root@SRX5800# set policy Dept-A-to-Internal-Servers match source-address Dept-A-
10.1.0.0/16 destination-address Internal-Servers-10.3.0.0/16 application any

[edit security policies from-zone Dept-A to-zone Internal-Servers]
root@SRX5800# set policy Dept-A-to-Internal-Servers then permit application-
services idp

[edit security policies from-zone Dept-A to-zone Internal-Servers]
root@SRX5800# set policy Dept-A-to-Internal-Servers then log session-close

[edit security policies from-zone Dept-A to-zone Internal-Servers]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone Dept-B to-zone Internal-Servers

[edit security policies from-zone Dept-B to-zone Internal-Servers]
root@SRX5800# set policy Dept-B-to-Internal-Servers match source-address Dept-B-
10.2.0.0/16 destination-address Internal-Servers-10.3.0.0/16 application any

[edit security policies from-zone Dept-B to-zone Internal-Servers]
root@SRX5800# set policy Dept-B-to-Internal-Servers then permit application-
services idp

[edit security policies from-zone Dept-B to-zone Internal-Servers]
root@SRX5800# set policy Dept-B-to-Internal-Servers then log session-close

[edit security policies from-zone Dept-B to-zone Internal-Servers]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone untrust to-zone DMZ

[edit security policies from-zone untrust to-zone DMZ]
root@SRX5800# set policy untrust-to-DMZ match source-address any destination-
address DMZ-Server-172.31.100.0/24 application DMZ-Services

[edit security policies from-zone untrust to-zone DMZ]
root@SRX5800# set policy untrust-to-DMZ then permit application-services idp

[edit security policies from-zone untrust to-zone DMZ]
root@SRX5800# set policy untrust-to-DMZ then log session-close

[edit security policies from-zone untrust to-zone DMZ]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone Dept-A to-zone untrust

[edit security policies from-zone Dept-A to-zone untrust]
root@SRX5800# set policy Dept-A-to-untrust match source-address

Case Study 8-1 | 471

Dept-A-10.1.0.0/16 destination-address any application Allowed-Outbound

[edit security policies from-zone Dept-A to-zone untrust]
root@SRX5800# set policy Dept-A-to-untrust then permit application-services idp

[edit security policies from-zone Dept-A to-zone untrust]
root@SRX5800# set policy Dept-A-to-untrust then log session-close

[edit security policies from-zone Dept-A to-zone untrust]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone Dept-B to-zone untrust

[edit security policies from-zone Dept-B to-zone untrust]
root@SRX5800# set policy Dept-B-to-untrust match source-address
Dept-B-10.2.0.0/16 destination-address any application Allowed-Outbound

[edit security policies from-zone Dept-B to-zone untrust]
root@SRX5800# set policy Dept-B-to-untrust then permit application-services idp

[edit security policies from-zone Dept-B to-zone untrust]
root@SRX5800# set policy Dept-B-to-untrust then log session-close

[edit security policies from-zone Dept-B to-zone untrust]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone DMZ to-zone untrust

[edit security policies from-zone DMZ to-zone untrust]
root@SRX5800# set policy DMZ-to-untrust match source-address DMZ-Server-
172.31.100.0/24 destination-address any application [junos-http junos-https]

[edit security policies from-zone DMZ to-zone untrust]
root@SRX5800# set policy DMZ-to-untrust then permit application-services idp

[edit security policies from-zone DMZ to-zone untrust]
root@SRX5800# set policy DMZ-to-untrust then log session-close

[edit security policies from-zone DMZ to-zone untrust]
root@SRX5800# up

[edit security policies]
root@SRX5800# edit from-zone Internal-Servers to-zone untrust

[edit security policies from-zone Internal-Servers to-zone untrust]
root@SRX5800# set policy Internal-Servers-to-untrust match source-address
Internal-Servers-10.3.0.0/16 destination-address any application [junos-http
junos-https]

[edit security policies from-zone Internal-Servers to-zone untrust]
root@SRX5800# set policy Internal-Servers-to-untrust then permit application-
services idp

472 | Chapter 8: Intrusion Prevention

[edit security policies from-zone Internal-Servers to-zone untrust]
root@SRX5800# set policy Internal-Servers-to-untrust then log session-close

[edit security policies]
root@SRX5800# top

from-zone Dept-A to-zone DMZ {
 policy Dept-A-to-DMZ {
 match {
 source-address Dept-A-10.1.0.0/16;
 destination-address DMZ-Server-172.31.100.0/24;
 application DMZ-Services;
 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone Dept-B to-zone DMZ {
 policy Dept-B-to-DMZ {
 match {
 source-address Dept-B-10.2.0.0/16;
 destination-address DMZ-Server-172.31.100.0/24;
 application DMZ-Services;
 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone Dept-B to-zone Internal-Servers {
 policy Dept-B-to-Internal-Servers {
 match {
 source-address Dept-B-10.2.0.0/16;
 destination-address Internal-Servers-10.3.0.0/16;
 application any;
 }
 then {
 permit {
 application-services {
 idp;

Case Study 8-1 | 473

 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone Dept-A to-zone Internal-Servers {
 policy Dept-A-to-Internal-Servers {
 match {
 source-address Dept-A-10.1.0.0/16;
 destination-address Internal-Servers-10.3.0.0/16;
 application any;
 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone untrust to-zone DMZ {
 policy untrust-to-DMZ {
 match {
 source-address any;
 destination-address DMZ-Server-172.31.100.0/24;
 application DMZ-Services;
 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone Dept-A to-zone untrust {
 policy Dept-A-to-untrust {
 match {
 source-address Dept-A-10.1.0.0/16;
 destination-address any;
 application Allowed-Outbound;
 }
 then {
 permit {

474 | Chapter 8: Intrusion Prevention

 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone Dept-B to-zone untrust {
 policy Dept-B-to-untrust {
 match {
 source-address Dept-B-10.2.0.0/16;
 destination-address any;
 application Allowed-Outbound;
 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone DMZ to-zone untrust {
 policy DMZ-to-untrust {
 match {
 source-address DMZ-Server-172.31.100.0/24;
 destination-address any;
 application [junos-http junos-https];
 }
 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}
from-zone Internal-Servers to-zone untrust {
 policy Internal-Servers-to-untrust {
 match {
 source-address Internal-Servers-10.3.0.0/16;
 destination-address any;
 application [junos-http junos-https];
 }

Case Study 8-1 | 475

 then {
 permit {
 application-services {
 idp;
 }
 }
 log {
 session-close;
 }
 }
 }
}

Next, we will create the dynamic group objects that will be used for the IPS policy to
protect our infrastructure.

[edit]
root@SRX5800# edit security idp dynamic-attack-group Protect-DMZ
[edit security idp dynamic-attack-group Protect-DMZ]

[edit security idp dynamic-attack-group Protect-DMZ]
root@SRX5800# set filters category values [HTTP SSL SMTP DNS SHELLCODE
WORM TROJAN]

[edit security idp dynamic-attack-group Protect-DMZ]
root@SRX5800# set filters direction values client-to-server

[edit security idp dynamic-attack-group Protect-DMZ]
root@SRX5800# set filters severity values [critical major minor]

[edit security idp dynamic-attack-group Protect-DMZ]
root@SRX5800# set filters performance values [fast normal unknown]

[edit security idp dynamic-attack-group Protect-DMZ]
root@SRX5800# up

[edit security idp]
root@SRX5800# edit dynamic-attack-group Protect-Clients

[edit security idp dynamic-attack-group Protect-Clients]
root@SRX5800# set filters severity values [critical major minor]

[edit security idp dynamic-attack-group Protect-Clients]
root@SRX5800# set filters performance values [fast normal unknown]

[edit security idp dynamic-attack-group Protect-Clients]
root@SRX5800# set filters direction values server-to-client

[edit security idp dynamic-attack-group Protect-Clients]
root@SRX5800# set filters category values [HTTP SSL FTP CHAT SHELLCODE WORM
SPYWARE TROJAN VIRUS]

[edit security idp dynamic-attack-group Protect-Clients]
root@SRX5800# up

476 | Chapter 8: Intrusion Prevention

[edit security idp]
root@SRX5800# edit dynamic-attack-group Detect-Infection

[edit security idp dynamic-attack-group Detect-Infection]
root@SRX5800# set filters performance values [fast normal unknown]

[edit security idp dynamic-attack-group Detect-Infection]
root@SRX5800# set filters direction values client-to-server

[edit security idp dynamic-attack-group Detect-Infection]
root@SRX5800# set filters severity values [critical major minor]

[edit security idp dynamic-attack-group Detect-Infection]
root@SRX5800# set filters category values [WORM SPYWARE TROJAN VIRUS SHELLCODE]

[edit security idp dynamic-attack-group Detect-Infection]
root@SRX5800# up

[edit security idp dynamic-attack-group Detect-Infection]
root@SRX5800# up

[edit security idp]
root@SRX5800# edit dynamic-attack-group Protect-Servers

[edit security idp dynamic-attack-group Protect-Servers]
root@SRX5800# set filters severity values [critical major minor]

[edit security idp dynamic-attack-group Protect-Servers]
root@SRX5800# set filters performance values [fast normal unknown]

[edit security idp dynamic-attack-group Protect-Servers]
root@SRX5800# set filters direction values client-to-server

[edit security idp dynamic-attack-group Protect-Servers]
root@SRX5800# up

[edit security idp dynamic-attack-group Protect-Servers]
root@SRX5800# show | find dynamic-attack-group
dynamic-attack-group Protect-DMZ {
 filters {
 direction {
 values client-to-server;
 }
 severity {
 values [critical major minor];
 }
 performance {
 values [fast normal unknown];
 }
 category {
 values [HTTP SSL FTP SMTP DNS SHELLCODE WORM TROJAN];
 }
 }
}
dynamic-attack-group Protect-Clients {

Case Study 8-1 | 477

 filters {
 direction {
 values server-to-client;
 }
 severity {
 values [critical major minor];
 }
 performance {
 values [fast normal unknown];
 }
 category {
 values [HTTP SSL FTP CHAT SHELLCODE WORM SPYWARE TROJAN VIRUS];
 }
 }
}
dynamic-attack-group Detect-Infection {
 filters {
 direction {
 values client-to-server;
 }
 severity {
 values [critical major minor];
 }
 performance {
 values [fast normal unknown];
 }
 category {
 values [WORM SPYWARE TROJAN VIRUS SHELLCODE];
 }
 }
}
dynamic-attack-group Protect-Servers {
 filters {
 direction {
 values client-to-server;
 }
 severity {
 values [critical major minor];
 }
 performance {
 values [fast normal unknown];
 }
 }
}

Now that we have defined all of the objects, firewall policy, and IPS attack groups, we
will finally define the actual IPS policy to take everything into account in the objectives
and put it into place.

[edit security idp]
root@SRX5800# edit idp-policy IDP rulebase-ips rule Protect-DMZ

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ]
root@SRX5800# set match from-zone untrust to-zone DMZ source-address any
destination-address DMZ-Server-172.31.100.0/24 application default attacks

478 | Chapter 8: Intrusion Prevention

dynamic-attack-groups Protect-DMZ

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ]
root@SRX5800# set then action drop-connection

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ]
root@SRX5800# set then notification log-attacks

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips]
root@SRX5800# edit rule Protect-Clients-Dept-A

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-A]
root@SRX5800# set match from-zone Dept-A to-zone untrust source-address Dept-A-
10.1.0.0/16 destination-address any application default attacks dynamic-attack-
groups [Protect-Clients Detect-Infection]

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-A]
root@SRX5800# set then action drop-connection

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-A]
root@SRX5800# set then notification log-attacks alert

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-A]
root@SRX5800# set then ip-action ip-block target source-address timeout 7200 log

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-A]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips]
root@SRX5800# edit rule Protect-Clients-Dept-B

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-B]
root@SRX5800# set match from-zone Dept-B to-zone untrust source-address Dept-B-
10.2.0.0/16 destination-address any application default attacks dynamic-attack-
groups [Protect-Clients Detect-Infection]

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-B]
root@SRX5800# set then action drop-connection

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-B]
root@SRX5800# set then ip-action ip-block target source-address log timeout 7200

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-B]
root@SRX5800# set then notification log-attacks alert

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-B]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips rule Protect-Clients-Dept-B]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips]

Case Study 8-1 | 479

root@SRX5800# edit rule Protect-DMZ-Outbound

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ-Outbound]
root@SRX5800# set match from-zone DMZ to-zone untrust source-address DMZ-Server-
172.31.100.0/24 destination-address any application default attacks
dynamic-attack-groups [Protect-Clients Detect-Infection]

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ-Outbound]
root@SRX5800# set then action drop-connection

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ-Outbound]
root@SRX5800# set then ip-action ip-block target source-address log timeout 7200

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ-Outbound]
root@SRX5800# set then notification log-attacks alert

[edit security idp idp-policy IDP rulebase-ips rule Protect-DMZ-Outbound]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips]
root@SRX5800# edit rule Protect-Servers-Outbound

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers-Outbound]
root@SRX5800# set match from-zone Internal-Servers to-zone untrust
source-address Internal-Servers-10.3.0.0/16 destination-address any application
default attacks dynamic-attack-groups [Protect-Clients Detect-Infection]

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers-Outbound]
root@SRX5800# set then action drop-connection

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers-Outbound]
root@SRX5800# set then ip-action ip-block target source-address log timeout 7200

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers-Outbound]
root@SRX5800# set then notification log-attacks alert

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers-Outbound]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers-Outbound]
root@SRX5800# up

[edit security idp idp-policy IDP rulebase-ips]
root@SRX5800# edit rule Protect-Servers

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers]
root@SRX5800# set match from-zone any to-zone Internal-Servers source-address
any destination-address Internal-Servers-10.3.0.0/16 application default attacks
dynamic-attack-groups Protect-Servers

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers]
root@SRX5800# set then action no-action

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers]
root@SRX5800# set then notification log-attacks

480 | Chapter 8: Intrusion Prevention

[edit security idp idp-policy IDP rulebase-ips rule Protect-Servers]
root@SRX5800# up 3

[edit security idp]
root@SRX5800# set active-policy IDP

[edit security idp]
root@SRX5800# show idp-policy IDP
rulebase-ips {
 rule Custom {
 match {
 source-address any;
 destination-address any;
 attacks {
 custom-attacks [Block-Facebook Compound-Attack];
 }
 }
 then {
 action {
 drop-connection;
 }
 }
 }
 rule Protect-DMZ {
 match {
 from-zone untrust;
 source-address any;
 to-zone DMZ;
 destination-address [edit security idp dynamic-attack-group Detect-
Infection DMZ-Server-172.31.100.0/24];
 application default;
 attacks {
 dynamic-attack-groups Protect-DMZ;
 }
 }
 then {
 action {
 drop-connection;
 }
 notification {
 log-attacks;
 }
 }
 }
 rule Protect-Clients-Dept-A {
 match {
 from-zone Dept-A;
 source-address Dept-A-10.1.0.0/16;
 to-zone untrust;
 destination-address any;
 application default;
 attacks {
 dynamic-attack-groups [Protect-Clients Detect-Infection];
 }

Case Study 8-1 | 481

 }
 then {
 action {
 drop-connection;
 }
 ip-action {
 ip-block;
 target source-address;
 log;
 timeout 7200;
 }
 notification {
 log-attacks {
 alert;
 }
 }
 }
 }
 rule Protect-Clients-Dept-B {
 match {
 from-zone Dept-B;
 source-address Dept-B-10.2.0.0/16;
 to-zone untrust;
 destination-address any;
 application default;
 attacks {
 dynamic-attack-groups [Protect-Clients Detect-Infection];
 }
 }
 then {
 action {
 drop-connection;
 }
 ip-action {
 ip-block;
 target source-address;
 log;
 timeout 7200;
 }
 notification {
 log-attacks {
 alert;
 }
 }
 }
 }
 rule Protect-DMZ-Outbound {
 match {
 from-zone DMZ;
 source-address DMZ-Server-172.31.100.0/24;
 to-zone untrust;
 destination-address any;
 application default;
 attacks {
 dynamic-attack-groups [Protect-Clients Detect-Infection];

482 | Chapter 8: Intrusion Prevention

 }
 }
 then {
 action {
 drop-connection;
 }
 ip-action {
 ip-block;
 target source-address;
 log;
 timeout 7200;
 }
 notification {
 log-attacks {
 alert;
 }
 }
 }
 }
 rule Protect-Servers-Outbound {
 match {
 from-zone Internal-Servers;
 source-address Internal-Servers-10.3.0.0/16;
 to-zone untrust;
 destination-address any;
 application default;
 attacks {
 dynamic-attack-groups [Protect-Clients Detect-Infection];
 }
 }
 then {
 action {
 drop-connection;
 }
 ip-action {
 ip-block;
 target source-address;
 log;
 timeout 7200;
 }
 notification {
 log-attacks {
 alert;
 }
 }
 }
 }
 rule Protect-Servers {
 match {
 from-zone any;
 source-address any;
 to-zone Internal-Servers;
 destination-address Internal-Servers-10.3.0.0/16;
 application default;
 attacks {

Case Study 8-1 | 483

 dynamic-attack-groups Protect-Servers;
 }
 }
 then {
 action {
 no-action;
 }
 notification {
 log-attacks;
 }
 }
 }
}

[edit security idp]
root@SRX5800# show active-policy
active-policy IDP;

[edit security idp]
root@SRX5800# top

[edit]
root@SRX5800# commit

Summary
Although access lists and stateful firewalls were adequate protection for the early threats
of the Internet, today’s threats require much more vigilance. The IPS that the SRX offers
is but a piece of the protection that the threats in the wild today call for. The SRX
provides comprehensive IPS protection—not just a subset, but a full implementation
of IPS features to provide security for the servers and for the clients of the enterprise.
Traditionally, full IPS functionality required completely separate server class devices in
addition to dedicated firewalls to provide adequate protection. As threats have ad-
vanced over time, so have the protection capabilities offered by the industry; most
notably Juniper. Juniper has provided a long lineage of IPS products, from the stand-
alone IDP, to the ISG with security module blades, to the latest SRX Series, all of which
have integrated IPS. As an administrator today, you have many more cost-effective
options for securing your network, and one of the most powerful tools at your disposal
is the SRX Gateway.

Chapter Review Questions
1. What is the difference between full IPS and deep inspection/IPS lite?

2. How can the attack object updates be downloaded, and what is the difference
between standard and “full” updates?

3. What is the difference between signature-based attack objects and protocol anom-
aly detection?

484 | Chapter 8: Intrusion Prevention

4. What is the difference between an actual exploit and shellcode?

5. What is the difference between client-to-server and server-to-client attacks?

6. What is SSL decryption and how does it work?

7. How is AppDDoS different from IPS and screens?

8. What is the difference between static and dynamic attack groups?

9. Can you create custom protocol anomaly objects?

10. Describe a chain (compound) attack object.

Chapter Review Answers
1. Full IPS provides a much more complete inspection capability than deep inspec-

tion/IPS lite. This includes much more in the way of protocol inspection, decoding,
application identification, and anomaly-based detection. Deep inspection is typi-
cally a small subset of IPS capabilities.

2. The standard update only provides the attack database itself, while the full update
will provide the attack database and the detector engine. You can schedule
standard updates as part of the configuration, along with being able to manually
trigger an update.

3. Signature-based attack objects use detection based on stateful signatures and reg-
ular expressions, while protocol anomaly-based attack objects are coded into the
detector engine to detect anomalous behavior, but this is not strictly a predefined
regular expression pattern; rather, it is more intelligent detection.

4. An exploit is a piece of code which gains control over a victim machine, typically
by assuming control over the execution of that program. Shellcode takes the attack
a step further to perform some actions after the system execution has been
commandeered.

5. Client-to-server attacks are attacks that are generated from the client which is at-
tacking the server of the connection. Server-to-client attacks are those in which the
server attacks the client that made the connection to the server.

6. SSL decryption is a feature of the high-end SRX (at the time of this writing) and
provides organizations the ability to inspect SSL encrypted sessions with IPS. The
SRX must have the private key for the web server installed, and will use that to
decrypt the SSL flows to inspect them before passing the traffic on.

7. AppDDoS is a technology (supported on the high-end SRX at the time of this writ-
ing) which looks at the big picture of sessions across the different flows on the
platform to determine if an attack is taking place, and then what to do about it.
Unlike IPS, which is looking for specific patterns or anomalous behavior, AppD-
DoS attacks are typically meant to tie up resources making lots of valid requests.
Screens, on the other hand, deal with lower-level (Layers 3 and 4) anomalies which
might occur in the packet processing. These are typically dealt with in the NPU or

Chapter Review Answers | 485

in the SPU. AppDDoS functions in the SPU and inspects the higher Layer 7 aspects
of the flows. AppDDoS, screens, and IPS can all go hand in hand to provide max-
imum security.

8. Static groups are groups which you add members into manually, and the groups’
membership will not be changed during updates. Dynamic attack groups are spe-
cifically set up to define filters that define the criteria regarding which attack objects
to add into the group.

9. You cannot define the protocol anomaly code itself, since that must be handled by
the Juniper Security Team. However, you can create your own attack objects which
are composed of protocol anomaly conditions.

10. Chain attack objects, sometimes referred to as compound attack objects, are used
to define multiple criteria for detecting attacks. This is done by first defining the
member attack objects (which can be signature and attack objects), and then de-
fining how they fit together to match the overall attack object. You can do this
using a Boolean expression and ordered pattern matching.

486 | Chapter 8: Intrusion Prevention

CHAPTER 9

Unified Threat Management

Unified Threat Management (UTM) is a set of features designed to provide application-
layer inspection of traffic as it traverses a network. Similar to Intrusion Detection and
Prevention (IDP), security devices that support UTM features decode and inspect
upper-layer protocols to detect malicious, or simply disallowed, traffic.

In fact, the IDP feature is often considered part of the UTM feature set. It is only a
matter of convention, but as far as Juniper Networks goes, the UTM and IDP features
are considered to be independent. At the time of this writing, the UTM feature set is
only supported on branch SRX Series gateways.

This chapter explores the UTM features in the SRX, how to identify those features, and
how to configure and use them in your own network.

What Is UTM?
So, what features are found on the SRX under the UTM umbrella? Well, the simple
answer is anything, apart from IDP, that requires Layer 7 inspection. This includes
antivirus, web filtering, content filtering, and antispam.

There is a common trade-off between how detailed the traffic analysis is and how much
traffic can be processed. A firewall that protects thousands of hosts inherently has less
capacity than the cumulative processing power of all the hosts behind it. When the
number of hosts to protect is large, this trade-off would seem to suggest that the ideal
place to do the inspection is at the hosts.

However, host-based security suffers from severe limitations in management—it’s hard
to keep all systems updated with the latest patterns and engines. Also, some features,
such as web filtering, require large databases that are best maintained centrally.

So, obviously, the idea is to divide the labor to allow large networks to work in a co-
operative way. CPU-intensive tasks such as antivirus scanning are distributed across
the network, but to mitigate management problems such as patch updates, centralized
security gateways can be used to look for the latest in-the-wild attacks.

487

And last but not least, whenever there is an imminent threat, security administrators
can focus solely on a few devices capable of stopping the latest attacks, so perimeter
security devices are commonly kept up-to-date with daily or hourly security patches.
These frequent updates, and the fact that the devices are always on, make them espe-
cially attractive for performing UTM functions.

All of these factors leverage a common infrastructure built on top of the traditional
firewall session table, and a component called the session manager allows applications
(here referring to the UTM applications themselves, such as the antivirus module) to
register interest in a session. As part of the slow path, sessions are marked by one (or
more) UTM applications to be processed and the packets from such sessions are sent
to the interested applications, which determine if the traffic is allowed.

Whenever an SRX UTM application detects some harmful traffic, it has several options:

• Drop the packet.

• Notify the session manager to silently drop the session.

• Close the session.

• Send a reset.

• In some cases, applications can also embed messages to be sent to users to notify
them of problems.

Although this is a very simplistic UTM overview, it already hints at some of the infra-
structure required for applications to perform their jobs. Since notification messages
must be sent to the users (think about web filtering: if a particular URL is deemed
harmful or against policy, users must be notified that access to that site is not allowed),
all traffic must be sent through a transparent proxy, which, as we shall see, further
defines how a UTM policy works.

Application Proxy
Security policies are used to associate traffic to a UTM policy. UTM policies are profiles
used to store all the configuration options for the different features in the UTM feature
set. Once a security policy specifies a UTM policy, a transparent proxy processes all
matching traffic and, in the case of this book’s SRX devices, modifies the contents of
the traffic or generate error messages back to the user.

To proxy a session, an SRX device acts both as a TCP client and as a server terminating
and originating a TCP session. This uses significant resources, in terms of both memory
and CPU, which puts some constraints on the total number of sessions an SRX can
proxy (and, in turn, the total number of concurrent sessions using UTM features).

The TCP proxy code feeds a data stream to the protocol parser which, in turn, can
decode the protocols supported by UTM, namely FTP, HTTP, SMTP, POP3, and
IMAP. The protocol parser extracts the relevant content from each protocol and sends
it to the appropriate engine for processing, all of which is depicted in Figure 9-1.

488 | Chapter 9: Unified Threat Management

Web Filtering
The SRX web filtering feature, available as part of the UTM feature set, provides a way
to control access to websites based on user-defined policies.

For web filtering to be possible, all sites available on the Internet are categorized and a
database is created containing the list of all known sites (identified by the site’s URLs)
and their categories. Juniper has partnered with Websense to provide the category
database. Depending on the requirements, two different methods are supported:

• The SurfControl integrated method (note that SurfControl is now part of Web-
sense, but for historic reasons, it is still referred to as the SurfControl solution)

• The Websense redirect method

Both methods provide a way for users to specify a list of site categories that are allowed
or denied. The main difference between them concerns where the site’s database is
located, and where the policies are stored and evaluated.

The SurfControl integrated solution (see Figure 9-2) uses a server hosted and updated
by SurfControl that stores the category database. When enabled, the SRX extracts the
URL from HTTP messages and queries over the Internet the SurfControl server to
determine the site’s category. Once a category is obtained, the SRX uses this informa-
tion to determine if the site is allowed (in this case, the site database is hosted over the
Internet and the SRX evaluates the policy).

The Websense redirect solution takes a different approach, which uses a Websense
server hosted locally, storing the site’s database and web filtering policies. When an
HTTP request is received, the SRX forwards the request to the local Websense server,
as shown in Figure 9-3, which determines if the request is allowed.

Because the SRX only forwards the request to a Websense server owned and maintained
by the user, no license is required to use this mode (as opposed to the SurfControl
integrated mode that does require a license).

Figure 9-1. How SRX proxies a session

What Is UTM? | 489

Configuring web filtering using SurfControl

Let’s get our hands dirty and configure web filtering in one of our branch offices, in
order to see how things truly work.

First, clients must be allowed in the Trust zone to have Internet access (which requires
Network Address Translation [NAT] and a security policy allowing the Trust→Untrust
traffic), so a basic configuration would look something like this:

nat {
 source {
 rule-set internet {
 from zone trust;
 to zone untrust;
 rule nat-all {
 match {
 source-address 0.0.0.0/0;
 destination-address 0.0.0.0/0;
 }

Figure 9-2. SurfControl integrated web filtering

Figure 9-3. Websense redirect web filtering

490 | Chapter 9: Unified Threat Management

 then {
 source-nat {
 interface;
 }
 }
 }
 }
 }
}
zones {
 security-zone trust {
 interfaces {
 ge-0/0/1.0;
 }
 }
 security-zone untrust {
 interfaces {
 ge-0/0/0.0;
 }
 }
}

Now our web filtering task force has decided that network users in the Trust zone of
our small branch office should not have access to gambling sites. So, let’s create a UTM
policy with web filtering enabled that is used to block access to gambling sites:

[edit security utm feature-profile web-filtering]
set surf-control-integrated profile no-gamblig category Gambling action block
set surf-control-integrated profile no-gamblig default permit

[edit security utm]
set utm-policy wf-only web-filtering http-profile no-gambling

From the configuration, we can see that our UTM policy, named wf-only, points to a
web filtering profile (named no-gambling). This profile contains the list of both allowed
and blocked categories. The default category action is used to determine what to do
when either the action for a category has not been explicitly configured, or the category
of a URL is unknown (this happens whenever the SurfControl database has no category
information for such URL).

To enable the newly created UTM policy, use security policies to select the traffic that
uses the wf-only policy:

[security policies]
set from-zone trust to-zone untrust policy utm-wf-policy match source-address any
set from-zone trust to-zone untrust policy utm-wf-policy match
destination-address any
set from-zone trust to-zone untrust policy utm-wf-policy match application
junos-http
set from-zone trust to-zone untrust policy utm-wf-policy then permit
application-services utm-policy wf-only

What Is UTM? | 491

This might seem a bit convoluted at first, but the underlying assumption is that it is
better to create profiles that can be referenced multiple times (i.e., by multiple policies)
so that configuration changes can be done in a single place.

That’s why in the SRX a security policy points to a UTM policy, which in turn specifies
a feature profile to use for each protocol supported by UTM (and for each supported
feature), as shown in Figure 9-4.

Figure 9-4. UTM policy evaluation

With our sample configuration, a user trying to access a gambling site is denied access
and is shown a page with some default message, such as “Corporation XYZ Web Fil-
tering has been set to block this site.”

But suppose that our small branch office issues a large amount of traffic early in the
mornings, most of it to only a few sites. Wouldn’t it be better to maintain a local da-
tabase holding the results from the latest queries, to reduce the latencies associated
with querying the SurfControl server?

We can do this by enabling caching. The cache size determines the number of URIs to
keep in memory, while the timeout specifies the maximum time (in seconds) after which
a record is removed, as shown in this sample configuration:

[edit security utm feature-profile web-filtering]
set surf-control-integrated cache timeout 600
set surf-control-integrated cache size 1000000

Now that we looked at some of the configuration options, here is the inside scoop.
Some users do not need such granular control over the categories and sites that are
allowed or blocked. After all, we can all guess which categories should be allowed or
blocked. Instead of doing a lengthy configuration, we can simply use the junos-wf-cpa-
default profile:

[edit security utm]
set utm-policy wf-only web-filtering http-profile junos-wf-cpa-default

For those of you who are interested, Table 9-1 lists the allowed/denied categories in
the default profile.

492 | Chapter 9: Unified Threat Management

Table 9-1. Allowed/denied categories in the default profile

Category Action

Adult_Sexually_Explicit Block

Advertisements Block

Arts_Entertainment Permit

Chat Permit

Computing_Internet Permit

Criminal_Skills Block

Drugs_Alcohol_Tobacco Block

Education Permit

Finance_Investment Permit

Food_Drink Permit

Gambling Block

Games Block

Glamour_Intimate_Apparel Permit

Government_Politics Permit

Hacking Block

Hate_Speech Block

Health_Medicine Permit

Hobbies_Recreation Permit

Hosting_Sites Permit

Job_Search_Career_Development Permit

Kids_Site Permit

Lifestyle_Culture Permit

Motor_Vehicles Permit

News Permit

Personals_Dating Block

Photo_Searches Permit

Real_Estate Permit

Reference Permit

Religion Permit

Remote_Proxies Block

Sex_Education Block

Search_Engines Permit

Shopping Permit

Sports Permit

What Is UTM? | 493

Category Action

Streaming_Media Permit

Travel Permit

Usenet_News Permit

Violence Block

Weapons Block

Web_based_Email Permit

It’s odd that the Sex_Education category is blocked but the Glamour_Intimate_Apparel
category is permitted.

Configuring web filtering using Websense redirect

Let’s try the previous configuration using the Websense redirect feature. Remember
that the Websense server manages the list of allowed categories, so the web filtering
profile must only specify the address of the server and port.

Please refer to the Websense documentation for configuration examples
on how to set up the server.

Note that the SRX configuration uses a web filtering feature profile that requires setting
the web filtering type to websense-redirect. The configuration of the web filtering type
was not required when using the SurfControl integrated engine, as it is the default
option.

[edit security utm]
set feature-profile web-filtering type websense-redirect
set feature-profile web-filtering websense-redirect profile ws-server1
server host 10.155.206.13
set feature-profile web-filtering websense-redirect profile ws-server1
server port 15868
set utm-policy utm-wf-websense web-filtering http-profile ws-server1

Of course, the UTM policy is applied to a security policy, just like in our previous
example:

[edit security policies]
set security from-zone trust to-zone untrust policy utm-wf-policy match
source-address any
set security from-zone trust to-zone untrust policy utm-wf-policy match
destination-address any
set security from-zone trust to-zone untrust policy utm-wf-policy match
application any
set security from-zone trust to-zone untrust policy utm-wf-policy
then permit application-services utm-policy utm-wf-websense

494 | Chapter 9: Unified Threat Management

With each profile, it is also possible to specify an account that the Websense server will
use to determine which web filtering policy to use. When configured, the account is
passed on to the server with every HTTP request. This can be useful when creating
multiple security policies that require different web filtering policies.

Let’s go just a little further and consider the case where traffic from the Trust to Untrust
zones requires blocking access to hacking sites, but traffic from the Engineering zone
to the Untrust zone should not (so that the IT team can learn about the latest exploits).
This requires two web filtering profiles, each passing a different account that the server
uses to choose the appropriate filtering policy. Here is the first web filtering profile:

[edit security utm]
set feature-profile web-filtering type websense-redirect
set feature-profile web-filtering websense-redirect profile ws-engineering
server host 10.155.206.13
set feature-profile web-filtering websense-redirect profile ws-engineering
server port 15868
set feature-profile web-filtering websense-redirect profile ws-engineering
account engineering
set feature-profile web-filtering websense-redirect profile ws-trust
server host 10.155.206.13
set feature-profile web-filtering websense-redirect profile ws-trust
server port 15868
set feature-profile web-filtering websense-redirect profile ws-trust
account trust
set utm-policy utm-wf-websense-engineering web-filtering http-profile
ws-engineering
set utm-policy utm-wf-websense-trust web-filtering http-profile ws-trust

And here is the second one:

[edit security policies]
set from-zone trust to-zone untrust policy utm-wf-policy match source-address any
set from-zone trust to-zone untrust policy utm-wf-policy match
destination-address any
set from-zone trust to-zone untrust policy utm-wf-policy match
application junos-http
set from-zone trust to-zone untrust policy utm-wf-policy then
permit application-services utm-policy utm-wf-websense-trust
set from-zone engineering to-zone untrust policy utm-wf-policy-eng match
source-address any
set from-zone engineering to-zone untrust policy utm-wf-policy-eng match
destination-address any
set from-zone engineering to-zone untrust policy utm-wf-policy-eng match
application junos-http
set from-zone engineering to-zone untrust policy utm-wf-policy-eng then
permit application-services utm-policy utm-wf-websense-engineering

Since multiple HTTP requests can arrive simultaneously, the requests are automatically
load-balanced between the different sockets, so, naturally, there is a trade-off between
the load that each SRX can create to a Websense server and the maximum number of
requests that can be resolved in parallel. In most cases, the default configuration is
adequate, but it’s possible to limit the maximum number of simultaneous connections

What Is UTM? | 495

an SRX can create for a given profile by changing the sockets option (between one and
eight connections are supported):

[edit security utm feature-profile web-filtering]
set profile ws-trust server host 10.155.206.13
set profile ws-trust server port 15868
set profile ws-trust sockets 4
set profile ws-trust account trust

Creating custom category lists

It is often useful to control access to some internal servers that are not accessible to the
categorization engines, or to explicitly allow or deny access to a particular URL. Custom
category lists provide this functionality on the SRX, and since these lists take precedence
over classification servers, it is possible to overwrite the categorization that they per-
form. When an HTTP request is received, the custom category lists are checked, and
if a match is found, the traffic is allowed or denied based on the configuration, without
the need to query the web filtering servers.

The first thing to configure is a URL pattern, consisting of one or more URLs. The
wildcard character (*) is supported (meaning one or more characters of any type) at the
beginning of the site name, and it must be followed by a period (.). The question mark
character (?), which matches any single character, is only supported after the last “.”
in the URL.

Since we are dealing with URLs, the http:// prefix is required. As an example, the fol-
lowing patterns are correctly expanded:

http://www.juniper.net/
http://*.juniper.net
http://www.juniper.???
http://www.juniper.ne?
http://*.juniper.???

These patterns are not:

http://ww*.juniper.net
http://???.juniper.net
http://www.*.net
http://www.juniper.*
http://???.???.???

Creating a URL list is quite simple. Just add the list of URL patterns as shown here:

[edit security utm custom-objects]
set url-pattern allowed-urls value http://www.thenewnetworkishere.com
set url-pattern allowed-urls value http://www.netscreen.com
set url-pattern blocked-urls value
http://www.thenewnetworkishere.com/us/en/new_network/
set url-pattern blocked-urls value "http://???.netscreen.com"

496 | Chapter 9: Unified Threat Management

Once the URL lists are created, you can create custom categories consisting of one (or
more) URL list(s). The custom categories are used to create whitelists and blacklists to
allow or deny access to matching URLs, regardless of the web filtering engine used (e.g.,
SurfControl integrated or Websense redirect). Blacklists are evaluated first, and there-
fore they take precedence over whitelists (and server processing). The evaluation order
of whitelists and blacklists is shown more explicitly in Figure 9-5.

Figure 9-5. Web filtering evaluation order

Let’s use the newly create URL lists to create new categories to be used for blacklists
and whitelists:

[edit security utm custom-objects]
set custom-url-category good-sites value allowed-urls
set custom-url-category bad-sites value blocked-urls

[edit security utm feature-profile]
set web-filtering url-whitelist good-sites
set web-filtering url-blacklist bad-sites

Here, access to http://www.thenewnetworkishere.com/us/en/new_network/ is allowed
because the URL belongs to the whitelist, whereas access to any other URL in the http:
//www.thenewnetworkishere.com domain is denied. But if you try to access http://www
.netscreen.com, you’ll find that access is allowed even though the blacklist contains the
http://???.netscreen.com pattern. Why is that? Aren’t blacklists supposed to have priority
over whitelists?

A closer look at the configuration reveals the problem. The http://???.netscreen.com
URL, although valid, will not be treated as a wildcard pattern because the “?” wildcard

What Is UTM? | 497

http://www.thenewnetworkishere.com/us/en/new_network/
http://www.thenewnetworkishere.com
http://www.thenewnetworkishere.com
http://www.netscreen.com
http://www.netscreen.com

is only allowed after the last “.” (thus, it will only match a request to
http://???.netscreen.com, and not to, say, http://www.netscreen.com).

Using local classification only

I mentioned that the SurfControl integrated and Websense redirect solutions have some
added costs associated with them: the SurfControl integrated solution requires a li-
cense, and Websense redirect can only be used with an external Websense server (which
requires purchase of the Websense software).

For networks that only need local classification using blacklists and whitelists, a local
engine on the SRX that does not require any license is provided. The configuration is
the same as for the other two engine types, but only custom categories on URL lists are
supported. We can redo our previous configuration, this time using the local engine:

[edit security utm]
set custom-objects url-pattern allowed-urls value
http://www.thenewnetworkishere.com
set custom-objects url-pattern allowed-urls value http://www.netscreen.com
set custom-objects url-pattern blocked-urls value
http://www.thenewnetworkishere.com/us/en/new_network/
set custom-objects url-pattern blocked-urls value "http://???.netscreen.com"
set custom-objects custom-url-category good-sites value allowed-urls
set custom-objects custom-url-category bad-sites value blocked-urls
set feature-profile web-filtering url-whitelist good-sites
set feature-profile web-filtering url-blacklist bad-sites
set feature-profile web-filtering type juniper-local
set feature-profile web-filtering juniper-local profile local-engine
default permit
set utm-policy utm-wf-local web-filtering http-profile local-engine

[edit security policy]
set from-zone trust to-zone untrust policy utm-wf-policy match source-address any
set from-zone trust to-zone untrust policy utm-wf-policy match
destination-address any
set from-zone trust to-zone untrust policy utm-wf-policy match
application junos-http
set from-zone trust to-zone untrust policy utm-wf-policy then
permit application-services utm-policy utm-wf-websense-trust

Antivirus
Building on the same SRX infrastructure as web filtering, the antivirus engine can proxy
all connections, decode and extract files from the upper-layer protocols, and scan the
extracted files for viruses. Once a file is detected, it is stored in memory and passed on
to the scanning engine.

Three different scanning engines are supported:

• The Kaspersky full antivirus engine

• The Juniper Express engine

498 | Chapter 9: Unified Threat Management

http://www.netscreen.com

• The Sophos in-the-cloud engine

Each has its own set of advantages and trade-offs which you should try to match to the
demands and needs of your network. Let’s get started with the Kaspersky antivirus
engine.

Kaspersky full antivirus

The Kaspersky full antivirus database and engine provide the most comprehensive
solution to scanning for viruses, for at the time of this writing, half a million records
were included in the database. The engine is also capable of using some heuristics
methods to detect polymorphic and metamorphic viruses (viruses that constantly
change their code while keeping their functionality, making them difficult to detect
using traditional pattern-matching engines).

All this flexibility comes at the expense of computational complexity and the full an-
tivirus solution significantly reduces the maximum performance of a device when a
large portion of the traffic is scanned.

Before we start the configuration, you need to download and install the latest antivirus
engine and database. The SRX can download the updates automatically, provided that
it has Internet connectivity (and at least a name server is configured and reachable).

Since multiple engines are available, we must specify which engine to use (at the time
of this writing, only a single engine can be used at any given time):

set security utm feature-profile anti-virus type kaspersky-lab-engine

The operational command request security utm anti-virus triggers a pattern update:

root@SRX650-1# run request security utm anti-virus kaspersky-lab-engine pattern-
update
Anti-virus update request results: av_mgr: pattern updater 2644 is started,
downloading from http://update.juniper-updates.net/AV/SRX650/.

Once a pattern is downloaded and installed, the antivirus engine status command
shows the engine and database version as well as the number of records in the database:

root@SRX650-1# run show security utm anti-virus status
 UTM anti-virus status:

 Anti-virus key expire date: 2011-09-02 00:00:00
 Update server: http://update.juniper-updates.net/AV/SRX650/
 Interval: 60 minutes
 Pattern update status: next update in 57 minutes
 Last result: already have latest database
 Anti-virus signature version: 01/13/2010 06:30 GMT, virus records: 536362
 Anti-virus signature compiler version: N/A
 Scan engine type: kaspersky-lab-engine
 Scan engine information: last action result: No error(0x00000000)

What Is UTM? | 499

This command also provides a hint of the default update frequency of the engine as
you can see from the output, where the SRX queries the update server every hour and
automatically updates the engine and signatures if new ones are available.

You can control this behavior from the [security utm feature-profile anti-virus
kaspersky-lab-engine pattern-update] hierarchy (it is available for every antivirus en-
gine supported). For instance, we can disable the automatic update so that adminis-
trators can choose to manually update the signatures on maintenance windows:

[edit security utm feature-profile anti-virus kaspersky-lab-engine]
set pattern-update no-autoupdate

Let’s move on and practice configuring some antivirus policies using the Kaspersky
engine. As a reminder, Figure 9-6 shows what our simple branch network looks like.

Figure 9-6. How SRX proxies a session

Just like in our web filtering examples, a single policy from Trust to Untrust is used.
The following specifies the UTM policy to use which, in turn, lists the antivirus profiles
used for each protocol:

[edit security nat]
set source rule-set internet from zone trust
set source rule-set internet to zone untrust
set source rule-set internet rule nat-all match source-address 0.0.0.0/0
set source rule-set internet rule nat-all match destination-address 0.0.0.0/0
set source rule-set internet rule nat-all then source-nat interface

500 | Chapter 9: Unified Threat Management

[edit security policies]
set from-zone trust to-zone untrust policy utm-av-policy match source-address any
set from-zone trust to-zone untrust policy utm-av-policy match
destination-address any
set from-zone trust to-zone untrust policy utm-av-policy match application any
set from-zone trust to-zone untrust policy utm-av-policy then
permit application-services utm-policy kaspesky-av-only

[edit security utm]
set feature-profile anti-virus type kaspersky-lab-engine
set feature-profile anti-virus kaspersky-lab-engine profile karspersky-basic
scan-options intelligent-prescreening
set utm-policy kaspesky-av-only anti-virus http-profile karspersky-basic
set utm-policy kaspesky-av-only anti-virus ftp upload-profile karspersky-basic
set utm-policy kaspesky-av-only anti-virus ftp download-profile karspersky-basic
set utm-policy kaspesky-av-only anti-virus smtp-profile karspersky-basic
set utm-policy kaspesky-av-only anti-virus pop3-profile karspersky-basic
set utm-policy kaspesky-av-only anti-virus imap-profile karspersky-basic

Note that the only thing configured in the antivirus profile is an option to enable in-
telligent prescreening. Since antivirus scanning is quite computationally expensive,
several techniques are used to bypass scanning for harmless content, and intelligent
prescreening is one of them. When enabled, intelligent prescreening uses the first few
packets of a file to determine if malicious code could be present. Based on this first
pass, the engine can determine if the file contents are likely to be infected, and can
bypass scanning (without the need to store and scan the whole file) if the file is deter-
mined to not be infected.

Following the same kind of adjustments, the scan-mode knob controls whether all files
are scanned. When scan-by-extension is set, only files with extensions matching one
of the extensions in the extension list are scanned.

Before enhancing our configuration, there are two more important scan options that
should be mentioned. In an attempt to bypass the antivirus engines, it is common for
viruses to be sent in compressed files. The SRX can decompress the files before scanning
them, but sometimes files can be compressed multiple times—for instance, when ZIP
files contain one or more ZIP files. To put a bound to the CPU resources used by the
engine, it is possible to limit the number of decompressions that a single file can
undergo.

The last scan option worth mentioning is the content size limit. Since the full content
of files has to be stored in memory for a file to be scanned (unless intelligent
prescreening has determined that the file is not infected), it is possible to limit the max
file size, after which the engine can decide to either drop or allow the file (we will cover
how to control this behavior later in this chapter when we discuss how to control
fallback).

Let’s put some of these options into our antivirus policy:

[edit security utm]
set feature-profile anti-virus type kaspersky-lab-engine

What Is UTM? | 501

set feature-profile anti-virus kaspersky-lab-engine profile
karspersky-by-extension scan-options intelligent-prescreening
set feature-profile anti-virus kaspersky-lab-engine profile
karspersky-by-extension scan-options scan-mode by-extension
set feature-profile anti-virus kaspersky-lab-engine profile
karspersky-by-extension scan-options content-size-limit 20000
set feature-profile anti-virus kaspersky-lab-engine profile
karspersky-by-extension scan-options decompress-layer-limit 4
set utm-policy kaspesky-av-only anti-virus http-profile
karspersky-by-extension
set utm-policy kaspesky-av-only anti-virus ftp upload-profile
karspersky-by-extension
set utm-policy kaspesky-av-only anti-virus ftp download-profile
karspersky-by-extension
set utm-policy kaspesky-av-only anti-virus smtp-profile
karspersky-by-extension
set utm-policy kaspesky-av-only anti-virus pop3-profile
karspersky-by-extension

You might notice that the policy specified scanning by extension, but where is the
extension list? Well, it turns out that a default extension list containing these extensions
is used:

386;ACE;ARJ;ASP;BAT;BIN;BZ2;CAB;CHM;CLA;CMD;COM;CPL;DLL;DOC;DOT;DPL;DRV;DWG;
ELF;EMF;EML;EXE;FON;FPM;GEA;GZ;HA;HLP;HTA;HTM;HTML;HTT;HXS;ICE;INI;ITSF;JAR;
JPEG;JPG;JS;JSE;LHA;LNK;LZH;MBX;MD?;MIME;MSG;MSI;MSO;NWS;OCX;OTM;OV?;PDF;PHP;
PHT;PIF;PK;PL;PLG;PP?;PRG;PRJ;RAR;REG;RTF;SCR;SH;SHS;SWF;SYS;TAR;TGZ;THE;TSP;
VBE;VBS;VXD;WSF;WSH;XL?;XML;ZIP;

This list cannot be modified. Instead, it’s possible to create a new list with additional
extensions to scan. For instance, let’s add xslt to the list of extensions to scan:

[edit security utm]
set custom-objects filename-extension my-extensions value XSLT
set feature-profile anti-virus kaspersky-lab-engine profile
karspersky-by-extension scan-options scan-extension my-extensions

The Kaspersky full antivirus engine leverages all the strength of its knowledge of anti-
virus technology. With more than half a million signatures, it provides a comprehensive
solution to the virus detection problem. Often, when client computers protected by the
SRX already have an antivirus engine installed, a full scanning solution is not needed.
Instead, a lightweight centralized solution that can be updated quickly and easily is the
perfect complement to a host-based solution. This is the main idea behind the Juniper
Express antivirus engine, which we’ll discuss in the next section.

Juniper Express antivirus

The Kaspersky antivirus engine provides the most complete solution to the virus de-
tection problem, but it might not always be the best idea to use it. At the beginning of
this chapter, I pointed out that in many circumstances (particularly with a large number
of computers behind an SRX and a large amount of traffic), it’s best to offload the task
of looking for viruses to the endpoints (the computers behind the SRX). In such

502 | Chapter 9: Unified Threat Management

circumstances, the SRX can still play an important role by scanning for only a subset
of the full antivirus database, but doing so in a more efficient way. This is the idea
behind the Juniper Express antivirus engine.

With this solution, the SRX uses pattern-matching techniques, which can be offloaded
to specific hardware. The virus database is still provided by Kaspersky, but only a subset
of the full database, with the most recent and critical signatures are distributed.

On SRX platforms with hardware acceleration (all branch SRX devices including the
SRX210, SRX240, and SRX650), the matching is offloaded into hardware, whereas in
legacy platforms (J Series), the main CPU performs all the matching operations.

The configuration is quite similar to the full antivirus solution, but some of the options,
such as scan-by-extension and scanning compressed files, are not supported (keep in
mind that the main advantage of using this solution is to improve performance; having
to decompress files would defeat the purpose of using the Express engine). Let’s take
a look at a Juniper Express antivirus configuration for our branch office:

[edit security policies]
set from-zone trust to-zone untrust policy utm-av-policy match source-address any
set from-zone trust to-zone untrust policy utm-av-policy match
destination-address any
set from-zone trust to-zone untrust policy utm-av-policy match application any
set from-zone trust to-zone untrust policy utm-av-policy then
permit application-services utm-policy express-av-only

[edit security utm]
set feature-profile anti-virus type juniper-express-engine
set feature-profile anti-virus juniper-express-engine profile
juniper-express scan-options no-intelligent-prescreening
set utm-policy express-av-only anti-virus http-profile juniper-express
set utm-policy express-av-only anti-virus ftp upload-profile juniper-express
set utm-policy express-av-only anti-virus ftp download-profile juniper-express
set utm-policy express-av-only anti-virus smtp-profile juniper-express
set utm-policy express-av-only anti-virus pop3-profile juniper-express
set utm-policy express-av-only anti-virus imap-profile juniper-express

If you have been following the examples, at this point your antivirus
database should be loaded with the Kaspersky Full antivirus database.
Do not forget to load the Juniper Express antivirus database before test-
ing this configuration. The request security utm anti-virus juniper-
express-engine pattern-update operational mode command can be
used to load the new database.

Using the Juniper Express engine, it is possible to leverage the strengths of a packet-
based engine, such as high performance and low scanning latencies, to provide a light-
weight, hardware-assisted virus detection solution. Devices are still constrained by the
size of the virus signature database and administrators still have to make sure the
database is up-to-date. The last approach to antivirus uses an in-the-cloud solution,

What Is UTM? | 503

removing the need to keep a local database and eliminating the burden of the local
database administrator.

Sophos in-the-cloud antivirus

The latest addition to the antivirus feature set is the Sophos in-the-cloud solution and
it tackles the scalability problem in a different way.

Most malicious traffic (and in fact, most traffic) these days is carried over HTTP, so a
repudiation-based system provides an effective way to block content from well-known
malicious sites. This is done in a similar way to how web filtering is performed, but
instead of returning the category of a site, the Sophos server indicates if the site is known
to host malicious code.

Obviously, this only works for HTTP-based traffic. For non-HTTP traffic, files can still
be scanned by computing a checksum of the file and comparing the result against a
malware database. Not all viruses can be detected this way, particularly polymorphic,
metamorphic, or, in general, nonstatic malware. But at least for the time being, static
malware constitutes the majority of attacks.

On the Sophos engine, the two URL methods and file checksum checking can be used
simultaneously. First (and for HTTP only), the URL is checked against the repudiation
database. If allowed (or if the protocol is not HTTP, in which case the URL check does
not apply), the contents are downloaded and a checksum is computed for all the em-
bedded files. URL checks can be disabled in the antivirus profile using a no-url-
check option.

At the time of this writing, a checksum can be computed for the following file types
(files of other types are not scanned):

.exe; .zip; .rar; .swf; .pdf; .ole2 (.doc, .xls)

Here’s an example configuration that uses the Sophos engine to scan HTTP traffic:

[edit security]
set policies from-zone trust to-zone untrust policy Internet-Access match
source-address any
set policies from-zone trust to-zone untrust policy Internet-Access match
destination-address any
set policies from-zone trust to-zone untrust policy Internet-Access match
application junos-http
set policies from-zone trust to-zone untrust policy Internet-Access then
permit application-services utm-policy Sophos-AV-Only

set utm feature-profile anti-virus type sophos-engine
set utm feature-profile anti-virus sophos-engine profile Sophos-AV
scan-options uri-check
set utm utm-policy Sophos-AV-Only anti-virus http-profile Sophos-AV

Just as with the other engines, it’s necessary to download the antivirus pattern engine
before you can use the feature. But if the virus and URL database are stored in the
Sophos servers, why do we have to download any pattern files? In this case, the pattern

504 | Chapter 9: Unified Threat Management

files contain some of the logic the engine uses to compute the file checksums and iden-
tify the file types. So, you still have to make sure the latest engine is used.

The main advantage of the Sophos in-the-cloud solution is that, since the database is
stored and maintained outside the SRX, the number of signatures that can be detected
is not bound by the SRX’s memory.

Antivirus trickling

When using any of the antivirus solutions, the SRX must locally store the contents of
the files that need to be scanned (these files can be embedded or downloaded through
HTTP or FTP, or be part of email attachments).

Remember that the SRX proxies all the connections that require UTM services. Large
files present the biggest problem in that, while they are being downloaded and later
scanned by the SRX, the client connection can time out if the SRX does not send any
information back to the client.

To prevent this from happening, the SRX can leak some of the file contents back to the
client. This is referred to as trickling, and it can be configured under the antivirus profile.
When enabled, the SRX sends small fragments of the file to the client in regular intervals
(controlled by the timeout interval):

[edit security utm feature-profile anti-virus]
set sophos-engine profile Sophos-AV trickling timeout 10

Whitelists

Since the antivirus scanning operation is very CPU-intensive, best practice advocates
avoiding scanning traffic when such traffic is known to be harmless.

For instance, in situations where the content in a particular resource is under the ad-
ministrator’s control and is guaranteed to be clean, scanning the traffic from that
resource could be avoided. Figure 9-7 shows the whitelist processing.

Figure 9-7. Whitelist evaluation order

In the same spirit, administrators have the option of identifying certain file types that
are not considered harmful and subsequently are not scanned. When available, the
MIME headers of a file can be used to obtain information about the file’s type. The
mime-whitelist is used to indicate the MIME types that do not need to be scanned. It
is also possible to configure an exception list, indicating more specific MIME types that
must be scanned even if their type is included in the mime-whitelist. For example, we
can define a mime-whitelist that does not scan video files except for Windows media

What Is UTM? | 505

files by creating a mime-whitelist with MIME type video/ and an associated exception
list for MIME type video/x-ms-wmv.

To be consistent with the web filtering feature, the URL whitelist command references
a custom URL category (not a URL pattern). This is useful for reusing custom URL
categories used in a web filtering profile to allow traffic to some internal sites (as shown
in “Creating custom category lists” on page 496).

URL patterns and MIME patterns are defined under the [security utm custom-
objects] Junos hierarchy:

[edit security utm]
set custom-objects mime-pattern video value video/
set custom-objects mime-pattern windows-media value video/x-ms-wmv
set custom-objects url-pattern internal-server value http://intranet.company.com
set custom-objects url-pattern another-internal-server value
http://extranet.company.com
set custom-objects custom-url-category internal-sites value internal-server
set custom-objects custom-url-category internal-sites
value another-internal-server

set feature-profile anti-virus mime-whitelist list video
set feature-profile anti-virus mime-whitelist exception windows-media
set feature-profile anti-virus url-whitelist internal-sites

Notifications
So far, we have discussed how to enable some of the features included in the UTM
feature set, and we worked our way through some simple configurations. What we
haven’t discussed, however, is how users are notified whenever traffic is blocked.

Notification options are similar across all UTM features. When offending traffic is
detected, the protocol content is modified with an embedded user message (e.g., for
HTTP, a new page is generated with a customizable notification message to the user).

In the case of FTP, it’s also possible to generate a protocol-specific error so that the
FTP application is notified of the problem. UTM features that can block FTP traffic
(antivirus and content filtering) generate these notifications when dealing with FTP
traffic.

Since we have been experimenting most recently with antivirus, it seems appropriate
to customize the notification messages sent to the user when a virus is found. The
following configuration shows how to customize the notification options for our anti-
virus profile:

[edit security policies]
set from-zone trust to-zone untrust policy Internet-Access match
source-address any
set from-zone trust to-zone untrust policy Internet-Access match
destination-address any
set from-zone trust to-zone untrust policy Internet-Access match
application junos-http

506 | Chapter 9: Unified Threat Management

set from-zone trust to-zone untrust policy Internet-Access match
application junos-ftp
set from-zone trust to-zone untrust policy Internet-Access then p
ermit application-services utm-policy AV-notifications

[edit security utm]
set feature-profile anti-virus type kaspersky-lab-engine
set feature-profile anti-virus kaspersky-lab-engine pattern-update
set feature-profile anti-virus kaspersky-lab-engine profile full-av
scan-options intelligent-prescreening

#Message sent to the user when a virus is found
set feature-profile anti-virus kaspersky-lab-engine profile full-av
notification-options virus-detection custom-message
"Virus Found! File blocked by SRX"

set utm-policy AV-notifications anti-virus http-profile full-av
set utm-policy AV-notifications anti-virus ftp upload-profile full-av
set utm-policy AV-notifications anti-virus ftp download-profile full-av

Users accessing infected files through HTTP are presented with the configured error
message. Trying to download an infected file using FTP results in both an error message
sent to the client and the context of the file being replaced with the error message.

It’s also possible to configure the profile to only generate protocol error messages for
FTP, while leaving the file contents blank:

[edit security utm]
set notification-options virus-detection type message

When an email message is discovered carrying an infected file, the SRX can generate a
notification email message for both the original email sender and the local network
administrator.

For these notification messages to be sent, the SRX must be configured with an SMTP
server (and account information) used to forward the emails. The SMTP server con-
figuration can be found under the [smtp] hierarchy:

[edit smtp]
set primary-server address <smtp server address>
set primary-server login "administrator@network.net" password <password>

The notification options control the contents of the notification emails, and where these
emails will be sent:

[edit security utm]
set feature-profile anti-virus kaspersky-lab-engine profile full-av notification-
options virus-detection custom-message-subject "SRX AV engine: Virus Found"
set feature-profile anti-virus kaspersky-lab-engine profile full-av notification-
options virus-detection notify-mail-sender

Each feature profile allows the customization of notification options so that you can
alert users when some traffic is blocked by one of the UTM features, but how can you
view when some content has been blocked? Better yet, how can you view and filter the
information that each UTM feature can supply?

What Is UTM? | 507

Those are good questions to answer, but before we work on them with the rest of the
UTM configuration, let’s provide some insight into how the UTM logs are generated.

Viewing the UTM Logs
By default, all messages generated by the system are stored under the /var/log/
messages file.

The default log configuration filters all messages except for the critical ones, which
means that, in most cases, UTM logs are discarded unless they are specifically allowed.

In Junos, the eventd daemon controls how the system logs are stored and forwarded.
The configuration for this daemon can be found under the [system syslog] hierarchy,
and it allows administrators to filter the messages and send them to a remote syslog
server, a local file, or an actual user terminal.

System logs can be generated using standard syslog or structured syslog format; the
latter is shown in Figure 9-8.

Figure 9-8. Structured syslog message format

Figure 9-8 shows that a structured syslog message includes the following elements:

• An 8-bit integer value used to encode the facility and severity of the message (see
Table 9-2)

• The log version

• A timestamp

• The hostname of the device generating the message

• The process name and process ID of the process generating the message

• A message tag (the tag is a string used to identify the message and it is very useful
when filtering logs)

• A list of attribute value pairs (used to encode information relevant to that message,
such as IP addresses, virus names, etc.)

• (Optional) A text string that describes the event that caused the log

Table 9-2. Log facility and severity encoding

Facility number
Severity
emergency Alert Critical Error Warning Notice Info Debug

kernel (0) 1 1 2 3 4 5 6 7

user (1) 8 9 10 11 12 13 14 15

508 | Chapter 9: Unified Threat Management

Facility number
Severity
emergency Alert Critical Error Warning Notice Info Debug

mail (2) 16 17 18 19 20 21 22 23

daemon (3) 24 25 26 27 28 29 30 31

authorization (4) 32 33 34 35 36 37 38 39

syslog (5) 40 41 42 43 44 45 46 47

printer (6) 48 49 50 51 52 53 54 55

news (7) 56 57 58 59 60 61 62 63

uucp (8) 64 65 66 67 68 69 70 71

clock (9) 72 73 74 75 76 77 78 79

authorization-private (10) 80 81 82 83 84 85 86 87

ftp (11) 88 89 90 91 92 93 94 95

ntp (12) 96 97 98 99 100 101 102 103

security (13) 104 105 106 107 108 109 110 111

console (14) 112 113 114 115 116 117 118 119

local0 (16) 128 129 130 131 132 133 134 135

dfc (17) 136 137 138 139 140 141 142 143

local2 (18) 144 145 146 147 148 149 150 151

firewall (19) 152 153 154 155 156 157 158 159

pfe (20) 160 161 162 163 164 165 166 167

conflict-log (21) 168 169 170 171 172 173 174 175

change-log (22) 176 177 178 179 180 181 182 183

interactive-commands (23) 184 185 186 187 188 189 190 191

It is very useful to classify the logs, and send logs from different modules to different
files, so administrators can easily find the logs from a given module. Toward this end,
a very common practice is to configure the devices to log web filtering, antivirus, and
firewall session logs to different files. Here’s how you can do this:

[edit system syslog]
set file sessions user info
set file sessions match RT_FLOW
set file sessions structured-data brief
set file interfaces any any
set file interfaces match SNMP_TRAP_LINK
set file interfaces structured-data brief
set file viruses user info
set file viruses match AV_
set file viruses structured-data brief
set file webfilter daemon any
set file webfilter match WEBFILTER_
set file webfilter structured-data brief

What Is UTM? | 509

Though it’s short, there are a few things to note in this configuration. First, the facility
of the logs generated by the data plane (i.e., traffic-driven logs) is user. This might be
counterintuitive and it is due to the fact that the data-plane threads forward all the logs
to a daemon running on user space in the control plane (running on the routing engines
in the SRX3000 and SRX5000 lines, and running in a separate hardware thread on
single-processor SRX devices). This daemon collects all the logs from the different for-
warding threads and forwards them to the event management subsystem.

Careful readers might notice that logs from the web filtering subsystem do not use
facility user but use facility daemon instead. It turns out that the code in charge of
querying the SurfControl servers to obtain the category for a particular URL runs in
the control plane, which explains why the logs use a different facility.

The match statements in the configuration are used to filter the logs. Any regular ex-
pression can be used (given that the logs are simple text strings, any part of the log can
be used to match on), but, since logs generated by a given subsystem always use the
same prefix in the log TAG, a very simple regular expression matching on the TAG prefix
allows one to filter the logs by the originating subsystem.

Some of the most common prefixes present in the logs are:

ANTISPAM_
Used by the antispam module.

AV_
Used by the antivirus module.

CONTENT_FILTERING_
Used by the content filtering module.

IDP_
Used by the IDP module.

RT_FLOW_
Used by the flow module (which handles session establishment and teardown,
among other things). The flow logs include the packet’s 5-tuple (source and des-
tination IP addresses, source and destination ports, and protocol), translated ad-
dresses (showing the effects of NAT) and zones, among other information.

FWAUTH_
Used by the firewall authentication module.

RT_SCREEN_
Used by the screens associated to zones (and generates logs for invalid packets,
session limits, etc.).

For instance, when session logging and web filtering are enabled an HTTP request will
result in a session open log, followed by a web filtering log indicating the requested
URL and category, followed by a session close log. Of course, the granularity of the
logs is configurable in such a way that logs are generated only for session open or session
close events (or both).

510 | Chapter 9: Unified Threat Management

Let’s take a look at the output from an HTTP request:

root@SRX650-1# run show log sessions

<14>1 2010-01-25T01:47:59.294Z SRX650-1 RT_FLOW - RT_FLOW_SESSION_CREATE
[junos@2636.1.1.1.2.40 source-address="10.1.1.101" source-port="38090"
destination-address="96.17.215.148" destination-port="80"
service-name="junos-http" nat-source-address="172.19.101.26"
nat-source-port="3732" nat-destination-address="96.17.215.148"
nat-destination-port="80" src-nat-rule-name="nat-all"
dst-nat-rule-name="None" protocol-id="6" policy-name="Internet-Access"
source-zone-name="trust" destination-zone-name="untrust" session-id-32="58"]

<14>1 2010-01-25T01:48:24.209Z SRX650-1 RT_FLOW - RT_FLOW_SESSION_CLOSE
[junos@2636.1.1.1.2.40 reason="TCP FIN" source-address="10.1.1.101" source-
port="38090" destination-address="96.17.215.148" destination-port="80" service-
name="junos-http" nat-source-address="172.19.101.26" nat-source-port="3732" nat-
destination-address="96.17.215.148" nat-destination-port="80" src-nat-rule-
name="nat-all" dst-nat-rule-name="None" protocol-id="6" policy-name="Internet-
Access" source-zone-name="trust" destination-zone-name="untrust"
session-id-32="58" packets-from-client="6" bytes-from-client="544" packets-from-
server="5" bytes-from-server="1531" elapsed-time="25"]

root@SRX650-1# run show log webfilter

<29>1 2010-01-25T01:47:59.240Z SRX650-1 utmd 1077 WEBFILTER_SERVER_CONNECTED
[junos@2636.1.1.1.2.40 name="cpa.surfcpa.com"]
<28>1 2010-01-25T01:47:59.299Z SRX650-1 utmd 1077 WEBFILTER_URL_PERMITTED
[junos@2636.1.1.1.2.40 source-address="10.1.1.101" source-port="38090"
destination-address="96.17.215.148" destination-port="80"
name="Computing_Internet" error-message="by predefined category"
profile-name="wf-surfcontrol" object-name="www.juniper.net" pathname="/"]

In the session logs you can observe two messages, one for the session open and another
one for the session close. These messages include a lot of useful information, such as
the names of the matching security and NAT policies. The session close log also in-
cludes traffic statistics (at the time of the session open event, no traffic statistics are
available!) and the close reason.

The web filtering logs show that there was a connection to the category server
(cpa.surfcpa.com). When the web filtering cache is enabled, this message is generated
only if the requested URL is not in the cache. In our example, the visited URL was http:
//www.juniper.net/, categorized as belonging to a "Computing_Internet" site and al-
lowed by the UTM policy (clearly shown by the message TAG WEBFILTER_URL_PERMITTED).

External log collectors, including the Juniper Networks STRM product, can be used to
store and correlate the logs and can create useful reports that include (but are not
limited to) the following:

• Top URL categories

• Most visited sites

• Top talkers (in total bytes or number of sessions)

What Is UTM? | 511

http://www.juniper.net/
http://www.juniper.net/

• Top attacks

• Top viruses

• Top rejected URLs

• Top spammers

The following configuration has session logging enabled. Session logs are stored in
the /var/logs/session file, while web filtering logs are stored in the /var/log/webfilter file.

[edit security]
set nat source rule-set internet from zone trust
set nat source rule-set internet to zone untrust
set nat source rule-set internet rule nat-all match source-address 0.0.0.0/0
set nat source rule-set internet rule nat-all match destination-address 0.0.0.0/0
set nat source rule-set internet rule nat-all then source-nat interface

set policies from-zone trust to-zone untrust policy Internet-Access match source-
address any
set policies from-zone trust to-zone untrust policy Internet-Access match
destination-address any
set policies from-zone trust to-zone untrust policy Internet-Access match
application junos-http
set policies from-zone trust to-zone untrust policy Internet-Access then permit
application-services utm-policy WF-only
set policies from-zone trust to-zone untrust policy Internet-Access then log
session-init
set policies from-zone trust to-zone untrust policy Internet-Access then log
session-close

set utm feature-profile web-filtering surf-control-integrated profile wf-
surfcontrol category Weapons action block
set utm feature-profile web-filtering surf-control-integrated profile wf-
surfcontrol category News action permit
set utm feature-profile web-filtering surf-control-integrated profile wf-
surfcontrol category Computing_Internet action permit
set utm utm-policy WF-only web-filtering http-profile wf-surfcontrol

Although this detailed log information is useful for debugging and troubleshooting
purposes, it is difficult to get a general idea of traffic trends. This is why, as of Junos
10.4, the web UI provides some reports of the overall network and threat activity, as
shown in Figure 9-9.

Of course, the log storage capacity of each platform determines how many logs can be
analyzed, but from small branch deployments the on-box reporting capabilities provide
an easy way to inspect the traffic forwarded by the SRX and assess the network’s
vulnerabilities.

Please exercise caution when locally storing log information into devices
that use flash storage. These memories wear out after a limited number
of write cycles.

512 | Chapter 9: Unified Threat Management

Figure 9-10 shows some of the reports available, including general per-feature hit
counts, most recent threats, and threat count over the past 24 hours, in a variety of
information graphics types.

Figure 9-10. The web UI showing traffic statistics

Also available are per-activity reports showing the most recent attacks, viruses, spams,
and blocked URLs.

Figure 9-9. The web UI of an SRX showing the security events

What Is UTM? | 513

Controlling What to Do When Things Go Wrong
As much as you would like the network to be available all the time, it is a bad idea to
design systems pretending that connectivity problems, bugs, or a lack of resources never
happens.

What devices and network administrators can do is to establish a set of rules regarding
what to do when problems occur.

Chapter 10 deals with how to cluster devices to provide redundant hardware, data, and
control planes. Here, in the context of UTM, let’s configure the SRX gateway to react
when things fail despite the measures taken to improve the network’s availability.

The web filtering and antivirus feature profiles can specify a set of fallback actions.
They control what to do (either allow or block the traffic) when the UTM engine cannot
process any more traffic.

Table 9-3 shows a list of the different events that can trigger a fallback.

Table 9-3. Fallback events

Feature Engine Events

Web filtering SurfControl integrated and Websense redirect server-connectivity

Timeout

too-many-requests

Antivirus Sophos and Juniper Express content-size

engine-not-ready

out-of-resources

Timeout

too-many-requests

Kaspersky content-size

corrupt-file

decompress-layer

engine-not-ready

out-of-resources

password-file

too-many-requests

So, you can choose to allow messages while the antivirus engine is being uploaded,
while blocking files that are larger than the max file size. Search back into this chapter’s
antivirus policy configs and this should all make perfect sense:

[edit security]
set policies from-zone trust to-zone untrust policy Internet-Access match source-
address any

514 | Chapter 9: Unified Threat Management

set policies from-zone trust to-zone untrust policy Internet-Access match
destination-address any
set policies from-zone trust to-zone untrust policy Internet-Access match
application junos-http
set policies from-zone trust to-zone untrust policy Internet-Access match
application junos-ftp
set policies from-zone trust to-zone untrust policy Internet-Access then permit
application-services utm-policy KS-AV-Only
set policies from-zone trust to-zone untrust policy Internet-Access then log
session-init
set policies from-zone trust to-zone untrust policy Internet-Access then log
session-close

set utm feature-profile anti-virus type kaspersky-lab-engine
set utm feature-profile anti-virus kaspersky-lab-engine profile KS-FullAV
fallback-options decompress-layer block
set utm feature-profile anti-virus kaspersky-lab-engine profile KS-FullAV
fallback-options content-size block
set utm feature-profile anti-virus kaspersky-lab-engine profile KS-FullAV
fallback-options engine-not-ready log-and-permit
set utm feature-profile anti-virus kaspersky-lab-engine profile KS-FullAV scan-
options intelligent-prescreening
set utm feature-profile anti-virus kaspersky-lab-engine profile KS-FullAV scan-
options content-size-limit 10000

set utm utm-policy KS-AV-Only anti-virus http-profile KS-FullAV

As you can see with this configuration, an attempt to download a large file generates a
user notification (for HTTP it displays an error page) and the following log message
indicating the fallback action, cause, endpoint addresses, and name of the offending
file:

<12>1 2010-01-29T10:59:59.660Z SRX650-1 RT_UTM - AV_HUGE_FILE_DROPPED_MT
[junos@2636.1.1.1.2.40 source-address="10.2.1.101" source-port="80" destination-
address="10.1.1.103" destination-port="51727" filename="10.2.1.101/images/junos-
srxsme-10.2-20100106.0-domestic.tgz"]

When one is downloading a file while the engine is loading a new database (this can
be tested by forcing a reload with the request security utm anti-virus kaspersky-
lab-engine pattern-reload command) the SRX still logs a message, but allows the file
through:

<12>1 2010-01-29T11:27:11.670Z SRX650-1 RT_UTM - AV_SCANNER_ERROR_SKIPPED_MT
[junos@2636.1.1.1.2.40 source-address="10.2.1.101" source-port="80" destination-
address="10.1.1.103" destination-port="40732"
filename="10.2.1.101/images/eicar.com" error-code="14" error-message="scan
engine is not ready"]

Before leaving for the next UTM feature, let’s end with this simple tip that you can
specify a default fallback action, which indicates the action to take for an event that is
not configured:

set utm feature-profile anti-virus kaspersky-lab-engine profile KS-FullAV
fallback-options default block

What Is UTM? | 515

Content Filtering
In this chapter, you have looked at, and hopefully learned, how to drop traffic based
on some analysis of the files transported, and in the particular case of HTTP traffic,
how to use the URLs to classify the sites and then use that information to allow or block
access to a particular site.

It’s a good time to examine the SRX content filtering feature which allows you to look
at the protocol commands used by the various protocols supported by the UTM feature
set, and blocking or allowing these commands. What? Why would you want to restrict
some commands from any given protocol?

Well, you should already know that some content types are more susceptible to carrying
malicious traffic—for instance, although signed, ActiveX code embedded in web pages
can carry malicious code which, when executed, can run with the same privilege level
as the logged user. ActiveX code is normally signed, and when it is signed by a valid
certificate authority (CA) it is known that it hasn’t been tampered with. The problem
is that the CA signing the code does not normally evaluate the security of the code.
Worse yet, many times the code is unsigned or is signed by an unknown CA. The
browser generates a warning in these cases, but users are still allowed to download and
execute the code.

For situations such as this, many administrators want to restrict access to some of the
protocol commands for sites they do not trust. The content filtering feature was de-
signed to provide a simple way for admins to block such traffic. When complex matches
are required (i.e., using regular expressions) or when the UTM parsing engine does not
support the protocol in question (i.e., it’s not HTTP, FTP, SMTP, IMAP, or POP3),
the IDP engine can be used to provide more feature-rich functionality, but at the ex-
pense of configuration complexity and lack of good user notification mechanisms.

A large part of the work required to extract files from the different protocols consists
of decoding the protocols, identifying the various protocol contexts, and storing the
transported files so that they can be passed to the different scanning engines.

The content filtering feature leverages all the processing done by the UTM parsing
engine. As part of the protocol decoding process, the engine identifies the different
commands exchanged between client and server. Administrators can then create lists
of content types or commands that are allowed or denied by the SRX gateway.

What content or commands can be allowed or blocked highly depends on the protocol
in question. Perhaps the best way to explain what you can do with this feature is to
show you.

Filtering FTP traffic

Although it has been around for some time, FTP provides a simple yet flexible way to
exchange files among computers. The protocol has been extended over the years to

516 | Chapter 9: Unified Threat Management

allow clients to restart interrupted transfers, provide strong authentication, and support
IPv6, among other things.

It is not the objective of this section to describe FTP in detail, but rather to show you
how to prevent users from logging in to an FTP server using the root user. When an
FTP connection is established, the USER command is passed from the client to the server
to indicate the username used to log in to the server. The content filtering feature is
used to block this command so that even when allowed by the server, the root account
will not be accessible.

It is sometimes useful to see the list of commands supported by FTP. The following is
not a comprehensive list; it has been extracted from the Unix manpages of the VSFTPD
server, and it shows some of the commands supported by this server:

ABOR: Abort previous command
ACCT: Specify account (ignored)
ADAT: Send an authentication protocol message
ALLO: Allocate storage (vacuously)
APPE: Append to a file
AUTH: Specify an authentication protocol to be performed
CCC: Set the command channel protection mode to Clear (no protection)
CDUP: Change to parent of current working directory
CWD: Change working directory
DELE: Delete a file
ENC: Send a privacy and integrity protected command
HELP: Give help information
LIST: Give list files in a directory (ls -lgA)
MIC: Send an integrity protected command
MKD: Make a directory
MDTM: Show last modification time of file
MODE: Specify data transfer mode
NLST: Give name list of files in directory
NOOP: Do nothing
PASS: Specify password
PASV: Prepare for server-to-server transfer
PBSZ: Specify a protection buffer size
PORT: Specify a data connection port
PROT: Specify a protection level under which to protect data transfers
PWD: Print the current working directory
QUIT: Terminate session
REST: Restart incomplete transfer
RETR: Retrieve a file
RMD: Remove a directory
RNFR: Specify rename-from filename
RNTO: Specify rename-to filename

What Is UTM? | 517

SIZE: Return size of file
STAT: Return status of server
STOR: Store a file
STOU: Store a file with a unique name
STRU: Specify data transfer structure
SYST: Show operating system type of server system
TYPE: Specify data transfer type
USER: Specify username

Blocking some of these commands allows administrators to enforce certain security
postures at the gateway, without having to configure every single protected server (and,
frankly, sometimes the servers are not under the control of the SRX administrator).

For instance, default FTP server configurations allow for simple, clear-text authenti-
cation. This is particularly dangerous because the account information can be easily
obtained from a packet capture. Consider the network shown in Figure 9-11. If tradi-
tional user authentication were allowed to the FTP servers, any user could snoop the
FTP login and be able to extract the username and password information from users
accessing the server.

Figure 9-11. Using content filtering with FTP servers

To illustrate this point, this is what an extract of packet capture, displayed in ASCII
format between an FTP client and server, looks like:

tcpdump -r ftp.pcap -A -g -n
...

518 | Chapter 9: Unified Threat Management

07:50:53.816847 IP 10.1.1.102.42808 > 10.2.1.103.21: Flags [P.], seq 1:12,
ack 21, win 32748, length 11
E..3.[......
..f
..g.8..$wKU:N..P...m...USER test

07:50:53.816899 IP 10.2.1.103.21 > 10.1.1.102.42808: Flags [.],
ack 12, win 5840, length 0
E..(.>@.@.s.
..g
..f...8:N..$wK`P...u...
07:50:53.817400 IP 10.2.1.103.21 > 10.1.1.102.42808: Flags [P.], seq 21:55,
ack 12, win 5840, length 34
E..J.?@.@.s.
..g
..f...8:N..$wK`P.......331 Please specify the password.

07:50:53.817815 IP 10.1.1.102.42808 > 10.2.1.103.21: Flags [.],
ack 55, win 32734, length 0
E..(.\......
..f
..g.8..$wK`:N.%P.............
07:50:56.387967 IP 10.1.1.102.42808 > 10.2.1.103.21: Flags [P.], seq 12:26,
ack 55, win 32734, length 14
E..6._......
..f
..g.8..$wK`:N.%P.../...PASS test123

Modern FTP servers support stronger authentication mechanisms. Using the content
filtering feature, we can make sure no clients are allowed to use the USER command
(used for legacy user authentication).

Let’s assume that connections to the FTP server are only allowed from the Trust to the
DMZ zones. The configuration would be the same if connections from the Untrust zone
were considered, but this way, we don’t need to deal with how to NAT the traffic from
the Internet (not until later, at least, in the next case study):

[edit security policies]
set from-zone trust to-zone DMZ policy FTP-inbound-access match
source-address any
set from-zone trust to-zone DMZ policy FTP-inbound-access match
destination-address any
set from-zone trust to-zone DMZ policy FTP-inbound-access match
application junos-ftp
set from-zone trust to-zone DMZ policy FTP-inbound-access then permit
application-services utm-policy CF-ftp

[edit security zones]
set security-zone untrust interfaces ge-0/0/0.0
set security-zone trust interfaces ge-0/0/1.0
set security-zone DMZ interfaces ge-0/0/2.0

[edit security utm]
set custom-objects protocol-command ftp-root-login value USER
set feature-profile content-filtering profile ftp-no-root block-command ftp-root-

What Is UTM? | 519

login
set utm-policy CF-ftp content-filtering ftp upload-profile ftp-no-root
set utm-policy CF-ftp content-filtering ftp download-profile ftp-no-root

When our tester tries to log in using the USER command, this is what he sees:

root@pato-vm2:~# ftp -n 10.2.1.103
Connected to 10.2.1.103.
220 (vsFTPd 2.0.5)
ftp> user
(username) test
550 10.1.1.102:39384->10.2.1.103:21 Requested action not taken
and the request is dropped for Content Filtering command block list.
Login failed.

You can also create file extension lists so that whenever a request command exchanges
a filename, if the extension is found in the block extension list, the command will be
blocked:

set custom-objects filename-extension some-images value gif
set custom-objects filename-extension some-images value tif
set custom-objects filename-extension some-images value twf
set custom-objects filename-extension some-images value tiff
set custom-objects filename-extension some-images value svg
set custom-objects filename-extension some-images value ai
set custom-objects filename-extension some-images value bmp
set custom-objects filename-extension some-images value drw
set custom-objects filename-extension some-images value dwg
set custom-objects filename-extension some-images value eps
set custom-objects filename-extension some-images value jpg
set custom-objects filename-extension some-images value png
set feature-profile content-filtering profile no-images block-extension
some-images
set utm-policy CF-ftp content-filtering ftp upload-profile no-images
set utm-policy CF-ftp content-filtering ftp download-profile no-images

Filtering HTTP traffic

Just as you can block FTP commands and file extensions, you can do the same with
HTTP. In this case, the HTTP commands refer to the different HTTP methods that
clients can request (e.g., GET, POST, PUT, DELETE, HEAD, OPTIONS, CONNECT). As in our FTP
case, this is useful when, for security reasons, it’s desirable to disable a particular
method. For example, the TRACE method is meant to be used for debugging purposes,
but it also can open some attack vectors.

You could also use this to filter some content—in particular, cookies, ActiveX com-
ponents, Java applets, and .zip and .exe files.

As in our previous scenario, shown in Figure 9-10, HTTP connections are allowed from
the Trust to the Untrust networks, but sites wishing to push ActiveX components will
be blocked. Users are displayed an error page (and a log is generated) when attempting
to access such sites.

520 | Chapter 9: Unified Threat Management

[edit security]
set policies from-zone trust to-zone untrust policy Restricted-HTTP match source-
address any
set policies from-zone trust to-zone untrust policy Restricted-HTTP match
destination-address any
set policies from-zone trust to-zone untrust policy Restricted-HTTP match
application junos-http
set policies from-zone trust to-zone untrust policy Restricted-HTTP then permit
application-services utm-policy HTTP-no-activex

set utm feature-profile content-filtering profile no-activex block-content-type
activex
set utm feature-profile content-filtering profile no-activex block-content-type
java-applet
set utm feature-profile content-filtering profile no-activex block-content-type
http-cookie

set utm utm-policy HTTP-no-activex content-filtering http-profile no-activex

Since no database has to be updated for this feature, no license is required to use it.

Antispam
The last feature in our UTM feature list is antispam. Following in the spirit of antivirus,
antispam is meant to be used in conjunction with host-based antispam solutions.

Antispam provides a repudiation-based filtering solution—the SRX extracts the
address of the message sender (or relaying agent) and uses it to query a repudiation
database hosted and maintained by Sophos.

The Spam Block List (SBL) server maintains a database with the IP addresses of known
spammers or hosts that are considered to be compromised. Whitelists and blacklists
of servers can also be created which allow users to override the classification done by
the SBL server, as shown in Figure 9-12. In addition, these lists support not only IP
addresses, but also domain names (in which case they are compared against the domain
name obtained from an email’s From: field).

Figure 9-12. Antispam order of evaluation

The SMTP decoder extracts three fields from each email message:

1. The source IP address of the connection—either the sender or, if a relay server was
used, the address of the last relay

2. The sender’s domain name, obtained from the From: field of the message

What Is UTM? | 521

3. The sender’s address, obtained from the trace information present in the message,
if the message was sent through a forwarder

These three fields are used to determine if a message is considered spam, by performing
the following three corresponding checks:

1. The sender IP address is first checked against the whitelist and then the blacklist,
and finally the SLB server. If the address matches any of the addresses in the white-
list the message will be allowed. A match on the blacklist or the SLB database will
flag the message as spam.

2. The sender domain is checked against the whitelist and blacklist (the SLB server
does not maintain domain names).

3. Finally, the sender address is checked against the whitelist and blacklist.

Once a message is classified as spam, the antispam profile is used to determine if the
message is either discarded or tagged. The profile also indicates if the tag message is
included in the subject line or the email header.

At the time of this writing, only SMTP is supported (i.e., there is no IMAP or POP3
support).

By now, we should be able to almost guess how this feature is configured. The config-
uration follows the same structure as the previous ones. You can add an SMTP server
to the branch office, and use the antispam feature to prescreen the messages received,
as shown in Figure 9-13.

Figure 9-13. Branch office with SMTP server

522 | Chapter 9: Unified Threat Management

UTM Monitoring
So far we have covered the main features of the UTM in the SRX. We looked at each
feature, discussed its application, and analyzed configuration examples for you to fol-
low and adapt to your needs and networks.

Now it’s time explore how to troubleshoot the operation of the different UTM features.

The first thing to check is that each feature used is enabled with an updated database.
The command to do this is show security utm <feature name> status.

Let’s go back to the scenario depicted in Figure 9-5 where a host in the Trust network
is going through an SRX with antivirus enabled. The show security utm anti-virus
status command displays information about the status of the antivirus engine:

root@SRX650-1# show security utm anti-virus status
 UTM anti-virus status:

 Anti-virus key expire date: 2011-03-04 00:00:00
 Update server: http://update.juniper-updates.net/AV/SRX650/
 Interval: 60 minutes
 Pattern update status: next update in 3 minutes
 Last result: already have latest database
 Anti-virus signature version: 02/08/2010 02:28 GMT, virus records: 531278
 Anti-virus signature compiler version: N/A
 Scan engine type: kaspersky-lab-engine
 Scan engine information: last action result: No error(0x00000000)

You can see from the output if a valid antivirus license is installed (and its expiration
date), the database version, and the number of records in it. The last line, showing last
action result, is useful for checking the status of the engine or an ongoing pattern
update (as we discussed in “Antivirus” on page 498).

You can also check what happens if you manually restart the antivirus feature:

root@SRX650-1#run restart utmd

AUTM Daemon started, pid 11188

[edit]
root@SRX650-1#

[edit]
root@SRX650-1# run show security utm anti-virus status
 UTM anti-virus status:

 Anti-virus key expire date: 2011-03-04 00:00:00
 Update server: http://update.juniper-updates.net/AV/SRX650/
 Interval: 60 minutes
 Pattern update status: in process
 Last result: downloading list file
 Anti-virus signature version: not loaded
 Anti-virus signature compiler version: N/A

UTM Monitoring | 523

 Scan engine type: kaspersky-lab-engine
 Scan engine information: last action result: Engine not ready(0x80000009)

After the utmd daemon is back up, the engine status will revert to No error:

root@SRX650-1# run show security utm anti-virus status
 UTM anti-virus status:

 Anti-virus key expire date: 2011-03-04 00:00:00
 Update server: http://update.juniper-updates.net/AV/SRX650/
 Interval: 60 minutes
 Pattern update status: next update in 58 minutes
 Last result: new database loaded
 Anti-virus signature version: 02/08/2010 02:28 GMT, virus records: 531278
 Anti-virus signature compiler version: N/A
 Scan engine type: kaspersky-lab-engine
 Scan engine information: last action result: No error(0x00000000)

Given that the packets must be processed by multiple different components, it’s a useful
exercise to trace the processing of the traffic from a given session, when one or more
UTM features are enabled.

Start by looking at the session logs and session table. Remember that security policies
are used to determine which traffic is processed by the different UTM features, so it is
only natural to start the trace by looking at the information maintained in the session
table.

Let’s see what happens when an HTTP request is generated from the Trust zone. The
show security flow session command displays the information found in the session
table:

root@SRX650-1# run show security flow session application http extensive
Session ID: 115197, Status: Normal
Flag: 0x2
Policy name: utm-av-policy/6
Source NAT pool: interface, Application: junos-http/6
Maximum timeout: 120, Current timeout: 108
Session State: Valid
Start time: 186996, Duration: 12
 In: 10.1.1.103/49170 --> 66.129.230.17/80;tcp,
 Interface: ge-0/0/1.0,
 Session token: 0x1c0, Flag: 0x0x2621
 Route: 0x70010, Gateway: 10.1.1.103, Tunnel: 0
 Port sequence: 0, FIN sequence: 0,
 FIN state: 0,
 Pkts: 12, Bytes: 1142
 Out: 66.129.230.17/80 --> 172.19.101.26/1083;tcp,
 Interface: ge-0/0/0.0,
 Session token: 0x180, Flag: 0x0x2620
 Route: 0x60010, Gateway: 172.19.101.1, Tunnel: 0
 Port sequence: 0, FIN sequence: 3415875481,
 FIN state: 1,
 Pkts: 9, Bytes: 1642

524 | Chapter 9: Unified Threat Management

Among other things, this table shows the matching policy and application. Based on
the application and the UTM policy, you can work your way backward to determine
the feature profile used to process the packets from this session:

root@SRX650-1# show security policies | display set | match utm-av-policy
set security policies from-zone trust to-zone untrust policy utm-av-policy match
source-address any
set security policies from-zone trust to-zone untrust policy utm-av-policy match
destination-address any
set security policies from-zone trust to-zone untrust policy utm-av-policy match
application any
set security policies from-zone trust to-zone untrust policy utm-av-policy then
permit application-services utm-policy kaspersky-av-only

Since we know that the kaspersky-av-only UTM policy is used to process this traffic,
you can determine which feature profiles were used from the UTM policy
configuration:

root@SRX650-1# show security utm | display set | match kaspersky-av-only
set security utm utm-policy kaspersky-av-only anti-virus
http-profile kaspersky-by-extension
set security utm utm-policy kaspersky-av-only anti-virus ftp upload-profile
kaspersky-by-extension
set security utm utm-policy kaspersky-av-only anti-virus ftp download-profile
kaspersky-by-extension
set security utm utm-policy kaspersky-av-only anti-virus smtp-profile
kaspersky-by-extension
set security utm utm-policy kaspersky-av-only anti-virus pop3-profile
kaspersky-by-extension
set security utm utm-policy kaspersky-av-only anti-virus imap-profile
kaspersky-by-extension

[edit]
root@SRX650-1# show security utm | display set | match karspersky-by-extension
set security utm feature-profile anti-virus kaspersky-lab-engine profile
kaspersky-by-extension scan-options intelligent-prescreening
set security utm feature-profile anti-virus kaspersky-lab-engine profile
kaspersky-by-extension scan-options scan-mode by-extension
set security utm feature-profile anti-virus kaspersky-lab-engine profile
kaspersky-by-extension scan-options scan-extension my-extensions
set security utm feature-profile anti-virus kaspersky-lab-engine profile
kaspersky-by-extension scan-options content-size-limit 20000
set security utm feature-profile anti-virus kaspersky-lab-engine profile
kaspersky-by-extension scan-options decompress-layer-limit 4

In addition, each UTM feature maintains counters for all traffic they process. You can
look at these counters in our antivirus example by using the show security utm
<feature> statistics command:

root@SRX650-1# run show security utm anti-virus statistics
 UTM Anti Virus statistics:

 Intelligent-prescreening passed: 0
 MIME-whitelist passed: 0
 URL-whitelist passed: 0

UTM Monitoring | 525

 Scan Mode:
 scan-all: 0
 Scan-extension: 4
 Scan Request:

 Total Clean Threat-found Fallback
 4 4 0 0
 Fallback:

 Log-and-permit Block
 Engine not ready: 0 0
 Password file: 0 0
 Decompress layer: 0 0
 Corrupt files: 0 0
 Out of resources: 0 0
 Timeout: 0 0
 Maximum content size: 0 0
 Too many requests: 0 0
 Others: 0 0

The counters are pretty self-explanatory, but it is instructional to check the total num-
ber of threats found, and the number of fallback actions taken (which indicate the
reasons some content was not processed by the engine and was allowed without scan-
ning or being blocked).

Another useful source of information is to examine the logs generated by the different
engines. The configuration shown in “Viewing the UTM Logs” on page 508 shows how
to configure branch SRX boxes to send the UTM to different files. Looking at the logfiles
you can obtain information about the different viruses found, fallback actions, URLs
visited, spam found, and, in general, any content blocked by one of the UTM engines.

For example, when trying to download the EICAR AV test file (a well-known test file
that contains a harmless pattern, recognized as a virus by most antivirus engines and
used for testing purposes) information about the virus name is found (EICAR-Test-
File), the zone where the virus was received (Untrust), the address/port of the requesting
host (10.1.1.103:54612), the requested URL (http://www.eicar.org/download/eicar
.com), and the filename (eicar.com):

root@SRX650-1# run show log viruses
<12>1 2010-02-08T08:29:28.565Z SRX650-1 RT_UTM - AV_VIRUS_DETECTED_MT
[junos@2636.1.1.1.2.40 source-address="188.40.238.250" source-port="80"
destination-address="10.1.1.103" destination-port="47095" source-zone-
name="untrust" filename="www.eicar.org/download/eicar.com" temporary-
filename="www.eicar.org/download/eicar.com" name="EICAR-Test-File"
url="EICAR-Test-File"]

Notification messages also generate logs, as evident from the message obtained while
doing an HTTP request after having restarted utmd:

<12>1 2010-02-08T08:35:44.215Z SRX650-1 RT_UTM - AV_SCANNER_DROP_FILE_MT
[junos@2636.1.1.1.2.40 source-address="74.125.155.147" source-port="80"
destination-address="10.1.1.103" destination-port="33578"

526 | Chapter 9: Unified Threat Management

http://www.eicar.org/download/eicar.com
http://www.eicar.org/download/eicar.com

filename="www.google.com/" error-code="14" error-message="scan engine is not
ready"]

You can find a list of all the messages the UTM subsystem logged in the
Junos System Log Messages Reference manual available at http://www
.juniper.net/techpubs.

Licensing
As you might know by now, some of the UTM features require a license to operate.
The show system license operational command displays the licenses that are installed,
used, and required:

>show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 bgp-reflection 0 14 0 permanent
 av_key_kaspersky_engine 0 1 0 2011-03-03
16:00:00 PST
 av_key_sophos_engine 0 1 0 2012-01-05
16:00:00 PST
 anti_spam_key_sbl 0 1 0 2011-09-01
17:00:00 PDT
 wf_key_surfcontrol_cpa 0 1 0 2011-09-01
17:00:00 PDT
 idp-sig 0 1 0 2011-09-01
17:00:00 PDT
 ax411-wlan-ap 0 14 0 permanent
...

Licenses are tied to the chassis serial number (so it has to be supplied when ordering
a license) and, when working in high availability (HA), both member nodes require a
license to operate. Once purchased, licenses are easy to install by either loading the
license file into the device and using the request system license add <filename> com-
mand or, more commonly, directly copying the license information from the command-
line interface (CLI):

>request system license add terminal
[Type ^D at a new line to end input,
 enter blank line between each license key]
<Feature X LICENSE INFO>

<Feature Y LICENSE INFO>

...
^D

UTM Monitoring | 527

http://www.juniper.net/techpubs
http://www.juniper.net/techpubs

To summarize, Table 9-4 shows the different UTM features and license requirements.

Table 9-4. UTM features and license requirements

Feature License required?

SurfControl integrated WF Yes

Websense redirect WF No

Juniper local WF No

Kaspersky full AV Yes

Juniper Express AV Yes

Sophos in-the-cloud AV Yes

Sophos AS Yes

Content filtering No

Tracing UTM Sessions
You can leverage the Junos tracing infrastructure to obtain debugging information by
using traceoptions, configured under each feature profile, to control the debug mes-
sages generated as each module processes sessions.

This tracing is quite verbose and has a high impact on the devices’ performance, so be
careful not to enable it on a heavily used production device:

[edit security utm]
feature-profile {
 anti-virus {
 traceoptions {
 flag all;
 }
 }
}

Tracing files are stored under the /var/log directory and are named after each UTM
feature using the utmd- prefix. For example, the antivirus engine stores its logs in a file
named utmd-av.

By looking at how a trace request to a clean site is processed, you can get an idea of
how traffic is treated under normal circumstances. So, let’s try a Google page. As you
can see, none of the content embedded in the page was deemed to be dangerous (no
file with an extension matching the default extension list was found when using scan-
extension mode):

Feb 8 08:51:11 [2]av_mgr: scan params 6000000: layer: 4, max-size: 20000;
mode: 1; hint: 1; [XSLT;:]
Feb 8 08:51:11 [2]av_mgr: find idle worker 2.
Feb 8 08:51:11 {11994} av_worker: recv event 3 len 1048.
Feb 8 08:51:11 {11994} scanner 2: recv event 3.
Feb 8 08:51:11 {11994} scanner 2: scan file www.google.com/ for 1 times ...
Feb 8 08:51:11 AV scan file [www.google.com/]: MD5

528 | Chapter 9: Unified Threat Management

f27724d1d57d36cab6b77f8fc53b6bc7, size 1161
Feb 8 08:51:11 scan file: [/var/run/utm/utmfile181989376]
Feb 8 08:51:11 scan mode: 1, type 2
Feb 8 08:51:11 set mem limit 645795840.
Feb 8 08:51:11 scan begin: /var/run/utm/utmfile181989376
Feb 8 08:51:11 scan ext mode skip check: www.google.com/
Feb 8 08:51:11 file do not have entension, scan.
Feb 8 08:51:11 Object inform: /var/run/utm/utmfile181989376, level 0
Feb 8 08:51:11 scan done: /var/run/utm/utmfile181989376, 0x00000000
Feb 8 08:51:11 Result:
Feb 8 08:51:11 last error: 0x00000000, No error

Instead, a request to download the EICAR file is scanned by the antivirus engine and
a virus is detected:

Feb 8 08:53:30 [2]av_mgr: scan params 6000000: layer: 4, max-size: 20000;
mode: 1; hint: 0; [XSLT;:]
Feb 8 08:53:30 [2]av_mgr: find idle worker 2.
Feb 8 08:53:30 [2]av_mgr -> 2: event scan_file len 1044.
Feb 8 08:53:30 {11994} av_worker: recv event 3 len 1048.
Feb 8 08:53:30 {11994} scanner 2: recv event 3.
Feb 8 08:53:30 {11994} scanner 2: scan file www.eicar.org/download/eicar.com
for 1 times ...
Feb 8 08:53:30 AV scan file [www.eicar.org/download/eicar.com]: MD5
44d88612fea8a8f36de82e1278abb02f, size 68
Feb 8 08:53:30 scan file: [/var/run/utm/utmfile181989376]
Feb 8 08:53:30 scan mode: 1, type 0
Feb 8 08:53:30 set mem limit 645742592.
Feb 8 08:53:30 scan begin: /var/run/utm/utmfile181989376
Feb 8 08:53:30 scan ext mode skip check: www.eicar.org/download/eicar.com
Feb 8 08:53:30 ext is ;COM;, list XSLT;, ,
386;ACE;ARJ;ASP;BAT;BIN;BZ2;CAB;CHM;CLA;CMD;COM;CPL;DLL;DOC;DOT;DPL;DRV;DWG;ELF;
EMF;EML;EXE;FON;FPM;GEA;GZ;HA;HLP;HTA;HTM;HTML;HTT;HXS;ICE;INI;ITSF;JAR;JPEG;JPG;
JS;JSE;LHA;LNK;LZH;MBX;MD?;MIME;MSG;MSI;MSO;NWS;OCX;OTM;OV?;PDF;PHP;PHT;PIF;PK;
PL;PLG;PP?;PRG;PRJ;RAR;REG;RTF;SCR;SH;SHS;SWF;SYS;TAR;TGZ;THE;TSP;VBE;VBS;VXD;
WSF;WSH;XL?;XML;ZIP;
Feb 8 08:53:30 hit 1. !!!
Feb 8 08:53:30 hit default list, scan
Feb 8 08:53:30 Object inform: /var/run/utm/utmfile181989376, level 0
Feb 8 08:53:30 Detect inform: EICAR-Test-File
Feb 8 08:53:30 scan done: /var/run/utm/utmfile181989376, 0x00000004
Feb 8 08:53:30 Result:
Feb 8 08:53:30 last error: 0x00000000, No error
Feb 8 08:53:30
Feb 8 08:53:30 {11994} scanner 2 sends result: 1.
Feb 8 08:53:30 [2]av_mgr: recv event, len 648.
Feb 8 08:53:30 [2]av_mgr <- 2: event scan_result, it takes 5600 usecs.

Administrators are encouraged to try out several traffic patterns and features to become
familiar with how the different UTM modules process traffic.

Now let’s put what you have learned so far to good use.

UTM Monitoring | 529

Case Study 9-1: Small Branch Office
Let’s put everything together to get a complete picture of how a typical branch office
SRX is deployed.

In this case study, you will focus on a branch office with the characteristics listed here
and shown in Figure 9-14:

• The DMZ zone should provide inbound access to an HTTP and FTP server.

• The Trust zone should require antivirus and web filtering services.

• The FTP server should allow only downloads; uploading of files is not permitted.

• Since only FTP downloads are allowed and the FTP server will not have HTTP or
mail access, no virus scanning is needed.

• Traffic from the Trust to the Untrust zones will be NATed using the address of the
egress interface.

• Traffic from the Untrust to the DMZ zones will be NATed using the address of the
Untrust interface. Traffic to port 80 will be sent to the HTTP server, while traffic
to port 21 will be sent to the FTP server (using destination NAT with port
forwarding).

• Access to the SRX from the Untrust network is only allowed for SSH and HTTPS.
HTTP access from the Untrust zone cannot be allowed as this traffic will be for-
warded to the HTTP server in the DMZ zone.

Figure 9-14. Reference branch office

530 | Chapter 9: Unified Threat Management

Follow along with the configurations. First let’s set the NTP and DNS configuration:

set system host-name SRX650-1
#NTP and DNS configuration
set system name-server 4.2.2.2
set system ntp server pool.ntp.org

Now set the management protocols:

set system services ssh protocol-version v2
set system services web-management http interface ge-0/0/1.0
set system services web-management https system-generated-certificate
set system services web-management https interface ge-0/0/0.0

Configure the logging:

set system syslog user * any emergency
set system syslog file messages any critical
set system syslog file sessions user info
set system syslog file sessions match RT_FLOW
set system syslog file sessions structured-data brief
set system syslog file antivirus user info
set system syslog file antivirus match AV_
set system syslog file antivirus structured-data brief
set system syslog file webfilter daemon any
set system syslog file webfilter match WEBFILTER_
set system syslog file webfilter structured-data brief
set system syslog file contentfilter user info
set system syslog file contentfilter match CONTENT_FILTERING_
set system syslog file contentfilter structured-data brief

#Interfaces
set interfaces ge-0/0/0 unit 0 family inet dhcp
set interfaces ge-0/0/0 description "Internet Connection"
set interfaces ge-0/0/1 unit 0 family inet address 10.1.1.26/16
set interfaces ge-0/0/1 description "Trust Net"
set interfaces ge-0/0/2 unit 0 family inet address 10.2.1.26/16
set interfaces ge-0/0/1 description "DMZ Net"

Configure the NAT configuration and the interface NAT for egress traffic:

set security nat source rule-set trust-untrust from zone trust
set security nat source rule-set trust-untrust to zone untrust
set security nat source rule-set trust-untrust rule nat-all-egress match source-
address 0.0.0.0/0
set security nat source rule-set trust-untrust rule nat-all-egress match
destination-address 0.0.0.0/0
set security nat source rule-set trust-untrust rule nat-all-egress then
source-nat interface

Now configure the port forwarding to access the HTTP and FTP servers:

set security nat destination pool http-server address 10.2.1.103/32
set security nat destination pool http-server address port 80
set security nat destination pool ftp-server address 10.2.1.102/32
set security nat destination pool ftp-server address port 21
set security nat destination rule-set to-dms from zone dmz
set security nat destination rule-set to-dms rule to-http-server match

Case Study 9-1: Small Branch Office | 531

source-address 0.0.0.0/0
set security nat destination rule-set to-dms rule to-http-server match
destination-address 0.0.0.0/0
set security nat destination rule-set to-dms rule to-http-server match
destination-port 80
set security nat destination rule-set to-dms rule to-http-server then
destination-nat pool http-server
set security nat destination rule-set to-dms rule to-ftp-server match
source-address 0.0.0.0/0
set security nat destination rule-set to-dms rule to-ftp-server match
destination-address 0.0.0.0/0
set security nat destination rule-set to-dms rule to-ftp-server match
destination-port 21
set security nat destination rule-set to-dms rule to-ftp-server then
destination-nat pool ftp-server

Set the screens to filter some malformed packets and limit the max number of inbound
connections from the Internet:

set security screen ids-option untrust-screen icmp ip-sweep threshold 5000
set security screen ids-option untrust-screen icmp fragment
set security screen ids-option untrust-screen icmp large
set security screen ids-option untrust-screen icmp ping-death
set security screen ids-option untrust-screen ip bad-option
set security screen ids-option untrust-screen ip record-route-option
set security screen ids-option untrust-screen ip source-route-option
set security screen ids-option untrust-screen ip loose-source-route-option
set security screen ids-option untrust-screen ip strict-source-route-option
set security screen ids-option untrust-screen tcp port-scan threshold 5000
set security screen ids-option untrust-screen tcp winnuke
set security screen ids-option untrust-screen limit-session source-ip-based 200

Set the security zones configuration:

set security zones security-zone untrust screen untrust-screen
set security zones security-zone untrust host-inbound-traffic system-services ssh
set security zones security-zone untrust host-inbound-traffic
system-services https
set security zones security-zone untrust interfaces ge-0/0/0.0
set security zones security-zone trust address-book address
net-10.1/16 10.1.0.0/16
set security zones security-zone trust host-inbound-traffic system-services ping
set security zones security-zone trust host-inbound-traffic system-services ssh
set security zones security-zone trust host-inbound-traffic system-services http
set security zones security-zone trust host-inbound-traffic system-services https
set security zones security-zone trust interfaces ge-0/0/1.0
set security zones security-zone dmz address-book address
ftp-server 10.2.1.102/32
set security zones security-zone dmz address-book address
http-server 10.2.1.103/32
set security zones security-zone dmz interfaces ge-0/0/2.0

532 | Chapter 9: Unified Threat Management

Security Policies
First let’s set the outbound traffic from the Trust to the Untrust that is sent to the
antivirus and web filtering engines (MAIL and HTTP):

set security policies from-zone trust to-zone untrust policy outbound-AV_WF
match source-address net-10.1/16
set security policies from-zone trust to-zone untrust policy outbound-AV_WF
match destination-address any
set security policies from-zone trust to-zone untrust policy outbound-AV_WF
match application junos-http
set security policies from-zone trust to-zone untrust policy outbound-AV_WF
match application junos-smtp
set security policies from-zone trust to-zone untrust policy outbound-AV_WF
match application junos-pop3
set security policies from-zone trust to-zone untrust policy outbound-AV_WF
match application junos-imap
set security policies from-zone trust to-zone untrust policy outbound-AV_WF
then permit application-services utm-policy AV_WF_HTTP_MAIL

Set the various protocols allowed from Trust to Untrust which do not require any UTM
scanning (DNS, NTP, and encrypted protocols):

set security policies from-zone trust to-zone untrust policy outboud-no-services
match source-address net-10.1/16
set security policies from-zone trust to-zone untrust policy outboud-no-services
match destination-address any
set security policies from-zone trust to-zone untrust policy outboud-no-services
match application junos-dns-udp
set security policies from-zone trust to-zone untrust policy outboud-no-services
match application junos-https
set security policies from-zone trust to-zone untrust policy outboud-no-services
match application junos-imaps
set security policies from-zone trust to-zone untrust policy outboud-no-services
match application junos-ntp
set security policies from-zone trust to-zone untrust policy outboud-no-services
then permit

Allow inbound FTP traffic to the FTP server using a UTM policy to block some FTP
commands:

set security policies from-zone untrust to-zone dmz policy inbound_to_ftp_server
match source-address any
set security policies from-zone untrust to-zone dmz policy inbound_to_ftp_server
match destination-address ftp-server
set security policies from-zone untrust to-zone dmz policy inbound_to_ftp_server
match application junos-ftp
set security policies from-zone untrust to-zone dmz policy inbound_to_ftp_server
then permit application-services utm-policy FTP_NO_MODIFY

Allow inbound traffic to the HTTP server in the DMZ zone, but scan all the traffic to
the HTTP server:

set security policies from-zone untrust to-zone dmz policy inbound_to_http_server
match source-address any
set security policies from-zone untrust to-zone dmz policy inbound_to_http_server

Case Study 9-1: Small Branch Office | 533

match destination-address http-server
set security policies from-zone untrust to-zone dmz policy inbound_to_http_server
match application junos-http
set security policies from-zone untrust to-zone dmz policy inbound_to_http_server
then permit application-services utm-policy AV_ONLY

Finally, allow NTP and DNS traffic from the Untrust zone to the Internet:

set security policies from-zone dmz to-zone untrust policy dmz-out match source-
address ftp-server
set security policies from-zone dmz to-zone untrust policy dmz-out match source-
address http-server
set security policies from-zone dmz to-zone untrust policy dmz-out match
destination-address any
set security policies from-zone dmz to-zone untrust policy dmz-out match
application junos-dns-udp
set security policies from-zone dmz to-zone untrust policy dmz-out match
application junos-ntp
set security policies from-zone dmz to-zone untrust policy dmz-out then permit

Drop all traffic not explicitly allowed:

set security policies default-policy deny-all

UTM Policies and Profiles
Let’s set the antivirus feature profile to use intelligent prescreening:

set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options corrupt-file block
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options password-file log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options decompress-layer log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options content-size log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options engine-not-ready log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options timeout log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options out-of-resources log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
fallback-options too-many-requests log-and-permit
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
scan-options intelligent-prescreening
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
scan-options scan-mode all
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
scan-options content-size-limit 10000
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
scan-options decompress-layer-limit 2
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options virus-detection type message
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options virus-detection notify-mail-sender

534 | Chapter 9: Unified Threat Management

set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options virus-detection custom-message-subject "VIRUS WARNING"
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options fallback-block type message
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options fallback-block notify-mail-sender
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options fallback-block custom-message-subject "VIRUS WARNING"
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options fallback-non-block notify-mail-recipient
set security utm feature-profile anti-virus kaspersky-lab-engine profile KS_AV
notification-options fallback-non-block custom-message-subject "VIRUS WARNING"

For the web filtering profile, let’s block access to some commonly blocked categories:

set security utm feature-profile web-filtering type surf-control-integrated
set security utm feature-profile web-filtering surf-control-integrated
cache timeout 600
set security utm feature-profile web-filtering surf-control-integrated
cache size 10000
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Adult_Sexually_Explicit action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Criminal_Skills action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Drugs_Alcohol_Tobacco action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Gambling action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Glamour_Intimate_Apparel action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Personals_Dating action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Hacking action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Remote_Proxies action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Weapons action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites category Violence action block
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites default permit
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites custom-block-message "Site not allowed by corporate policy"
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites fallback-settings default log-and-permit
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites fallback-settings server-connectivity log-and-permit
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites fallback-settings timeout log-and-permit
set security utm feature-profile web-filtering surf-control-integrated
profile safe-sites fallback-settings too-many-requests log-and-permit

Case Study 9-1: Small Branch Office | 535

Set the command list to block all FTP commands that could modify the contents of the
FTP server:

set security utm custom-objects protocol-command no-modify-content value PUT
set security utm custom-objects protocol-command no-modify-content value DELE
set security utm custom-objects protocol-command no-modify-content value MKD
set security utm custom-objects protocol-command no-modify-content value RMD
set security utm custom-objects protocol-command no-modify-content value STOR
set security utm custom-objects protocol-command no-modify-content value STOU

Create the content filtering profile, denying commands in the no-modify-content com-
mand list:

set security utm feature-profile content-filtering profile ftp-no-modify-content
block-command no-modify-content
set security utm feature-profile content-filtering profile ftp-no-modify-content
notification-options type protocol-only

This UTM policy is used to send traffic both to the web filtering engine and, if allowed
by web filtering, to the antivirus engine for scanning:

set security utm utm-policy AV_WF_HTTP_MAIL anti-virus http-profile KS_AV
set security utm utm-policy AV_WF_HTTP_MAIL anti-virus smtp-profile KS_AV
set security utm utm-policy AV_WF_HTTP_MAIL anti-virus pop3-profile KS_AV
set security utm utm-policy AV_WF_HTTP_MAIL anti-virus imap-profile KS_AV
set security utm utm-policy AV_WF_HTTP_MAIL web-filtering http-profile safe-sites

Let’s limit the number of sessions that a single client can simultaneously use:

set security utm utm-policy AV_WF_HTTP_MAIL traffic-options sessions-per-client
limit 300
set security utm utm-policy AV_WF_HTTP_MAIL traffic-options sessions-per-client
over-limit block

This is the UTM policy used to block some FTP commands. Note that the session limit
is set to 10, as it should be quite unlikely for a single client to simultaneously download
so many files. Clients reaching the session quota will trigger a log message but will be
allowed to continue (it’s useful to tune the limit to make sure no false positives result
in legitimate traffic being dropped).

set security utm utm-policy FTP_NO_MODIFY content-filtering ftp upload-profile
ftp-no-modify-content
set security utm utm-policy FTP_NO_MODIFY content-filtering ftp download-profile
ftp-no-modify-content
set security utm utm-policy FTP_NO_MODIFY traffic-options sessions-per-client
limit 10
set security utm utm-policy FTP_NO_MODIFY traffic-options sessions-per-client
over-limit log-and-permit

And last but not least, this policy is used to scan traffic from the Internet to the HTTP
server for viruses. As in the FTP case, it is a good practice to limit the maximum number
of sessions per client, after finding the appropriate threshold for a given network:

set security utm utm-policy AV_ONLY anti-virus http-profile KS_AV
set security utm utm-policy AV_ONLY traffic-options sessions-per-client limit 300
set security utm utm-policy AV_ONLY traffic-options sessions-per-client

536 | Chapter 9: Unified Threat Management

over-limit
log-and-permit

Now we’ll use the show command to check our work and the commit command to get
our Branch Office SRX deployed and working. As always, monitor the flows and use
traceoptions to check the logs.

Summary
The UTM feature set provides powerful tools for blocking viruses, undesired web con-
tent, files, and emails, giving administrators fine-grained control over the traffic allowed
through the network. However, these features come at the expense of computational
complexity, which is why Juniper Networks decided to provide a range of solutions,
from full on-box scanning capabilities to in-the-cloud-based approaches aimed at pro-
viding different detection capabilities with different performance characteristics.

Chapter Review Questions
1. Which features comprise the UTM solution?

2. If the combined CPU power of devices protected by an SRX is likely to be much
larger than the power of the SRX, why does a CPU-intensive feature such as anti-
virus still make sense?

3. Where are web filtering policies evaluated when using the Websense redirect
solution?

4. Which UTM features require a license?

5. What is intelligent prescreening?

6. Does the SRX transmit the file contents to a central server when using the Sophos
in-the-cloud antivirus solution?

7. When using the SurfControl integrated engine, URLs are evaluated against the
engine as well as against whitelists and blacklists. What is the order of evaluation?

8. Which protocols are decoded (and therefore supported) by the UTM protocol
parser?

9. The antispam SMTP protocol decoder extracts three fields. Which ones?

10. What facility do the data-plane-generated logs use?

Chapter Review Answers
1. The UTM feature set is composed of the following features:

• Web filtering

• Antivirus

Chapter Review Answers | 537

• Antispam

• Content filtering

2. A CPU-intensive feature such as antivirus still makes sense in this case because a
network-based solution is simpler to administrate and keep updated. A two-tier
approach is recommended in which the first tier (the network) is used to detect
recent in-the-wild attacks, while host-based solutions can be used to stop less
commonly found attacks.

3. With the Websense redirect solution, the web filtering policies are evaluated by
the Websense server and not by the SRX. After a URL is evaluated, the Websense
server sends an allow/block command to the SRX.

4. All the antivirus solutions—the SurfControl integrated solution and the Sophos
antispam solution—require a license.

5. Intelligent prescreening is a technique used to optimize the scanning of files by
trying to determine if a file is potentially harmful by looking at the first few bites.
If the file is determined to be harmless, scanning can be avoided.

6. The SRX does not transmit the file contents to a central server when using the
Sophos in-the-cloud antivirus solution. The in-the-cloud solution only transmits
checksums of the files.

7. Blacklists are evaluated first, followed by whitelists and the SurfControl engine.

8. The protocol decoder supports the following protocols:

• FTP

• HTTP

• SMTP

• IMAP

• POP3

9. The antispam SMTP protocol decoder extracts the source IP address of the con-
nection, the sender name, and the sender address.

10. Data-plane logs are tagged with the user facility.

538 | Chapter 9: Unified Threat Management

CHAPTER 10

High Availability

Failure is not an option.

—Eugene F. Kranz, Apollo 13 moon mission

Information availability is a daily part of modern society. People make phone calls, read
the news, stream songs, check sports scores, and watch television all over the Internet
or on their local provider’s network. At any given time, at any given location, almost
any bit of information can be made available over the Internet. Today, and in the near
future, it’s expected that there should be no interruptions to the access of this flow of
information. Failure to provide all of the world’s information at any user’s fingertips
at any time, day or night, will create great wrath on whomever’s network is in the way.
Welcome to the 21st century.

The average user of the Internet’s services is unable to comprehend why the information
he desires is not available. All he knows is that it isn’t, and that is no longer acceptable.
Consumers clamor for compensation and complain to all available outlets. Business
users call the help desk and demand explanations, while escalating their lost connection
to all levels. Revenue is lost and the world looks bleak. Information must always be
highly available, not just available.

The most likely location of a failure somewhere in the network is typically between the
client device and the server. This chapter is dedicated to training network administra-
tors on how to ensure that their SRX is not the device that brings down the network.
Firewalls are placed in the most critical locations in the network, and when problems
occur, trust us, users notice.

A router handles each packet as its own entity. It does not process traffic as though the
packets had a relationship to each other. The packet could be attempting to start a new
connection, end a connection, or have all sorts of strange data inside. A router simply
looks at the Layer 3 header and passes the packet on. Because of this, packets can come
in any order and leave the router in any way. If the router only sees one packet out of
an entire connection and never sees another, it doesn’t matter. If one router failed,
another router can easily pick up all of the traffic utilizing dynamic routing. Designing

539

for high availability (HA) with stateful firewalls is different because of their stateful
nature.

Stateful firewalls need to see the creation and teardown of the communication between
two devices. All of the packets in the middle of this communication need to be seen as
well. If some of the packets are missed, the firewall will start dropping them as it misses
changes in the state of communications. Once stateful firewalls came into the picture,
the nature of HA changed. The state of traffic must be preserved between redundant
firewalls. If one firewall fails, the one attempting to take over for it must have knowledge
of all of the traffic that is passing through it. All established connections will be dropped
if the new firewall does not have knowledge of these sessions. This creates the challenge
of ensuring that state synchronization can occur between the two devices. If not, the
whole reason for having redundancy in the firewalls is lost.

Understanding High Availability in the SRX
The design of the SRX is extremely robust regardless of the model or platform. It has
a complete operating system and many underlying processors and subsystems. De-
pending on the platform, it could have dozens of processors. Because of this, the SRX
implements HA in a radically different way than most firewalls. Common features such
as configuration and session synchronization are still in the product, but how the two
chassis interact is different.

Chassis Cluster
An SRX HA cluster implements a concept called chassis cluster. A chassis cluster takes
the two SRX devices and represents them as a single device. The interfaces are numbered
in such a way that they are counted starting at the first chassis and then end on the
second chassis. Figure 10-1 shows a chassis cluster. On the left chassis, the flexible PIC
concentrator (FPC) starts counting as normal; on the second chassis, the FPCs are
counted as though they were part of the first chassis.

Figure 10-1. Chassis cluster FPC numbering

540 | Chapter 10: High Availability

FPCs, PICs, and Ports, Oh My!
Junos-based devices use a specific naming convention for their interfaces and interface
devices. An FPC is a flexible PIC concentrator. The FPC is the device that holds the
interface cards or PIC. The FPC connects into the fabric of the chassis. A PIC is a
physical interface card. The PIC contains network processors and typically one or more
ports. A port may be a WAN interface or one or more Ethernet interfaces.

Interfaces are numbered in the following format: media-FPC/PIC/PORT. The media
represents the type of media. This may be fast Ethernet (fe), 10 gigabit Ethernet (xe),
or a T1 (t1). The FPC/PIC/PORT represents the physical location in the chassis. The
FPC number is the FPC’s number. FPC counting starts at zero. An FPC may contain
one or more PICs. Similar to FPCs, the PICs are numbered from zero and then counted
up from there. Lastly, ports are counted from zero and upward from there.

In Chapter 1, we discussed the concept of the route engine (RE). In an SRX cluster,
each SRX has one active RE. When the cluster is created the two REs work together to
provide redundancy. This is similar to the Juniper M Series, T Series, and MX Series
routing platforms that support dual REs. The Junos operating system is currently limi-
ted to supporting two REs per device. Because of this, the SRX cluster can only have
one RE per chassis. When the chassis are combined and act as a single chassis, the
devices reach the two-RE limit.

Multiple REs in a single SRX are currently not supported.

The chassis cluster concept, although new to the SRX, is not new to Juniper Networks.
The SRX utilizes the code infrastructure from the TX Matrix products. The TX Matrix
is a multichassis router that is considered one of the largest routers in the world. Only
the largest service providers and cloud networks utilize the product. Because of its
robust design and reliable infrastructure, it’s great to think that the code from such a
product sits inside every SRX. When the SRX was designed the engineers at Juniper
looked at the current available options and saw that the TX Matrix provided the in-
frastructure they needed. This is a great example of how using the Junos operating
system across multiple platforms benefits all products.

Understanding High Availability in the SRX | 541

To run a device in clustering mode there are a set of specific require-
ments. For the SRX3000 and SRX5000 lines the devices must have an
identical number of SPCs and the SPCs must be in identical locations.
The SRXs, however, may have any number of interface cards and they
do not have to be in the same slots. Best practice suggests, though, that
you deploy interfaces in the same FPCs and or PIC slots, as this will
make it easier to troubleshoot in the long run.

For most network administrators, this concept of a single logical chassis is very different
from traditional HA firewall deployment. To provide some comparison, in ScreenOS,
for example, the two devices were treated independently of each other. The configu-
ration, as well as network traffic state, was synchronized between the devices, but each
device had its own set of interfaces.

On the branch SRX Series products, Ethernet switching as of Junos 10.2
is not supported when the devices are in chassis cluster mode. Before
enabling clustering, Ethernet switching must be disabled.

The Control Plane
As discussed throughput this book, the SRX has a separated control plane and data
plane. Depending on the SRX platform architecture, the separation varies from being
separate processes running on separate cores to completely physically differentiated
subsystems. For the purposes of this discussion, however, it’s enough to know that the
control and data planes are separated.

The control plane is used in HA to synchronize the kernel state between the two REs.
It also provides a path between the two devices to send hello messages between them.
On the RE, a process or daemon runs, called jsrpd. This stands for Junos stateful re-
dundancy protocol daemon. This daemon is responsible for sending the messages and
doing failovers between the two devices. Another kernel, ksyncd, is used for synchro-
nizing the kernel state between the two devices. All of this occurs over the control plane
link.

The control plane is always in an active/backup state. This means only one RE can be
the master over the cluster’s configuration and state. This ensures that there is only one
ultimate truth over the state of the cluster. If the primary RE fails, the secondary takes
over for it. Creating an active/active control plane makes synchronization more difficult
because many checks would need to be put in place to validate which RE is right.

The two devices’ control planes talk to each other over a control link.
This link is reserved for control plane communication. It is critical that
the link maintain its integrity to allow for communication between the
two devices. For more, see “Upgrading the Cluster” on page 584.

542 | Chapter 10: High Availability

The Data Plane
The data plane’s responsibility in the SRX is to pass data and processes based on the
administrator’s configuration. All session and service states are maintained on the data
plane. The REs and/or control plane are not responsible for maintaining state (the RE
simply requests data and statistics from the data plane and returns it to the
administrator).

The data plane has a few responsibilities when it comes to HA implementation. First
and foremost is state synchronization. The state of sessions and services is shared be-
tween the two devices. Sessions are the state of the current set of traffic that is going
through the SRX, and services are other items such as the virtual private network (VPN),
intrusion protection service (IPS), and application layer gateways (ALGs).

On the branch SRX Series, synchronization happens between the flowd daemon run-
ning on the data plane. The SRX Series for the branch, as discussed in Chapter 1, runs
a single multicore processor with a single multithreaded flowd process. The data center
SRX distributed architecture state synchronization is handled in a similar fashion.
Figure 10-2 shows a detailed example.

Figure 10-2. Data center SRX state synchronization

In Figure 10-2, two SRX data center platforms are shown. Node 0 is shown on the left
and node 1 is on the right. Each device is depicted with two SPCs. SPC 0 is the SPC
that contains the central point (CP) Services Processing Unit (SPU) and a second flow
SPU. In SPC 1, both SPUs are flow SPUs. Both SRX data center platforms are required
to have the same number and location of SPCs and Network Processing Cards (NPCs).
This is required because the SPUs talk to their peer SPU in the same FPC and PIC
location. As seen in the back of Figure 10-2, the flow SPU in FPC 0 on node 0 sends a
message to node 1 on FPC 0 in PIC 1. This is the session synchronization message.
Once the SPU on node 1 validates and creates the session, it sends a message to its local
CP. As stated in Chapter 1, the central point processors are responsible for maintaining
the state for all of the exiting sessions on the SRX. The secondary device now has all of
the necessary information to handle the traffic in the event of a failover.

Understanding High Availability in the SRX | 543

Information is synchronized in what is known as a real-time object (RTO). This RTO
contains the necessary information to synchronize the data to the other node. The
remote side does not send an acknowledgment of the RTO because doing so would
slow down the session creation process, and frankly, an acknowledgment is rarely
needed. There are many different RTO message types. New ones may be added based
on the creation of new features on the SRX. The most commonly used message types
are the ones for session creation and session closure.

The second task the SRX needs to handle is forwarding traffic between the two devices.
This is also known as data path or Z path forwarding. Figure 10-3 illustrates this. Under
most configuration deployments, Z path forwarding is not necessary. However, in spe-
cific designs, this operation may be very common. (The details are further explored in
“Deployment Concepts” on page 548.) In the event that traffic is received by a node,
the node will always forward the traffic to a node on which the traffic will egress.

Figure 10-3. Data path or Z path forwarding

The last task for the data link is to send jsrpd messages between the two devices. The
jsrpd daemon passes messages over the data plane to validate that it is operating cor-
rectly. These are similar to the messages that are sent over the control link, except that
they go through the data plane. By sending these additional messages over the data
plane, the RE ensures that the data plane is up and capable of passing traffic. On the
branch SRX Series devices, the message exits the control plane, passes through flowd
and over the data link, and then to the second device. The second device receives the
packet, flowd, and passes the packet to the control plane and on to jsrpd. Depending
on the platform, the rate for the messages will vary.

All of these data plane messages pass over the data link. The data link is also known as
the fabric link depending on the context of the discussion. The size of the link varies

544 | Chapter 10: High Availability

based on the requirements. These requirements consist of the amount of data forward-
ing between devices and the number of new connections per second:

• On the SRX100 and SRX210, a 100 MB Ethernet link is acceptable for the link.

• For the SRX650 and SRX240, it’s suggested that you use a 1 GB link.

• On the data center SRXs, a 1 GB link is acceptable unless data forwarding is going
to occur.

• Even on an SRX5000 Series with a maximum of 350,000 new connections per
second, a 1 GB link can sustain the RTOs.

• If data forwarding is in the design, a 10 GB link is suggested.

Junos High Availability Concepts
This chapter started with the concept of the chassis cluster because it’s the fundamental
concept for the entire chapter. There are several important aspects to the chassis cluster;
some concern how the cluster is configured, and others are simply key to the fault
tolerance the chassis cluster provides. In this section, we will explore the deeper con-
cepts of the chassis cluster.

Cluster ID

Each cluster must share a unique identifier among all of its members. This identifier is
used in a few different ways, but most importantly it is used when two devices are
communicating with each other. Fifteen cluster IDs are available for use when creating
a cluster. The cluster ID is also used when determining Media Access Control (MAC)
addresses for the redundant Ethernet interfaces.

Node ID

The node ID is the unique identifier for a device within a cluster. There are two node
IDs: 0 and 1. The node with an ID of 0 is considered the base node. The node ID does
not give the device any sort of priority over its mastership, only in interface ordering.
Node 0 is the first node for the interface numbering in the chassis cluster. The second
node, node 1, is the second and last node in the cluster.

Redundancy groups

In an HA cluster, the goal is the ability to fail over resources in case something goes
wrong. A redundancy group is a collection of resources that need to fail over between
the two devices. Only one node at a time can be responsible for a redundancy group;
however, a single node can be the primary node for any number of redundancy groups.

Two different items are placed in a redundancy group: the control plane and the in-
terfaces. The default redundancy group is group 0. Redundancy group 0 represents the
control plane. The node that is the master over redundancy group 0 has the active RE.

Understanding High Availability in the SRX | 545

The active RE is responsible for controlling the data plane and pushing new configu-
rations. It is considered the ultimate truth in matters regarding what is happening on
the device.

The data plane components for redundancy groups exist in numbers 1 and greater. The
different SRX platforms support different numbers of redundancy groups. A data plane
redundancy group contains one or more Redundant Ethernet Interfaces (Reths). Each
member in the cluster has a physical interface bound into a Reth. The active node’s
physical interface will be active and the backup node’s interface will be passive and will
not pass traffic. It is easier to think of this as a binary switch. Only one of the members
of the Reth is active at any given time. “Deployment Concepts” on page 548 details
the use of data plane redundancy groups.

Interfaces

A network device doesn’t help a network without participating in traffic processing.
An SRX has two different interface types that it can use to process traffic. The first is
the Reth. A Reth is a Junos aggregate Ethernet interface and it has special properties
compared to a traditional aggregate Ethernet interface. The Reth allows the adminis-
trator to add one or more child links per chassis. Figure 10-4 shows an example of this
where node 0 is represented on the left and node 1 is represented on the right.

Figure 10-4. Reth example

In the figure, node 0 has interface xe-0/0/0 as a child link of reth0 and node 1 has
interface xe-12/0/0. The interface reth0 is a member of redundancy group 1. The node,
in this case node 0, has its link active. Node 1’s link is in an up state but it does not
accept or pass traffic. Upon a failover between nodes, the newly active node sends out
Gratuitous ARPs (GARPs). Both nodes share the same MAC address on the Reth. The

546 | Chapter 10: High Availability

surrounding switches will learn the new port that has the Reth MAC address. The hosts
are still sending their data to the same MAC, so they do not have to relearn anything.

The MAC address for the Reth is based on a combination of the cluster ID and the Reth
number. Figure 10-5 shows the algorithm that determines the MAC address. In the
figure, there are two types of fields: the hex field represents one bit by using a hexa-
decimal representation of a byte using two base 16 digits; the bit field represents a
number in binary with eight bits.

Figure 10-5. Reth MAC address

The first four of the six bytes are fixed. They do not change between cluster deploy-
ments. The last two bytes vary based on the cluster ID and the Reth index. In the figure,
CCCC represents the cluster ID in binary. With four bits, the maximum number is 15,
which is the same number of cluster IDs supported. Next, the RR represents a reserved
field for future expansion. It is currently set to 0 for both bits. The VV represents the
version of the chassis cluster, which today is set at 0 for both of the bits. Last is the field
filled with XXXXXXXXX, and this represents the redundant Ethernet index ID. Based
on Figure 10-5, it’s easy to see that collision of MAC addresses between clusters can
be avoided.

When configured in a chassis cluster the SRX is also able to support local interfaces. A
local interface is an interface that is configured local to a specific node. This method of
configuration on an interface is the same method of configuration on a standalone
device. The significance of a local interface in an SRX cluster is that it does not have a
backup interface on the other chassis, meaning that it is part of neither a Reth nor a
redundancy group. If this interface were to fail, its IP address would not fail over to the
other node. Although this feature may seem perplexing at first, it actually provides a
lot of value in complex network topologies, and it will be further explored later in this
chapter.

Understanding High Availability in the SRX | 547

Deployment Concepts
It’s time to apply all these concepts to actual deployment scenarios. For HA clusters,
there is a lot of terminology for the mode of actually deploying devices, and this section
attempts to give administrators a clear idea of what methods of deployment are avail-
able to them.

Earlier in this chapter we discussed control plane redundancy, whereby the control
plane is deployed in an active/passive fashion. One RE is active for controlling the
cluster, and the second RE is passive. The secondary RE performs some basic mainte-
nance for the local chassis, and synchronizes the configuration as well as checks that
the other chassis is alive.

In this section, we will discuss what can be done with the redundancy groups on the
data plane. The configuration on the data plane determines what mode the SRXs are
operating in. The SRX doesn’t have an idea of being forced into a specific mode of HA,
but operates in that mode based on the configuration. There are three basic modes of
operation, and one creative alternative:

• Active/passive

• Active/active

• Mixed mode

• The six pack

Active/passive

In the active/passive mode, the first SRX data plane is actively passing traffic while the
second SRX data plane is sitting in a passive setting not passing traffic. Upon a fault
condition, of course, the passive data plane will take over and begin passing traffic. To
accomplish this, the SRX utilizes one data plane redundancy group and one or more
redundant Ethernet interfaces. Figure 10-6 illustrates an example of this active/passive
process.

As shown in Figure 10-6, node 0, on the left, is currently active and node 1 is passive.
In this example, there are two Reth interfaces: reth0 and reth1. Reth0 goes toward the
Internet and reth1 goes toward the internal network. Because node 0 is currently active,
it is passing all of the traffic between the Internet and the internal network. Node 1’s
data plane is (patiently) waiting for any issue to arise so that it can take over and con-
tinue to pass traffic. The interfaces on node 1 that are in the reth0 and reth1 groups are
physically up but are unable to pass traffic. Since node 0 is currently active, it synchro-
nizes any new sessions that are created to node 1. When node 1 needs to take over for
node 0, it will have the same session information locally.

548 | Chapter 10: High Availability

Active/active

In an active/active deployment, both SRXs are simultaneously passing traffic. Although
it sounds difficult, the concept is simple—active/active is merely active/passive but
done twice. In this case, each member of the cluster is active for its own redundancy
group and the other device is passive for the redundancy group. In the event of a failure,
the remaining node will take over for the traffic for the failed device. Synchronization
happens between both nodes. Sessions for both redundancy groups are available on
both nodes.

So, the question remains: what does this type of deployment mean for the administra-
tor? The biggest advantage is that passing traffic over the backup node ensures that the
backup data plane is ready and correctly functioning. Nothing is worse than having an
HA cluster running for months and then, during the moment of truth, a failure occurs,
and the second node is in a degraded state and no one discovered this ahead of time.
A good example of avoiding this is to have one of the redundancy groups passing a
majority of the traffic while the other redundancy group is used to pass only a single
health check. This is a great design because the second device is verified and the ad-
ministrator doesn’t have to troubleshoot load-sharing scenarios.

Active/active deployments can also be used to share load between the two hosts. The
only downside to this design is that it may be difficult to troubleshoot flows going

Figure 10-6. Active/passive cluster

Understanding High Availability in the SRX | 549

through the two devices, but ultimately that varies on the administrator and the envi-
ronment, and it’s probably better to have the option available in the administrator’s
tool chest than not. Figure 10-7 shows an example of an active/active cluster.

Figure 10-7. Active/active cluster

Figure 10-7 shows an active/active cluster as simply two active/passive configurations.
Building from Figure 10-6, the example starts with the same configuration as before.
The clusters had a single redundancy group 1 and two Reths, reth0 and reth1, with
node 0 being the designated primary. In this example, a second redundancy group is
added, redundancy group 2, and two additional Reths are added to accommodate it.
reth2 is on the Internet-facing side of the firewalls and reth3 is toward the internal
network. This redundancy group, however, has node 1 as the primary, so traffic that
is localized to redundancy group 2 is only sent through node 1 unless a failure occurs.

Mixed mode

Mixed mode, perhaps the most interesting HA configuration, builds on the concepts
already demonstrated but expands to include local interfaces. As we discussed earlier,

550 | Chapter 10: High Availability

a local interface is an interface that has configurations local to the node for which it is
attached. The other node is not required to have a backup to this interface as in the
case of a Reth.

This option has significance in two specific use cases.

The first use case is WAN interfaces. For this use case there are two SRX210s, each
with a T1 interface and a single Reth to present back to the LAN, as depicted in Fig-
ure 10-8. Node 0 on the left has a T1 to provider A and node 1 on the right has a T1 to
provider B. Each node has a single interface connected to the LAN switch . These two
interfaces are bound together as reth0. The reth0 interface provides a redundant, reli-
able gateway to present to clients. Because of the way a T1 works, it is not possible to
have a common Layer 2 domain between the two T1 interfaces, so each T1 is its own
local interface to the local node.

Figure 10-8. Mixed mode with WAN interfaces

Traffic can enter or exit either T1 interface, and it is always directed out to the correct
interface. In Figure 10-8’s case, that would be reth0, as it is the only other interface
configured. The benefit of this design is that the two T1s provide redundancy and
increased capacity, and sessions between the two interfaces are synchronized. It’s great
when you are using T1 interfaces as connections to a remote VPN site.

A second great use case for mixed mode is with data centers using a dynamic routing
integration design. The design is similar to our previous example, but in this case all of
the interfaces are Ethernet. The two SRXs each have two interfaces connected into two
different M120 routers, all of which can be seen in Figure 10-9. Having two links each
going to two different routers provides a better level of redundancy in case links or

Understanding High Availability in the SRX | 551

routers fail. The Open Shortest Path First (OSPF) routing protocol is enabled between
the SRXs and the upstream routers, allowing for simplified failover between the links
and ensuring that the four devices can determine the best path to the upstream net-
works. If a link fails, OSPF recalculates and determines the next best path.

Figure 10-9. Data center mixed mode design

You can see in Figure 10-9 that the southbound interfaces connect into two EX8200
core switches. These switches provide a common Layer 2 domain between the south-
bound interfaces, which allows for the creation of reth0 (similar to the rest of the designs
seen in this chapter).

552 | Chapter 10: High Availability

Six pack

It’s possible to forgo redundant Ethernet interfaces altogether and use only local in-
terfaces. This is similar to the data center mixed mode design, except it takes the idea
one step further and uses local interfaces for both the north- and southbound connec-
tions. A common name for this design is six pack. It uses four routers and two firewalls
and is shown in Figure 10-10.

Figure 10-10. Six pack HA design

Much like the mixed mode design, the two northbound routers in Figure 10-10 are
connected to the SRXs with two links. Each router has a connection to each SRX. On

Understanding High Availability in the SRX | 553

the southbound routers, the same design is replicated. This allows for a fully meshed,
active/active, and truly HA network to exist. In this case, the SRXs are acting more like
how a traditional router would be deployed. OSPF is used for the design to direct traffic
through the SRXs, and it’s even possible to use equal cost multipath routing to do
balancing for upstream hosts.

The six pack design shows just how flexible the SRXs can be to meet the needs of nearly
any environment. These deployments can even be done in either the traditional Layer
3 routing mode or Layer 2 transparent mode.

Configuration
Understanding how a chassis cluster works is half the battle in attaining acceptable HA
levels. The rest concerns configuring a cluster.

To be fair, the configuration is actually quite easy—it’s just a few steps to get the cluster
up and running. Setting it up correctly is the key to a stable implementation, and need-
less to say, rushing through some important steps can cause serious pain later on. So,
we suggest that you start with fresh configurations, if possible, even if this means clus-
tering the devices starting with a minimal configuration and then adding on from there.

If there is an existing configuration, set it aside and then create the clus-
ter. After the cluster is running happily, then migrate the configuration
back on.

Differences from Standalone
When an administrator enters configuration mode on a standalone SRX, all of the active
users who log in to the device can see the configuration and edit it. When each user’s
changes can be seen by the other users on the device, it’s called a shared configura-
tion. Once chassis clustering is enabled, the devices must be configured in what is called
configure private, or private, mode, which enforces each administrator to see only her
own configuration changes. This imposes several restrictions on the end administrator
while using configure private mode.

The first notable restriction is that all configuration commits must be done from the
root, or top, of the configuration hierarchy. Second, the option to do commit con
firmed is no longer allowed, which, as you know, allows for a rollback to the previous
configuration if things go wrong. Both are very nice features that are not available when
in clustering mode. The reason these are disabled is simple: stability.

A lot of communication is going on between the two SRXs when they are in a clustered
mode, so when committing a change it is best to minimize the chances of differences
between the two devices’ local configurations at the time of the commit. If each node
had a user modifying the configuration at the same time, this would add an unneeded

554 | Chapter 10: High Availability

level of complexity to ensure that the configurations are synchronized. Because of this,
private mode is required while making configuration changes.

Activating JSRPD (Juniper Services Redundancy Protocol)
The first step in creating a cluster is to place the device into cluster mode. By default,
the SRX does not run the jsrpd daemon, so this must be triggered. To enable the jsrpd
daemon and turn the device into an eligible chassis cluster member, a few special bits
must be set in the NVRAM on the device, triggering the SRX, upon boot, to enable
jsrpd and enter chassis cluster mode.

These settings are permanent until they are otherwise removed. An
initial reboot is required after setting the cluster ID to get the jsrpd dae-
mon to start. The daemon will start every time the bits are seen in the
NVRAM.

It takes a single command, and it takes effect only upon reboot. Although it is unfor-
tunate that a reboot is required, it is required only once. You must run the command
from operational mode and as a user with super-user privileges.

root@SRX210-H> set chassis cluster cluster-id 1 node 0 reboot
Successfully enabled chassis cluster. Going to reboot now

root@SRX210-H>
*** FINAL System shutdown message from root@SRX210-H ***
System going down IMMEDIATELY

For this command to work we needed to choose the cluster ID and the node ID. For
most implementations, cluster ID 1 is perfectly acceptable, as we discussed earlier in
the chapter. The node ID is easy too: for the first node that is being set up use node 0,
and for the second node use node 1. There isn’t a specific preference between the two.
Being node 0 or node 1 doesn’t provide any special benefit; it’s only a unique identifier
for the device.

Once the device comes back up, it’s easy to notice the changes. Right above the shell
prompt is a new line:

{primary:node0} #<----new to the the prompt
root>

This line tells the administrator two important pieces of information. The part on the
left of the colon is the current status of the cluster control plane in relevance to the
cluster, and it will define which state the RE is in.

Configuration | 555

This only shows the control plane status. This does not show which
device has the active data plane. This is a common mistake for those
using the SRX. That message should be on its own page all by itself as
it’s that important to remember.

There are several different options for control plane status, as listed in Table 10-1. Upon
boot, the device enters the hold state. During this state the control plane is preparing
itself to enter the cluster. Next the device enters the secondary state when the RE checks
to see if there is already a primary RE in the cluster. If not, it then transitions to the
primary state.

Table 10-1. Control plane states

State Meaning

Hold This is the initial state upon boot. The RE is preparing to join the cluster.

Secondary The RE is in backup state and is ready to take over for the primary.

Primary The RE is the controller for the cluster.

Ineligible Something has occurred that makes the RE no longer eligible to be part of the cluster.

Disabled The RE is no longer eligible to enter the cluster. It must be rebooted to rejoin the cluster.

Unknown A critical failure has occurred. The device is unable to determine its current state. It must be rebooted to attempt
to reenter the cluster.

Lost Communication with the other node is lost. A node cannot be in a lost state; this is only listed under the
show chassis cluster status command when the other device was never detected.

Secondary-
hold

A device enters secondary-hold when it is identified as a secondary but the configured hold-down timer has not
yet expired. In the event of a critical failure, the redundancy group can still fail over.

After the primary states are three states that occur only when something goes wrong.
Ineligible occurs when something happens that invalidates the member from the cluster.
From there the device enters the disabled state after a period of time while being ineli-
gible. The last state, unknown, can occur only if some disastrous, unexpected event
occurs.

Once the system is up, and in either the final primary or secondary state, there are a
few steps you can take to validate that the chassis cluster is indeed up and running.
First check that the jsrpd daemon is up and running. If the new cluster status message
is above the prompt, it’s pretty certain that the daemon is running:

{primary:node0}
root> show system processes | match jsrpd
 863 ?? S 0:00.24 /usr/sbin/jsrpd -N

{primary:node0}
root> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

556 | Chapter 10: High Availability

Redundancy group: 0 , Failover count: 1
 node0 1 primary no no
 node1 0 lost n/a n/a

{primary:node0}
root>

The greatest friend of anyone using the chassis cluster is the show chassis cluster
status command. It is the most common command for looking at the current status of
the cluster and it is full of information. The first bit of information is the cluster ID, the
one that was initially configured and will likely stay that way until cleared. Next is
information regarding all of the redundancy groups that are configured; the first one
in our case is redundancy group 0. This represents the control plane only and has no
relevance on who is actively passing traffic.

Under each redundancy group, each node is listed along with its priorities, status, pre-
empt status, and whether the device is in manual failover. By default, redundancy group
0 is created without user intervention. Each device is given a default priority of 1. Be-
cause of this, the first node that becomes primary will be primary until a failure occurs.
Next the status is listed. The last two columns are preempt and manual failover. Pre-
empt is the ability to configure the device with the higher priority to preempt the device
with the lower priority. The manual failover column will state if the node was manually
failed-over to by the administrator.

Managing Cluster Members
Most Junos devices have a special interface named fxp0. This interface is used to man-
age the SRXs. It is typically connected to the RE, although some devices, such as the
SRX100 and SRX200 Series, do not have a dedicated port for fxp0 because the devices
are designed to provide the maximum number of ports for branch devices. However,
when SRX devices are configured in a cluster, the secondary node cannot be directly
managed unless it has either a local interface or the fxp0 port. To ease management of
the SRX100 and SRX200 Series, the fe-0/0/6 port automatically becomes the fxp0 port.
In “Node-Specific Information” on page 567 we will discuss how to configure this
port.

The fxp0 interface exists on the majority of Junos devices. This is due to the devices’
service-provider-like design. Fxp0 allows for secure out-of-band management, enabling
administrators to access the device no matter what is happening on the network. Be-
cause of this, many of the capabilities and management services often operate best
through the fxp0 port. Tools such as Network and Security Manager (NSM) and Junos
Space operate best when talking to an fxp0 port. Also, updates for Intrusion Detection
and Prevention (IDP) and Unified Threat Management (UTM) will work best through
this interface.

Configuration | 557

Configuring the Control Ports
Now that the devices are up and running, it’s time to get the two devices talking. There
are two communication paths for the devices to talk over; the first leads to the second.
The control port is the first, and by configuring the control port it’s possible to get the
devices communicating early on. Then, once the devices are in a cluster, the configu-
ration is automatically synchronized for a consistent second method. This can cut the
administrator’s work in half as he has to configure both devices only once.

Different platforms have different requirements for configuring the control port.
Table 10-2 lists each platform and the control port location. Since each platform has
different subsystems under the hood, so to speak, there are different ways to configure
the control port. The only device that requires manual intervention is the SRX5000.
Some devices also support dual or redundant control ports.

Table 10-2. Control ports by platform

Device Control port Description Dual support?

SRX100 and
SRX210

fe-0/0/7 Dedicated as a control port upon enabling
clustering

No

SRX240 and
SRX600

ge-0/0/1 Dedicated as a control port upon enabling
clustering

No

SRX3000 Both located on the switch fabric
board (SFB)

No user configuration required Yes

SRX5000 Located on the Services Process-
ing Card (SPC)

Manual configuration required Yes

When connecting control ports you connect the control port from each device to the
other device. It is not recommended that you join two primary devices together—it’s
best to reboot the secondary and then connect the control port. Upon reboot, the two
devices will begin to communicate.

For all of the SRX devices, except the SRX5000, you can do this right
after the initial cluster configuration. For the SRX5000 Series two re-
boots are required.

The SRX5000 Series control ports are located on the SPC, because when Juniper was
creating the SRX5000 the SPC was the only part that was created from scratch and the
remaining parts were taken from the MX Series. Ultimately, locating the control ports
on the SPC removes the control ports from other components while adding some ad-
ditional resiliency. The SPC and its underlying traffic processing are physically separate
from the control ports even though they are located on the same card. The SRX5000
must use fiber SFPs to connect the two chassis.

558 | Chapter 10: High Availability

Enabling Dual Control Links
The data center SRX is designed with many hardware components. Because of this, it
requires additional hardware to enable dual control links. Inside each chassis there are
two physically separate Ethernet control networks. By default, only one of the two
networks is up and operational. This network is enabled by the RE in each chassis.

To enable the secondary network that will allow for the use of dual control links an
additional piece of hardware is needed. On the SRX5000 Series a second RE is needed.
This RE is only used to enable the secondary control network and then turns off. On
the SRX3000 Series an SRX clustering module or SCM is used. It serves a similar func-
tion, but it is a different part than a standard RE. An RE on the SRX3000 also contains
the component that controls all of the line cards. This part is removed on the SCM.

Two physically separate control networks are used to provide complete redundancy.
Although it would be possible to use two links between the chassis and use a protocol
such as Spanning Tree Protocol to prevent Layer 2 loops, no one would want such a
critical feature relying on Spanning Tree.

To configure the control ports on the SRX5000, the administrator first needs to deter-
mine which ports he wants to configure, which he can do based on which FPC the
control port is located within. Next, he must identify the port number (either port 0 or
port 1):

{primary:node0}[edit chassis cluster]
root@SRX5800A# set control-ports fpc 1 port 0
root@SRX5800A# set control-ports fpc 2 port 1
root@SRX5800A# show
control-link-recovery;
control-ports {
 fpc 1 port 0;
 fpc 2 port 1;
}
root@SRX5800A# commit

There is logic in how the control ports should be configured on the SRX5000s. The
control ports can be on the same FPC, but ideally, the SRX should not be configured
that way. If possible, do not place the control port on the same card as the CP or central
point processor. The reason is that the CP is used as a hop for the data link. If the FPC
with the CP fails, and the control link is on it and it’s a single control link, the SRX
cluster can go into split brain or dual mastership. Because of this, separating the two is
recommended. So, if an administrator is going to utilize dual control links, it’s recom-
mended that he place each control link on separate SPCs and the CP on a third SPC.
This would require at least three SPCs, but this is the recommendation for the ultimate
in HA.

Configuration | 559

Once the control links are up and running, and the secondary node is rebooted and up
and running, it’s time to check that the cluster is communicating. Again, we go back
to the show chassis cluster status command:

{primary:node0}
root> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 1 primary no no
 node1 1 secondary no no

{primary:node0}
root>

Both devices should be able to see each other, as shown here, with one device being
primary and the other secondary.

Next, since there are two devices, it’s possible to check communications between the
two, this time using the show chassis cluster statistics command:

{primary:node0}
root> show chassis cluster control-plane statistics
Control link statistics:
 Control link 0:
 Heartbeat packets sent: 217
 Heartbeat packets received: 21
 Heartbeat packet errors: 0
Fabric link statistics:
 Probes sent: 4286
 Probes received: 0
 Probe errors: 0

At this point in the cluster creation, you should see only heartbeat messages on the
control link, such as under the statistic Heartbeat packets received:. In the preceding
output, 21 packets have been received. Typically, the number of heartbeat packets sent
and received will not match, as one device started before the other and did not receive
messages for a period of time. But once the sent and received numbers consistently
match, everything on the control plane should be in order.

The SRX3000 and the SRX5000 are able to utilize two control links that are provided
for redundancy only. In the event that one of the control links on the device fails, the
second is utilized. But to utilize the second control link an additional component is
needed. The SRX3000 uses a component called the SRX Clustering Module (SCM),
which is used to activate and control the secondary control link. On the SRX5000, a
standard RE can be used. The RE needs to have Junos 10.0 or later loaded to operate
the control link. Both the SCM and the secondary RE are loaded into the second RE
port on the platform. These modules do not act as an RE or backup to the RE, but
rather are used only for the backup control link.

560 | Chapter 10: High Availability

These components must be placed into the chassis while it is powered
off. Upon boot, the secondary link will be up and functional.

A quick look at the output of the show chassis cluster control-plane statistics
command shows the second control link working:

root > show chassis cluster control-plane statistics
Control link statistics:
 Control link 0:
 Heartbeat packets sent: 1114
 Heartbeat packets received: 217
 Heartbeat packet errors: 0
 Control link 1:
 Heartbeat packets sent: 1114
 Heartbeat packets received: 217
 Heartbeat packet errors: 0
Fabric link statistics:
 Probes sent: 1575937
 Probes received: 1575224
 Probe errors: 0

A final configuration option needs to be configured for the control link. That option is
control link recovery. Control link recovery allows for automated recovery of the sec-
ondary chassis in the event that the control link fails. If the single or both control links
fail, then the secondary device will go into the disabled state.

On the data center SRXs, a feature called unified in-service software upgrade (ISSU) can
be utilized. This method is a graceful upgrade method and allows for the SRXs to up-
grade without losing sessions or traffic.

As of Junos 10.2, VPN is not supported during the upgrade process.
However, everything else will work.

The process may take some time to complete. This is because the kernel on the two
devices must synchronize and the software must be updated. It is suggested that you
have all of the redundancy groups on a single member in the cluster. The process is
similar to the other, except the upgrade only needs to be run on one SRX:

{primary:node0}
root@SRX5800-1> request system software in-service-upgrade
junos-srx5000-10.2R2.6-domestic.tgz reboot

The command will upgrade each node and reboot them as needed. No further com-
mands are required.

Configuration | 561

There is one last option that the unified ISSU process can use: the no-old-master-
upgrade command, which leaves the master in a nonupgraded state. This ensures that
there is a working box should the software upgrade fail. Upon successful completion
of the upgrade, the old master is manually upgraded, as shown here:

{primary:node0}
root@SRX5800-1> request system software in-service-upgrade
junos-srx5000-10.2R3.10-domestic.tgz no-old-master-upgrade

##next on the old master

{primary:node0}
root@SRX5800-1> request system software add junos-srx5000-10.2R3.10-domestic.tgz

{primary:node0}
root@SRX5800-1> request chassis cluster in-service-upgrade abort

{primary:node0}
root@SRX5800-1> request system reboot

If things do go wrong and both nodes are unable to complete the upgrade in the unified
ISSU process, the upgraded node needs to be rolled back. This is simple to do. First
you must abort the unified ISSU process, then roll back the software on that node, and
then reboot the system:

{primary:node0}
root@SRX5800-1> request chassis cluster in-service-upgrade abort
Exiting in-service-upgrade window

{primary:node0}
root@SRX5800-1> request system software rollback

{primary:node0}
root@SRX5800-1> request system reboot

To recover, the device must be rebooted. The risk is that the device may not be able to
see the primary upon reboot, so if that occurs, dual mastership or split brain will result.
The better option is to enable control link recovery. It only takes a single command to
enable, as shown in the next example:

{primary:node0}[edit chassis cluster]
root# set control-link-recovery

{primary:node0}[edit chassis cluster]
root# show
control-link-recovery;

Once control link recovery is enabled, a user can manually reconnect the control link.
After the control link has been up for about 30 seconds and the SRXs have determined
that the link is healthy, the secondary node will reboot. Upon recovering from the
reboot, the cluster will be up and synchronized and ready to operate. Although a reboot
seems harsh for such a recovery, it is the best way to ensure that the backup node is up
and completely operational.

562 | Chapter 10: High Availability

Configuring the Fabric Links
The second half of the chassis cluster communication equation is the fabric connection.
Unlike the control link, the fabric link provides several functions and a great deal of
value to the cluster, the most important being session synchronization. Without session
synchronization, there would be little value to an SRX cluster. A second feature of the
fabric link is the ability to forward traffic between the two chassis. The egress chassis
is responsible for processing the traffic, so traffic is forwarded to the other cluster
member only if the egress interface is on that chassis.

Each node in the chassis needs its own fabric interface configured. The interfaces should
be directly connected to each other. Creating the fabric link between the two chassis
requires the creation of a special interface called the fab interface. The fab interface is
a special version of the aggregate Ethernet interface that allows for the binding of one
or more interfaces into a special bundle. Interfaces are added to the fab interface with
node 0’s fabric interface, called fab0, and node 1’s fabric interface, called fab1. Set the
interface thusly:

{primary:node0}[edit interfaces]
root# set fab0 fabric-options member-interfaces fe-0/0/4

{primary:node0}[edit interfaces]
root# set fab1 fabric-options member-interfaces fe-2/0/4

{primary:node0}[edit]
root# show interfaces
fab0 {
 fabric-options {
 member-interfaces {
 fe-0/0/4;
 }
 }
}
fab1 {
 fabric-options {
 member-interfaces {
 fe-2/0/4;
 }
 }
}

{primary:node0}[edit]
root# run show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up down
ge-0/0/1 up down
fe-0/0/2 up down
fe-0/0/3 up down
fe-0/0/4 up up
fe-0/0/4.0 up up aenet --> fab0.0
fe-0/0/5 up up
fe-0/0/6 up up

Configuration | 563

fe-0/0/7 up up
ge-2/0/0 up down
ge-2/0/1 up down
fe-2/0/2 up down
fe-2/0/3 up down
fe-2/0/4 up up
fe-2/0/4.0 up up aenet --> fab1.0
fe-2/0/5 up up
fe-2/0/6 up up
fe-2/0/7 up up
fab0 up up
fab0.0 up up inet 30.17.0.200/24
fab1 up up
fab1.0 up up inet 30.18.0.200/24
fxp0 up up
fxp0.0 up up inet 10.0.1.210/24
fxp1 up up
fxp1.0 up up inet 129.16.0.1/2
 tnp 0x1100001
fxp2 up up
gre up up
ipip up up
lo0 up up
lo0.16384 up up inet 127.0.0.1 --> 0/0
lo0.16385 up up inet 10.0.0.1 --> 0/0
 10.0.0.16 --> 0/0
 128.0.0.1 --> 0/0
 128.0.1.16 --> 0/0
 inet6 fe80::224:dcff:fed4:e000
lo0.32768 up up
lsi up up
mtun up up
pimd up up
pime up up
pp0 up up
st0 up up
tap up up
vlan up down
{primary:node0}[edit]
root#

As shown in the preceding output, interfaces fe-0/0/4 and fe-2/0/4 are members of an
aenet bundle. Interface fe-0/0/4 is a member of fab0.0, and fe-2/0/4 is a member of
fab1.0. If you look closely at fab0.0 and at fab1.0, each is given an internal IP address.
The address is used for internal communication and does not need to be configured by
the administrator.

You should verify that the two SRXs are talking over the fabric link. The send and
receive statistics should be increasing.

{primary:node0}[edit interfaces]
root# set fab0 fabric-options member-interfaces fe-0/0/4

{primary:node0}[edit interfaces]
root# set fab1 fabric-options member-interfaces fe-2/0/4

564 | Chapter 10: High Availability

{primary:node0}[edit]
root# show interfaces
fab0 {
 fabric-options {
 member-interfaces {
 fe-0/0/4;
 }
 }
}

When the SRX needs to forward traffic across the data plane it encapsulates the entire
packet and then forwards it over the link. The fabric link is automatically configured
using jumbo frames, or frames that are larger than the standard 1,514-byte frame. Ju-
niper supports up to a 9,192-byte frame. The difficulty here is that the SRX cannot take
a maximum size frame and then encapsulate it because it would be far too large to push
over the fabric link, and the SRX is not able to fragment the packet. So, it’s best to set
the maximum transmission unit (MTU) on the SRX interfaces to less than 8,900 to
ensure that the packets are able to pass over the fabric link.

If you’re using an active/passive cluster this should not be an issue.

As of Junos 10.2, all SRX platforms are able to use redundant fabric link ports, unlike
control link redundancy, which is restricted to the data center SRXs only. Adding a
second link is identical to creating the first link and it also requires a second link to be
physically cabled between the two chassis. For some platforms, such as the SRX100 or
SRX210, that may seem excessive because adding a second fabric link would mean half
of the ports on the chassis would be taken up by links for HA: one control link, two
fabric links, and a management link. Only three are required, but the fourth is optional.

There are good reasons to add a redundant fabric link on the smaller SRX devices. The
first is that there is an important level of redundancy on the critical links between the
SRXs, and it helps to prevent split brain, a critical requirement especially in a remote
branch location. (We will discuss dealing with split brain further in “Fault Monitor-
ing” on page 586 and “Troubleshooting the Cluster” on page 606.) For larger net-
works, an interesting use is to utilize the smaller branch boxes to test and learn on less
expensive units or provide training.

To configure the second fabric link utilize the following commands:

{primary:node0}[edit interfaces]
root# set fab0 fabric-options member-interfaces fe-0/0/5

{primary:node0}[edit interfaces]
root# set fab1 fabric-options member-interfaces fe-2/0/5

Configuration | 565

{primary:node0}[edit]
root# show interfaces
fab0 {
 fabric-options {
 member-interfaces {
 fe-0/0/4;
 fe-0/0/5;
 }
 }
}
fab1 {
 fabric-options {
 member-interfaces {
 fe-2/0/4;
 fe-2/0/5;
 }
 }
}
{primary:node0}
root> show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up down
ge-0/0/1 up down
fe-0/0/2 up down
fe-0/0/3 up down
fe-0/0/4 up up
fe-0/0/4.0 up up aenet --> fab0.0
fe-0/0/5 up up
fe-0/0/5.0 up up aenet --> fab0.0
fe-0/0/6 up up
fe-0/0/7 up up
ge-2/0/0 up down
ge-2/0/1 up down
fe-2/0/2 up down
fe-2/0/3 up down
fe-2/0/4 up up
fe-2/0/4.0 up up aenet --> fab1.0
fe-2/0/5 up up
fe-2/0/5.0 up up aenet --> fab1.0
fe-2/0/6 up up
fe-2/0/7 up up
fab0 up up
fab0.0 up up inet 30.17.0.200/24
fab1 up up
fab1.0 up up inet 30.18.0.200/24
fxp0 up up
fxp0.0 up up inet 10.0.1.210/24
fxp1 up up
fxp1.0 up up inet 129.16.0.1/2
 tnp 0x1100001
fxp2 up up
gre up up
ipip up up
lo0 up up
lo0.16384 up up inet 127.0.0.1 --> 0/0

566 | Chapter 10: High Availability

lo0.16385 up up inet 10.0.0.1 --> 0/0
 10.0.0.16 --> 0/0
 128.0.0.1 --> 0/0
 128.0.1.16 --> 0/0
 inet6 fe80::224:dc0f:fcd4:e000
lo0.32768 up up
lsi up up
mtun up up
pimd up up
pime up up
pp0 up up
ppd0 up up
ppe0 up up
st0 up up
tap up up
vlan up down

{primary:node0}
root>

In this output’s configuration, each fabric link has a second member interface added
to it. So, fe-0/0/5 is added to fab0, and fe-2/0/5 is added to fab1. Since a fab link is like
an aggregate Ethernet interface, the configuration also looks similar. Note that packets
will only pass over one fab link at a time, as the second fab link is only used as a backup.

Node-Specific Information
A chassis cluster HA configuration takes two devices and makes them look as though
they are one. However, the administrator may still want some elements to be unique
between the cluster members, such as the hostname and the IP address on fxp0, which
are typically unique per device. No matter what unique configuration is required or
desired, it’s possible to achieve it by using Junos groups. Groups provide the ability to
create a configuration and apply it anywhere inside the configuration hierarchy. It’s an
extremely powerful feature, and here we’ll use it to create a group for each node.

Each group is named after the node it is applied to, and it’s a special naming that the
SRX looks for. Upon commit, only the group that matches the local node name is
applied, as shown in the following configuration:

{primary:node0}[edit groups]
root# show
node0 {
 system {
 host-name SRX210-A;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 10.0.1.210/24;
 }
 }

Configuration | 567

 }
 }
}
node1 {
 system {
 host-name SRX210-B;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 10.0.1.211/24;
 }
 }
 }
 }
}

{primary:node0}[edit groups]
root#

In this configuration example, there are two groups, created under the groups hierarchy
which is at the top of the configuration tree. The node0 group has its hostname set as
SRX210-A and node1 has its hostname set as SRX210-B. To apply the groups, the admin-
istrator needs to use the apply-groups command at the root of the configuration. When
the configuration is committed to the device, Junos will see the command and merge
the correct group to match the node name:

{primary:node0}[edit]
root# set apply-groups "${node}"

{primary:node0}[edit]
root# show apply-groups
Last changed: 2010-03-31 14:25:09 UTC
apply-groups "${node}";

{primary:node0}[edit]
root#

root# show interfaces | display inheritance
fab0 {
 fabric-options {
 member-interfaces {
 fe-0/0/4;
 fe-0/0/5;
 }
 }
}
fab1 {
 fabric-options {
 member-interfaces {
 fe-2/0/4;
 fe-2/0/5;
 }
 }

568 | Chapter 10: High Availability

}
##
'fxp0' was inherited from group 'node0'
##
fxp0 {
 ##
 ## '0' was inherited from group 'node0'
 ##
 unit 0 {
 ##
 ## 'inet' was inherited from group 'node0'
 ##
 family inet {
 ##
 ## '10.0.1.210/24' was inherited from group 'node0'
 ##
 address 10.0.1.210/24;
 }
 }
}

{primary:node0}[edit]
root#

To apply the configurations to the correct node, a special command was used: the set
apply-groups "${node}" command. The variable "${node}" is interpreted as the local
node name. Next in the output example is the show | display inheritance command
which shows the components of the configuration that are inherited from the group—
the component that is inherited has three lines above it that all begin with ##, with the
second line specifying from which group the value is inherited.

As discussed, the fxp0 management port can be configured like a standard interface
providing a management IP address for each device, but it’s also possible to provide a
shared IP address between each device so that when connecting to the IP it is redirected
back to the primary RE. This way, the administrator does not have to figure out which
is the master RE before connecting to it. The administrator can connect to what is called
the master-only IP.

To do so, a tag is added to the end of the command when configuring the IP address,
which is configured in the main configuration and not in the groups (since the tag is
applied to both devices, there is no need to place it in the groups):

{primary:node0}[edit]
root# set interfaces fxp0.0 family inet address 10.0.1.212/24 master-only

{primary:node0}[edit]
root# show interfaces fxp0
unit 0 {
 family inet {
 address 10.0.1.212/24 {
 master-only;
 }
 }

Configuration | 569

}

{primary:node0}
root@SRX210-A> show interfaces fxp0 terse
Interface Admin Link Proto Local Remote
fxp0 up up
fxp0.0 up up inet 10.0.1.210/24
 10.0.1.212/24

{primary:node0}
root@SRX210-A>

Configuring Heartbeat Timers
The SRX sends heartbeat messages on both the control and data links to ensure that
the links are up and running. Although the device itself could look to see if the link is
up or down, that is not enough to validate it. Heartbeat messages provide three layers
of validation: link, daemon, and internal paths.

The message requires the two jsrpd daemons to successfully communicate, ensuring
that the other daemon isn’t in a state of disarray and validating the internal paths be-
tween the two daemons, including the physical link and the underlying subsystems.
For the data link, the packets are even sent through the data plane, validating that the
flow daemons are communicating properly.

Each platform has default heartbeat timers that are appropriate for that device. The
reason for the differences is due to the ability of the kernel to guarantee the time to
the jsrpd daemon. Generally, the larger the device, the larger the processor on the RE;
the larger the processor, the faster it can process tasks; and the faster the device can
process tasks, the quicker it can move on to the next task.

This begs the question of how fast an administrator needs a device to
fail over. Of course, the world would like zero downtime and guaranteed
reliability for every service, but the answer is as fast as a device can fail
over in a reasonable amount of time while maintaining stability.

Table 10-3 lists the various configuration options for heartbeat timers based on the SRX
platform. The branch platforms utilize a higher timer because they use slower process-
ors to ensure stability at the branch. Although a faster failover may be desired, stability
is the most important goal. If the device fails over but is lost in the process, it is of no use.

570 | Chapter 10: High Availability

Table 10-3. Control plane heartbeats

Platform
Control plane
timer min (ms)

Control plane
timer max (ms)

Missed heartbeat
threshold min (sec)

Missed heartbeat
threshold max
(sec)

Min missing peer
detection time
(sec)

SRX100 2,000 2,000 8 8 16

SRX210 2,000 2,000 8 8 16

SRX240 2,000 2,000 8 8 16

SRX650 2,000 2,000 8 8 16

SRX3400 1,000 2,000 3 8 3

SRX3600 1,000 2,000 3 8 3

SRX5600 1,000 2,000 3 8 3

SRX5800 1,000 2,000 3 8 3

As of Junos 10.2, it is not possible to modify the heartbeat settings on the branch SRX
Series devices. They are set at a default of 16 seconds. This means that if the primary
node were to go offline, it would take 16 seconds for the backup to take over. In most
branch locations, where HA is needed but a graceful failover is accepted, this is fine.
The data center SRXs have a default failover detection time of three seconds, and these
platforms can be modified. To do so is simple. There are two options to set: threshold
and interval.

{primary:node0}[edit chassis cluster]
root@SRX210-A# set heartbeat-interval 2000

{primary:node0}[edit chassis cluster]
root@SRX210-A# set heartbeat-threshold 8

{primary:node0}[edit chassis cluster]
root@SRX210-A# show control-link-recovery;
heartbeat-interval 2000;
heartbeat-threshold 8;

{primary:node0}[edit chassis cluster]
root@SRX210-A#

Redundancy Groups
Redundancy groups are the core of the failover mechanism for the SRX and they are
used for both the control and data planes. On any SRX cluster there can be at least one
redundancy group at a minimum, and up to 129 at a maximum. How many you deploy
of course varies by platform and deployment scenario.

A redundancy group is a collection of objects and it represents which node is the owner
of the objects. The objects are either interfaces or the control plane. Whichever node
is the primary owner for the redundancy group is the owner of the items in the

Configuration | 571

redundancy group. On ScreenOS firewalls this was called a VSD (virtual security de-
vice). When a cluster is created, redundancy group 0 is also created by default. No
additional configuration is required to make it work.

Each node is given a priority within a redundancy group. The higher-priority device is
given mastership over the redundancy group. This depends on a few options, and one
of them, by default, is that a node with a higher priority will not preempt the device
with the lower priority. The result is that if a lower-priority node were to have ownership
of a redundancy group and then a node with the higher priority were to come online,
it would not give ownership to the higher-priority device. To enable this, the preempt
option would need to be enabled, and the device with the higher priority would take
ownership of the redundancy group when it was healthy to do so. Most organizations
do not use this option—they want to manually move the redundancy group back to
the node after the failover is investigated.

Creating a redundancy group is the same for the control or data plane, with the only
difference seen when configuring the interfaces. Let’s create an example with redun-
dancy group 0. Remember that this is not required, but doing so helps to create the
redundancy group and set the node priorities, because if the node priorities are not set
they default to 1.

Most organizations use node 0 as the higher-priority device. It’s best
when configuring the cluster to keep the configuration logical. When
troubleshooting in the middle of the night it’s great to know that node
0 should be the higher-priority node and that it is the same across the
whole organization.

Let’s create the redundancy group:

Default:
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 1 primary no no
 node1 1 secondary no no

{primary:node0}
root@SRX210-A>

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 0 node 0 priority 254

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 0 node 1 priority 1

{primary:node0}[edit chassis cluster]
root@SRX210-A# show redundancy-group 0

572 | Chapter 10: High Availability

node 0 priority 254;
node 1 priority 1;

root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

{primary:node0}
root@SRX210-A>

Now let’s create redundancy group 1. The most common firewall deployment for the
SRX is a Layer 3-routed active/passive deployment. This means the firewalls are con-
figured as a router and that one device is active and the other is passive. To accomplish
this, a single data plane redundancy group is created. It uses the same commands as
used to create redundancy group 0 except for the name redundancy-group 1:

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 1 node 0 priority 254

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 1 node 1 priority 1

{primary:node0}[edit chassis cluster]
root@SRX210-A# set chassis cluster reth-count 2

{primary:node0}[edit chassis cluster]
root@SRX210-A# show
control-link-recovery;
reth-count 2;
heartbeat-interval 2000;
heartbeat-threshold 8;
redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
}
redundancy-group 1 {
 node 0 priority 254;
 node 1 priority 1;
}

{primary:node0}[edit chassis cluster]
root@SRX210-A#
{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Configuration | 573

Redundancy group: 1 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

{primary:node0}
root@SRX210-A>

To keep things consistent, redundancy group 1 also gives node 0 a priority of 254 and
node 1 a priority of 1. To be able to commit the configuration at least one Reth has to
be enabled (it’s shown here but is further discussed in the next section). After commit,
the new redundancy group can be seen in the cluster status. It looks exactly like re-
dundancy group 0 and contains the same properties.

When creating an active/active configuration and utilizing redundant Ethernet inter-
faces the SRX needs to have at least two redundancy groups. Each node in the cluster
will have an active redundancy group on it. You configure this redundancy group in
the same way as you did the other redundancy group, except that the other node will
be configured with a higher priority. In this case, node 1 will have priority 254 and node
0 will have priority 1:

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 2 node 0 priority 1

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 2 node 1 priority 254

{primary:node0}[edit chassis cluster]
root@SRX210-A# show
control-link-recovery;
reth-count 2;
heartbeat-interval 2000;
heartbeat-threshold 8;
redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
}
redundancy-group 1 {
 node 0 priority 254;
 node 1 priority 1;
}
redundancy-group 2 {
 node 0 priority 1;
 node 1 priority 254;
}

{primary:node0}[edit chassis cluster]
root@SRX210-A#

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1

574 | Chapter 10: High Availability

 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 2 , Failover count: 0
 node0 1 secondary no no
 node1 254 primary no no

{primary:node0}
root@SRX210-A>

Now three redundancy groups are listed. The newest redundancy group, redundancy
group 2, has node 1 as its primary and node 0 as its secondary. In this case, all of the
traffic for redundancy group 2 will be flowing through node 1 and redundancy group
1’s traffic will be flowing through node 0. In the event of a failover, each node backs
up the other. So, it’s possible for either node to take over all of the redundancy groups.

It’s important to plan for the possibility that a single device might have
to handle all of the traffic for all of the redundancy groups. If you don’t
plan for this, the single device can be overwhelmed.

Each redundancy group needs a minimum of one Reth in it to operate. Because of this,
the total number of redundancy groups is tied to the total number of Reths per platform,
plus one for redundancy group 0. Table 10-4 lists the number of supported redundancy
groups per SRX platform.

Table 10-4. Redundancy groups per platform

Platform Redundancy groups

SRX100 9

SRX210 9

SRX240 25

SRX650 69

SRX3400 129

SRX3600 129

SRX5600 129

SRX5800 129

As previously discussed, it’s possible to have the node with the higher priority pre-
emptively take over the redundancy group. By default, the administrator would need
to manually fail over the redundancy group to the other node. Configuring a preempt
only requires a single command under the redundancy group as shown here, but

Configuration | 575

redundancy groups also have a default hold-down timer, or the time that the redun-
dancy group must wait until it can preempt. On redundancy group 1 and greater it is
set to one second. On redundancy group 0 it is set to 300 seconds or 5 minutes to
prevent instability on the control plane.

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 1 preempt

{primary:node0}[edit chassis cluster]
root@SRX210-A# show
control-link-recovery;
reth-count 2;
heartbeat-interval 2000;
heartbeat-threshold 8;
redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
}
redundancy-group 1 {
 node 0 priority 254;
 node 1 priority 1;
 preempt;
}

{primary:node0}[edit chassis cluster]
root@SRX210-A#

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 1
 node0 254 primary yes no
 node1 1 secondary yes no

{primary:node0}
root@SRX210-A>

A hold-down timer can be set to prevent unnecessary failovers in a chassis cluster, used
in conjunction with preempt as the number of seconds to wait until the redundancy
group can fail over. As previously mentioned, default hold-down timers are configured:
for redundancy group 1 it’s one second, and for redundancy group 0 it’s 300 seconds.
You can customize the timer and set it between zero and 1,800 seconds, but best prac-
tice suggests to never set redundancy group 0 to less than 300 seconds to prevent in-
stability on the control plane.

576 | Chapter 10: High Availability

It’s best to set a safe number for the redundancy groups to ensure that the network is
ready for the failover, and in the event of a hard failure on the other node, the redun-
dancy group will fail over as fast as possible:

{primary:node0}[edit chassis cluster]
root@SRX210-A# set redundancy-group 1 hold-down-interval 5

{primary:node0}[edit chassis cluster]
root@SRX210-A# show
control-link-recovery;
reth-count 2;
heartbeat-interval 2000;
heartbeat-threshold 8;
redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
}
redundancy-group 1 {
 node 0 priority 254;
 node 1 priority 1;
 preempt;
 hold-down-interval 5;
}

{primary:node0}[edit chassis cluster]
root@SRX210-A#

Configuring Interfaces
A firewall without interfaces is like a car without tires—it’s just not going to get you
very far. In the case of chassis clusters, there are two different options: the redundant
Ethernet interface (Reth) and the local interface. A Reth is a special type of interface
that integrates the features of an aggregate Ethernet interface together with redundancy
groups.

Before redundant Ethernet interfaces are created, the total number of interfaces in the
chassis must be specified. This is required because the Reth is effectively an aggregate
Ethernet interface and an interface needs to be provisioned before it can work.

It is suggested that you only provision the total number of interfaces
that are required to conserve resources.

Let’s set the number of interfaces in the chassis and then move on to create redundancy
groups 1+ and configure the interfaces:

{primary:node0}[edit chassis cluster]
root@SRX210-A# set reth-count 2

{primary:node0}[edit chassis cluster]

Configuration | 577

root@SRX210-A# show
control-link-recovery;
reth-count 2;
redundancy-group 0 {
 node 0 priority 254;
 node 1 priority 1;
}
redundancy-group 1 {
 node 0 priority 254;
 node 1 priority 1;
}

{primary:node0}[edit chassis cluster]
root@SRX210-A#

{primary:node0}
root@SRX210-A> show interfaces terse | match reth
reth0 up up
reth1 up up

Each SRX platform has a maximum number of Reths that it can support, as listed in
Table 10-5.

Table 10-5. Reth count per platform

Platform Redundant Ethernet interfaces

SRX100 8

SRX210 8

SRX240 24

SRX650 68

SRX3400 128

SRX3600 128

SRX5600 128

SRX5800 128

Now let’s create a Reth. When using a Reth, each member of the cluster has one or
more local interfaces that participate in the Reth:

{primary:node0}[edit interfaces]
root@SRX210-A# set fe-0/0/2 fastether-options redundant-parent reth0

{primary:node0}[edit interfaces]
root@SRX210-A# set fe-2/0/2 fastether-options redundant-parent reth0

{primary:node0}[edit interfaces]
root@SRX210-A# set reth0.0 family inet address 172.16.0.1/24

{primary:node0}[edit]
root@SRX210-A# set interfaces reth0 redundant-ether-options redundancy-group 1

578 | Chapter 10: High Availability

{primary:node0}[edit interfaces]
root@SRX210-A# show
fe-0/0/2 {
 fastether-options {
 redundant-parent reth0;
 }
}
fe-2/0/2 {
 fastether-options {
 redundant-parent reth0;
 }
}
fab0 {
 fabric-options {
 member-interfaces {
 fe-0/0/4;
 fe-0/0/5;
 }
 }
}
fab1 {
 fabric-options {
 member-interfaces {
 fe-2/0/4;
 fe-2/0/5;
 }
 }
}
fxp0 {
 unit 0 {
 family inet {
 address 10.0.1.212/24 {
 master-only;
 }
 }
 }
}
reth0 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 172.16.0.1/24;
 }
 }
}

{primary:node0}[edit]
root@SRX210-A#

In this configuration example, interfaces fe-0/0/2 and fe-2/0/2 have reth0 specified as
their parent. Then the reth0 interface is specified as a member of redundancy group 1,
and finally the interface is given an IP address. From here the interface can be configured
with a zone so that it can be used in security policies for passing network traffic.

Configuration | 579

Upon commit, there are two places to validate that the interface is functioning properly,
as shown in the following output. First, the user can look at the interface listing to show
the child links and also the Reth itself. Second, under the chassis cluster status, Junos
shows if the interface is up or not. The reason to use the second method of validation
is that although the child links may be physically up, the redundancy groups may have
a problem, and the interface may be down as far as jsrpd is concerned (we will discuss
this further in “Troubleshooting the Cluster” on page 606).

{primary:node0}
root@SRX210-A> show interfaces terse | match reth0
fe-0/0/2.0 up up aenet --> reth0.0
fe-2/0/2.0 up up aenet --> reth0.0
reth0 up up
reth0.0 up up inet 172.16.0.1/24

{primary:node0}
root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Down Not configured

{primary:node0}
root@SRX210-A>

With the data center SRX firewalls, it’s possible to utilize multiple child links per node
in the cluster, meaning that each node may have up to eight links configured together
for its Reth interface. The requirement for this to work is that both nodes must have
the same number of links on each chassis. It works exactly like a traditional Reth where
only one chassis will have its links active, and the secondary node’s links are still waiting
until a failover occurs. Configuring this is similar to what was done before; the noted
difference is that additional interfaces are made child members of the Reth:

{primary:node0}[edit interfaces
root@SRX5800-1# set xe-6/2/0 gigether-options redundant-parent reth0

{primary:node0}[edit interfaces]
root@SRX5800-1# set xe-6/3/0 gigether-options redundant-parent reth1

{primary:node0}[edit interfaces]
root@SRX5800-1# set xe-18/2/0 gigether-options redundant-parent reth0

{primary:node0}[edit interfaces]
root@SRX5800-1# set xe-18/3/0 gigether-options redundant-parent reth1

{primary:node0}[edit interfaces]
root@SRX5800-1# show interfaces
xe-6/0/0 {
 gigether-options {
 redundant-parent reth0;
 }

580 | Chapter 10: High Availability

}
xe-6/1/0 {
 gigether-options {
 redundant-parent reth1;
 }
}
xe-6/2/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-6/3/0 {
 gigether-options {
 redundant-parent reth1;
 }
}
xe-18/0/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-18/1/0 {
 gigether-options {
 redundant-parent reth1;
 }
}
xe-18/2/0 {
 gigether-options {
 redundant-parent reth0;
 }
}
xe-18/3/0 {
 gigether-options {
 redundant-parent reth1;
 }
}
reth0 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 1.0.0.1/16;
 }
 }
}
reth1 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 2.0.0.1/16;
 }
 }

Configuration | 581

}

{primary:node0}[edit]
root@SRX5800-1#

{primary:node0}
root@SRX5800-1> show interfaces terse | match reth
xe-6/0/0.0 up up aenet --> reth0.0
xe-6/1/0.0 up up aenet --> reth1.0
xe-6/2/0.0 up down aenet --> reth0.0
xe-6/3/0.0 up down aenet --> reth1.0
xe-18/0/0.0 up up aenet --> reth0.0
xe-18/1/0.0 up up aenet --> reth1.0
xe-18/2/0.0 up up aenet --> reth0.0
xe-18/3/0.0 up up aenet --> reth1.0
reth0 up up
reth0.0 up up inet 1.0.0.1/16
reth1 up up
reth1.0 up up inet 2.0.0.1/16

{primary:node0}
root@SRX5800-1> show chassis cluster interfaces
Control link 0 name: em0
Control link 1 name: em1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1

{primary:node0}
root@SRX5800-1>

As seen here, the configuration is identical except that additional interfaces are added
as members of the Reth. As far as the switch it is connected to, the interface is considered
an aggregate Ethernet, link agg group, or EtherChannel depending on the vendor. It’s
also possible to use LACP as well.

When a failover occurs to the secondary node, the node must announce to the world
that it is now owner of the MAC address associated with the Reth interface (since the
Reth’s MAC is shared between nodes). It does this using gratuitous ARPs or GARPs.
A GARP is an ARP that is broadcast but not specifically requested. Once a GARP is
sent, the local switch will be able to update its MAC table to map which port the MAC
address is associated with. By default, the SRX sends four gratuitous ARPs per Reth on
a failover. These are sent from the control plane and out through the data plane. To
modify the number of GARPs sent, this must be configured on a per-redundancy-group
basis. Use the set gratuitous-arp-count command and a parameter between 1 and 16:

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# set gratuitous-arp-count 5

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# show

582 | Chapter 10: High Availability

node 0 priority 254;
node 1 priority 1;
gratuitous-arp-count 5;

{primary:node0}[edit]
root@SRX210-A#

One last item to mention is the use of local interfaces. A local interface is not bound or
configured to a redundancy group; it’s exactly what the name means: a local interface.
It is configured like any traditional type of interface on a Junos device and is used in an
active/active scenario. It does not have a backup interface on the second device. To
refresh yourself on how to configure a local interface, please refer to Chapter 3.

Integrating Dynamic Routing
The SRX devices provide a very rich set of dynamic routing features. To get the most
out of the cluster there are a few important points to note. These points should be
considered the best-practice guidelines for using dynamic routing with an SRX cluster.

As of Junos 10.2, the SRX does not support nonstop routing or NSR,
meaning that the state of dynamic routing protocols is not synchronized
between the two REs.

If the data plane fails over between the two SRX devices, there is no direct impact, but
if the control plane fails over, the dynamic routing state is lost, along with all of the
routes. This can be a huge problem. If there isn’t a matching route, the packet and,
ultimately, the session is lost.

There are a few ways to mitigate this. The first is to prevent the control plane from
failing over, and you can do that by allowing the control plane to only fail over in the
event of a critical failure. The second option is to enable the dynamic routing integration
feature called graceful restart. When graceful restart is enabled and the control plane
fails over, the routes on the secondary node are not immediately removed, buying the
SRX some time to replace the routes with the routes learned from a newly formed
adjacency.

The standard function of graceful restart is to allow a router to restart without disrupt-
ing the network. Before the device restarts, it will send a message to its peers stating
not to send additional route updates during this time. When a failure occurs on the
primary node the secondary node sends out the graceful restart opaque link-state ad-
vertisement (LSA). Ideally, the surrounding routers should support graceful restart
as well.

Configuration | 583

Enabling graceful restart is fairly easy, as it only requires one command to turn it on (it
can also be tweaked on a per-protocol basis):

{primary:node0}[edit]
root@SRX210-A# set routing-options graceful-restart

{primary:node0}[edit]
root@SRX210-A# show routing-options
graceful-restart;

{primary:node0}[edit]
root@SRX210-A#

At a minimum, graceful restart should be enabled when using dynamic routing on the
SRX to preserve routes on the data plane. Ideally, your surrounding routers should
support graceful restart as well. Note that although Junos does support graceful restart,
other vendors may not. Junos High Availability by James Sonderegger, Orin Blomberg,
Kieran Milne, and Senad Palislamovic (O’Reilly) provides an in-depth exposition on
using graceful restart in the network.

Upgrading the Cluster
There are two ways to upgrade an SRX cluster: graceful and immediate. As of Junos
10.2, the graceful method is only available on the larger, data center SRX devices. The
feature is planned for the branch devices in a future release and may be available as you
are reading this book.

To upgrade the clusters ungracefully, each member is updated individually to the same
releases, then both devices are rebooted at the same time. This will cause a network
outage during that time, but it should be minimal. The reason both devices must be
rebooted at the same time is to ensure that there is no conflict between the old and new
versions.

Here’s a config example that shows the software update and the command to reboot:

{primary:node0}
root@SRX210-A> request system software add junos-srxsme-10.2R2.6-domestic.tgz
reboot

{primary:node0}
root@SRX210-A> request system reboot

{secondary:node1}
root@SRX210-B> request system software add junos-srxsme-10.2R2.6-domestic.tgz

{secondary:node1}
root@SRX210-B> request system reboot

On the larger, data center SRXs, unified ISSU can be utilized. This method is a graceful
upgrade method and allows for the SRXs to upgrade without losing sessions or traffic.

584 | Chapter 10: High Availability

http://oreilly.com/catalog/9780596523053/

As of Junos 10.2, VPN is not supported during the upgrade process.
However, everything else will upgrade.

Note that the process may take some time to complete. This is because the kernel on
the two devices must synchronize and the software must be updated. It is suggested
that you have all of the redundancy groups on a single member in the cluster. The
process for graceful upgrade is similar to an immediate upgrade, except the upgrade
only needs to be run on one SRX:

{primary:node0}
root@SRX5800-1> request system software in-service-upgrade
junos-srx5000-10.2R2.6-domestic.tgz reboot

This command will upgrade each node and reboot them as needed. No further com-
mands are required.

Another option that the unified ISSU process can use is the no-old-master-upgrade
process, which leaves the master in a nonupgraded state. This ensures that there is a
working box if the software upgrade were to fail. Upon successful competition of the
upgrade, the old master needs to be manually upgraded, as shown here:

{primary:node0}
root@SRX5800-1> request system software in-service-upgrade
junos-srx5000-10.2R3.10-domestic.tgz no-old-master-upgrade

##next on the old master

{primary:node0}
root@SRX5800-1> request system software add junos-srx5000-10.2R3.10-domestic.tgz

{primary:node0}
root@SRX5800-1> request chassis cluster in-service-upgrade abort

{primary:node0}
root@SRX5800-1> request system reboot

If things go wrong, and both nodes are unable to complete the upgrade in the unified
ISSU process, the upgraded node needs to be rolled back. This is simple to do. First
the unified ISSU process needs to be aborted. Then the software on that node must be
rolled back, and lastly the system must be rebooted:

{primary:node0}
root@SRX5800-1> request chassis cluster in-service-upgrade abort
Exiting in-service-upgrade window

{primary:node0}
root@SRX5800-1> request system software rollback

{primary:node0}
root@SRX5800-1> request system rebootw

Configuration | 585

Fault Monitoring
“In the event of a failure, your seat cushion may be used as a flotation device.” If your
plane were to crash and you were given notice, you would take the appropriate action
to prevent disaster. When working with a chassis cluster, an administrator wants to
see the smoke before the fire. That is what happens when an administrator configures
monitoring options in the chassis cluster. The admin is looking to see if the plane is
going down and to take evasive action before it’s too late. By default, the SRX monitors
for various internal failures such as hardware and software issues. But what if other
events occur, such as interfaces failing, or upstream gateways going away? If the ad-
ministrator wants to take action based on these events, he must configure the SRX to
take action.

The SRX monitoring options are configured on a per-redundancy-group basis, meaning
that if specific items were to fail, that redundancy group can fail over to the other
chassis. In complex topologies, this gives the administrator extremely flexible options
on what to fail over and when. Two integrated features can be used to monitor the
redundancy groups: interface monitoring and IP monitoring.

And there are two situations the SRXs can be in when a failure occurs. The first is that
the SRXs are communicating and the two nodes in the cluster are both functional. If
this is the case, and a failure occurs, the failover between the two nodes will be extremely
fast because the two nodes can quickly transfer responsibility for passing traffic between
them. The second scenario is when the two nodes lose communication. This could be
caused by a loss of power or other factors. In this case, all heartbeats between the chassis
must be missed before the secondary node can take over for the primary, taking any-
where from 3 to 16 seconds, depending on the platform.

In this section, each failure scenario is outlined so that the administrator can gain a
complete understanding of what to expect if or when a failure occurs.

Interface Monitoring
Interface monitoring monitors the physical status of an interface. It checks to see if the
interface is in an up or down state. When one or more monitored interfaces fail, the
redundancy group fails over to the other node in the cluster.

The determining factor is when a specific weight is met, and in this case it is 255. The
weight of 255 is the redundancy group threshold that is shared between interface mon-
itoring and IP monitoring. Once enough interfaces have failed to meet this weight, the
failover for the redundancy group occurs. In most situations, interface monitoring is
configured in such a way that if one interface were to fail, the entire redundancy group
would fail over. However, it could be configured that two interfaces need to fail. In this
first configuration, only one interface needs to fail to initiate a failover:

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# set interface-monitor fe-0/0/2 weight 255

586 | Chapter 10: High Availability

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# set interface-monitor fe-2/0/2 weight 255

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# show
node 0 priority 254;
node 1 priority 1;
interface-monitor {
 fe-0/0/2 weight 255;
 fe-2/0/2 weight 255;
}

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A#
root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Down Not configured

Interface Monitoring:
 Interface Weight Status Redundancy-group
 fe-2/0/2 255 Up 1
 fe-0/0/2 255 Up 1

{primary:node0}
root@SRX210-A>

In this example, interfaces fe-0/0/2 and fe-2/0/2 are configured with a weight of 255.
In the event that either interface fails, the redundancy group will fail over.

In the next example, the interface has failed. Node 0 immediately becomes secondary
and its priority becomes zero for redundancy group 1. This means it will only be used
as a last resort for the primary of redundancy group 1. Upon restoring the cables, ev-
erything becomes normal again:

{primary:node0}
root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Down Not configured

Interface Monitoring:
 Interface Weight Status Redundancy-group
 fe-2/0/2 255 Up 1
 fe-0/0/2 255 Down 1

{primary:node0}
root@SRX210-A> show chassis cluster status

Fault Monitoring | 587

Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 2
 node0 0 secondary no no
 node1 1 primary no no

{primary:node0}
root@SRX210-A>

In this example:

{primary:node0}[edit]
root@SRX210-A# set interfaces fe-0/0/3 fastether-options redundant-parent reth1

{primary:node0}[edit]
root@SRX210-A# set interfaces fe-2/0/3 fastether-options redundant-parent reth1

{primary:node0}[edit]
root@SRX210-A# set interfaces reth0 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX210-A# set interfaces reth1 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX210-A# set interfaces reth1.0 family inet address 172.17.0.1/24

{primary:node0}[edit]
root@SRX210-A# show interfaces ## Truncated to only show these interfaces
fe-0/0/3 {
 fastether-options {
 redundant-parent reth1;
 }
}
fe-2/0/3 {
 fastether-options {
 redundant-parent reth1;
 }
}
reth1 {
 redundant-ether-options {
 redundancy-group 1;
 }
 unit 0 {
 family inet {
 address 172.17.0.1/24;
 }
 }
}

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# set interface-monitor fe-0/0/2 weight 128

588 | Chapter 10: High Availability

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# set interface-monitor fe-2/0/2 weight 128

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A# show
node 0 priority 254;
node 1 priority 1;
interface-monitor {
 fe-0/0/2 weight 128;
 fe-2/0/2 weight 128;
}

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX210-A#

{primary:node0}
root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1

Interface Monitoring:
 Interface Weight Status Redundancy-group
 fe-2/0/2 128 Up 1
 fe-0/0/2 128 Up 1

{primary:node0}
root@SRX210-A>

both interfaces are needed to trigger a failover. The next sequence shows where node
0 will lose one interface from each of its Reths. This causes a failover to occur on
node 1.

{primary:node0}[edit]
root@SRX210-A# show chassis cluster redundancy-group 1
node 0 priority 254;
node 1 priority 1;
interface-monitor {
 fe-0/0/2 weight 128;
 fe-0/0/3 weight 128;
}

{primary:node0}[edit]
root@SRX210-A#

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1

Fault Monitoring | 589

 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 3
 node0 254 primary no no
 node1 1 secondary no no

{primary:node0}
root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1

Interface Monitoring:
 Interface Weight Status Redundancy-group
 fe-0/0/3 128 Up 1
 fe-0/0/2 128 Up 1

{primary:node0}
root@SRX210-A>

{primary:node0}
root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1

Interface Monitoring:
 Interface Weight Status Redundancy-group
 fe-0/0/3 128 Down 1
 fe-0/0/2 128 Down 1

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 4
 node0 0 secondary no no
 node1 1 primary no no

{primary:node0}
root@SRX210-A>

And here it required both interfaces to go down to fail over to the other node.

590 | Chapter 10: High Availability

Only physical interfaces can be monitored. The Reths themselves can’t be monitored.

Interface monitoring should be done on nonzero redundancy groups
and not on the control plane, because best practice urges you to only
allow the control plane to fail over in the event of a hard failure.

IP Monitoring
As of Junos 10.2, IP monitoring is only available on the data center SRX platforms. It
allows for the monitoring of upstream gateways. When using IP monitoring the ping
probe validates the entire end-to-end path from the SRX to the remote node and back.
The feature is typically used to monitor its next hop gateway, ensuring the gateway is
ready to accept packets from the SRX. This is key, as the SRX’s link to its local switch
may be working but the upstream devices may not.

IP monitoring is configured per redundancy group and has some similarities to interface
monitoring. It also uses weights, and when the weights add up to exceed the redun-
dancy group weight, a failover is triggered. But with IP monitoring, the SRX is moni-
toring remote gateways, not interfaces.

In each redundancy group there are four global options that affect all of the hosts that
are to be monitored:

• The first option is the global weight. This is the weight that is subtracted from the
redundancy group weight for all of the hosts being monitored.

• The second option is the global threshold. This is the number that needs to be met
or exceeded by all of the cumulative weights of the monitored IPs to trigger a
failover.

• The last two options are the retry attempts for the ping. The first is the retry count
which is the number of times to retry between failures. The minimum setting is
five retries.

• And the last is the retry interval, and this value specifies the number of seconds
between replies. The default retry time is one second.

Here the configuration options can be seen using the help prompt:

root@SRX5800-1# set redundancy-group 1 ip-monitoring ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> family Define protocol family
 global-threshold Define global threshold for IP monitoring (0..255)
 global-weight Define global weight for IP monitoring (0..255)
 retry-count Number of retries needed to declare reachablity failure
(5..15)
 retry-interval Define the time interval in seconds between retries.
(1..30)

Fault Monitoring | 591

{primary:node0}[edit chassis cluster]
root@SRX5800-1#

These IP monitoring options can be overwhelming, but they are designed to give the
user more flexibility. The redundancy group can be configured to fail over if one or
more of the monitored IPs fail, or if a combination of the monitored IPs and interfaces
fail.

In the next example, two monitored IPs are going to be configured. Both of them need
to fail to trigger a redundancy group failure. The SRX will use routing to resolve which
interface should be used to ping the remote host (you could also go across virtual routers
as of Junos 10.1 and later):

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# set ip-monitoring family inet 1.2.3.4 weight 128

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# set ip-monitoring family inet 1.3.4.5 weight 128

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# show
node 0 priority 200;
node 1 priority 100;
ip-monitoring {
 global-weight 255;
 global-threshold 255;
 family {
 inet {
 1.2.3.4 weight 128;
 1.3.4.5 weight 128;
 }
 }
}

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1#

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# run show chassis cluster ip-monitoring status
node0:
--

Redundancy group: 1

IP address Status Failure count Reason
1.3.4.5 unreachable 1 redundancy-group state unknown
1.2.3.4 unreachable 1 redundancy-group state unknown

node1:

Redundancy group: 1

592 | Chapter 10: High Availability

IP address Status Failure count Reason
1.3.4.5 unreachable 1 redundancy-group state unknown
1.2.3.4 unreachable 1 redundancy-group state unknown

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# run show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 200 primary no no
 node1 100 secondary no no

Redundancy group: 1 , Failover count: 1
 node0 0 primary no no
 node1 0 secondary no no

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1#

After you have studied that, the next example uses a combination of both IP monitoring
and interface monitoring, and shows how the combined weight of the two will trigger
a failover:

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# show
node 0 priority 200;
node 1 priority 100;
interface-monitor {
 xe-6/1/0 weight 255;
}
ip-monitoring {
 global-weight 255;
 global-threshold 255;
 family {
 inet {
 1.2.3.4 weight 128;
 }
 }
}

{primary:node0}[edit]
root@SRX5800-1# run show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 200 primary no no
 node1 100 secondary no no

Redundancy group: 1 , Failover count: 2
 node0 200 secondary no no
 node1 100 primary no no

{primary:node0}[edit]

Fault Monitoring | 593

root@SRX5800-1# run show chassis cluster ip-monitoring status
node0:

Redundancy group: 1

IP address Status Failure count Reason
1.2.3.4 unreachable 1 redundancy-group state unknown

node1:
--

Redundancy group: 1

IP address Status Failure count Reason
1.2.3.4 unreachable 1 redundancy-group state unknown

{primary:node0}[edit]
root@SRX5800-1# run show chassis cluster interfaces ?
Possible completions:
 <[Enter]> Execute this command
 | Pipe through a command
{primary:node0}[edit]
root@SRX5800-1# run show chassis cluster interfaces
Control link 0 name: em0
Control link 1 name: em1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1
 reth2 Down 1
 reth3 Up 1

Interface Monitoring:
 Interface Weight Status Redundancy-group
 xe-6/1/0 128 Up 1

{primary:node0}[edit]
root@SRX5800-1#

Here the ping for IP monitoring is sourced from the Reth’s active device, with the IP
address configured on the specified interface. Optionally, it’s possible to configure a
secondary IP to trigger the ping to come from the configured secondary IP address and
from the backup interface, allowing the administrator to check the backup path coming
from the secondary node. This would ensure that before a failover occurs, the backup
path is working. Let’s configure this option. It only takes one additional step per moni-
tored IP:

{primary:node0}[edit chassis cluster redundancy-group 1]
root@SRX5800-1# set ip-monitoring family inet 1.2.3.4 weight 255
interface reth0.0 secondary-ip-address 1.0.0.10

{primary:node0}[edit chassis cluster redundancy-group 1]

594 | Chapter 10: High Availability

root@SRX5800-1# show
node 0 priority 200;
node 1 priority 100;
ip-monitoring {
 global-weight 255;
 global-threshold 255;
 family {
 inet {
 1.2.3.4 {
 weight 255;
 interface reth0.0 secondary-ip-address 1.0.0.10;
 }
 }
 }
}

{primary:node0}[edit]
root@SRX5800-1# run show chassis cluster ip-monitoring status
node0:
--

Redundancy group: 1

IP address Status Failure count Reason
1.2.3.4 unreachable 0 no route to host

node1:
--

Redundancy group: 1

IP address Status Failure count Reason
1.2.3.4 unreachable 0 no route to host

{primary:node0}[edit]
root@SRX5800-1#

As mentioned, the monitor IP feature exists only on the data center SRX (as of Junos
10.2). This is because it works only in the data plane, and has not been included on the
branch devices yet. The SRX5000 Series products can create up to 64 monitored IPs
and the SRX3000 Series can create 32. The ping is generated from the second SPU on
the system, which is the first non-CP SPU, and because of that, it is not limited to
scheduling or processing restrictions found on the RE.

Manual Failover
Although the SRX has control over which node is in charge of each redundancy group,
sometimes the administrator needs to fail over a redundancy group—say, for mainte-
nance or troubleshooting purposes. No matter the reason, it’s possible to manually fail
over any of the redundancy groups. By executing a manual failover, the SRX will place
the new master node with a priority of 255 (you can’t configure this priority as it is only
used for a manual failover).

Fault Monitoring | 595

The only event that can take over a manual failover is a hard failure,
such as the device failing. When using a manual failover it’s best to unset
the manual failover flag so that the SRX can manage it from there.

In this example, redundancy group 1 will be failed over between the two chassis and
then reset to the default state:

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 5
 node0 254 primary no no
 node1 1 secondary no no

{primary:node0}
root@SRX210-A> request chassis cluster failover redundancy-group 1 node 1
node1:
--

Initiated manual failover for redundancy group 1

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 6
 node0 254 secondary no yes
 node1 255 primary no yes

{primary:node0}
root@SRX210-A> request chassis cluster failover reset redundancy-group 1
node0:

No reset required for redundancy group 1.

node1:

Successfully reset manual failover for redundancy group 1

{primary:node0}
root@SRX210-A> request chassis cluster failover redundancy-group 1 node 0
node0:

596 | Chapter 10: High Availability

Initiated manual failover for redundancy group 1

root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 7
 node0 255 primary no yes
 node1 1 secondary no yes

{primary:node0}
root@SRX210-A> request chassis cluster failover reset redundancy-group 1
node0:

Successfully reset manual failover for redundancy group 1

node1:

No reset required for redundancy group 1.

{primary:node0}
root@SRX210-A>

Here redundancy group 1 is failed over to node 1. Then, as you can see, the priority is
set to 255 and the manual failover flag is set. Once this flag is set, another manual
failover cannot occur until it is cleared. Next, the failover is reset for redundancy group
1, using the request chassis cluster failover reset redundancy group 1 command,
allowing the redundancy group to be failed over again. Next, the redundancy group is
failed over back to the original node and the manual failover is reset. If a hold-down
timer was configured, the manual failover cannot go over the hold-down timer, mean-
ing that a manual failover cannot occur until the hold-down timer has passed.

It is also possible to do this for the control plane. However, it’s best to not rapidly fail
over the control plane, and best practice recommends that you use a 300-second hold-
down timer to prevent excessive flapping of the control plane (which is discussed fur-
ther in “Preserving the Control Plane” on page 605).

Now, in this manual failover example, redundancy group 0 will be failed over and then
the hold-down timer will prevent a manual failover:

{primary:node0}
root@SRX210-A> show configuration chassis cluster
control-link-recovery;
reth-count 2;
heartbeat-interval 2000;
heartbeat-threshold 8;
redundancy-group 0 {
 node 0 priority 254;

Fault Monitoring | 597

 node 1 priority 1;
 hold-down-interval 300;
}
redundancy-group 1 {
 node 0 priority 254;
 node 1 priority 1;
 interface-monitor {
 fe-2/0/2 weight 255;
 fe-0/0/2 weight 255;
 }
}

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 7
 node0 254 primary no no
 node1 1 secondary no no

{primary:node0}
root@SRX210-A> request chassis cluster failover redundancy-group 0 node 1
node1:

Initiated manual failover for redundancy group 0

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 2
 node0 254 secondary-hold no yes
 node1 255 primary no yes

Redundancy group: 1 , Failover count: 7
 node0 254 primary no no
 node1 1 secondary no no

{secondary-hold:node0}
root@SRX210-A> request chassis cluster failover reset redundancy-group 0
node0:
--
No reset required for redundancy group 0.

node1:
--
Successfully reset manual failover for redundancy group 0

{secondary-hold:node0}

598 | Chapter 10: High Availability

root@SRX210-A> request chassis cluster failover redundancy-group 0 node 0
node0:
--
Manual failover is not permitted as redundancy-group 0 on node0 is in secondary-
hold state.

{secondary-hold:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 2
 node0 254 secondary-hold no no
 node1 1 primary no no

Redundancy group: 1 , Failover count: 7
 node0 254 primary no no
 node1 1 secondary no no

{secondary-hold:node0}
root@SRX210-A>

Here redundancy group 0 is failed over from node 0 to node 1. This is just as before. It
creates the priority on the new primary to 255 and sets the manual failover to yes.
However, now node 0 shows secondary-hold as its status, indicating that it is in sec-
ondary mode but is also on a hold-down timer. When the timer expires, it will show
secondary. In the event of a critical failure to the primary device, the secondary-hold
unit can still take over. Lastly, an attempt to manually fail over the node is made, and
it’s not possible to fail over since the node is on a hold-down timer.

Hardware Monitoring
On the SRX, there is a daemon running called chassisd. This process is designed to run
and control the system hardware, and it is also used to monitor for faults. If the chassisd
determines that the system has experienced specific faults, it will trigger a failover to
the other node. Depending on the SRX platform, various components can fail before a
complete failover is triggered.

The majority of the branch platforms are not component-based. This means the entire
system consists of a single board, and if anything were to go wrong on the main board,
generally the complete system would fail. The branch SRX devices also have interface
cards, and if the cards fail, the local interfaces are lost. Interface monitoring can be used
to detect if the interface has failed.

The data center devices are a different story. These devices have many different boards
and system components, and because of this, the failover scenarios can get fairly com-
plex. Both Juniper Networks and customers thoroughly test the reliability of the devices
and each component is failed in a matrix of testing scenarios to ensure that failovers
are correctly covered.

Fault Monitoring | 599

Route engine

The route engine (RE) is the local brain of a chassis. Its job is to maintain control over
the local cards in the chassis. It ensures that all of them are up and running and it allows
the administrator to manage the device. If the RE fails, it can no longer control the local
chassis, and if that RE was the primary for the cluster, the secondary engineer will pause
until enough heartbeats are missed that it assumes mastership.

During this period, the local chassis will continue to forward (the data plane without
an RE will continue to run for up to three minutes), but as soon as the other RE contacts
the SPUs, they will no longer process traffic. By this time, the secondary data plane will
have taken over for the traffic.

In the event that the secondary RE fails, that chassis immediately becomes lost. After
the heartbeat threshold is passed, the primary RE will assume the other chassis has
failed and any active traffic running on the chassis in redundancy groups will fail over
to the remaining node. Traffic that used local interfaces must utilize another protocol,
such as OSPF, to fail over to the other node.

Switch control board

The switch control board (SCB) is a component that is unique to the SRX5000 Series.
This component contains three important systems: the switch fabric, the control plane
network, and the carrier slot for the RE. It’s a fairly complex component as it effectively
connects everything in the device. The SRX5600 requires one SCB and can have a
second for redundancy. The SRX5800 requires two SCBs and can have a third for
redundancy.

If an SCB fails in the SRX5600, it will fail over to the second SCB. Its redundancy,
however, causes a brief blip in traffic and then things start moving along. The second
SCB also requires the use of a local RE, the same simple RE that is used to bring up
dual control links. The second RE is needed to activate the local control plane switching
chip on the second SCB—if this was not in place, the RE would be unable to talk to
the rest of the chassis.

The SRX5800’s behavior is different because, by default, it has two SCBs. These are
required to provide full throughput to the entire chassis, and if one were to fail, the
throughput would be halved until a new SCB is brought online. The same conditions
as the SRX5600 also apply here. If the SCB containing the RE were to fail, a secondary
RE would need to be in the second SCB to provide the backup control network for the
RE to communicate. If the SCB that does not contain the primary RE fails, the maximum
throughput of the chassis is cut in half. This means all of the paths in the box are halved.
If a third SCB is installed, it will take over for either of the failed SCBs. It cannot provide
a redundant control link as it is not able to contain an RE, and when the switchover
happens to the third SCB it will briefly interrupt traffic as the switchover occurs.

600 | Chapter 10: High Availability

Now, all of this should pose the question to the careful reader: if the RE is contained
in an SCB and the SCB fails, will this affect the RE? The answer depends on the type
of failure. If the fabric chips fail, the RE will be fine, as the SCB simply extends the
connections from the back plane into the RE. The engineers put the RE in the SCB to
conserve slots in the chassis and reserve them for traffic processing cards. It is possible
for an SCB to fail in such a way that it will disable the engineer; it’s unlikely, but possible.

Switch fabric board

The switch fabric board (SFB) is a unique component to the SRX3000 Series platform.
It contains the switch fabric, the primary control plane switch, the secondary control
plane switch, an interface card, and the control ports. If this component were to fail,
the chassis would effectively be lost. The SFB’s individual components can fail as well,
causing various levels of device degradation. In the end, once the integrity of the card
is lost, the services residing in that chassis will fail over to the remaining node.

Services Processing Card

The Services Processing Card (SPC) contains one or two SPUs, depending on the model
of the SRX. Each SPU is monitored directly by the SRX’s local RE chassisd process. If
any SPU fails, several events will immediately occur. The RE will reset all of the cards
on the data plane, including interfaces and NPCs. Such an SPU failure causes the chassis
monitoring threshold to hit 255. This causes all of the data plane services to fail over
to the secondary chassis. Messages relating to SPUs failing can be seen in the jsrpd logs.
The entire data plane is reset because it is easier to ensure that everything is up and
running after a clean restart, rather than having to validate many individual subsystems.
Each subsystem is validated upon a clean restart of the chassis.

Network Processing Card

A separate Network Processing Card (NPC) is unique to the SRX3000 Series (these
items are located on the interface cards on the SRX5000). They were separated out to
lower the component costs and to lower the overall cost of the chassis. The SRX3000
has static bindings to each interface, so if an NPC were to fail the interface bound to it
would effectively be lost as it would not have access to the switching fabric. The chassis
will be able to detect this by using simple health checks; alternatively, IP monitoring
can be used to validate the next hop. This message would be sent from the SPC and
then through the NPC. Because the NPC has failed, the messages will not make it out
of the chassis. At this point, IP monitoring triggers a failover to the other node. The
NPC failure ultimately triggers a failover to the remaining node in the chassis and the
chassis with the failure restarts all of the cards. If the NPC with the failure is unable to
restart, the interfaces are mapped to new NPCs, assuming there are some remaining.
Although the device can run in a degraded state, it’s best to leave all of the traffic on
the good node and replace the failed component.

Fault Monitoring | 601

Interface card

The SRX data center devices have both types of interface cards, often referred to as
input/output cards (IOCs). However, there are stark differences between the two. The
IOCs on the SRX3000 contain a switching chip (used to connect multiple interfaces to
a single bus) and an FPGA to connect into the fabric. The IOCs on the SRX5000s
contain two or more sets of NPUs, fabric connect chips, and physical interfaces. If an
SRX5000 Series interface card fails and it does not contain a monitored interface, or
the only fabric link, the SRX will rely on the administrator to use interface monitoring
or IP monitoring to detect a failure. The same goes with the SRX3000 Series platforms.
On the SRX5000 Series, it is also possible to hot-swap interfaces to replace the card,
while the SRX3000 requires that the chassis be powered off to replace a card.

Control link

The control link is a critical component in the system. It allows the two brains, the REs,
to talk to each other. If the control link physically goes down and the fabric link is up,
the secondary RE immediately goes into ineligible state. Eventually, it will go into dis-
abled state. Once it becomes ineligible, the only way to recover the secondary node is
to reboot the device. If control link recovery is enabled, the device will reboot itself after
one minute of successful communications. (Using control link recovery is the best op-
tion in this scenario, since it allows the device to reboot when it knows communications
are working correctly.) The important item here is that for this scenario to work, at
least one fabric link must still be up. With the fabric link still remaining, the primary
RE knows that the secondary is still alive but a problem has occurred.

The secondary node goes into disabled state to prevent split brain (the state when two
devices both think they are master). If this occurs, effectively two nodes are fighting to
be the primary node for the cluster. They will use GARPs to try to take over and process
the traffic on the network, typically causing an outage. This is a good reason you should
use dual control links and data links when possible.

Data link

The data link uses jsrpd heartbeat messages to validate that the path is up and is actively
working. This is similar to the control link. However, the data link is more forgiving.
It can take up to 120 seconds for the data link to detect that it is down. This is because
it’s possible for the data link to get completely full of RTOs, or data forwarding mes-
sages, hence the data link is more forgiving in missing messages from the other node.
However, after the required amount of time has passed, the secondary node will become
disabled just like the control link. There isn’t an automatic reboot like the control link—
the secondary node must be manually rebooted to recover it.

602 | Chapter 10: High Availability

Control link and data link failure

Rarely do both the fabric and data links go down at the same time, meaning within the
same second. But we all know this can occur for all sorts of reasons, from hardware
failures to a machete-wielding utility helper chopping up cables in the data center. It’s
a common request and test that Juniper Networks receives, so it’s best that we cover
it than to leave administrators wondering.

If the control link and the data link were to fail at the same time, the worst possible
scenario would occur, split brain, leaving the cluster members thinking the other node
has failed, which will effectively cause an outage. There are several ways to prevent this.

As of Junos 10.2, it is possible to use dual fabric links on the branch SRX Series devices.
Even if a control link and a fabric link were to fail, the last remaining control link would
prevent split brain from occurring. So, generally speaking, split brain will not occur on
the branch platforms.

For the data center platforms, utilizing dual control links and dual fabric links will
provide the same level of split brain prevention, with one point to note. On the SRX5000
Series, the control port is on the SPC, and the SPC containing the CP is a part of the
data path. So, if the administrator were to configure the control link, and the CP is on
the same SPC and it failed, split brain would occur. The CP is always located on the
SPU in the lowest numbered FPC and PIC slot.

You can use the show chassis fpc pic-status command to identify the
location of the FPC.

The best practice is to place the control port on any SPC other than the one containing
the CP. If redundant control links are required, it’s best to place them on two separate
SPCs. This would mean that on an SRX5000 Series, three SPCs with one containing
the CP and the other two each containing a control link would be used for the best level
of redundancy. The same goes for the fabric link. Placing each redundant fabric link
on a separate SPC would be the best practice for availability. Although this may seem
like overkill, if ultimate availability is required, this is the suggested deployment.

Though it does look like the CP is a single point of failure, that isn’t true. If the CP fails,
the data plane will be reset. As soon as the SPCs receive power, the control links will
come up rapidly, allowing the cluster to continue control plane communications and
preventing split brain.

Power supplies

It’s obvious that if the device’s sole source of power fails, the device shuts off. This will
cause the remaining node to perform Dead Peer Detection (DPD) to determine if the
other node is alive. DPD is done with jsrpd heartbeats. If the remaining node is the

Fault Monitoring | 603

primary device for the control and data planes, it continues to forward traffic as is. It
notes that the other node is down since it cannot communicate with it. If the remaining
node was secondary, it will wait until all of the heartbeats are missed before it deter-
mines that the node has failed. Once the heartbeats have been passed, it assumes mas-
tership of the node.

For devices with redundant power supplies, the remaining power supply will power
the chassis and it will continue to operate. This is applicable to the SRX650 and the
SRX3400. The SRX3600 has up to four power supplies, and it requires at least two to
operate. The other two are used for redundancy. So, in the best availability deployment,
four should be deployed.

The SRX5000 Series devices each have up to four power supplies. At a suggested min-
imum, three should be used. Depending on the total number of cards running in the
chassis, a single power supply can be used. If the total draw from the installed com-
ponents exceeds the available power, all of the cards will be turned off. The RE will
continue attempting to start the cards until the power is available. It’s always best to
deploy the SRXs with the highest amount of available power supply to ensure
availability.

Software Monitoring
The SRX is set up to monitor the software that is running, and this is true for both the
control and data planes. The SRX attempts to detect a failure within the system as soon
as it happens, and if and when it can detect a failure within the system it must react
accordingly. The SRX platform has some fairly complex internals, but it is built to
protect against failures, so if the RE has a process that fails, it can restart it, and the
failure is logged for additional troubleshooting.

The branch’s data plane consists of a core flowd process. The RE is in constant com-
munication to watch if it is acting correctly. In the event that the flowd process crashes,
or hangs up, the control plane quickly fails over to the other node. This will happen in
less than the time it would take to detect a dead node. In any failure case where the two
nodes are still in communication, the failover time is quite fast. These cases include IP
monitoring, manual failover, and interface monitoring.

On the data center SRX’s data plane, each SPU has both control and data software
running on it. The RE talks directly to each SPU’s control software for status updates
and for configuration changes. Because of this, the RE will know if the data plane fails.
If the flowd processes crash on the data plane (there is one per SPU), the entire data
plane will be hard-reset, which means all of the line cards will be reset. This is done to
ensure that the control plane is completely up to an acceptable running standard. To
do this, the data plane is failed over to the secondary node.

604 | Chapter 10: High Availability

Preserving the Control Plane
If a device is set up to rapidly fail over, it’s possible that it could be jumping the gun
and attempting a failover for no reason. When it’s time to move between two firewalls,
it’s best to ensure that the time is correct for the failover. There are methods in dynamic
routing to do extremely fast failover using a protocol called bidirectional forwarding
detection (BFD). This protocol is used in conjunction with a routing protocol such as
OSPF. It can provide 50 ms failovers. That is extremely fast but provides little threat
to the network. In this case, BFD is rerouting around a link or device failure typically
in a stateless manner. Because it’s done stateless, there is little threat to the traffic.

When a stateful firewall does a failover, there is much more in play than simply re-
routing traffic. The new device needs to accept all of the traffic and match up the packets
with the existing sessions that are synchronized to the second node. Also, the primary
device needs to relinquish control of the traffic. On the data plane, it’s a fairly stable
process to fail over and fail back between nodes. In fact, this can be done rapidly and
nearly continuously without much worry. It’s best to let the control plane fail over only
in the event of a failure, as there simply isn’t a need to fail over the control plane unless
a critical event occurs.

The biggest reason for any concern is that the control plane talks to the various daemons
on the other chassis and on the data plane. If rapid failover were to occur, it’s possible
to destabilize the control plane. This is not a rule, it’s an exception, just as the owner
of a car isn’t going to jam the car into reverse on the highway. Often, administrators
want to test the limits of the SRX and drop them off shelves and whatnot, so it’s fair to
call this out as a warning before it’s tested in production.

Using Junos Automation
Junos automation is the ability to use several underlying technologies in Junos to au-
tomate certain tasks, including the ability for an administrator to make his own com-
mands, validate the configuration upon commit, and react to various events that may
occur. It’s an extremely powerful feature to offer to an administrator, allowing him to
create his own features on the SRX shaped to his own demands.

Automation is a common feature that can be used across most Junos devices; examples
for this book’s audience might be the creation of custom IP monitoring features, or
having the SRX fail over interfaces based on specific events, or even creating a command
to completely validate the node.

Junos automation is an expansive feature that is further covered in Chapter 13, but it
truly deserves its own book to cover the amazing features it can accomplish.

Fault Monitoring | 605

Juniper Networks publishes a series of booklets on Junos automation
in its Day One series, freely available at http://www.juniper.net/dayone.

Some networks completely manage their SRXs using automation and others rely on it
for complete HA on the SRX, even past the built-in features. Whether or not you use
it for HA, Junos automation is a feature that everyone should check out and utilize in
his Junos-powered network.

Troubleshooting the Cluster
From time to time things can go wrong. You can be driving along in your car and a tire
can blow out; sometimes a firewall can crash. Nothing that is made by humans is
precluded from undergoing an unseen failure. Because of this, the administrator must
be prepared to deal with the worst possible scenarios. In this section, we will discuss
various methods that show the administrator how to troubleshoot a chassis cluster
gone awry.

First Steps
There are a few commands to use when trying to look into an issue. The administrator
needs to first identify the cluster status and determine if it is communicating.

The show chassis cluster status command, although simple in nature, shows the
administrator the status of the cluster. It shows who is the primary member for each
redundancy group and the status of those nodes, and it will give insight into who should
be passing traffic in the network. Here’s a sample:

{primary:node1}
root@SRX210-B> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Redundancy group: 0 , Failover count: 1
 node0 254 secondary no no
 node1 1 primary no no

Redundancy group: 1 , Failover count: 2
 node0 254 primary no no
 node1 1 secondary no no

{primary:node1}
root@SRX210-B>

You should have seen this many times in this chapter, as it is used frequently. Things
to look for here are that both nodes show as up, both have a priority greater than zero,
both have a status of either primary, secondary, or secondary-hold, and one and only

606 | Chapter 10: High Availability

http://www.juniper.net/dayone

one node is primary for each redundancy group. Generally, if those conditions are met,
things in the cluster should be looking OK. If not, and for some reason one of the nodes
does not show up in this output, communication to the other node has been lost. The
administrator should then connect to the other node and verify that it can
communicate.

To validate that the two nodes can communicate the show chassis cluster control-
plane statistics command is used, showing the messages that are being sent between
the two members. The send and receive numbers should be incrementing between the
two nodes. If they are not, something may be wrong with both the control and fabric
links. Here is an example with the statistics highlighted:

{primary:node0}
root@SRX210-A> show chassis cluster control-plane statistics
Control link statistics:
 Control link 0:
 Heartbeat packets sent: 124
 Heartbeat packets received: 95
 Heartbeat packet errors: 0
Fabric link statistics:
 Probes sent: 122
 Probes received: 56
 Probe errors: 0

{primary:node0}
root@SRX210-A>

Again, this command should be familiar as it has been used in this chapter. If these
(highlighted) numbers are not increasing, check the fabric and control plane interfaces.
The fabric interfaces method is the same across all SRX products.

Next let’s check the fabric links. It’s important to verify that the fabric link and the
child links show they are in an up state:

{primary:node0}
root@SRX210-A> show interfaces terse
Interface Admin Link Proto Local Remote
--snip--
fe-0/0/4.0 up up aenet --> fab0.0
fe-0/0/5 up up
fe-0/0/5.0 up up aenet --> fab0.0
--snip--
fe-2/0/4.0 up up aenet --> fab1.0
fe-2/0/5 up up
fe-2/0/5.0 up up aenet --> fab1.0
--snip--
fab0 up up
fab0.0 up up inet 30.17.0.200/24
fab1 up up
fab1.0 up up inet 30.18.0.200/24
--snip--
{primary:node0}
root@SRX210-A>

Troubleshooting the Cluster | 607

If any of the child links of the fabric link, fabX, show in a down state, this would show
the interface that is physically down on the node. This must be restored to enable
communications.

The control link is the most critical to verify, and it varies per SRX platform type. On
the branch devices, the interface that is configured as the control link must be checked.
This is specified in Table 10-2’s control ports by platform. The procedure would be the
same as any physical interface. Here an example from an SRX210 was used, and it
shows that the specified interfaces are up:

{primary:node0}
root@SRX210-A> show interfaces terse
Interface Admin Link Proto Local Remote
--snip--
fe-0/0/7 up up
--snip--
fe-2/0/7 up up
--snip--

{primary:node0}
root@SRX210-A>

On the data center SRXs, there is no direct way to check the state of the control ports;
since the ports are dedicated off of switches inside the SRX and they are not typical
interfaces, it’s not possible to check them. It is possible, however, to check the switch
that is on the SCB to ensure that packets are being received from that card. Generally,
though, if the port is up and configured correctly, there should be no reason why it
won’t communicate. But checking the internal switch should show that packets are
passing from the SPC to the RE. There will also be other communications coming
from the card as well, but this at least provides insight into the communication. To
check, the node and FPC that has the control link must be known. In the following
command, the specified port coincides with the FPC number of the SPC with the con-
trol port:

{primary:node0}
root@SRX5800-1> show chassis ethernet-switch statistics 1 node 0
node0:
--
Displaying port statistics for switch 0
Statistics for port 1 connected to device FPC1:
 TX Packets 64 Octets 7636786
 TX Packets 65-127 Octets 989668
 TX Packets 128-255 Octets 37108
 TX Packets 256-511 Octets 35685
 TX Packets 512-1023 Octets 233238
 TX Packets 1024-1518 Octets 374077
 TX Packets 1519-2047 Octets 0
 TX Packets 2048-4095 Octets 0
 TX Packets 4096-9216 Octets 0
 TX 1519-1522 Good Vlan frms 0
 TX Octets 9306562
 TX Multicast Packets 24723

608 | Chapter 10: High Availability

 TX Broadcast Packets 219029
 TX Single Collision frames 0
 TX Mult. Collision frames 0
 TX Late Collisions 0
 TX Excessive Collisions 0
 TX Collision frames 0
 TX PAUSEMAC Ctrl Frames 0
 TX MAC ctrl frames 0
 TX Frame deferred Xmns 0
 TX Frame excessive deferl 0
 TX Oversize Packets 0
 TX Jabbers 0
 TX FCS Error Counter 0
 TX Fragment Counter 0
 TX Byte Counter 1335951885
 RX Packets 64 Octets 6672950
 RX Packets 65-127 Octets 2226967
 RX Packets 128-255 Octets 39459
 RX Packets 256-511 Octets 34332
 RX Packets 512-1023 Octets 523505
 RX Packets 1024-1518 Octets 51945
 RX Packets 1519-2047 Octets 0
 RX Packets 2048-4095 Octets 0
 RX Packets 4096-9216 Octets 0
 RX Octets 9549158
 RX Multicast Packets 24674
 RX Broadcast Packets 364537
 RX FCS Errors 0
 RX Align Errors 0
 RX Fragments 0
 RX Symbol errors 0
 RX Unsupported opcodes 0
 RX Out of Range Length 0
 RX False Carrier Errors 0
 RX Undersize Packets 0
 RX Oversize Packets 0
 RX Jabbers 0
 RX 1519-1522 Good Vlan frms 0
 RX MTU Exceed Counter 0
 RX Control Frame Counter 0
 RX Pause Frame Counter 0
 RX Byte Counter 999614473

{primary:node0}
root@SRX5800-1>

The output looks like standard port statistics from a switch. Looking in here will vali-
date that packets are coming from the SPC. Since the SRX3000 has its control ports on
the SFB, and there is nothing to configure for the control ports, there is little to look at
on the interface. It is best to focus on the result from the show chassis cluster control-
plane statistics command.

If checking the interfaces yields mixed results where they seem to be up but they are
not passing traffic, it’s possible to reboot the node in the degraded state. The risk here

Troubleshooting the Cluster | 609

is that the node may come up in split brain. Since that is a possibility, it’s best to disable
its interfaces, or physically disable all of them except the control or data link. The ports
can even be disabled on the switch they are connected to. This way, upon boot, if the
node determines it is master it will not interrupt traffic. A correctly operating node
using the minimal control port and fabric port configuration should be able to com-
municate to its peer. If, after a reboot, it still cannot communicate to the other node,
it’s best to verify the configuration and cabling. Lastly, the box or cluster interfaces may
be bad.

Checking Interfaces
Interfaces are required to pass traffic through the SRX, and for the SRX to be effective
in its job it needs to have interfaces up and able to pass traffic. The SRX can use both
local and redundant Ethernet interfaces, and for our purposes here, both have similar
methods of troubleshooting.

To troubleshoot an interface, first check to see if the interface is physically up. Use the
show interfaces terse command to quickly see all of the interfaces in both chassis:

{primary:node0}
root@SRX210-A> show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up down
ge-0/0/1 up down
fe-0/0/2 up up

This should be familiar if you’ve been reading through this chapter, and certainly
throughout the book. The other item to check is the status of the Reth within a redun-
dancy group to see if the interface is up or down inside the Reth. It’s possible that the
Reth could be physically up but logically down (in the event that there was an issue on
the data plane). To check the status of a Reth interface use the show chassis cluster
interfaces command:

root@SRX210-A> show chassis cluster interfaces
Control link 0 name: fxp1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 1

Interface Monitoring:
 Interface Weight Status Redundancy-group
 fe-0/0/2 255 Up 1
 fe-2/0/2 255 Up 1

{primary:node0}
root@SRX210-A>

If the interfaces are physically up but the redundant interfaces show that they are in a
down state, it’s time to look at the data plane.

610 | Chapter 10: High Availability

Verifying the Data Plane
The data plane on the SRX passes and processes the traffic. Since it is an independent
component from the RE, it could be down while the administrator is still in the RE.
There are a few things to check on the SRX to validate the data plane.

Because the data plane is very different between the branch SRX plat-
form and the data center platform, there will be some variance between
the commands.

Verifying the FPCs and PICs is the first step, and this shows the status of the underlying
hardware that needs to be up to process the data traffic. On the branch SRX, the data
plane is a single multithreaded process, however, so running the show chassis fpc pic-
status command shows the status of the data plane:

root@SRX210-A> show chassis fpc pic-status
node0:

Slot 0 Online FPC
 PIC 0 Online 2x GE, 6x FE, 1x 3G

node1:

Slot 0 Online FPC
 PIC 0 Online 2x GE, 6x FE, 1x 3G

{primary:node0}
root@SRX210-A>

As you can see, this output is from an SRX210, but the command will list the status of
the data plane on each SRX. Here it shows a single FPC and a single PIC. Although the
output does not mention anything about flowd or the data plane, the output shows
that the SRX is up and ready to pass traffic.

Now let’s show node 1 with a failed data plane:

{primary:node0}
root@SRX210-A> show chassis fpc pic-status
node0:

Slot 0 Online FPC
 PIC 0 Online 2x GE, 6x FE, 1x 3G

node1:

Slot 0 Offline FPC

{primary:node0}
root@SRX210-A>

Troubleshooting the Cluster | 611

Here, node 1’s data plane went offline, caused by the loss of the flowd process. Another
event that can be seen is that redundancy groups one and greater will have their priority
as zero (to be discussed in the next section).

The output of the pic status command should correlate with the hardware that is in
the chassis, which can be seen in the output of show chassis hardware:

{primary:node0}
root@SRX210-A> show chassis hardware
node0:

Hardware inventory:
Item Version Part number Serial number Description
Chassis AD2609AA0497 SRX210h
Routing Engine REV 28 750-021779 AAAH2307 RE-SRX210-HIGHMEM
FPC 0 FPC
 PIC 0 2x GE, 6x FE, 1x 3G
Power Supply 0

node1:

Hardware inventory:
Item Version Part number Serial number Description
Chassis AD2909AA0346 SRX210h
Routing Engine REV 28 750-021779 AAAH4743 RE-SRX210-HIGHMEM
FPC 0 FPC
 PIC 0 2x GE, 6x FE, 1x 3G
Power Supply 0

{primary:node0}
root@SRX210-A>

Here the command shows the hardware in PIC 0, which is the same as shown in the
pic status command. This command is more useful on the data center platform be-
cause on the data center SRX, it’s a little more complex, as there are typically many
different processors.

For example, here’s the PIC status of an SRX5800:

{primary:node0}
root@SRX5800-1> show chassis fpc pic-status
node0:
--
Slot 0 Online SRX5k SPC
 PIC 0 Online SPU Cp
 PIC 1 Online SPU Flow
Slot 1 Online SRX5k SPC
 PIC 0 Online SPU Flow
 PIC 1 Online SPU Flow
Slot 3 Online SRX5k SPC
 PIC 0 Online SPU Flow
 PIC 1 Online SPU Flow
Slot 6 Online SRX5k DPC 4X 10GE
 PIC 0 Online 1x 10GE(LAN/WAN) RichQ
 PIC 1 Online 1x 10GE(LAN/WAN) RichQ

612 | Chapter 10: High Availability

 PIC 2 Online 1x 10GE(LAN/WAN) RichQ
 PIC 3 Online 1x 10GE(LAN/WAN) RichQ
Slot 11 Online SRX5k DPC 40x 1GE
 PIC 0 Online 10x 1GE RichQ
 PIC 1 Online 10x 1GE RichQ
 PIC 2 Online 10x 1GE RichQ
 PIC 3 Online 10x 1GE RichQ

node1:
--
Slot 0 Online SRX5k SPC
 PIC 0 Online SPU Cp
 PIC 1 Online SPU Flow
Slot 1 Online SRX5k SPC
 PIC 0 Online SPU Flow
 PIC 1 Online SPU Flow
Slot 3 Online SRX5k SPC
 PIC 0 Online SPU Flow
 PIC 1 Online SPU Flow
Slot 6 Online SRX5k DPC 4X 10GE
 PIC 0 Online 1x 10GE(LAN/WAN) RichQ
 PIC 1 Online 1x 10GE(LAN/WAN) RichQ
 PIC 2 Online 1x 10GE(LAN/WAN) RichQ
 PIC 3 Online 1x 10GE(LAN/WAN) RichQ
Slot 11 Online SRX5k DPC 40x 1GE
 PIC 0 Online 10x 1GE RichQ
 PIC 1 Online 10x 1GE RichQ
 PIC 2 Online 10x 1GE RichQ
 PIC 3 Online 10x 1GE RichQ

{primary:node0}
root@SRX5800-1>

Here the command shows the SPCs that are online, which SPU is the CP, and the
interface cards. A correctly operating device should have all of its SPCs online, and
unless they are disabled, the interfaces should be online. Cards that have not booted
yet will be offline or present. In a data center SRX, it can take up to five minutes for the
data plane to completely start up. As the cards come online, the following messages
will be sent to the command prompts. These messages should only come up once during
the process and then they will be logged to the messages file:

{primary:node0}
root@SRX5800-1>
Message from syslogd@SRX5800-1 at Mar 13 22:01:48 ...
SRX5800-1 node0.fpc1.pic0 SCHED: Thread 4 (Module Init) ran for 1806 ms without
yielding

Message from syslogd@SRX5800-1 at Mar 13 22:01:49 ...
SRX5800-1 node0.fpc1.pic1 SCHED: Thread 4 (Module Init) ran for 1825 ms without
yielding

{primary:node0}
root@SRX5800-1>

Troubleshooting the Cluster | 613

If these messages are coming up on the command-line interface (CLI), the SPUs are
constantly restarting and should identify a problem, perhaps because not enough power
is being sent to the data plane and the SPUs are restarting.

Let’s show the hardware that should match up to the output of the show chassis clus
ter fpc pic-status command in the previous example. This will show all of the FPCs
that are SPCs, and the administrator should be able to match up which PICs should be
online and active:

{primary:node0}
root@SRX5800-1> show chassis hardware
node0:

Hardware inventory:
Item Version Part number Serial number Description
Chassis JN112A0AEAGA SRX 5800
Midplane REV 01 710-024803 TR8821 SRX 5800 Backplane
FPM Board REV 01 710-024632 WX3786 Front Panel Display
PDM Rev 03 740-013110 QCS12365066 Power Distribution Module
PEM 0 Rev 01 740-023514 QCS1233E066 PS 1.7kW; 200-240VAC in
PEM 1 Rev 01 740-023514 QCS1233E02V PS 1.7kW; 200-240VAC in
PEM 2 Rev 01 740-023514 QCS1233E02E PS 1.7kW; 200-240VAC in
Routing Engine 0 REV 03 740-023530 9009007746 RE-S-1300
CB 0 REV 03 710-024802 WX5793 SRX5k SCB
CB 1 REV 03 710-024802 WV8373 SRX5k SCB
FPC 0 REV 12 750-023996 XS7597 SRX5k SPC
 CPU REV 03 710-024633 XS6648 SRX5k DPC PMB
 PIC 0 BUILTIN BUILTIN SPU Cp
 PIC 1 BUILTIN BUILTIN SPU Flow
FPC 1 REV 08 750-023996 XA7212 SRX5k SPC
 CPU REV 02 710-024633 WZ0740 SRX5k DPC PMB
 PIC 0 BUILTIN BUILTIN SPU Flow
 PIC 1 BUILTIN BUILTIN SPU Flow
FPC 3 REV 12 750-023996 XS7625 SRX5k SPC
 CPU REV 03 710-024633 XS6820 SRX5k DPC PMB
 PIC 0 BUILTIN BUILTIN SPU Flow
 PIC 1 BUILTIN BUILTIN SPU Flow
FPC 6 REV 17 750-020751 WY2754 SRX5k DPC 4X 10GE
 CPU REV 02 710-024633 WY3706 SRX5k DPC PMB
 PIC 0 BUILTIN BUILTIN 1x 10GE(LAN/WAN) RichQ
 Xcvr 0 REV 02 740-011571 C831XJ039 XFP-10G-SR
 PIC 1 BUILTIN BUILTIN 1x 10GE(LAN/WAN) RichQ
 Xcvr 0 REV 01 740-011571 C744XJ021 XFP-10G-SR
 PIC 2 BUILTIN BUILTIN 1x 10GE(LAN/WAN) RichQ
 PIC 3 BUILTIN BUILTIN 1x 10GE(LAN/WAN) RichQ
FPC 11 REV 14 750-020235 WY8697 SRX5k DPC 40x 1GE
 CPU REV 02 710-024633 WY3743 SRX5k DPC PMB
 PIC 0 BUILTIN BUILTIN 10x 1GE RichQ
--snip--
 PIC 1 BUILTIN BUILTIN 10x 1GE RichQ
--snip--
 PIC 2 BUILTIN BUILTIN 10x 1GE RichQ
--snip--
 PIC 3 BUILTIN BUILTIN 10x 1GE RichQ

614 | Chapter 10: High Availability

 Xcvr 0 REV 01 740-013111 8280380 SFP-T
--snip--
Fan Tray 0 REV 05 740-014971 TP8104 Fan Tray
Fan Tray 1 REV 05 740-014971 TP8089 Fan Tray

{primary:node0}
root@SRX5800-1>

Core Dumps
A core dump occurs when things have gone wrong and a process crashes. The memory
for the process is then dumped to local storage. If something goes wrong and a process
crashes on the SRX, the core dump is stored to several different directories on the local
RE. Here’s an example of how to find core dumps:

{primary:node0}
root@SRX5800-1> show system core-dumps
node0:
--
/var/crash/*core*: No such file or directory
/var/tmp/*core*: No such file or directory
/var/crash/kernel.*: No such file or directory
/tftpboot/corefiles/*core*: No such file or directory

node1:

/var/crash/*core*: No such file or directory
-rw-rw---- 1 root wheel 104611 Feb 26 22:22 /var/tmp/csh.core.0.gz
-rw-rw---- 1 root wheel 108254 Feb 26 23:11 /var/tmp/csh.core.1.gz
-rw-rw---- 1 root wheel 107730 Feb 26 23:11 /var/tmp/csh.core.2.gz
/var/crash/kernel.*: No such file or directory
/tftpboot/corefiles/*core*: No such file or directory
total 3

{primary:node0}
root@SRX5800-1>

If core dumps are found, there isn’t much for the users to troubleshoot. Although
sometimes core dumps from CSH or a C shell can occur when a user uses Ctrl-c to
terminate a program, these generally can be ignored. However, if a core dump for flowd
or other processes exists, it should be reported to the Juniper Networks Technical
Assistance Center (JTAC), as it may be an indicator of a more complex problem.

The Dreaded Priority Zero
For most administrators the following output is a disaster:

{primary:node0}
root@SRX210-A> show chassis cluster status
Cluster ID: 1
Node Priority Status Preempt Manual failover

Troubleshooting the Cluster | 615

Redundancy group: 0 , Failover count: 1
 node0 254 primary no no
 node1 1 secondary no no

Redundancy group: 1 , Failover count: 1
 node0 254 primary no no
 node1 0 secondary no no

{primary:node0}
root@SRX210-A>

Seeing a priority of zero tends to leave administrators in a state of confusion, but the
simple reason this occurs may be due to a problem on the data plane. Determining the
problem can be difficult. Although some of the troubleshooting steps we already dis-
cussed can be helpful, you might try another. Everything that happens with jsrpd is
logged to the file jsrpd, in the directory /var/log. You can view the file by using the show
log jsrpd command. The contents of the file vary, based on the events that occur with
jsrpd, but the file is typically quite readable.

There are some specific items to check for. The first is coldsync, which is the initial
synchronization between the kernels on the two REs. A failed coldsync will cause the
priority to be set to zero. If there is a problem and coldsync cannot complete, the
coldsync monitoring weight will be set to 255. If it completes, it is set to zero. Here’s
an example of a coldsync log:

{primary:node0}
root@SRX210-A> show log jsrpd | match coldsync

Apr 11 08:44:14 coldsync is completed for all the PFEs. cs monitoring weight
is set to ZERO
Apr 11 13:09:38 coldsync status message received from PFE: 0, status: 0x1
Apr 11 13:09:38 duplicate coldsync completed message from PFE: 0 ignored
Apr 11 13:09:38 coldsync is completed for all the PFEs. cs monitoring weight
is set to ZERO
Apr 11 13:11:20 coldsync status message received from PFE: 0, status: 0x1
Apr 11 13:11:20 duplicate coldsync completed message from PFE: 0 ignored
Apr 11 13:11:20 coldsync is completed for all the PFEs. cs monitoring weight
is set to ZERO
Apr 11 13:19:05 coldsync status message received from PFE: 0, status: 0x1
Apr 11 13:19:05 duplicate coldsync completed message from PFE: 0 ignored
Apr 11 13:19:05 coldsync is completed for all the PFEs. cs monitoring weight
is set to ZERO

If coldsync fails, it’s possible to do two things. First, on either device issue a commit
full command, which will resend the complete configuration to the data and control
planes (this may impact traffic as it reapplies all of the policies). The other option is to
reboot the secondary node and attempt the coldsync process again. (As a last resort,
read the next section.)

In the logfile, the history of interfaces going up and down, node mastership, and other
events are kept. Most of the events are quite obvious to the administrator and should
provide a road map to what happened on the device.

616 | Chapter 10: High Availability

Additional information can be gathered by turning on the traceoptions; just be aware
that a lot of additional processing can be required based on the type of traceoptions
you enable. If all events are enabled it will spike the chassis process to 100% utilization.

Do not enable traceoptions for more than a few minutes!

There have been countless times where administrators have left traceoptions enabled
for all events, and all sorts of trouble has occurred, from service outages to crashing
devices, if traceoptions stays active for a long enough period of time.

When All Else Fails
The SRX is a complex and feature-rich product, and Junos provides all sorts of con-
figuration knobs that are not available on other products, all of it engineered with an
appreciation of uptime and that to any organization it is critical. We began this chapter
with a quote: “Failure is not an option.”

If the SRX is going to be deployed in a complex environment, the administrator should
become familiar with the product before deployment. The administrator’s knowledge
and understanding of the product is the first line of defense for ensuring that the product
is going to work in the environment. The more critical the environment, the more
detailed an administrator should be in his testing and knowledge about the product.
Before deployment, some administrators spend months learning and staging the SRX.
Although that may seem like an excessive amount for you and your network needs, it’s
a fact that the most prepared administrators have the fewest issues. It’s one of the
reasons we wrote this book, and hopefully, you’ve read this far into it.

There are other sources for studying and analyzing the SRX. For instance, the J-Net
community allows users and product experts to communicate, sharing solutions and
issues about Juniper products (http://forums.juniper.net/). It’s also a really great set of
resources to learn from what other users are doing. Another great resource is the
juniper-nsp mailing list. This mailing list has been around for many years and the SRX
has become a popular topic (http://puck.nether.net/mailman/listinfo/juniper-nsp).

You might also look at a new and budding series of Day One booklets from Juniper
Networks that are free and that cover the SRX product line (http://www.juniper.net/
dayone).

But truly, when all else fails, it’s a good idea to contact JTAC for support (http://www
.juniper.net/support/requesting-support.html). When contacting JTAC it’s important to
provide the correct information. If you share the correct data with JTAC they can
quickly get to the root of the problem.

Troubleshooting the Cluster | 617

http://forums.juniper.net/
http://puck.nether.net/mailman/listinfo/juniper-nsp
http://www.juniper.net/dayone
http://www.juniper.net/dayone
http://www.juniper.net/support/requesting-support.html
http://www.juniper.net/support/requesting-support.html

First collect the output from the command request support information. The output
can be quite large. If possible, save it locally to the RE, then transfer it off the box by
using request support information | save SupportInfo.txt, and then use the follow-
ing sequence of commands to copy off the file:

{primary:node0}
root@SRX5800-1> copy file SupportInfo.txt ftp://tester:password@myftpserver.com:/

OR

{primary:node0}
root@SRX5800-1> copy file SupportInfo.txt scp://172.19.100.50:
root@172.19.100.50's password:
SupportInfo.txt
100% 7882 7.7KB/s 00:00

{primary:node0}
root@SRX5800-1>

JTAC may also request the contents of the /var/log directory. If possible, when opening
a case, have the support information file, the /var/log contents, any core dumps, and a
simple topology diagram readily available. By providing this, you will solve half the
battle for JTAC in getting to the root of the issue. If some event occurs and it’s not
reflected in the logs, there isn’t much JTAC can do. Be sure to document the event and
share what was observed in the network. JTAC can take it from there and work with
you to resolve the issue.

Summary
Because the SRX will be placed in a mission-critical location in the network, it is ex-
tremely important to ensure that it is up and functional. Firewalls are placed in between
the untrusted and trusted locations within a network. If the firewall fails, there is noth-
ing left to bring the two networks together, causing a major outage. As you saw in this
chapter, the SRX has a robust HA architecture that can survive the worst of tragedies.

The biggest benefit to the SRX HA design is the flexibility it gives to the end user. The
ability to use redundancy groups and mix and match them with local interfaces is very
powerful. It allows you to overcome the traditional limitations of a redundant firewall
configuration and explore new design scenarios. At first, the new paradigm of mixing
redundant interfaces, redundancy groups, and local interfaces is overwhelming. Hope-
fully, this chapter will allow you to think more freely and move away from past firewall
limitations.

Chapter Review Questions
1. What is the purpose of the control link?

2. What are the three types of communication that pass over the fabric link?

618 | Chapter 10: High Availability

3. Can configuration groups be used for any other tasks on a Junos device? Be specific.

4. What feature needs to be enabled when using dynamic routing?

5. What are the two most important commands when troubleshooting an SRX
cluster?

6. From what Juniper product did the SRX get part of its HA code infrastructure?

7. Which platform supports the automatic upgrade of the secondary node?

8. Are acknowledgments sent for session synchronization messages?

9. What is a redundancy group?

10. Why is the control port so important?

Chapter Review Answers
1. The control link is used for the two route engines to talk to each other. The kernels

synchronize state between each other, the REs talk to the data plane on the other
node, and jsrpd communicates. The jsrpd daemon sends heartbeat messages to
validate that the other side is up and running.

2. Heartbeats are sent by the jsrpd daemon to ensure that the remote node is up and
healthy. The heartbeats pass through the data planes of both devices and back to
the other side. This validates the entire path end to end, making sure it is able to
pass traffic. In the event that traffic needs to be forwarded between the two nodes,
it is done over the data link. Last but not least, the data link is used to synchronize
RTO messages between the two chassis. RTOs are real-time objects that are used
in the maintenance of the state between the two devices. This includes session
creation and session closing messages.

3. Node-specific information is configured using Junos groups. This was one of the
fundamental features that was created in Junos. Junos groups can also be thought
of as configuration templates or snippets. They can be used to do such things as
enabling logging on all firewall policies and configuring specific snippets of infor-
mation. Using Junos groups where it makes sense simplifies the administration of
the SRX and makes reading the configuration easier.

4. When using dynamic routing the graceful restart feature should be enabled. It
allows the data plane to keep dynamic routes active if the control plane fails over.
It also allows for other routers that surround the SRX to assist it during a control
plane failover.

5. The two most important commands are show chassis cluster status and show
chassis cluster statistics. This will allow for the current state of the cluster and
the current status of communication between the two nodes. Anyone who is ad-
ministering a cluster will use these two commands the most.

6. The SRX utilized code from the TX Series products. The TX Series are some of the
largest and most scalable routing products in the world.

Chapter Review Answers | 619

7. The data center SRXs support unified in-service software upgrades. This feature
allows for an automatic upgrade of the backup node without impacting network
availability.

8. Session synchronization messages are not acknowledged. This would take addi-
tional time and resources away from the processors by forcing the processing of an
additional message.

9. A redundancy group is a logical collection of objects. It can contain either the
control plane (redundancy group 0 only) or interfaces (redundancy group 1+).

10. The control port provides critical communication between the two route engines.
If this link is lost, the two REs cannot synchronize the state of the kernels. Because
of this, if the control link goes down, the secondary node will go into a disabled
state.

620 | Chapter 10: High Availability

CHAPTER 11

Routing

This chapter will show you the Internet Protocol (IP) routing features of Junos for the
SRX. IP routing is, very simply, the means by which IP packets are moved across IP
networks. This is true whether the network is the global Internet or the smaller
IP networks in businesses, schools, and homes.

The SRX is the first platform for which Juniper Networks brought its decade-long ex-
perience in IP security from the earlier ScreenOS platforms into the Junos operating
system with its equally rich decade of IP routing experience.

Junos was the operating system built for mission-critical IP routing. Junos platforms
are deployed at the core of the global Internet and many of the world’s largest enter-
prises. This chapter is not meant to replace the already excellent coverage of Junos’s
extensive IP routing capabilities in O’Reilly’s earlier Junos Enterprise Routing by Doug
Marschke and Harry Reynolds and Junos Cookbook by Aviva Garrett. The goal of this
chapter is to offer a solid grounding for network professionals who are new to IP routing
in the Junos operating system.

In this chapter you will find all that you’ll need to get IP routing up and running on
your SRX device. This chapter has seven main sections touching all aspects of IP routing
on the SRX:

• How the SRX “routes” IP packets

• Static routing

• Dynamic routing

• Internet peering

• Routing policy

• Routing instances

• Filter-based forwarding

This chapter shows you how to configure IP routing with direct tutorials in the Junos
command-line interface (CLI). It also includes case studies at the end of some of the
major sections.

621

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596100148/

How the SRX “Routes” IP Packets
How do you route packets in Junos?

It can seem counterintuitive at first blush, but in Junos terminology, the IP packets
passing through a Junos device are not routed. They are forwarded. Packet forward-
ing is performed in the SRX’s data plane. The SRX’s data plane makes its forwarding
decisions via a forwarding table.

Forwarding Tables
A forwarding table contains relatively simple information, just the essentials to decide
where a packet needs to be sent. An entry in the table identifies a destination and how
it will be reached. That’s it.

Here you examine a small IP forwarding table in the Junos CLI with the show route
forwarding-table command:

jamesq@srx5800-1> show route forwarding-table
Destination Type RtRef Next hop Type Index NhRef Netifn
default user 1 0:21:59:80:d0:2 ucst 357 4 ge-11/0/5.0

The default forwarding table entry directs traffic to a next hop Ethernet Media Access
Control (MAC) address of 0:21:59:80:d0:2 reachable via the ge-11/0/5.0 interface.
Every packet with a destination IP address which is otherwise unknown in the for-
warding table will have its Ethernet layer destination address rewritten to
0:21:59:80:d0:2 before being transmitted out the ge-2/0/1.0 interface (should it suc-
cessfully pass the SRX’s security inspection, of course).

Not all entries in the forwarding table will lead to literal packet forwarding actions. The
next entry in this same forwarding table shows an action for discarding packets (dcsd)
destined to an address of 0.0.0.0/32:

0.0.0.0/32 perm 0 dscd 34 1

In other words, all packets with a literal 0.0.0.0 in the destination IP address field will
be silently dropped.

This next series of forwarding table entries is different in that they refer to an IP network
configured on an actual logical interface of the SRX itself:

10.2.1.0/24 intf 0 rslv 593 1 ge-11/0/5.0
10.2.1.0/32 dest 0 10.2.1.0 recv 591 1 ge-11/0/5.0
10.2.1.10/32 dest 0 0:21:59:80:d0:2 ucst 613 3 ge-11/0/5.0
10.2.1.11/32 intf 0 10.2.1.11 locl 592 2
10.2.1.11/32 dest 0 10.2.1.11 locl 592 2
10.2.1.255/32 dest 0 10.2.1.255 bcst 590 1 ge-11/0/5.0

The IP address configured on the SRX’s ge-11/0/5.0 logical interface (intf) is
10.2.1.11/32 which is thereby considered local (locl) to the SRX itself. The larger IP
network on this interface (intf) is the 10.2.1.0/24 prefix. The other addresses residing

622 | Chapter 11: Routing

within this subnet must be resolved (rslv) through Address Resolution Protocol (ARP).
One neighboring IP address (10.2.1.10/32) has completed successful ARP resolution
pointing it to a unicast (ucst) Ethernet MAC address of 0:21:59:80:d0:2 (reachable out
of the same ge-11/0/5.0 logical interface, of course). The broadcast (bcst) address for
this network is 10.2.1.255/32.

And last in this forwarding table, you find a unicast (ucst) entry for 10.32.1.1/32 that
is reachable via the neighboring 10.2.1.10 device reachable on logical interface
ge-11/0/5.0:

10.32.1.1/32 user 0 10.2.1.10 ucst 613 3 ge-11/0/5.0

Like the default route earlier, this is known as a user entry in the forwarding table.
Unlike the interface entries that are known via the Junos kernel itself, these user entries
are created by the Junos routing protocol daemon (RPD) process which exists in Junos’s
“userland” from an operating system perspective.

As depicted in Figure 11-1, rpd is a control plane process. It is responsible for all IP
routing in Junos. It populates the routing table that is synthesized to create the for-
warding table that will ultimately be pushed down to the data plane. The tools for
rpd to create these routing tables and forwarding tables are the subject of this chapter.

Figure 11-1. Junos control plane and data plane

IP Routing
Now that you’ve explored the IP forwarding table, you investigate the IP routing table
with a show route command:

jamesq@SRX5800-1> show route

inet.0: 18 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

How the SRX “Routes” IP Packets | 623

Restart Complete
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 2w2d 21:29:27
 > to 10.2.1.10 via ge-11/0/5.0

The primary IPv4 routing table on all Junos devices is called inet.0. Above you see that
the default route (0.0.0.0/0) in the inet.0 routing table is a Static route reachable via
the next hop IP address 10.2.1.10 on the ge-11/0/5.0 logical interface. A static route
is one that is statically created by the network administrator within the local Junos
configuration itself. A static route is dependent on the reachability of its next hop IP
address. It lacks the resilience of a dynamic route that can adapt to changing network
conditions.

Unlike forwarding tables, routing tables do not contain any Ethernet
layer reachability information. IP routing tables contain only IP reach-
ability information.

As you’ll see later, these IP layer routing table entries are translated to the Ethernet layer
reachability information of the forwarding table via ARP.

Next you see that the 10.2.1.0/24 prefix configured on the logical interface
ge-11/0/5.0 is called a Direct route, though the IP address belonging to the SRX itself
on that segment (10.2.1.11/32) is called a Local route:

10.2.1.0/24 *[Direct/0] 2w0d 22:19:31
 > via ge-11/0/5.0
10.2.1.11/32 *[Local/0] 2w2d 21:27:28
 Local via ge-11/0/5.0

Direct routes are those that exist on the directly connected interfaces of the SRX. They
do not belong to the SRX itself. Local routes are the entries pointing to the IP addresses
owned by the SRX.

Finally, you see that the remaining 10.32.1.1/32 entry is from the dynamic routing
protocol IS-IS:

10.32.1.1/32 *[IS-IS/15] 00:49:17, metric 10
 > to 10.2.1.10 via ge-11/0/5.0

Dynamic routing protocols provide a far more resilient means of IP routing. Dynamic
routing works through the continuous exchange of IP reachability information between
neighboring IP network devices, also known as IP routers.

As the SRX is built on the Junos operating system, every SRX device has the capability
to function as a very powerful IP router. Junos for the SRX supports the three most
common dynamic interior gateway protocols (IGPs): Open Shortest Path First (OSPF),
Intermediate System-to-Intermediate System (IS-IS), and Routing Information Protocol
(RIP). IGPs are most often used to exchange IP reachability information within a single

624 | Chapter 11: Routing

organization’s network. IGPs assume a common level of trust for the IP routing infor-
mation exchanged between routers within the IGP’s domain.

Junos for the SRX also supports Border Gateway Protocol (BGP). BGP is the protocol
used around the world for Internet peering between organizations. BGP assumes no
trust between organizations and so it comes with a powerful complement of tools for
controlling the propagation of IP routes.

Asymmetric Routing
One last key concept to note about integrating the SRX into complex routing environ-
ments is how easily it copes with asymmetric routing. As depicted in Figure 11-2, asym-
metric routing occurs when one direction of an IP conversation traverses a different
path than the return direction.

Figure 11-2. Asymmetric routing

Traditional security devices were not built to cope with such complex routed environ-
ments. Their packet handling would rigidly enforce symmetric packet flow. They would
simply drop the return traffic for any flows similar to the one depicted in Figure 11-2.

The SRX is a fundamentally different type of device. It is built to solve both your security
needs and your routing needs.

The SRX works flawlessly in asymmetrically routed environments. Return traffic for a
flow can come back through literally any interface and work perfectly and with fully
stateful security enforcement intact. In fact, the SRX’s flexibility is even greater than
this. For the SRX, traffic need not even return on the same chassis. In the high availability
(HA) clusters that we will explore in the next chapter, a flow’s traffic may return on
any interface in either chassis and continue to work flawlessly with fully stateful security
inspection. The SRX is that powerful.

How the SRX “Routes” IP Packets | 625

The SRX still enforces security policy in asymmetrically routed environ-
ments. Although return traffic may return through any interfaces, those
interfaces must be configured in the correct security zone to statefully
match the existing security policy enforcement.

Address Resolution Protocol (ARP)
ARP is the glue that ties IP addresses to Ethernet MAC addresses, thereby making it
possible for IP packets to traverse Ethernet links. At its most basic level, ARP consists
of, first, an Ethernet layer broadcast request for a mapping between an IP address and
an Ethernet MAC address and, second, the Ethernet layer unicast reply containing the
requested mapping information.

Before leaving this section, you examine an ARP table with the show arp command in
the Junos CLI:

jamesq@SRX5800-1> show arp
MAC Address Address Name Interface Flags
00:21:59:80:d0:02 10.2.1.10 hello.jnpr.net ge-11/0/5.0 none

The preceding ARP table output shows that the IP address 10.2.1.10 has been suc-
cessfully resolved to an Ethernet layer MAC address of 00:21:59:80:d0:02 on the
ge-11/0/5.0 logical interface. This ARP table mapping makes it possible for this SRX
device to transmit IP packets destined to 10.2.1.10 or with a next hop of 10.2.1.10 out
of the ge-11/0/5.0 logical interface with the correct Ethernet header containing the
destination MAC address 00:21:59:80:d0:02.

Static Routing
Static routing is the simplest and most basic form of IP routing. A static route consists
of a destination IP prefix and a next hop IP address through which it can be reached.
As shown in Figure 11-3, static routes are literally configured by the administrator on
the local SRX device itself.

When you need a quick solution for getting routes up on an SRX device, static routing
is the easiest one available.

626 | Chapter 11: Routing

Figure 11-3. Network administrator configures static route

Creating a Static Route
In the Junos CLI configuration that follows, you will create a new static route. You
enter configuration mode and move to the static route configuration hierarchy using
the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

[edit]
jamesq@SRX5800-1# edit routing-options static

You access the CLI help for the static route hierarchy:

[edit routing-options static]
jamesq@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> defaults Global route options
 rib-group Routing table group
> route Static route

And you find the route option for creating a static route.

You begin building a route toward the 10.0.0.0/0 network (which you smartly abbre-
viate 10/0, a well-understood abbreviation for the Junos CLI) and examine the CLI help:

[edit routing-options static]
jamesq@SRX5800-1# set route 10/0 ?
Possible completions:
 active Remove inactive route from forwarding table
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> as-path Autonomous system path
 backup-pe-group Multicast source redundancy group
> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options
> color Color (preference) value

Static Routing | 627

> color2 Color (preference) value 2
+ community BGP community identifier
 discard Drop packets to destination; send no ICMP unreachables
 install Install route into forwarding table
> metric Metric value
> metric2 Metric value 2
> metric3 Metric value 3
> metric4 Metric value 4
+ next-hop Next hop to destination
 next-table Next hop to another table
 no-install Don't install route into forwarding table
 no-readvertise Don't mark route as eligible to be readvertised
 no-resolve Don't allow resolution of indirectly connected next hops
 no-retain Don't always keep route in forwarding table
 passive Retain inactive route in forwarding table
> preference Preference value
> preference2 Preference value 2
> qualified-next-hop Next hop with qualifiers
 readvertise Mark route as eligible to be readvertised
 receive Install a receive route for the destination
 reject Drop packets to destination; send ICMP unreachables
 resolve Allow resolution of indirectly connected next hops
 retain Always keep route in forwarding table
> tag Tag string
> tag2 Tag string 2

And here in this exhaustive list of static routing options you see a hint of the power of
the IP routing tool set in Junos. Junos offers no fewer than 32 options for the configu-
ration of a “simple” static route.

Fortunately, it is not necessary to understand all of these fine gradations of options
because, for your purposes, you need just one, the next-hop:

[edit routing-options static]
jamesq@SRX5800-1# set route 10/8 next-hop 10.2.1.100

And before you even realized it, you have succeeded in creating your very own static
route in the Junos configuration!

You view your results with the show command:

[edit routing-options static]
jamesq@SRX5800-1# show | compare
[edit routing-options static]
 route 0.0.0.0/ { ... }
+ route 10.0.0.0/8 next-hop 10.2.1.100;

You commit the configuration to the SRX:

[edit routing-options static]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

628 | Chapter 11: Routing

Verifying a Static Route
Now that you have a new static route pointing the 10.0.0.0/8 prefix to the next hop
neighboring router, you test connectivity to a known 10.1.1.1 device with the ping
command:

jamesq@SRX5800-1> ping 10.1.1.1
PING 10.1.1.1 (10.1.1.1): 56 data bytes
^C
--- 10.1.1.1 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss

But the ping test fails! What could have happened?

You stay calm and check your new configuration in the inet.0 routing table with the
show route 10.1.1.1 command:

jamesq@srx5800-1> show route 10.1.1.1

inet.0: 19 destinations, 22 routes (19 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.0.0.0/8 *[Static/5] 00:07:01
 > to 10.2.1.100 via ge-11/0/5.0

Excellent! There’s the 10.0.0.0/8 static route entry in the inet.0 table as expected.
Good stuff.

But how does this routing table entry translate to the actual forwarding table?

You check with the show route forwarding-table command:

jamesq@srx5800-1> show route forwarding-table
Destination Type RtRef Next hop Type Index NhRef Netifn
default user 1 0:21:59:80:d0:2 ucst 357 4 ge-11/0/5.0
10.0.0.0/8 user 0 10.2.1.100 hold 601 3 ge-11/0/5.0

That’s not what you want to see. The 10.0.0.0/8 forwarding table entry points to the
10.2.1.100 as the next hop, but it mysteriously says hold. You continue down the for-
warding table and find that the next hop for the 10.2.1.100/32 also says hold.

10.2.1.0/24 intf 0 rslv 593 1 ge-11/0/5.0
10.2.1.0/32 dest 0 10.2.1.0 recv 591 1 ge-11/0/5.0
10.2.1.10/32 dest 0 0:21:59:80:d0:2 ucst 613 3 ge-11/0/5.0
10.2.1.11/32 intf 0 10.2.1.11 locl 592 2
10.2.1.100/32 dest 0 10.2.1.100 hold 601 3 ge-11/0/5.0

That’s not right. There should be an Ethernet MAC address as the next hop for
10.2.1.100.

Wait! Of course!

You quickly check the ARP table:

jamesq@SRX5800-1> show arp
MAC Address Address Name Interface Flags

Static Routing | 629

00:21:59:80:d0:02 10.2.1.10 hello.jnpr.net ge-11/0/5.0 none
Total entries: 1

jamesq@SRX5800-1>

Just as expected, there’s no ARP entry for 10.2.1.100.

Oops! It was all just a typo. The next hop IP address for the static route should have
been 10.2.1.10 instead!

Time to fix the mistake:

jamesq@SRX5800-1> edit

[edit]
jamesq@SRX5800-1# edit routing-options static route 10/8

[edit routing-options static route 10.0.0.0/8]
jamesq@SRX5800-1# show
next-hop 10.2.1.100;

There it is—the fat-fingered next hop IP address!

You remove the error with the delete command:

[edit routing-options static route 10.0.0.0/8]
jamesq@SRX5800-1# delete
Delete everything under this level? [yes,no] (no) yes

And then set the correct next hop to 10.2.1.10:

[edit routing-options static route 10.0.0.0/8]
james@SRX5800-1# set next-hop 10.2.1.10

You check the configuration with the show command:

james@SRX5800-1# show | compare
[edit routing-options static]
 route 172.19.100.176/32 { ... }
- route 10.0.0.0/8 next-hop 10.2.1.100;
+ route 10.0.0.0/8 next-hop 10.2.1.10;

And commit your changes:

[edit routing-options static]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

You test again with the ping command:

james@SRX5800-1> ping 10.1.1.1
PING 10.1.1.1 (10.1.1.1): 56 data bytes
64 bytes from 10.1.1.1: icmp_seq=0 ttl=64 time=2.706 ms
64 bytes from 10.1.1.1: icmp_seq=1 ttl=64 time=2.512 ms
64 bytes from 10.1.1.1: icmp_seq=2 ttl=64 time=3.035 ms

630 | Chapter 11: Routing

^C
--- 10.1.1.1 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 2.512/2.751/3.035/0.216 ms

james@SRX5800-1>

Success!

As you can see, static routing is very susceptible to human fallibility. It’s equally sus-
ceptible to network fallibility. That’s why it is time to move on to dynamic routing
where the routers can use their own smarts.

Dynamic Routing
In the simplest terms, dynamic routing serves exactly the same purpose as static routing.
It associates destination IP prefixes with the next hop IP addresses through which they
can be reached, thereby allowing the construction of forwarding table entries for reach-
ing them.

But dynamic routing is different from static routing in that it is based not on static
configuration, but on the dynamic interplay of routing protocols across a live IP net-
work, as shown in Figure 11-4.

Figure 11-4. Dynamic routing communication

Dynamic Routing | 631

This dynamic interplay is what makes dynamic routing so much more powerful and
resilient in the real world. Routing protocols continually exchange and update routing
information between IP routing devices as network conditions change.

Real networks are not predictable or static. Devices fail. Connections fail. Whole net-
works fail. When these unpredictable events occur, network administrators are held
accountable by their organizations. This is why dynamic routing is so important.

Where a simple static route may easily (and unknowingly) point toward an unusable
network path, a dynamic route has the power to change through newly learned infor-
mation, as shown in Figure 11-5.

Figure 11-5. Dynamic routing convergence

This simple concept of dynamically converging around network failures is fundamental
to building highly available IP networks.

Dynamic routing is, however, a very large subject and has been the basis for innumer-
able books, including the excellent Junos Enterprise Routing and Junos Cookbook pub-
lications mentioned earlier. This section will provide you just the taste of dynamic
routing that you’ll need to get your SRX device up and running in a dynamically routed
IP network.

Configuring OSPF Routing
Open Shortest Path First (OSPF) is the most commonly used dynamic routing protocol
in modern IP networks. It is an IGP in that an OSPF routing domain is typically built

632 | Chapter 11: Routing

within just one organization’s network (in contrast to exterior protocols such as BGP
which are built for peering between organizations).

Figure 11-6 shows an OSPF topology overlaying Organization-XYZ’s internal IP
networks.

OSPF is a link-state routing protocol in that it is designed to flood link-state advertise-
ments (LSAs) between all routers within an OSPF area (such as the OSPF area drawn
in Figure 11-6). These LSAs contain all of the local routing information from each OSPF
router in the area, including the IP addressing for each of a router’s local interfaces.

All routers within an OSPF area form a common view of their network topology through
this exchange of LSAs and through the creation of a common and synchronized LSA
database. The Shortest Path First (SPF) in the name OSPF refers to the algorithm used
by OSPF routers for computing actual IP routes from the information in the LSA
database.

Although OSPF is a complex and powerful routing protocol that is largely beyond the
scope of this book, a simple OSPF configuration can be constructed very easily.

In the Junos CLI configuration that follows, you will establish a basic OSPF adjacency
joining your SRX to an OSPF routing domain. You enter configuration mode with the
edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

And move to the OSPF configuration hierarchy:

[edit]
jamesq@SRX5800-1# edit protocols ospf

You access the CLI help for the OSPF hierarchy:

[edit protocols ospf]
jamesq@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> area Configure an OSPF area
> backup-spf-options Configure options for backup SPF
> database-protection Configure database protection attributes
 disable Disable OSPF
+ export Export policy
 external-preference Preference of external routes
> graceful-restart Configure graceful restart attributes
+ import Import policy (for external routes or setting priority)
 no-nssa-abr Disable full NSSA functionality at ABR
 no-rfc-1583 Disable RFC1583 compatibility
> overload Set the overload mode (repel transit traffic)
 preference Preference of internal routes
 prefix-export-limit Maximum number of prefixes that can be exported (0..4294967295)
 reference-bandwidth Bandwidth for calculating metric defaults (9600..1000000000000)
 rib-group Routing table group for importing OSPF routes

Dynamic Routing | 633

Figure 11-6. Organization-XYZ’s OSPF routing topology

634 | Chapter 11: Routing

> spf-options Configure options for SPF
> topology Topology parameters
> traceoptions Trace options for OSPF
> traffic-engineering Configure traffic engineering attributes

Again, Junos shows itself replete with tools for the manipulation of IP routing. But
fortunately just a few of these knobs are necessary for your basic OSPF network. It will
be enough to simply configure the relevant logical interfaces within an OSPF area
stanza.

Here, in one command, you both create an OSPF link-state area 0 (as shown in
Figure 11-6) and you place the ge-11/0/5.0 logical interface into this new area:

[edit protocols ospf]
jamesq@SRX5800-1# set area 0 interface ge-11/0/5.0

Area 0 is the most common OSPF area. In a single area OSPF network topology (such
as the one you are building here), any area number is allowed. Just make sure you match
your OSPF area configuration for each SRX interface to the OSPF area that is used by
the neighboring OSPF devices (with which the SRX will need to match areas to form
successful OSPF neighbor adjacencies).

Note that in a multi-area OSPF topology (which is beyond the scope of this book), there
must be at least one area 0 acting as a backbone area interconnecting all of the other
OSPF areas. A multi-area OSPF topology is impossible without at least one area num-
bered zero.

Adding the logical interface ge-11/0/5.0 to OSPF area 0 causes OSPF to do two things:

• It adds the IP prefixes configured on interface ge-11/0/5.0 to the OSPF Router LSA
it creates and floods across the OSPF area.

• It begins transmitting OSPF Hello packets out of interface ge-11/0/5.0 while like-
wise listening for Hello packets on the same interface. In this way, the SRX device
seeks an OSPF adjacency with any neighboring OSPF devices sharing the same
Layer 2 network.

As a matter of best practice, you also place your loopback as a passive interface in the
OSPF area:

[edit protocols ospf]
jamesq@SRX5800-1# set area 0 interface lo0.0 passive

By including the loopback interface in the OSPF area, you ensure that the SRX’s router
identification for OSPF is derived from the loopback IP address that exists virtually
within the SRX. This is preferable to deriving OSPF router identification from an IP
address configured on a real interface. If the router identification were derived from a
real interface, that interface could go down, forcing the identification to change and
creating unnecessary OSPF churn as the area reconverged around the seemingly “new”
OSPF device with its new router identification.

Dynamic Routing | 635

Also note the passive knob configured on the loopback interface. As OSPF would
ordinarily attempt to form adjacencies on all interfaces configured in an area, this knob
tells OSPF not to bother transmitting Hello packets or listening for them on this loop-
back interface which exists only virtually within the SRX.

Your basic OSPF network configuration is now complete. You examine it with the
show command:

[edit protocols ospf]
root@SRX5800-1# show
area 0.0.0.0 {
 interface ge-11/0/5.0;
 interface lo0.0 passive;
}

And finally commit your new configuration:

[edit protocols ospf]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

james@SRX5800-1>

Now that the SRX has a live OSPF configuration, it is time for you to confirm that it
has successfully formed an OSPF adjacency with the neighboring OSPF router on the
ge-11/0/5.0 interface. You investigate with the show ospf neighbor command:

james@SRX5800-1> show ospf neighbor

james@SRX5800-1>

That’s not what you expect to see! There are no OSPF neighbors visible to the SRX.
It’s time to troubleshoot the new OSPF configuration.

Troubleshooting OSPF adjacencies

You confirm that OSPF is running on the ge-11/0/5.0 interface with the show ospf
interface command:

jamesq@SRX5800-1> show ospf interface
Interface State Area DR ID BDR ID Nbrs
ge-11/0/5.0 DR 0.0.0.0 198.18.16.2 0.0.0.0 0
lo0.0 DRother 0.0.0.0 0.0.0.0 0.0.0.0 0

That’s good! OSPF is running on the configured interfaces. But there are no neighbors
on ge-11/0/5.0. What could the problem be?

It’s time to dig deeper. You go back into configuration mode to set up OSPF traceop
tions for some live troubleshooting on the SRX:

jamesq@srx5800-1> edit
Entering configuration mode

636 | Chapter 11: Routing

[edit]
jamesq@SRX5800-1# edit protocols ospf

After entering the OSPF hierarchy, you examine CLI help for traceoptions:

[edit protocols ospf]
jamesq@SRX5800-1# set traceoptions ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> file Trace file options
> flag Tracing parameters

A complete OSPF traceoptions configuration requires both a file and a flag config-
uration. The flag defines what troubleshooting information will be collected. The
file specifies where the information will be written in the /var/log directory.

You examine the CLI help for the flag configuration:

[edit protocols ospf]
jamesq@SRX5800-1# set traceoptions flag ?
Possible completions:
 all Trace everything
 database-description Trace database description packets
 error Trace errored packets
 event Trace OSPF state machine events
 flooding Trace LSA flooding
 general Trace general events
 graceful-restart Trace graceful restart
 hello Trace hello packets
 lsa-ack Trace LSA acknowledgment packets
 lsa-analysis Trace LSA analysis
 lsa-request Trace LSA request packets
 lsa-update Trace LSA update packets
 normal Trace normal events
 nsr-synchronization Trace NSR synchronization events
 packet-dump Dump the contents of selected packet types
 packets Trace all OSPF packets
 policy Trace policy processing
 route Trace routing information
 spf Trace SPF calculations
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing

Again Junos is overflowing with options! But where are you to begin troubleshooting?

There it is! You need to figure out why the OSPF hello packet exchange is not leading
to an adjacency:

[edit protocols ospf]
jamesq@SRX5800-1# set traceoptions flag hello

Now you examine CLI help for the file option:

[edit protocols ospf]
jamesq@SRX5800-1# set traceoptions file ?

Dynamic Routing | 637

Possible completions:
 <filename> Name of file in which to write trace information
 files Maximum number of trace files (2..1000)
 no-world-readable Don't allow any user to read the log file
 size Maximum trace file size (10240..4294967295)
 world-readable Allow any user to read the log file

And you point the OSPF trace data to the ospftrace file in the /var/log directory:

[edit protocols ospf]
jamesq@SRX5800-1# set traceoptions file ospftrace

And commit your changes:

[edit protocols ospf]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

After waiting a minute for your new ospftrace logfile to collect some data, you check
out the results with the show log command:

jamesq@srx5800-1> show log ospftrace
Apr 11 15:40:21 trace_on: Tracing to "/var/log/ospftrace" started
Apr 11 15:40:21.821379 OSPF sent Hello 10.2.1.11 -> 224.0.0.5
(ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 15:40:21.821444 Version 2, length 44, ID 198.18.16.2, area 0.0.0.0
Apr 11 15:40:21.821454 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 15:40:21.821461 dead_ivl 40, DR 10.2.1.11, BDR 0.0.0.0
Apr 11 15:40:21.822530 OSPF sent Hello 10.2.1.11 -> 224.0.0.5
(ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 15:40:21.822558 Version 2, length 44, ID 198.18.16.2, area 0.0.0.0
Apr 11 15:40:21.822567 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 15:40:21.822574 dead_ivl 40, DR 10.2.1.11, BDR 0.0.0.0
Apr 11 15:40:30.057636 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)
Apr 11 15:40:38.222314 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)
Apr 11 15:40:45.819123 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)
Apr 11 15:40:55.678602 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)
Apr 11 15:41:03.862275 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)
Apr 11 15:41:13.611732 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)
Apr 11 15:41:22.080391 OSPF periodic xmit from 10.2.1.11 to 224.0.0.5
(IFL 80 area 0.0.0.0)

The SRX is sending OSPF Hello packets every few seconds out the ge-11/0/5.0 interface
to the 224.0.0.5 multicast address (the address used for speaking to OSPF routers). But
it never sees any neighbor Hello packets come back.

Why would the SRX control plane not receive OSPF packets being sent by a neighboring
OSPF router on an interface correctly configured for OSPF?

638 | Chapter 11: Routing

That’s it! The SRX isn’t just a router. It’s also a security device!

OSPF security zone configuration

You confirm that interface ge-11/0/5.0 is in the trust zone with the show security
zones command:

jamesq@SRX5800-1> show security zones trust
Security zone: trust
 Send reset for non-SYN session TCP packets: Off
 Policy configurable: Yes
 Interfaces bound: 3
 Interfaces:
 ge-11/0/5.0

All data plane interfaces on an SRX device must be configured in security zones. The
OSPF-speaking ge-11/0/5.0 interface you are using here is no different.

You jump back into configuration mode to complete your SRX zones configuration for
support of OSPF:

jamesq@SRX5800-1> edit
Entering configuration mode

[edit]
jamesq@SRX5800-1# edit security zones

You check the CLI help for the security zones hierarchy:

[edit security zones]
jamesq@SRX5800-1# set security-zone trust ?
Possible completions:
 <[Enter]> Execute this command
> address-book Address book entries
 application-tracking Enable Application tracking support for this zone
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> host-inbound-traffic Allowed system services & protocols
> interfaces Interfaces that are part of this zone
 screen Name of ids option object applied to the zone
 tcp-rst Send RST for TCP SYN packet not matching session
 | Pipe through a command

There it is. The host-inbound-traffic configuration option in the zones configuration
controls the communication of routing protocols with the SRX control plane. That was
blocking OSPF!

You look at the CLI help for the host-inbound-traffic protocols configuration:

[edit security zones]
jamesq@SRX5800-1# set security-zone trust host-inbound-traffic protocols ?
Possible completions:
 all All protocols
 bfd Bidirectional Forwarding Detection
 bgp Border Gateway Protocol
 dvmrp Distance Vector Multicast Routing Protocol

Dynamic Routing | 639

 igmp Internet Group Management Protocol
 msdp Multicast Source Discovery Protocol
 ndp Enable Network Discovery Protocol
 nhrp Next Hop Resolution Protocol
 ospf Open Shortest Path First
 ospf3 Open Shortest Path First version 3
 pgm Pragmatic General Multicast
 pim Protocol Independent Multicast
 rip Routing Information Protocol
 ripng Routing Information Protocol next generation
 sap Session Announcement Protocol
 vrrp Virtual Router Redundancy Protocol

There are options to permit traffic for every major control plane protocol, and even the
option to permit all of them at once. You use the set command to add configuration
for permitting OSPF:

[edit security zones]
jamesq@SRX5800-1# set security-zone trust host-inbound-traffic protocols ospf

And commit the new configuration:

[edit protocols ospf]
james@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

Time to check out the ospftrace file again with the show log command:

jamesq@srx5800-1> show log ospftrace | last
Apr 11 16:05:37.932833 OSPF rcvd Hello 10.2.1.10 -> 224.0.0.5
(ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 16:05:37.932892 Version 2, length 48, ID 10.32.1.1, area 0.0.0.0
Apr 11 16:05:37.932899 checksum 0x0, authtype 0
Apr 11 16:05:37.932908 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 16:05:37.932943 dead_ivl 40, DR 10.2.1.10, BDR 0.0.0.0

Excellent! You’re receiving OSPF Hello packets from your neighbor 10.2.1.10. This is
the first step to negotiating a successful OSPF adjacency.

Apr 11 16:05:37.934746 OSPF sent Hello 10.2.1.11 -> 224.0.0.5
(ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 16:05:37.934773 Version 2, length 48, ID 198.18.16.2, area 0.0.0.0
Apr 11 16:05:37.934781 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 16:05:37.934789 dead_ivl 40, DR 10.2.1.11, BDR 0.0.0.0
Apr 11 16:05:37.942947 RPD_OSPF_NBRUP: OSPF neighbor 10.2.1.10
realm ospf-v2 ge-11/0/5.0 area 0.0.0.0) state changed from Init to ExStart due
to 2WayRcvd (event reason: initial DBD packet was received)
Apr 11 16:05:37.943622 OSPF sent Hello 10.2.1.11 -> 224.0.0.5
ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 16:05:37.943652 Version 2, length 48, ID 198.18.16.2, area 0.0.0.0
Apr 11 16:05:37.943662 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 16:05:37.943669 dead_ivl 40, DR 10.2.1.11, BDR 0.0.0.0
Apr 11 16:05:37.944153 OSPF rcvd Hello 10.2.1.10 -> 224.0.0.5
ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 16:05:37.944178 Version 2, length 48, ID 10.32.1.1, area 0.0.0.0

640 | Chapter 11: Routing

Apr 11 16:05:37.944185 checksum 0x0, authtype 0
Apr 11 16:05:37.944193 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 16:05:37.944200 dead_ivl 40, DR 10.2.1.11, BDR 10.2.1.10
Apr 11 16:05:37.944291 OSPF sent Hello 10.2.1.11 -> 224.0.0.5
ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 16:05:37.944301 Version 2, length 48, ID 198.18.16.2, area 0.0.0.0
Apr 11 16:05:37.944309 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 16:05:37.944316 dead_ivl 40, DR 10.2.1.11, BDR 10.2.1.10
Apr 11 16:05:37.944364 OSPF sent Hello 10.2.1.11 -> 224.0.0.5 (
ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 11 16:05:37.944373 Version 2, length 48, ID 198.18.16.2, area 0.0.0.0
Apr 11 16:05:37.944380 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 11 16:05:37.944387 dead_ivl 40, DR 10.2.1.11, BDR 10.2.1.10
Apr 11 16:05:38.020642 RPD_OSPF_NBRUP: OSPF neighbor 10.2.1.10 (
realm ospf-v2 ge-11/0/5.0 area 0.0.0.0) state changed from Loading
to Full due to LoadDone (event reason: OSPF loading completed)

And there it is! The ospftrace file shows a Full adjacency with 10.2.1.10 on interface
ge-11/0/5.0.

For consistency, you go back and check the show ospf neighbor command:

jamesq@SRX5800-1> show ospf neighbor
Address Interface State ID Pri Dead
10.2.1.10 ge-11/0/5.0 Full 10.32.1.1 128 36

Great! You quickly see if the SRX is receiving any OSPF routes with the show route
command:

jamesq@SRX5800-1> show route protocol ospf

inet.0: 20 destinations, 23 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 *[OSPF/10] 00:13:15, metric 1
 > to 10.2.1.10 via ge-11/0/5.0
224.0.0.5/32 *[OSPF/10] 20:42:16, metric 1
 MultiRecv

And there is a new OSPF route for 10.32.1.1/32 pointing to the 10.2.1.10 OSPF
neighbor!

You were able to quickly drill down to just the OSPF routes by using the protocol
option to the show route command. Junos comes built with an array of options for
filtering routing table output:

jamesq@SRX5800-1> show route ?
Possible completions:
 <[Enter]> Execute this command
 <destination> IP address and optional prefix length of destination
 active-path Show active paths
 advertising-protocol Show information in format intended for
particular routing protocol
 all Show all entries, including hidden entries
 aspath-regex BGP AS path regular expression for entries to match

Dynamic Routing | 641

 best Show longest matching route
 brief Display brief output
+ community Identifier for community (can include wildcards)
 community-name Name of configured community policy to match
 damping Show entries subjected to particular kind of route damping
 detail Display detailed output
 exact Show routes that match exactly
 export Show instance export information
 extensive Display extensive output
 flow Show flow routing information
 forwarding-table Show entries in all forwarding tables
 hidden Show hidden entries
 inactive-path Show inactive paths
 inactive-prefix Show inactive route destinations
 instance Show routing instances information
 logical-system Name of logical system, or 'all'
 martians Show martian networks
 next-hop IP address of next hop that is destination for entries
 no-community Show entries with no associated community
 output Show entries sent out a particular interface
 private Show private table routes
 protocol Name of protocol that is source for entries
 range Show all entries in prefix range
 rd-prefix Route distinguisher with ip prefix (rd:prefix)
 receive-protocol Show information in format received from
particular routing protocol
 resolution Show next-hop resolution database
 rib-groups Show group of routing tables
 snooping Show routes for multicast snooping
 source-gateway IP address of source router for entries
 summary Show routing table statistics
 table Name of routing table
 terse Display terse output
 | Pipe through a command

But again, all of the preceding options are for filtering output from the Junos routing
tables. By examining show route protocol ospf, you see the routes that the routing
table inet.0 has accepted from OSPF. But you can also view routing information from
the perspective of the OSPF protocol itself with the show ospf route command:

jamesq@SRX5800-1> show ospf route
Topology default Route Table:

Prefix Path Route NH Metric NextHop Nexthop
 Type Type Type Interface Address/LSP
10.32.1.1 Intra Router IP 1 ge-11/0/5.0 10.2.1.10
10.32.1.1/32 Intra Network IP 1 ge-11/0/5.0 10.2.1.10
198.18.16.2/32 Intra Network IP 0 lo0.0
10.2.1.0/24 Intra Network IP 1 ge-11/0/5.0

And here you see two additional routes for 198.18.16.2/32 (the local SRX’s loopback
interface IP address) and 10.2.1.0/24 (the network where the SRX has formed the new
OSPF adjacency). These are routes that OSPF knows about, but they are not routes
that Junos has taken from OSPF.

642 | Chapter 11: Routing

Rather, Junos views 198.18.16.2/32 as a directly connected interface route:

jamesq@SRX5800-1> show route 198.18.16.2/32

inet.0: 20 destinations, 23 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

198.18.16.2/32 *[Direct/0] 16:05:21
 > via lo0.0

And 10.2.1.0/24 is likewise viewed as a directly connected interface route but also
containing a smaller 10.2.1.11/32 local address within it:

jamesq@SRX5800-1> show route 10.2.1.0/24

inet.0: 20 destinations, 23 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.2.1.0/24 *[Direct/0] 20:59:39
 > via ge-11/0/5.0
10.2.1.11/32 *[Local/0] 20:59:43
 Local via ge-11/0/5.0

Notice the [Direct/0] designation for both of the routes that superseded OSPF in the
routing table. The zero corresponds to the preference that Junos has for that type of
route.

As shown in Table 11-1, OSPF internal routes have a preference of 10 where directly
connected networks have the better preference of 0 (lower is better). OSPF may know
about directly connected networks, but it will never be responsible for contributing
them to a Junos routing table.

Table 11-1. Junos routing preferences

Type of route Default preference

Directly connected network 0

System routes 4

Static 5

OSPF internal route 10

IS-IS Level 1 internal route 15

IS-IS Level 2 internal route 18

Default 20

Redirects 30

Kernel 40

SNMP 50

Router discovery 55

Dynamic Routing | 643

Type of route Default preference

RIP 100

RIPng 100

PIM 105

DVMRP 110

Routes to interfaces that are down 120

Aggregate 130

OSPF AS external routes 150

IS-IS Level 1 external route 160

IS-IS Level 2 external route 165

BGP 170

MSDP 175

Before leaving the OSPF section, let’s examine one advanced command, show ospf
database:

jamesq@SRX5800-1> show ospf database

 OSPF database, Area 0.0.0.0
Type ID Adv Rtr Seq Age Opt Cksum Len
Router 10.32.1.1 10.32.1.1 0x80000034 799 0x22 0xc633 48
Router *198.18.16.2 198.18.16.2 0x80000016 798 0x22 0x17f3 48
Network *10.2.1.11 198.18.16.2 0x80000001 798 0x22 0xae02 32

The show ospf database command displays the complete LSA database for OSPF. This
SRX has three LSAs in its database, one for each of the two routers in the OSPF area
and the last representing the multiaccess (Ethernet) network between them. The starred
(*) LSAs were created by the local SRX itself.

The full complexity of the LSA database is beyond the scope of this book, but for a little
taste, here you examine CLI help underneath the show ospf database command:

jamesq@SRX5800-1> show ospf database ?
Possible completions:
 <[Enter]> Execute this command
 advertising-router Router ID of advertising router
 area OSPF area ID
 asbrsummary Summary AS boundary router link-state advertisements
 brief Display brief output (default)
 detail Display detailed output
 extensive Display extensive output
 external External link-state advertisements
 instance Name of OSPF instance
 link-local Link local link-state advertisements
 logical-system Name of logical system, or 'all'
 lsa-id Link-state advertisement ID
 netsummary Summary network link-state advertisements
 network Network link-state advertisements

644 | Chapter 11: Routing

 nssa Not-so-stubby area link-state advertisements
 opaque-area Opaque area-scope link-state advertisements
 router Router link-state advertisements
 summary Display summary output
 | Pipe through a command

And you see the array of LSA types and options for filtering the LSA database. Only
the router and network LSA types are relevant to the simple single-area OSPF network
built in this section.

You dig a little deeper with the extensive option to the show ospf database command:

jamesq@SRX5800-1> show ospf database extensive

 OSPF database, Area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Router 10.32.1.1 10.32.1.1 0x80000034 802 0x22 0xc633 48
 bits 0x0, link count 2
 id 10.2.1.11, data 10.2.1.10, Type Transit (2)
 Topology count: 0, Default metric: 1
 id 10.32.1.1, data 255.255.255.255, Type Stub (3)
 Topology count: 0, Default metric: 0
 Topology default (ID 0)
 Type: Transit, Node ID: 10.2.1.11
 Metric: 1, Bidirectional
 Aging timer 00:46:37
 Installed 00:13:21 ago, expires in 00:46:38

The Router LSA 10.32.1.1 shows that the neighboring OSPF router has two interfaces
(10.32.1.1 and 10.2.1.10) attached to it.

Next you see the SRX’s own 198.18.16.2 Router LSA also showing two interfaces
(198.18.16.2 and 10.2.1.11) attached:

Router *198.18.16.2 198.18.16.2 0x80000016 801 0x22 0x17f3 48
 bits 0x0, link count 2
 id 10.2.1.11, data 10.2.1.11, Type Transit (2)
 Topology count: 0, Default metric: 1
 id 198.18.16.2, data 255.255.255.255, Type Stub (3)
 Topology count: 0, Default metric: 0
 Topology default (ID 0)
 Type: Transit, Node ID: 10.2.1.11
 Metric: 1, Bidirectional
 Gen timer 00:36:38
 Aging timer 00:46:38
 Installed 00:13:21 ago, expires in 00:46:39, sent 00:13:21 ago
 Last changed 00:13:21 ago, Change count: 2, Ours

And last the 10.2.1.0/24 Network LSA created by this SRX itself (known as the OSPF
designated router for the multiaccess Ethernet segment) showing both the SRX itself
(198.18.16.2) and the neighboring router (10.32.1.1) attached to the network:

Network *10.2.1.11 198 .18.16.2 0x80000001 801 0x22 0xae02 32
 mask 255.255.255.0
 attached router 198.18.16.2
 attached router 10.32.1.1

Dynamic Routing | 645

 Topology default (ID 0)
 Type: Transit, Node ID: 10.32.1.1
 Metric: 0, Bidirectional
 Type: Transit, Node ID: 198.18.16.2
 Metric: 0, Bidirectional
 Gen timer 00:36:38
 Aging timer 00:46:38
 Installed 00:13:21 ago, expires in 00:46:39, sent 00:13:21 ago
 Last changed 00:13:21 ago, Change count: 1, Ours

Case Study 11-1: Securing OSPF Adjacencies
OSPF, like all IGPs, is a very trusting protocol by default. It will assume that any neigh-
boring device speaking OSPF to it on a configured interface is a legitimate member of
its OSPF domain with legitimate routes to share. A clueful attacker could engage in a
variety of very damaging denial-of-service (DoS) and man-in-the-middle attacks on an
OSPF routed network by exploiting such undeserved trust.

Worse still, OSPF is built to communicate over IP, the protocol used across the global
Internet. Now, in practice, no OSPF speaking router should permit an OSPF packet to
be forwarded beyond the local network segment on which it saw the packet transmitted.
However, this still leaves a significant security hole open for any attacker who gains
access to one of those local segments facing your OSPF devices.

In the Junos CLI configuration that follows, you will enable a Message-Digest algorithm
5 (MD5) hashed authentication key value to secure the OSPF communication on the
ge-11/0/5.0 link.

You return to configuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

And drill down to the ge-11/0/5.0 link’s OSPF configuration:

[edit]
jamesq@SRX5800-1# edit protocols ospf area 0 interface ge-11/0/5.0

You examine OSPF’s interface configuration options in CLI help:

[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> authentication
> bandwidth-based-metrics Configure bandwidth based metrics
> bfd-liveness-detection Bidirectional Forwarding Detection options
 dead-interval Dead interval (seconds) (1..65535)
 disable Disable OSPF on this interface
 dynamic-neighbors Learn neighbors dynamically on a p2mp interface
 hello-interval Hello interval (seconds) (1..255)
 interface-type Type of interface
 ipsec-sa IPSec security association name

646 | Chapter 11: Routing

 link-protection Protect interface from link faults only
 metric Interface metric (1..65535)
 no-eligible-backup Not eligible to backup traffic from protected interfaces
 no-neighbor-down-notification Don't inform other protocols about
neighbor down events
 node-link-protection Protect interface from both link and node faults
> passive Do not run OSPF, but advertise it
 priority Designated router priority (0..255)
 retransmit-interval Retransmission interval (seconds) (1..65535)
 secondary Treat interface as secondary
 te-metric Traffic engineering metric (1..4294967295)
> topology Topology specific attributes
 transit-delay Transit delay (seconds) (1..65535)

And drill down into the OSPF authentication configuration, choosing the most secure
option (MD5):

[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# set authentication ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> md5 MD5 authentication key
 simple-password Authentication key
[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# set authentication md5 ?
Possible completions:
 <key-id> Key ID for MD5 authentication (0..255)
[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# set authentication md5 1 ?
Possible completions:
 key MD5 authentication key value
 start-time Start time for key transmission (YYYY-MM-DD.HH:MM)

It’s important to note that both sides of an OSPF adjacency must be configured with
the identical authentication configuration lest the adjacency be broken and interrupt
traffic. In your case, you’re lucky that your colleague is furiously typing away on the
facing OSPF router to make sure your new configuration will match up. If that were
not the case, you could use the start-time configuration knob here to synchronize the
timing of the implementation of the new authentication scheme.

You continue drilling down and set the new MD5 key to the very memorable junos
rocks! value:

[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# set authentication md5 1 key ?
Possible completions:
 <key> MD5 authentication key value
[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# set authentication md5 junosrocks!

And with your new MD5 key set you jump back to the top of the Junos configuration:

[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
jamesq@SRX5800-1# top

Dynamic Routing | 647

You inspect the changes with the show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit protocols ospf area 0.0.0.0 interface ge-11/0/5.0]
+ authentication {
+ md5 1 key "9rFCKWxbs4Di.s2T3/9B1LxNbwgkqfznCsY"; ## SECRET-DATA
+ }

You note that Junos does not display the MD5 key value as you typed it, but rather
displays a secure hashed representation of it.

You complete your changes with the commit command:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

And now check your colleague’s typing with the show ospf neighbor command:

jamesq@SRX5800-1> show ospf neighbor
Address Interface State ID Pri Dead
10.2.1.10 ge-11/0/5.0 Full 10.32.1.1 128 35

Success! You and your colleague did not break anything. You both can keep your jobs.
Phew.

Just to see the authentication in action, you also check out the earlier OSPF trace file
with the show log command:

jamesq@SRX5800-1> show log ospftrace | last
Apr 14 11:04:53.651889 OSPF sent Hello 10.2.1.11 -> 224.0.0.5 (
ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 14 11:04:53.651918 Version 2, length 48, ID 198.18.16.2, area 0.0.0.0
Apr 14 11:04:53.651927 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 14 11:04:53.651934 dead_ivl 40, DR 10.2.1.11, BDR 10.2.1.10
Apr 14 11:04:54.488421 OSPF rcvd Hello 10.2.1.10 -> 224.0.0.5 (
ge-11/0/5.0 IFL 80 area 0.0.0.0)
Apr 14 11:04:54.488479 Version 2, length 48, ID 10.32.1.1, area 0.0.0.0
Apr 14 11:04:54.488486 checksum 0x0, authtype 2
Apr 14 11:04:54.488495 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
Apr 14 11:04:54.488501 dead_ivl 40, DR 10.2.1.11, BDR 10.2.1.10

And there you have it, the SRX is successfully receiving OSPF Hello packets with
authtype 2 (the value for MD5) and your adjacency remains Full.

Great job! Your network (or at least this OSPF link) is now secure from hackers.

Case Study 11-2: Redundant Paths and Routing Metrics
Although the previous sections saw your SRX connected successfully into an OSPF
routing domain, they didn’t give a taste for the type of dynamic resilience to failures as
shown in Figure 11-5 earlier.

648 | Chapter 11: Routing

In the Junos CLI configuration that follows, you will enable the second redundant link
between your OSPF routers. First, you check the current OSPF interface with the show
ospf interface extensive command:

jamesq@SRX5800-1> show ospf interface extensive
Interface State Area DR ID BDR ID Nbrs
ge-11/0/5.0 DR 0.0.0.0 198.18.16.2 10.32.1.1 1
 Type: LAN, Address: 10.2.1.11, Mask: 255.255.255.0, MTU: 1500, Cost: 1
 DR addr: 10.2.1.112, BDR addr: 10.2.1.10, Priority: 128
 Adj count: 1
 Hello: 10, Dead: 40, ReXmit: 5, Not Stub
 Auth type: None
 Protection type: None
 Topology default (ID 0) -> Cost: 1
lo0.0 DRother 0.0.0.0 0.0.0.0 0.0.0.0 0
 Type: LAN, Address: 198.18.16.2, Mask: 255.255.255.255, MTU: 65535, Cost: 0
 Adj count: 0, Passive
 Hello: 10, Dead: 40, ReXmit: 5, Not Stub
 Auth type: None
 Protection type: None
 Topology default (ID 0) -> Passive, Cost: 0

And you find the single gigabit Ethernet (ge-11/0/5.0) link between the routers with a
metric cost of 1 (Cost: 1). This is the lowest and best possible OSPF metric, and the
default for any gigabit speed link.

You also check the OSPF route for the 10.32.1.1/32 network, finding it still reachable
via the 10.2.1.10 router on interface ge-11/0/5.0:

jamesq@SRX5800-1> show route protocol ospf

inet.0: 24 destinations, 28 routes (25 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 *[OSPF/10] 00:55:46, metric 1
 > to 10.2.1.10 via ge-11/0/5.0
224.0.0.5/32 *[OSPF/10] 00:57:15, metric 1
 MultiRecv

You jump back into configuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

Then down to the OSPF hierarchy:

[edit]
jamesq@SRX5800-1# edit protocols ospf

And check the OSPF configuration with a show command:

[edit protocols ospf]
jamesq@SRX5800-1# show
area 0.0.0.0 {
 interface ge-11/0/5.0;
 interface lo0.0 {

Dynamic Routing | 649

 passive;
 }
}

It’s time to build the new ge-11/0/6.0 interface configuration, but with a twist. You
add the metric 10 configuration option to ensure that this new interface’s path will be
less preferred than the existing ge-11/0/5.0 link:

[edit protocols ospf]
jamesq@SRX5800-1# set area 0 interface ge-11/0/6.0 metric 10

You show your configuration changes:

[edit protocols ospf]
jamesq@SRX5800-1# show | compare
[edit protocols ospf area 0.0.0.0]
 interface lo0.0 { ... }
+ interface ge-11/0/6.0 {
+ metric 10;
+ }

Before executing a commit command to make them active:

[edit protocols ospf]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

You check your work with the show ospf neighbor command:

jamesq@SRX5800-1> show ospf neighbor
Address Interface State ID Pri Dead
10.2.1.10 ge-11/0/5.0 Full 10.32.1.1 128 34
10.3.3.10 ge-11/0/6.0 Full 10.32.1.1 128 33

Good job! You now have two OSPF adjacencies to the 10.32.1.1 router. You check the
10.32.1.1/32 route with the show route command:

jamesq@SRX5800-1> show route protocol ospf

inet.0: 25 destinations, 28 routes (25 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 *[OSPF/10] 00:56:18, metric 1
 > to 10.2.1.10 via ge-11/0/5.0
224.0.0.5/32 *[OSPF/10] 00:57:47, metric 1
 MultiRecv

Perfect, the 10.32.1.1/32 route is still taking the preferred path through ge-11/0/5.0.

Now it’s time to test the OSPF network’s resiliency. You break the ge-11/0/5.0 link
and thereby bring down its OSPF adjacency, as shown in the show log output:

jamesq@SRX5800-1> show log messages | last
Apr 14 11:54:19 SRX5800-1 mib2d[1301]: SNMP_TRAP_LINK_DOWN:
ifIndex 521, ifAdminStatus up(1), ifOperStatus down(2), ifName

650 | Chapter 11: Routing

ge-11/0/5
Apr 14 11:54:19 SRX5800-1 rpd[1276]: RPD_OSPF_NBRDOWN: OSPF neighbor
10.2.1.10 (realm ospf-v2 ge-11/0/5.0 area 0.0.0.0) state changed from
Full to Down due to KillNbr (event reason: interface went down)

And success! Your OSPF topology has reconverged, as depicted in Figure 11-7, to reach
the 10.32.1.1/32 network via the new ge-11/0/6.0 link’s adjacency, as shown in the
show route output:

jamesq@SRX5800-1> show route protocol ospf

inet.0: 24 destinations, 25 routes (24 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 *[OSPF/10] 00:53:09, metric 10
 > to 10.3.3.10 via ge-11/0/6.0
224.0.0.5/32 *[OSPF/10] 01:53:19, metric 1
 MultiRecv

Figure 11-7. Routing around link failure

Growing OSPF Networks
OSPF is a powerful protocol that can grow with the needs of your organization. As
organizations grow larger, it often makes sense to leverage the hierarchy in OSPF’s
design. OSPF routers can be segmented into multi-area topologies, as shown in
Figure 11-8, or even integrated with other routing protocols (as we’ll explore in “Rout-
ing Policy” on page 664).

Please consult O’Reilly’s excellent JUNOS Enterprise Routing and Junos Cookbook
publications, mentioned earlier, for coverage of the more complex OSPF topologies,
such as those involving multiple areas.

Dynamic Routing | 651

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596100148/

IS-IS

Although OSPF is the most common IGP routing protocol, there is one other very
successful IGP known as IS-IS (for Intermediate System to Intermediate System in the
terminology of the ISO standards body that defined it).

IS-IS is very similar to OSPF in that it is also a link-state routing protocol, but there are
key differences:

• IS-IS is more commonly deployed in large service provider networks where OSPF
is most often used in enterprise networks.

• IS-IS achieves hierarchy through levels rather than the areas of OSPF. IS-IS levels
are segmented on physical links between routers rather than within the routers as
is the case for OSPF areas.

• IS-IS link-state information is flooded in larger link-state packets (LSPs) rather than
the fine-grained LSAs used in OSPF.

• Though IS-IS is used to communicate IP routing information, IS-IS itself encapsu-
lates packets in ISO rather than IP packets. OSPF instead uses IP packets for com-
municating between routers.

Fortunately, when it comes to joining an SRX to a simple IS-IS topology, as you will do
in the next section, only the last bullet will be important for the new configuration you
are building.

Figure 11-8. OSPF multi-area topology

652 | Chapter 11: Routing

Configuring IS-IS

In this section, you will replace your OSPF configuration with an equivalently func-
tioning IS-IS configuration. Here you enter configuration mode with the edit
command:

jamesq@SRX5800-1> edit
Entering configuration mode

And examine the old OSPF configuration with the show command:

[edit]
jamesq@SRX5800-1# show protocols
ospf {
 area 0.0.0.0 {
 interface ge-11/0/5.0;
 interface lo0.0 passive;
 }
}

Then you blow it away with the delete command:

[edit]
jamesq@SRX5800-1# delete protocols

Time to begin exploring IS-IS in the Junos CLI help:

[edit]
jamesq@SRX5800-1# set protocols isis ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable IS-IS
+ export Export policy
> graceful-restart IS-IS graceful restart options
 ignore-attached-bit Ignore the attached bit in Level 1 LSPs
> interface Interface configuration
> level Configure global level attributes
 loose-authentication-check Verify authentication only if PDU has
authentication TLV
 lsp-lifetime Lifetime of LSPs (350..65535 seconds)
 max-areas Maximum number of advertised Areas (3..36)
 no-adjacency-holddown Disable adjacency hold down
 no-authentication-check Disable authentication checking
 no-ipv4-routing Disable IPv4 routing
> overload Set the overload bit (no transit traffic)
 reference-bandwidth Bandwidth for calculating metric defaults
(9600..1000000000000)
> rib-group Routing table group for importing IS-IS routes
> spf-options Configure SPF attributes
> topologies Enable topologies
> traceoptions Trace options for IS-IS

Junos again offers a fountain of knobs for tuning IS-IS, but fortunately for your small
project you need to add just the two interfaces.

Dynamic Routing | 653

You use the set command to add the ge-11/0/5.0 and lo0.0 logical interfaces to IS-IS:

[edit]
jamesq@SRX5800-1# set protocols isis interface ge-11/0/5.0

[edit]
jamesq@SRX5800-1# set protocols isis interface lo0.0 passive

And your IS-IS configuration is done. That’s it.

But that won’t be enough to get IS-IS up and running. Remember, IS-IS does not use
IP for communication. It uses the ISO protocol. You need to configure ISO on both
ge-11/0/5.0 and lo0.0 before IS-IS will work:

[edit]
jamesq@SRX5800-1# set interfaces ge-11/0/5.0 family iso

[edit]
jamesq@SRX5800-1# set interfaces lo0.0 family iso address 49.0002.0002.0002.00

That last statement for lo0.0 is not just a best practice, as it was for OSPF, but a basic
requirement for a working IS-IS configuration. There must be a loopback interface
configured with a correctly formatted ISO address for an IS-IS router to identify itself
to the other routers in the IS-IS domain.

You look at your configuration changes with the show command:

[edit]
james@SRX5800-1# show | compare
[edit interfaces ge-11/0/5 unit 0]
+ family iso;
[edit interfaces]
+ lo0 {
+ unit 0 {
+ family iso {
+ address 49.0002.0002.0002.00;
+ }
+ }
+ }
[edit protocols]
+ isis {
+ interface ge-11/0/5.0;
+ interface lo0.0 passive;
+ }
- ospf {
- area 0.0.0.0 {
- interface ge-11/0/5.0;
- interface lo0.0 passive;
- }
- }

And now that you’re really done, you go ahead and commit the work:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds

654 | Chapter 11: Routing

commit complete
Exiting configuration mode

Verifying IS-IS

Fingers crossed, you check out the new IS-IS setup with the show isis adjacency
command:

james@SRX5800-1> show isis adjacency
Interface System L State Hold (secs) SNPA
ge-11/0/5.0 SRX3400-1 1 Up 8 0:21:59:80:d0:2
ge-11/0/5.0 SRX3400-1 2 Up 8 0:21:59:80:d0:2

Success! The IS-IS adjacency is Up. Or rather, both adjacencies (plural) are Up. Remember
again that IS-IS divides levels on the links between routers. This means IS-IS separately
negotiates its backbone (level 2) and non-backbone (level 1) adjacencies over the local
network links. In default configuration, it negotiates both a level 1 and a level 2 adja-
cency. Even though IS-IS is configured on just one external interface (ge-11/0/5.0)
toward just one external peer, two adjacencies are formed between the routers over this
single link.

This can, of course, be changed with configuration, and this is where the hierarchy of
IS-IS comes in. It is by simply pruning level 1 or level 2 from IS-IS adjacencies that the
link-state hierarchy of multi-level IS-IS networks is created. Fortunately, for the pur-
poses of the present project, a single link-state topology works just fine, so you leave
the default behavior intact.

One surprise you might note here is that the IS-IS adjacency is up without any changes
to the security zone configuration. Nothing has explicitly permitted IS-IS as was nec-
essary for a working OSPF configuration.

As IS-IS runs directly over the ISO protocol (not IP), IS-IS packets do not pass through
the SRX security engine. The SRX is built for securing IP communication, not ISO. No
security configuration is necessary for a successful configuration of IS-IS.

Next you check out the IS-IS routes in the inet.0 routing table with the show route
command:

root@SRX5800-1> show route protocol isis

inet.0: 20 destinations, 23 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 [IS-IS/15] 1d 06:47:55, metric 10
 > to 10.2.1.10 via ge-11/0/5.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete

jamesq@SRX5800-1>

Dynamic Routing | 655

Good stuff! The same 10.32.1.1/32 route is learned from the neighbor via IS-IS as was
learned earlier via OSPF.

Also note the new iso.0 routing table. This was created as a consequence of configuring
an ISO address on the loopback interface, as shown in this routing table output:

jamesq@SRX5800-1> show route table iso.0

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

49.0002.0002.0002/56
 *[Direct/0] 1d 06:54:42
 > via lo0.0

You decide to dig a little deeper into IS-IS by looking at the IS-IS LSP database with the
show isis database command:

jamesq@SRX5800-1> show isis database
IS-IS level 1 link-state database:
LSP ID Sequence Checksum Lifetime Attributes
SRX3400-1.00-00 0x2 0x2440 1182 L1 L2
SRX3400-1.02-00 0x1 0x9408 1182 L1 L2
SRX5800-1.00-00 0x2 0x2ce5 1184 L1 L2
 3 LSPs

IS-IS level 2 link-state database:
LSP ID Sequence Checksum Lifetime Attributes
SRX3400-1.00-00 0x2 0x2440 1182 L1 L2
SRX3400-1.02-00 0x1 0x9408 1182 L1 L2
SRX5800-1.00-00 0x3 0x60dd 1185 L1 L2
 3 LSPs

And just like OSPF, there are three LSPs for IS-IS as there were three LSAs for OSPF.
Note that there are two sets of these same three LSPs: one set is for the level 1 area and
the other is for the level 2 area. Both sets will be essentially identical as the IS-IS con-
figuration made no effort to prune level 1 or level 2 adjacencies from any links.

Also note that IS-IS actually resolves the routers’ ISO addresses to clear hostnames
(SRX-3400-1 and SRX5800-1). This is much easier for administrators than interpreting
the long ISO addresses.

Next you look deeper with the show isis database extensive command:

jamesq@SRX5800-1> show isis database extensive
IS-IS level 1 link-state database:

SRX3400-1.00-00 Sequence: 0xdc, Checksum: 0x5e26, Lifetime: 830 secs
 IS neighbor: SRX3400-1.02 Metric: 10
 Two-way fragment: SRX3400-1.02-00, Two-way first fragment: SRX3400-1.02-00
 IP prefix: 10.32.1.1/32 Metric: 0 Internal Up
 IP prefix: 10.2.1.0/24 Metric: 10 Internal Up

 Header: LSP ID: SRX3400-1.00-00, Length: 145 bytes

656 | Chapter 11: Routing

 Allocated length: 284 bytes, Router ID: 10.32.1.1
 Remaining lifetime: 830 secs, Level: 1, Interface: 80
 Estimated free bytes: 139, Actual free bytes: 139
 Aging timer expires in: 830 secs
 Protocols: IP

 Packet: LSP ID: SRX3400-1.00-00, Length: 145 bytes, Lifetime : 1198 secs
 Checksum: 0x5e26, Sequence: 0xdc, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, Packet version: 1, Max area: 0

 TLVs:
 Area address: 49 (1)
 Speaks: IP
 IP router id: 10.32.1.1
 IP address: 10.32.1.1
 Hostname: SRX3400-1
 IS neighbor: SRX3400-1.02, Internal, Metric: default 10
 IS extended neighbor: SRX3400-1.02, Metric: default 10
 IP address: 10.2.1.10
 Local interface index: 83, Remote interface index: 0
 IP prefix: 10.2.1.0/24, Internal, Metric: default 10, Up
 IP prefix: 10.32.1.1/32, Internal, Metric: default 0, Up
 IP extended prefix: 10.2.1.0/24 metric 10 up
 IP extended prefix: 10.32.1.1/32 metric 0 up
 No queued transmissions

In the preceding output, you have the LSP for the neighboring IS-IS router in the level
1 (non-backbone) database. It identifies both networks that this router touches
(10.32.1.1/32 and 10.2.1.0/24) much as an OSPF router LSA does for an OSPF speak-
ing router.

IS-IS passes routing information within the LSP in the highly extensible TLV (type-length-
value) fields. These fields make IS-IS very adaptable as network technology progresses.

Next in the level 1 database is a slightly different entry known as a Pseudonode LSP:

SRX3400-1.02-00 Sequence: 0xdb, Checksum: 0xdee2, Lifetime: 998 secs
 IS neighbor: SRX3400-1.00 Metric: 0
 Two-way fragment: SRX3400-1.00-00, Two-way first fragment: SRX3400-1.00-00
 IS neighbor: SRX5800-1.00 Metric: 0
 Two-way fragment: SRX5800-1.00-00, Two-way first fragment: SRX5800-1.00-00

 Header: LSP ID: SRX3400-1.02-00, Length: 76 bytes
 Allocated length: 284 bytes, Router ID: 0.0.0.0
 Remaining lifetime: 998 secs, Level: 1, Interface: 80
 Estimated free bytes: 208, Actual free bytes: 208
 Aging timer expires in: 998 secs

 Packet: LSP ID: SRX3400-1.02-00, Length: 76 bytes, Lifetime : 1198 secs
 Checksum: 0xdee2, Sequence: 0xdb, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, Packet version: 1, Max area: 0

Dynamic Routing | 657

 TLVs:
 IS neighbor: SRX3400-1.00, Internal, Metric: default 0
 IS neighbor: SRX5800-1.00, Internal, Metric: default 0
 IS extended neighbor: SRX3400-1.00, Metric: default 0
 IS extended neighbor: SRX5800-1.00, Metric: default 0
 No queued transmissions

The Pseudonode LSP represents a multiaccess segment (such as the Ethernet broadcast
segment, in this case) as well as the IS-IS routers that are connected to that segment.
This LSP effectively functions very much like the Network LSA in OSPF. In the pre-
ceding output, you see that both the SRX3400-1 and SRX5800-1 IS-IS routers are con-
nected to the multiaccess link represented in this Pseudonode LSP.

And last in the level 1 database you have your own SRX’s LSP representing the two
networks (198.18.16.2/32 and 10.2.1.0/24) that it touches:

SRX5800-1.00-00 Sequence: 0xe6, Checksum: 0xa59, Lifetime: 956 secs
 IS neighbor: SRX3400-1.02 Metric: 10
 Two-way fragment: SRX3400-1.02-00, Two-way first fragment: SRX3400-1.02-00
 IP prefix: 198.18.16.2/32 Metric: 0 Internal Up
 IP prefix: 10.2.1.0/24 Metric: 10 Internal Up

 Header: LSP ID: SRX5800-1.00-00, Length: 145 bytes
 Allocated length: 1492 bytes, Router ID: 198.18.16.2
 Remaining lifetime: 956 secs, Level: 1, Interface: 0
 Estimated free bytes: 1295, Actual free bytes: 1347
 Aging timer expires in: 956 secs
 Protocols: IP

 Packet: LSP ID: SRX5800-1.00-00, Length: 145 bytes, Lifetime : 1198 secs
 Checksum: 0xa59, Sequence: 0xe6, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, Packet version: 1, Max area: 0

 TLVs:
 Area address: 49 (1)
 Speaks: IP
 IP router id: 198.18.16.2
 IP address: 198.18.16.2
 Hostname: SRX5800-1
 IS neighbor: SRX3400-1.02, Internal, Metric: default 10
 IS extended neighbor: SRX3400-1.02, Metric: default 10
 IP address: 10.2.1.11
 Local interface index: 80, Remote interface index: 0
 IP prefix: 10.2.1.0/24, Internal, Metric: default 10, Up
 IP prefix: 198.18.16.2/32, Internal, Metric: default 0, Up
 IP extended prefix: 10.2.1.0/24 metric 10 up
 IP extended prefix: 198.18.16.2/32 metric 0 up
 No queued transmissions

And given the very simple topology (one common link, one IS-IS neighbor, and both
levels of adjacency), the level 2 database is essentially identical to the level 1 database:

IS-IS level 2 link-state database:

658 | Chapter 11: Routing

SRX3400-1.00-00 Sequence: 0xdd, Checksum: 0x5c27, Lifetime: 1043 secs
 IS neighbor: SRX3400-1.02 Metric: 10
 Two-way fragment: SRX3400-1.02-00, Two-way first fragment: SRX3400-1.02-00
 IP prefix: 10.32.1.1/32 Metric: 0 Internal Up
 IP prefix: 10.2.1.0/24 Metric: 10 Internal Up

 Header: LSP ID: SRX3400-1.00-00, Length: 145 bytes
 Allocated length: 284 bytes, Router ID: 10.32.1.1
 Remaining lifetime: 1043 secs, Level: 2, Interface: 80
 Estimated free bytes: 139, Actual free bytes: 139
 Aging timer expires in: 1043 secs
 Protocols: IP

 Packet: LSP ID: SRX3400-1.00-00, Length: 145 bytes, Lifetime : 1198 secs
 Checksum: 0x5c27, Sequence: 0xdd, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 20, Packet version: 1, Max area: 0

 TLVs:
 Area address: 49 (1)
 Speaks: IP
 IP router id: 10.32.1.1
 IP address: 10.32.1.1
 Hostname: SRX3400-1
 IS neighbor: SRX3400-1.02, Internal, Metric: default 10
 IS extended neighbor: SRX3400-1.02, Metric: default 10
 IP address: 10.2.1.10
 Local interface index: 83, Remote interface index: 0
 IP prefix: 10.2.1.0/24, Internal, Metric: default 10, Up
 IP prefix: 10.32.1.1/32, Internal, Metric: default 0, Up
 IP extended prefix: 10.2.1.0/24 metric 10 up
 IP extended prefix: 10.32.1.1/32 metric 0 up
 No queued transmissions

SRX3400-1.02-00 Sequence: 0xda, Checksum: 0xe0e1, Lifetime: 1043 secs
 IS neighbor: SRX3400-1.00 Metric: 0
 Two-way fragment: SRX3400-1.00-00, Two-way first fragment: SRX3400-1.00-00
 IS neighbor: SRX5800-1.00 Metric: 0
 Two-way fragment: SRX5800-1.00-00, Two-way first fragment: SRX5800-1.00-00

 Header: LSP ID: SRX3400-1.02-00, Length: 76 bytes
 Allocated length: 284 bytes, Router ID: 0.0.0.0
 Remaining lifetime: 1043 secs, Level: 2, Interface: 80
 Estimated free bytes: 208, Actual free bytes: 208
 Aging timer expires in: 1043 secs

 Packet: LSP ID: SRX3400-1.02-00, Length: 76 bytes, Lifetime : 1198 secs
 Checksum: 0xe0e1, Sequence: 0xda, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 20, Packet version: 1, Max area: 0

 TLVs:
 IS neighbor: SRX3400-1.00, Internal, Metric: default 0
 IS neighbor: SRX5800-1.00, Internal, Metric: default 0
 IS extended neighbor: SRX3400-1.00, Metric: default 0

Dynamic Routing | 659

 IS extended neighbor: SRX5800-1.00, Metric: default 0
 No queued transmissions

SRX5800-1.00-00 Sequence: 0xea, Checksum: 0x25d, Lifetime: 956 secs
 IS neighbor: SRX3400-1.02 Metric: 10
 Two-way fragment: SRX3400-1.02-00, Two-way first fragment: SRX3400-1.02-00
 IP prefix: 198.18.16.2/32 Metric: 0 Internal Up
 IP prefix: 10.2.1.0/24 Metric: 10 Internal Up

 Header: LSP ID: SRX5800-1.00-00, Length: 145 bytes
 Allocated length: 1492 bytes, Router ID: 198.18.16.2
 Remaining lifetime: 956 secs, Level: 2, Interface: 0
 Estimated free bytes: 1295, Actual free bytes: 1347
 Aging timer expires in: 956 secs
 Protocols: IP

 Packet: LSP ID: SRX5800-1.00-00, Length: 145 bytes, Lifetime : 1198 secs
 Checksum: 0x25d, Sequence: 0xea, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 20, Packet version: 1, Max area: 0

 TLVs:
 Area address: 49 (1)
 Speaks: IP
 IP router id: 198.18.16.2
 IP address: 198.18.16.2
 Hostname: SRX5800-1
 IS neighbor: SRX3400-1.02, Internal, Metric: default 10
 IS extended neighbor: SRX3400-1.02, Metric: default 10
 IP address: 10.2.1.11
 Local interface index: 80, Remote interface index: 0
 IP prefix: 10.2.1.0/24, Internal, Metric: default 10, Up
 IP prefix: 198.18.16.2/32, Internal, Metric: default 0, Up
 IP extended prefix: 10.2.1.0/24 metric 10 up
 IP extended prefix: 198.18.16.2/32 metric 0 up
 No queued transmissions

And there you have it, a solid IS-IS configuration. Great job!

Configuring BFD

Both OSPF and IS-IS serve as excellent routing protocols, but neither was designed for
the subsecond convergence demanded in modern networks for supporting real-time
traffic. Not even a hiccup is tolerated when real-time communication, such as voice,
video, or financial market data, is at stake. Both OSPF and IS-IS are hamstrung by
keepalive timers measured in seconds, rather than the milliseconds that would be nec-
essary for rapid reconvergence.

Bidirectional forwarding detection (BFD) was developed for rapid failure detection in
these demanding real-time networks. Rather than replacing IP routing protocols like
OSPF and IS-IS, BFD simply augments them and extends their capabilities with sub-
second keepalives.

660 | Chapter 11: Routing

In the Junos CLI configuration that follows, you will extend your existing IS-IS con-
figuration with subsecond BFD failure detection.

You enter configuration mode and jump to the IS-IS hierarchy using the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

[edit]
jamesq@SRX5800-1# edit protocols isis

And examine CLI help for the bfd-liveness-detection statement:

[edit protocols isis]
jamesq@SRX5800-1# show interface ge-11/0/5.0 bfd-liveness-detection ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> authentication Authentication options
> detection-time Detection-time options
 minimum-interval Minimum transmit and receive interval (1..255000 milliseconds)
 minimum-receive-interval Minimum receive interval (1..255000 milliseconds)
 multiplier Detection time multiplier (1..255)
 no-adaptation Disable adaptation
> transmit-interval Transmit-interval options
 version BFD protocol version number

Two simple set commands defining the minimum-interval (in milliseconds) at which
BFD keepalive packets will be sent and the multiplier for the number of missed packets
to trigger failure detection, and the BFD configuration is built:

[edit protocols isis]
jamesq@SRX5800-1# set interface ge-11/0/5.0 bfd-liveness-detection
minimum-interval 300

[edit protocols isis]
jamesq@SRX5800-1# set interface ge-11/0/5.0 bfd-liveness-detection multiplier 3

But just like OSPF Hello packets, BFD packets ride over IP and require security
zone permissions. You make a quick configuration change in the security zone hier-
archy using the top set command:

[edit protocols isis]
jamesq@SRX5800-1# top set security zones security-zone trust
host-inbound-traffic protocols bfd

You check out your new BFD configuration with the show command:

[edit protocols isis]
jamesq@SRX5800-1# show | compare
[edit protocols isis interface ge-11/0/5.0]
+ bfd-liveness-detection {
+ minimum-interval 300;
+ multiplier 3;
+ }
[edit security zones security-zone trust host-inbound-traffic protocols]

Dynamic Routing | 661

 ospf { ... }
+ bfd;

And commit the new configuration:

[edit protocols isis]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

You confirm with the show bfd session command that BFD is happily exchanging
keepalive packets every 300 milliseconds:

jamesq@SRX5800-1> show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.2.1.10 Up ge-11/0/5.0 0.900 0.300 3

1 sessions, 2 clients
Cumulative transmit rate 3.3 pps, cumulative receive rate 3.3 pps

Success! BFD is ready and waiting to detect any failures on the ge-11/0/5.0 link in less
than one second. Congratulations!

Configuring RIP

Last (and very possibly least) is Routing Information Protocol (RIP). RIP is the oldest
IGP protocol supported in Junos. It is generally considered obsolete. It is most often
used only when a neighboring device, typically an older server, must use it.

Unlike OSPF or IS-IS, RIP is a distance-vector routing protocol. It relies on the number
of router hops as its primary metric of determining the best network paths. Where BFD
supports subsecond convergence and OSPF and IS-IS by themselves each support
multisecond convergence, RIP convergence can be more on the order of minutes.

In a nutshell, you’ll only use RIP when you must.

But it looks like there is one of those pesky old servers on your network, so you jump
back into Junos configuration mode:

jamesq@SRX5800-1> edit
Entering configuration mode

And check out CLI help for RIP configuration:

[edit]
jamesq@SRX5800-1# set protocols rip ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 authentication-key Authentication key (password)
 authentication-type Authentication type
 check-zero Check reserved fields on incoming RIPv2 packets
> graceful-restart RIP graceful restart options
> group Instance configuration

662 | Chapter 11: Routing

 holddown Hold-down time (10..180 seconds)
+ import Import policy
 message-size Number of route entries per update message (25..255)
 metric-in Metric value to add to incoming routes (1..15)
 no-check-zero Don't check reserved fields on incoming RIPv2 packets
> receive Configure RIP receive options
> rib-group Routing table group for importing RIP routes
 route-timeout Delay before routes time out (30..360 seconds)
> send Configure RIP send options
> traceoptions Trace options for RIP
 update-interval Interval between regular route updates (10..60 seconds)

Junos places interfaces into RIP through group configuration:

[edit]
jamesq@SRX5800-1# set protocols rip group ?
Possible completions:
 <group_name> Group name
[edit]
jamesq@SRX5800-1# set protocols rip group Servers ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> bfd-liveness-detection Bidirectional Forwarding Detection options
+ export Export policy
+ import Import policy
 metric-out Default metric of exported routes (1..15)
> neighbor Neighbor configuration
 preference Preference of routes learned by this group
 route-timeout Delay before routes time out (30..360 seconds)
 update-interval Interval between regular route updates (10..60 seconds)
 | Pipe through a command

Somewhat counterintuitively, RIP interfaces are configured under a neighbor statement
in Junos. Here you add the ge-11/0/4.0 interface to the RIP configuration:

[edit]
jamesq@SRX5800-1# set protocols rip group Servers neighbor ge-11/0/4.0

Of course, you must allow RIP to pass in the security zone configuration:

[edit]
jamesq@SRX5800-1# set security zones security-zone trust
host-inbound-traffic protocols rip

You check out your new RIP configuration with a show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit protocols]
+ rip {
+ group Servers {
+ neighbor ge-11/0/4.0;
+ }
+ }
[edit security zones security-zone trust host-inbound-traffic protocols]

Dynamic Routing | 663

 bfd { ... }
+ rip;

And execute a commit to complete the changes:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

Verifying RIP

With your RIP configuration complete, you confirm that RIP is up and running with
the show rip neighbor command:

jamesq@SRX5800-1> show rip neighbor
 Source Destination Send Receive In
Neighbor State Address Address Mode Mode Met
-------- ----- ------- ----------- ---- ------- ---
ge-11/0/4.0 Up 172.16.1.11 224.0.0.9 mcast both 1

Everything looks good, so next you check your learned routes in the inet.0 routing
table with the show route command:

jamesq@SRX5800-1> show route protocol rip

inet.0: 20 destinations, 22 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

198.18.16.0/20 *[RIP/100] 00:55:15, metric 2, tag 0
 > to 172.16.1.10 via ge-11/0/4.0
224.0.0.9/32 *[RIP/100] 00:59:26, metric 1
 MultiRecv

jamesq@SRX5800-1>

And there you have it, a 198.18.16.0/20 RIP route successfully learned from the
172.16.1.10 neighbor.

One special caveat about RIP is that Junos only receives RIP learned routes by default.
Junos will not advertise routes through RIP unless an explicit export routing policy is
defined. The routing policy technology that makes this possible is covered in the next
section.

Routing Policy
Routing policy is at the center of what makes IP routing on Junos so special. It is the
glue that interconnects the disparate routing protocols and it is your instrument for
manipulating routes and controlling their propagation.

664 | Chapter 11: Routing

In the Junos CLI configuration that follows, you use routing policy to advertise your
RIP learned 198.18.16.0/20 route through your IS-IS routing domain. You enter con-
figuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

And edit a new policy-statement that you will later apply to your IS-IS configuration:

[edit]
jamesq@SRX5800-1# edit policy-options policy-statement into-isis

You check your options with CLI help:

[edit policy-options policy-statement into-isis]
jamesq@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 dynamic-db Object may exist in dynamic database
> from Conditions to match the source of a route
> term Policy term
> then Actions to take if 'from' and 'to' conditions match
> to Conditions to match the destination of a route

The basic unit of routing policy configuration is the term. Each term has its own ad-
ministrator configurable name. Here you edit a new term that you have named rip-
to-isis:

[edit policy-options policy-statement into-isis]
jamesq@SRX5800-1# edit term rip-to-isis

And investigate the CLI help for term configuration:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> from Conditions to match the source of a route
> then Actions to take if 'from' and 'to' conditions match
> to Conditions to match the destination of a route

Perfect, a routing policy term has just three basic elements:

• The from statement identifying the origin of routes

• The to statement identifying the destination for routes

• The then statement identifying the actions to be taken on the routes

Junos routing policy is both that simple and that powerful.

You look at the CLI help for the from statement:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set from ?

Routing Policy | 665

Possible completions:
 aggregate-contributor Match more specifics of an aggregate
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 area OSPF area identifier
+ as-path Name of AS path regular expression (BGP only)
+ as-path-group Name of AS path group (BGP only)
 color Color (preference) value
 color2 Color (preference) value 2
+ community BGP community
+ condition Condition to match on
> external External route
 family
 instance Routing protocol instance
+ interface Interface name or address
 level IS-IS level
 local-preference Local preference associated with a route
 metric Metric value
 metric2 Metric value 2
 metric3 Metric value 3
 metric4 Metric value 4
> multicast-scope Multicast scope to match
+ neighbor Neighboring router
+ next-hop Next-hop router
 next-hop-type Next-hop type
 origin BGP origin attribute
+ policy Name of policy to evaluate
 preference Preference value
 preference2 Preference value 2
> prefix-list List of prefix-lists of routes to match
> prefix-list-filter List of prefix-list-filters to match
+ protocol Protocol from which route was learned
 rib Routing table
> route-filter List of routes to match
 route-type Route type
> source-address-filter List of source addresses to match
 state Route state
+ tag Tag string
 tag2 Tag string 2

There are so many options for identifying routes, but for your project you’ll need just
two: the routing protocol name and the route-filter for matching the specific
198.18.16.0/20 route prefix.

Here you use the protocol statement to match RIP routes only:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set from protocol rip

And then you work on setting up a route-filter for the 198.18.16.0/20 network (again
smartly abbreviating to 198.18.16/20 for brevity) by examining the options in CLI help:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set from route-filter 198.18.16/20 ?
Possible completions:
 exact Exactly match the prefix length

666 | Chapter 11: Routing

 longer Mask is greater than the prefix length
 orlonger Mask is greater than or equal to the prefix length
 prefix-length-range Mask falls between two prefix lengths
 through Route falls between two prefixes
 upto Mask falls between two prefix lengths

Perfect, you want to match just the exact route 198.18.16.0/20 and not any of the
smaller (more specific) routes within the 198.18.16.0/20 range. You complete your
configuration statement using the exact option:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set from route-filter 198.18.16/20 exact

Now it’s time to do something with these routes. You check out the CLI help for the
then statement:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set then ?
Possible completions:
 accept Accept a route
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> as-path-expand Prepend AS numbers prior to adding local-as (BGP only)
 as-path-prepend Prepend AS numbers to an AS path (BGP only)
> color Color (preference) value
> color2 Color (preference) value 2
> community BGP community properties associated with a route
 damping Define BGP route flap damping parameters
 default-action Set default policy action
 destination-class Set destination class in forwarding table
> external External route
 forwarding-class Set source or destination class in forwarding table
> install-nexthop Choose the next hop to be used for forwarding
 label-allocation Set label allocation mode
> load-balance Type of load balancing in forwarding table
> local-preference Local preference associated with a route
> map-to-interface Set output logical interface
> metric Metric value
> metric2 Metric value 2
> metric3 Metric value 3
> metric4 Metric value 4
 next Skip to next policy or term
> next-hop Set the address of the next-hop router
 origin BGP path origin
> preference Preference value
> preference2 Preference value 2
 priority Set priority for route installation
 reject Reject a route
 source-class Set source class in forwarding table
> tag Tag string
> tag2 Tag string 2
 trace Log matches to a trace file

Again, there are so many options. But again, you don’t want to do anything fancy. You
are not trying to change the routing protocol metric value, the next-hop to the

Routing Policy | 667

destination, or the QoS forwarding-class, or to load-balance the traffic (see Case Study
11-3 later for an example of that). You just want to accept the route:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# set then accept

You pop up one level:

[edit policy-options policy-statement into-isis term rip-to-isis]
jamesq@SRX5800-1# up

And check out your completed policy-statement into-isis with the show command:

[edit policy-options policy-statement into-isis]
jamesq@SRX5800-1# show
term rip-to-isis {
 from {
 protocol rip;
 route-filter 198.18.16.0/20 exact;
 }
 then accept;
}

And it looks beautiful! Time to jump to the top of the configuration hierarchy:

[edit policy-options policy-statement into-isis]
jamesq@SRX5800-1# top

And apply your new policy-statement into-isis as an export policy for the IS-IS
configuration:

[edit]
jamesq@SRX5800-1# set protocols isis export into-isis

Remember, routing policy is written from the perspective of the Junos
routing tables, not the routing protocols. In the preceding output, you
defined an export statement to take a RIP route from the routing table
and communicate it out through the IS-IS protocol.

Conversely, an import policy is used for controlling the routing infor-
mation taken into a routing table from a routing protocol.

Last, you check out your completed configuration with the show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit protocols]
+ isis {
+ export into-isis;
+ }
[edit policy-options]
+ policy-statement into-isis {
+ term rip-to-isis {
+ from {
+ protocol rip;
+ route-filter 198.18.16.0/20 exact;

668 | Chapter 11: Routing

+ }
+ then accept;
+ }
+ }

And commit the configuration changes:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

You check out your results in the operational CLI with the show isis database
command:

jamesq@SRX5800-1> show isis database
IS-IS level 1 link-state database:
LSP ID Sequence Checksum Lifetime Attributes
SRX3400-1.00-00 0x2 0x65f9 1123 L1 L2
SRX3400-1.02-00 0x1 0x9408 1123 L1 L2
SRX5800-1.00-00 0x12 0xd2b7 1125 L1 L2
 3 LSPs

IS-IS level 2 link-state database:
LSP ID Sequence Checksum Lifetime Attributes
SRX3400-1.00-00 0x3 0x93ef 1123 L1 L2
SRX3400-1.02-00 0x1 0x9408 1123 L1 L2
SRX5800-1.00-00 0x13 0xc7ee 1125 L1 L2
 3 LSPs

There are no new LSPs in the databases, but you do see a higher sequence number
(0x13) on the local SRX5800 LSP. Something must have changed!

You investigate the SRX5800 LSP with the extensive option to the show isis database
command:

jamesq@SRX5800-1> show isis database SRX5800 extensive
IS-IS level 1 link-state database:

SRX5800-1.00-00 Sequence: 0x12, Checksum: 0xd2b7, Lifetime: 1086 secs
 IS neighbor: SRX3400-1.02 Metric: 10
 Two-way fragment: SRX3400-1.02-00, Two-way first fragment: SRX3400-1.02-00
 IP prefix: 198.18.16.0/20 Metric: 2 External Up
 IP prefix: 198.18.16.2/32 Metric: 0 Internal Up
 IP prefix: 10.2.1.0/24 Metric: 10 Internal Up

And there it is!

You still see the original two Internal IS-IS routes from the ge-11/0/5.0 and lo0.0
interfaces configured within the IS-IS domain, but now there is also a new External
route for the 198.18.16.0/20 prefix that is inherited from RIP outside the IS-IS routing
domain via the brand-new export routing policy into-isis.

Header: LSP ID: SRX5800-1.00-00, Length: 167 bytes
 Allocated length: 1492 bytes, Router ID: 198.18.16.2

Routing Policy | 669

 Remaining lifetime: 1086 secs, Level: 1, Interface: 0
 Estimated free bytes: 1277, Actual free bytes: 1325
 Aging timer expires in: 1086 secs
 Protocols: IP

 Packet: LSP ID: SRX5800-1.00-00, Length: 167 bytes, Lifetime : 1198 secs
 Checksum: 0xd2b7, Sequence: 0x12, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, Packet version: 1, Max area: 0

 TLVs:
 Area address: 49 (1)
 Speaks: IP
 IP router id: 198.18.16.2
 IP address: 198.18.16.2
 Hostname: SRX5800-1
 IP prefix: 10.2.1.0/24, Internal, Metric: default 10, Up
 IP prefix: 198.18.16.2/32, Internal, Metric: default 0, Up
 IP extended prefix: 10.2.1.0/24 metric 10 up
 IP extended prefix: 198.18.16.2/32 metric 0 up
 IP external prefix: 198.18.16.0/20, Internal, Metric: default 2, Up
 IP extended prefix: 198.18.16.0/20 metric 2 up
 IS neighbor: SRX3400-1.02, Internal, Metric: default 10
 IS extended neighbor: SRX3400-1.02, Metric: default 10
 IP address: 10.2.1.11
 Local interface index: 80, Remote interface index: 0
 No queued transmissions

And, of course, you see the 198.18.16.0/20 prefix successfully included in the IS-IS
TLVs.

Case Study 11-3: Equal Cost Multipath (ECMP)
Now that you have the power of routing policy in your tool set, you can go a step beyond
your work in Case Study 9-2 earlier where you built redundant OSPF paths between
routers. You now have the tools to load balance across those redundant paths.

You begin with both links (ge-11/0/5.0 and ge-11/0/6.0) restored to OSPF and set to
equal metric costs as shown in the routing table entry for 10.32.1.1/32:

jamesq@SRX5800-1> show route 10.32.1.1/32

inet.0: 25 destinations, 28 routes (25 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 *[OSPF/10] 00:00:55, metric 1
 to 10.2.1.10 via ge-11/0/5.0
 > to 10.3.3.10 via ge-11/0/6.0

You confirm that only one link (ge-11/0/6.0) is used in the actual forwarding table
entry for 10.32.1.1/32:

670 | Chapter 11: Routing

jamesq@SRX5800-1> show route forwarding-table
Routing table: default.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
default user 2 0:10:db:40:1a:85 ucst 333 4 fxp0.0
default perm 0 rjct 36 4
0.0.0.0/32 perm 0 dscd 34 1
10.32.1.1/32 user 0 10.3.3.10 ucst 600 4 ge-11/0/6.0

You go back to configuration mode:

jamesq@SRX5800-1> edit
Entering configuration mode

And you create a simple new routing policy consisting of a single statement containing
the load-balance per-packet action:

[edit]
jamesq@SRX5800-1# set policy-options policy-statement ecmp then
load-balance per-packet

The Junos load balancing action is called per-packet, though it actually
represents a per-flow load balancing behavior. The very first Junos
router, the M40, was built on an early data plane application-specific
integrated circuit (ASIC) that could not load-balance flows, and so it
truly did load-balance per packet as the name suggests. However, every
subsequent Junos platform in existence (including all further M Series,
T Series, MX Series, and, indeed, SRX Series) has load balanced traffic
per flow when this knob is applied to the forwarding table configuration.

Though this is a routing policy, it must be applied to the forwarding table, which you
do here by configuring it under the forwarding-table export statement:

[edit]
jamesq@SRX5800-1# set routing-options forwarding-table export ecmp

You double-check your configuration work with the show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit routing-options]
+ forwarding-table {
+ export ecmp;
+ }
[edit policy-options]
+ policy-statement ecmp {
+ then {
+ load-balance per-packet;
+ }
+ }

And then commit:

[edit]
jamesq@SRX5800-1# commit and-quit

Routing Policy | 671

configuration check succeeds
commit complete
Exiting configuration mode

You return to the show route 10.32.1.1/32 output and it remains unchanged:

jamesq@SRX5800-1# show route 10.32.1.1/32

inet.0: 25 destinations, 28 routes (25 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.32.1.1/32 *[OSPF/10] 00:07:59, metric 1
 to 10.2.1.10 via ge-11/0/5.0
 > to 10.3.3.10 via ge-11/0/6.0

But now you look at the real results in the show route forwarding-table output:

jamesq@SRX5800-1# show route forwarding-table
Routing table: default.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
default user 2 0:10:db:40:1a:85 ucst 333 4 fxp0.0
default perm 0 rjct 36 4
0.0.0.0/32 perm 0 dscd 34 1
10.32.1.1/32 user 0 ulst 1048574 2
 10.2.1.10 ucst 599 5 ge-11/0/5.0
 10.3.3.10 ucst 600 3 ge-11/0/6.0

Success! The forwarding table now contains two next hop entries for reaching
10.32.1.1/32. The SRX will load-balance flows toward the 10.32.1.1/32 destination.
Great job!

Internet Peering
You’ve learned the ins and outs of integrating SRX into your organization’s own routed
networks, but what if you need to connect an SRX to the global Internet? This section
gives you the tools to do just that.

Although there’s a plethora of choices for gluing together your internal routed networks
(OSPF, IS-IS, RIP), there is just one protocol for the global Internet: Border Gateway
Protocol (BGP).

BGP has been central to the functioning of the global Internet for two decades. It was
created in the time when “the Internet” was just a handful of educational and research
institutions connected together via the government-funded National Science Founda-
tion Network (NSFNET). BGP has survived, to its creators’ great surprise, through to
the enormous and privately funded global spider web of service providers and corpo-
rations that is called “the Internet” today.

BGP is very different from the interior gateway protocols such as OSPF, IS-IS, and RIP
that you reviewed earlier. It is the sole surviving exterior gateway protocol (EGP) in use

672 | Chapter 11: Routing

today. It is designed specifically for router peering between organizations. Where IGP
protocols assume some level of trust and freely pass their routing information between
routers once adjacencies are formed, an EGP protocol can never take trust for granted.
This is why the routing policy covered in the preceding section is so fundamental to
building any real-world BGP configuration.

BGP must cope with a much larger routing world. Whereas the largest IGP networks
contain, at most, a couple thousand routers and possibly several thousand unique IP
routes, the one major BGP network in use today (the Internet) represents, very possibly,
millions of routers and billions of IP routes. Two things make this level of scale possible:
path-vector routing and summarization.

BGP is a path-vector routing protocol. Where the atomic unit of an IGP routing top-
ology is an individual router, the atomic unit of a BGP routing topology is an entire
organization. BGP abstracts away all of the routers within an organization’s network
to just one identifier: the organization’s autonomous system (AS) number.

As shown in Figure 11-9, path-vector routing works by finding the shortest AS path or
the smallest number of distinct organizations through which traffic must pass to reach
a destination.

Figure 11-9. BGP path-vector routing

Summarization is the second key to global BGP scaling. Although there might well be
billions of IP routes across the globe, BGP only needs to worry about a few of them. As
a matter of routing policy, the largest Internet service providers (ISPs) in the world
require that all organizations connecting to them summarize their routes to a much

Internet Peering | 673

smaller number. Where an organization might have hundreds of small /26 IP subnets
visible within its IGP (each /26 encompassing as many as 62 IP hosts), a global ISP
might only accept a much larger /16 prefix advertisement (encompassing up to 1,024
of the smaller /26 networks) in its routing policy for the organization.

Through this combination of BGP’s path-vector design and the prudent enforcement
of summarization in ISP routing policy, BGP has survived at the center of the Internet
far beyond its designers’ expectations. Nonetheless, global Internet routing tables have
grown massively in that time—from mere hundreds of routes to, as of this writing,
tier-1 ISPs (the very largest) reporting BGP tables in excess of 300,000 globally unique
IP routes.

SRX Forwarding Table Convergence
Although the SRX control plane is fully capable of running BGP with all the power that
Junos routing offers (even supporting full BGP routing tables in the higher-end plat-
forms), the SRX data plane is optimized for IP services processing rather than for rapid
convergence of very large IP forwarding tables.

Though other Junos platforms such as the M Series, T Series, and MX Series have data
planes specifically designed for extraordinarily nimble forwarding table reconvergence
even with massive tables of hundreds of thousands of entries, the SRX data plane is
designed today only for rapid forwarding table reconvergence at IGP scale (a few thou-
sand routes).

The SRX is most effectively used for Internet peerings where a BGP default route suf-
fices. For Internet borders where full BGP tables of hundreds of thousands of routes
are a requirement, using an SRX as the BGP border router is discouraged. It can be
done, but forwarding table convergence will be too time-consuming for nearly all real-
world deployments.

Of course, the SRX is a platform undergoing constantly evolving development and this
limitation may be removed in the future. Please consult the Juniper Networks website
at http://www.juniper.net for the latest recommendations.

Configuring BGP Peerings
In the Junos CLI configuration that follows, you will establish a BGP peering to an
external organization (AS 65400). You will use routing policy to accept only the default
route (0.0.0.0/0) and advertise only a summary of your network (198.18.16.0/20). You
enter configuration mode and move to the BGP configuration hierarchy with the
edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

[edit]
jamesq@SRX5800-1# edit protocols bgp

674 | Chapter 11: Routing

http://www.juniper.net

You examine CLI help for the BGP hierarchy:

[edit protocols bgp]
jamesq@SRX5800-1# set ?
Possible completions:
 accept-remote-nexthop Allow import policy to specify a non-directly
connected next-hop
> advertise-external Advertise best external routes
 advertise-inactive Advertise inactive routes
 advertise-peer-as Advertise routes received from the same autonomous system
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 authentication-algorithm Authentication algorithm name
 authentication-key MD5 authentication key
 authentication-key-chain Key chain name
> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options
 cluster Cluster identifier
 damping Enable route flap damping
 description Text description
 disable Disable BGP
+ export Export policy
> family Protocol family for NLRIs in updates
> graceful-restart BGP graceful restart options
> group Define a peer group
 hold-time Hold time used when negotiating with a peer
> idle-after-switch-over Stop peer session from coming up after
> nonstop-routing switch-over
+ import Import policy
 include-mp-next-hop Include NEXT-HOP attribute in multiprotocol updates
 ipsec-sa IPSec SA name
 keep How to retain routes in the routing table
 local-address Address of local end of BGP session
> local-as Local autonomous system number
 local-interface Local interface for IPv6 link local EBGP peering
 local-preference Value of LOCAL_PREF path attribute
 log-updown Log a message for peer state transitions
> metric-out Route metric sent in MED
 mtu-discovery Enable TCP path MTU discovery
> multihop Configure an EBGP multihop session
 no-advertise-peer-as Don't advertise routes received from the
same autonomous system
 no-aggregator-id Set router ID in aggregator path attribute to 0
 no-client-reflect Disable intracluster route redistribution
 out-delay How long before exporting routes from routing
table (0..65535)
> outbound-route-filter Dynamically negotiated cooperative route filtering
 passive Do not send open messages to a peer
> path-selection Configure path selection strategy
 peer-as Autonomous system number in plain number or
'higher 16bits'.'Lower 16 bits' (asdot notation) format
 preference Preference value
 remove-private Remove well-known private AS numbers
 tcp-mss Maximum TCP segment size (1..4096)
> traceoptions Trace options for BGP
 vpn-apply-export Apply BGP export policy when exporting VPN routes

Internet Peering | 675

Many BGP attributes can be defined globally for the entire protocol at this level, but
actual BGP peers are built under group configuration. Here you begin to configure a
group named ISP and access CLI help for this level of the hierarchy:

[edit protocols bgp]
jamesq@SRX5800-1# set group ISP ?
Possible completions:
 accept-remote-nexthop Allow import policy to specify a non-directly
connected next-hop
> advertise-external Advertise best external routes
 advertise-inactive Advertise inactive routes
 advertise-peer-as Advertise routes received from the same autonomous system
+ allow Configure peer connections for specific networks
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 as-override Replace neighbor AS number with our AS number
 authentication-algorithm Authentication algorithm name
 authentication-key MD5 authentication key
 authentication-key-chain Key chain name
> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options
 cluster Cluster identifier
 damping Enable route flap damping
 description Text description
+ export Export policy
> family Protocol family for NLRIs in updates
> graceful-restart BGP graceful restart options
 hold-time Hold time used when negotiating with a peer
> idle-after-switch-over Stop peer session from coming up after
> nonstop-routing switch-over
+ import Import policy
 include-mp-next-hop Include NEXT-HOP attribute in multiprotocol updates
 ipsec-sa IPSec SA name
 keep How to retain routes in the routing table
 local-address Address of local end of BGP session
> local-as Local autonomous system number
 local-interface Local interface for IPv6 link local EBGP peering
 local-preference Value of LOCAL_PREF path attribute
 log-updown Log a message for peer state transitions
> metric-out Route metric sent in MED
 mtu-discovery Enable TCP path MTU discovery
> multihop Configure an EBGP multihop session
> multipath Allow load sharing among multiple BGP paths
> neighbor Configure a neighbor
 no-advertise-peer-as Don't advertise routes received from the
same autonomous system
 no-aggregator-id Set router ID in aggregator path attribute to 0
 no-client-reflect Disable intracluster route redistribution
 out-delay How long before exporting routes from routing
table (0..65535)
> outbound-route-filter Dynamically negotiated cooperative route filtering
 passive Do not send open messages to a peer
 peer-as Autonomous system number in plain number or
'higher 16bits'.'Lower 16 bits' (asdot notation) format
 preference Preference value
 remove-private Remove well-known private AS numbers

676 | Chapter 11: Routing

 tcp-mss Maximum TCP segment size (1..4096)
> traceoptions Trace options for BGP
 type Type of peer group
 vpn-apply-export Apply BGP export policy when exporting VPN routes

Again, there are many options for BGP configuration in Junos, but the basic building
blocks for your simple BGP peering will be a neighbor statement identifying the BGP
peer IP address and a peer-as statement identifying the AS number of that peer’s or-
ganization. As this is your first BGP configuration, you must also configure your or-
ganization’s own AS number under routing-options autonomous-system from the top
of the configuration hierarchy.

It is also a best practice to configure a local-address statement defining the IP address
that the SRX will use in exchanging BGP packets with the peer. BGP packets are sent
using TCP to the well-known port 179. As such, there is no fundamental restriction on
the interface or IP address a BGP speaker will use in initiating a peering. However, the
IP addresses must match between peers for Junos routers to accept and establish BGP
peerings. Thus, leaving out the local-address statement can lead to unexpected results
(broken peerings).

You begin configuring the neighbor statement for the 198.18.4.10 peer and view CLI
help under this hierarchy:

[edit protocols bgp]
jamesq@SRX5800-1# set group ISP neighbor 198.18.4.10 ?
Possible completions:
 <[Enter]> Execute this command
 accept-remote-nexthop Allow import policy to specify a non-directly
connected next-hop
> advertise-external Advertise best external routes
 advertise-inactive Advertise inactive routes
 advertise-peer-as Advertise routes received from the same autonomous system
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 as-override Replace neighbor AS number with our AS number
 authentication-algorithm Authentication algorithm name
 authentication-key MD5 authentication key
 authentication-key-chain Key chain name
> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options
 cluster Cluster identifier
 damping Enable route flap damping
 description Text description
+ export Export policy
> family Protocol family for NLRIs in updates
> graceful-restart BGP graceful restart options
 hold-time Hold time used when negotiating with a peer
> idle-after-switch-over Stop peer session from coming up after
nonstop-routing switch-over
+ import Import policy
 include-mp-next-hop Include NEXT-HOP attribute in multiprotocol updates
 ipsec-sa IPSec SA name
 keep How to retain routes in the routing table
 local-address Address of local end of BGP session

Internet Peering | 677

> local-as Local autonomous system number
 local-interface Local interface for IPv6 link local EBGP peering
 local-preference Value of LOCAL_PREF path attribute
 log-updown Log a message for peer state transitions
> metric-out Route metric sent in MED
 mtu-discovery Enable TCP path MTU discovery
> multihop Configure an EBGP multihop session
> multipath Allow load sharing among multiple BGP paths
 no-advertise-peer-as Don't advertise routes received from the same
autonomous system
 no-aggregator-id Set router ID in aggregator path attribute to 0
 no-client-reflect Disable intracluster route redistribution
 out-delay How long before exporting routes from routing table
(0..65535)
> outbound-route-filter Dynamically negotiated cooperative route filtering
 passive Do not send open messages to a peer
 peer-as Autonomous system number in plain number or 'higher
16bits'.'Lower 16 bits' (asdot notation) format
 preference Preference value
 remove-private Remove well-known private AS numbers
 tcp-mss Maximum TCP segment size (1..4096)
> traceoptions Trace options for BGP
 vpn-apply-export Apply BGP export policy when exporting VPN routes
 | Pipe through a command

Again, many of the same configuration knobs that existed at the global BGP configu-
ration level and at the group configuration level also exist here under the individual
neighbor configuration level. You may configure these knobs wherever it makes sense
for your deployment. For larger deployments, it may make sense to configure common
values at global or group levels. When the same knob is configured at multiple levels,
the most specific level for that neighbor takes effect. A configuration at the neighbor
level will supersede a configuration at the group level which will in turn supersede a
configuration at the global level.

You finish off the neighbor statement for 198.18.4.10 by configuring its AS number
with the peer-as statement:

[edit protocols bgp]
jamesq@SRX5800-1# set group ISP neighbor 198.18.4.10 peer-as 65400

You configure the SRX to initiate the BGP peering from the local-address
198.18.4.254 on the ge-9/0/5.0 interface directly connected to the 198.18.4.10 peer:

[edit protocols bgp]
jamesq@SRX5800-1# set group ISP local-address 198.18.4.254

It is key that the BGP peering is initiated between IP addresses on a directly connected
Layer 2 network. Though BGP utilizes TCP for communication and can ride over your
IGP routed infrastructure to communicate over a larger IP network, the default BGP
behavior will transmit packets with an IP time-to-live (TTL) value of just 1. This means
the first router hop a BGP packet traverses will decrement the TTL value to 0, drop the
packet, and return an ICMP TTL Exceeded message.

678 | Chapter 11: Routing

This behavior can be altered with the multihop configuration knob. This is commonly
done to enable eBGP peerings between loopback IP addresses, similar to the common
practice for internal BGP (IBGP) peerings within an organization’s AS (outside the
coverage of this book; please consult O’Reilly’s excellent Junos routing publications).

Last in the BGP configuration stanza, you define both the export routing policy for the
routes that the SRX will send to the BGP peer and the import routing policy for the
routes that the SRX will accept in from the BGP peer:

[edit protocols bgp]
jamesq@SRX5800-1# set group ISP export ISP-out

[edit protocols bgp]
jamesq@SRX5800-1# set group ISP import ISP-in

And you show your completed BGP configuration (Junos correctly noting that you have
not yet created the new routing policies that you have referenced):

[edit protocols bgp]
jamesq@SRX5800-1# show
group ISP {
 local-address 198.18.4.254;
 import ISP-in; ## 'ISP-in' is not defined
 export ISP-out; ## 'ISP-out' is not defined
 neighbor 198.18.4.10 {
 peer-as 65400;
 }
}

It is time to jump back to the top of the configuration hierarchy to complete your
project:

[edit protocols bgp]
jamesq@SRX5800-1# top

The SRX’s own autonomous-system number is defined globally at the routing-options
hierarchy of the configuration:

[edit protocols bgp]
jamesq@SRX5800-1# set routing-options autonomous-system 65100

And now you set out to create your new routing policies for BGP. First, you edit the
ISP-in policy controlling the routes accepted in from the BGP neighbor:

[edit protocols bgp]
jamesq@SRX5800-1# edit policy-options policy-statement ISP-in

You configure a term to accept only the default route (0.0.0.0/0 abbreviated as 0/0)
from the peer:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# set term default-in from route-filter 0/0 exact

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# set term default-in then accept

Internet Peering | 679

And then configure a final term to reject all other routes from the peer:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# set term block then reject

You check your new policy configuration with the show command:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# show
term default-in {
 from {
 route-filter 0.0.0.0/0 exact;
 }
 then accept;
}
term block {
 then reject;
}

Then jump up one level:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# up

You edit the new outbound ISP-out routing policy controlling routes advertised to the
BGP peer:

[edit policy-options policy-statement]
jamesq@SRX5800-1# edit policy-statement ISP-out

You create a new term advertising the aggregate route of 198.18.16.0/20 (abbreviated
as 198.18.16/20) summarizing your networks:

[edit policy-options policy-statement ISP-out]
jamesq@SRX5800-1# set term OrgXYZ from protocol aggregate

[edit policy-options policy-statement ISP-out]
jamesq@SRX5800-1# set term OrgXYZ from route-filter 198.18.16/20 exact

[edit policy-options policy-statement ISP-out]
jamesq@SRX5800-1# set term OrgXYZ then accept

You show your new one term policy:

[edit policy-options policy-statement ISP-out]
jamesq@SRX5800-1# show
term OrgXYZ {
 from {
 protocol rip;
 route-filter 198.18.16.0/20 exact;
 }
 then accept;
}

And you pop back to the top of the configuration hierarchy:

[edit policy-options policy-statement ISP-out]
jamesq@SRX5800-1# top

680 | Chapter 11: Routing

And create this new aggregate route of 198.18.16.0/20 under the routing-options
stanza:

[edit]
jamesq@SRX5800-1# set routing-options aggregate route 198.18.16/20

An aggregate route is, just like it sounds, a route that encompasses smaller (more spe-
cific) routes within its prefix range. An aggregate route is similar to a static route, but
without the literal actions such as next-hop and discard. More specific routes within
the defined prefix range must be present in the same routing table for an aggregate
route to likewise be active and present in the routing table.

In the case of the 198.18.16.0/20 route, we know from earlier in the chapter that there
is a more specific 198.18.16.2/32 address configured on the SRX’s own lo0.0 interface
creating the necessary, more specific route for this aggregate route to become active.

You inspect your completed configuration with a show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit routing-options]
+ aggregate {
+ route 198.18.16.0/20;
+ }
+ autonomous-system 65100;
[edit]
+ protocols {
+ bgp {
+ group ISP {
+ local-address 198.18.4.254;
+ import ISP-in;
+ export ISP-out;
+ neighbor 198.18.4.10 {
+ peer-as 65400;
+ }
+ }
+ }
+ }
+ policy-options {
+ policy-statement ISP-in {
+ term default-in {
+ from {
+ route-filter 0.0.0.0/0 exact;
+ }
+ then accept;
+ }
+ term block {
+ then reject;
+ }
+ }
+ policy-statement ISP-out {
+ term OrgXYZ {
+ from {
+ protocol aggregate;
+ route-filter 198.18.16.0/20 exact;

Internet Peering | 681

+ }
+ then accept;
+ }
+ }
+ }

And commit the changes:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

BGP is much like RIP in having timers measured on the order of minutes, so your new
BGP peering will not come up instantaneously. But BGP can fortunately be extended
with BFD configuration (much like OSPF and IS-IS) for subsecond failure detection
after the BGP peering is established.

After waiting a requisite couple of minutes, you view your BGP configuration results
in the Junos operational CLI with the show bgp summary command:

jamesq@SRX5800-1> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 1 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State
|#Active/Received/Accepted/Damped...
198.18.4.10 65400 3 3 0 0 1 0/1/1/0
0/0/0/0

Success! You can see that the peering is fully Established as the SRX is receiving a route
from the peer (the 0/1/1/0 under Active/Received/Accepted/Damped shown in the
output).

You’ll note that this BGP peering came up without resorting to any new security
zone configuration. This is because BGP utilizes TCP for communication. Typically
both BGP peers will attempt to initiate the TCP flow (each by sending its own SYN
flagged packets), but only one TCP flow is necessary for a successful BGP peering.

As the SRX data plane will happily pass control plane traffic outbound without respect
to security policy, the TCP connection initiated by the local SRX itself was able to
successfully negotiate for the BGP peering. The SRX, being a stateful firewall device,
allowed the traffic from the other BGP peer to return within the context of this same
TCP flow. Nonetheless, for absolute best practices, it would be a good idea to explicitly
permit BGP in the security zone configuration of the BGP configured interface.

BGP Routing Tables
For even the simplest BGP peering, there are always at least three routing tables. First,
there is the received routes table (the Adj-RIB-In in BGP terminology) which represents
the routes as they are received from the BGP peer before the application of routing

682 | Chapter 11: Routing

policy. Inspecting this table can be very useful in troubleshooting import routing poli-
cies. Here you examine this table with the show route receive-protocol bgp command:

jamesq@SRX5800-1> show route receive-protocol bgp 198.18.4.10

inet.0: 17 destinations, 20 routes (17 active, 0 holddown, 0 hidden)
Restart Complete
 Prefix Nexthop MED Lclpref AS path
 0.0.0.0/0 198.18.4.10 65400 I

The second table is the more ordinary primary routing table (inet.0 in Junos) that
contains received BGP routes after the application of routing policy (which may alter
or filter routes out entirely) and is also the source of routes for the export routing policies
that will determine the routing information shared outbound with BGP peers. This
table can be examined more simply with the show route protocol bgp command:

jamesq@SRX5800-1> show route protocol bgp

inet.0: 23 destinations, 26 routes (23 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 01:46:07, localpref 100
 AS path: 65400 I
 > to 198.18.4.10 via ge-9/0/5.0

Good job! The SRX is successfully accepting the BGP learned 0.0.0.0/0 default route
into the inet.0 table.

Last, the third table is the advertised routes table (the Adj-RIB-Out in BGP terminology)
which represents the routes advertised to the BGP peer after the application of export
routing policies. Here you examine this table with the show route advertising-
protocol bgp command:

jamesq@SRX5800-1> show route advertising-protocol bgp 198.18.4.10

inet.0: 18 destinations, 21 routes (18 active, 0 holddown, 0 hidden)
Restart Complete
 Prefix Nexthop MED Lclpref AS path
* 198.18.16.0/20 Self I

{primary:node0}
root@SRX5800-1>

Perfect! The SRX is successfully advertising the 198.18.16.0/20 aggregate route to the
BGP peer.

Case Study 11-4: Internet Redundancy
Much like the OSPF section before Case Study 9-2 earlier in the chapter, you have a
single point of failure in your new BGP configuration. There is only one upstream BGP
path to the public Internet. As shown in Figure 11-10, there is a well-known concept

Internet Peering | 683

of BGP multihoming in the Internet community where an organization is BGP-peered
redundantly to two different upstream ISPs.

In the Junos CLI configuration that follows, you will create a second BGP peering to a
redundant ISP. Although this new path will be fully available for failover, you will make
it the less preferred path using the concepts of BGP Local Preference and AS path pre-
pending (as pictured in Figure 11-10).

You begin by entering configuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

And create a new BGP configuration group named ISP-redundant:

[edit]
jamesq@SRX5800-1# edit protocols bgp group ISP-redundant

Figure 11-10. BGP multihoming

684 | Chapter 11: Routing

From within this new group hierarchy, you configure the neighbor 198.18.5.10 and its
peer-as 65500:

[edit protocols bgp group ISP-redundant]
jamesq@SRX5800-1# set neighbor 198.18.5.10 peer-as 65500

You define the local-address 198.18.5.254 to match the ge-9/0/6.0 link directly con-
necting to the peer:

[edit protocols bgp group ISP-redundant]
jamesq@SRX5800-1# set local-address 198.18.5.254

And reference the soon-to-be-created import and export policies for route exchange
with the peer:

[edit protocols bgp group ISP-redundant]
jamesq@SRX5800-1# set import redundant-ISP-in

[edit protocols bgp group ISP-redundant]
jamesq@SRX5800-1# set export redundant-ISP-out

You show your completed BGP configuration group (Junos, as before, correctly noting
that you have not yet created the new routing policies that you have referenced):

[edit protocols bgp group ISP-redundant]
jamesq@SRX5800-1# show
local-address 198.18.5.254;
import redundant-ISP-in; ## 'redundant-ISP-in' is not defined
export redundant-ISP-out; ## 'redundant-ISP-out' is not defined
neighbor 198.18.5.10 {
 peer-as 65500;
}

You jump back to the top of the configuration hierarchy:

[edit protocols bgp group ISP-redundant]
jamesq@SRX5800-1# top

And edit the new redundant-ISP-in policy controlling the routes that the SRX will
accept from the redundant ISP’s BGP peering:

[edit]
jamesq@SRX5800-1# edit policy-options policy-statement redundant-ISP-in

Much as with the earlier BGP peer’s configuration, the new policy likewise allows only
a default route (0.0.0.0/0 abbreviated as 0/0):

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# set term redundant-default-in from route-filter 0/0 exact

But you configure this new policy with a lower (less preferred) local-preference value
of 50 (the default value being 100), ensuring that the SRX will prefer the other BGP
peer’s routes:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# set term redundant-default-in then local-preference 50

Internet Peering | 685

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# set term redundant-default-in then accept

And, as before, you create a final term to reject all other routes from this new BGP peer:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# set term block then reject

You jump up one level:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# up

And now edit the new redundant-ISP-out policy controlling the routes that the SRX
will advertise out to the redundant ISP peering:

[edit policy-options]
jamesq@SRX5800-1# edit policy-statement redundant-ISP-out

As before, you advertise only the 198.18.16.0/20 (abbreviated as 198.18.16/20) aggre
gate route:

[edit policy-options policy-statement redundant-ISP-out]
jamesq@SRX5800-1# set term OrgXYZ-prepend from protocol aggregate

[edit policy-options policy-statement redundant-ISP-out]
jamesq@SRX5800-1# set term OrgXYZ-prepend from route-filter 198.18.16/20 exact

But now you also as-path-prepend with your AS number three times, encouraging In-
ternet routers to prefer the much shorter AS path through your original BGP peering
with the first ISP:

[edit policy-options policy-statement redundant-ISP-out]
jamesq@SRX5800-1# set term OrgXYZ-prepend then as-path-prepend
"65100 65100 65100"

[edit policy-options policy-statement redundant-ISP-out]
jamesq@SRX5800-1# set term OrgXYZ-prepend then accept

You jump back to the top of the configuration:

[edit policy-options policy-statement redundant-ISP-out]
jamesq@SRX5800-1# top

And show the completed additions:

[edit]
jamesq@SRX5800-1# show | compare
[edit protocols bgp]
 group ISP { ... }
+ group ISP-redundant {
+ local-address 198.18.5.254;
+ import redundant-ISP-in;
+ export redundant-ISP-out;
+ neighbor 198.18.5.10 {
+ peer-as 65500;
+ }
+ }

686 | Chapter 11: Routing

[edit policy-options]
+ policy-statement redundant-ISP-in {
+ term redundant-default-in {
+ from {
+ route-filter 0.0.0.0/0 exact;
+ }
+ then {
+ local-preference 50;
+ accept;
+ }
+ }
+ term block {
+ then reject;
+ }
+ }
+ policy-statement redundant-ISP-out {
+ term OrgXYZ-prepend {
+ from {
+ protocol aggregate;
+ route-filter 198.18.16.0/20 exact;
+ }
+ then {
+ as-path-prepend "65100 65100 65100";
+ accept;
+ }
+ }
+ }

Before the commit:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

After waiting a couple of minutes, you view your BGP configuration results in the Junos
operational CLI with the show bgp summary command:

jamesq@SRX5800-1> show bgp summary
Groups: 2 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 2 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn
State|#Active/Received/Accepted/Damped...
198.18.4.10 65400 628 636 0 1 1:06:40
0/1/1/0 0/0/0/0
198.18.5.10 65500 3 5 0 0 28
0/1/1/0 0/0/0/0

Internet Peering | 687

Great job! You now have BGP peerings to redundant ISPs (AS numbers 65400 and
65500), each showing one accepted route. You dig a little deeper with the show route
command:

jamesq@SRX5800-1> show route protocol bgp

inet.0: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 01:06:50, localpref 100
 AS path: 65400 I
 > to 198.18.4.10 via ge-9/0/5.0
 [BGP/170] 00:00:38, localpref 50
 AS path: 65500 I
 > to 198.18.5.10 via ge-9/0/6.0

And there you have it, a redundant default route (showing the less preferred localpref
50) toward the new 198.18.5.10 peer.

And finally, you confirm that the SRX is advertising the 198.18.16.0/20 route with the
correct AS path prepending to the 198.18.5.10 peer using the show route command:

jamesq@SRX5800-1> show route advertising-protocol bgp 198.18.5.10

inet.0: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
Restart Complete
 Prefix Nexthop MED Lclpref AS path
* 198.18.16.0/20 Self 65100 65100 65100 [65100] I

Congratulations! You now have fully redundant Internet peerings!

Routing Instances
This and the next section (“Filter-Based Forwarding” on page 693) will move beyond
the more customary IP routing topics to some of what makes IP routing in the Junos
operating system so unique.

The Junos control plane is far more versatile than that of a typical IP router. Junos is
not limited to one monolithic routing table, but rather can support hundreds and even
thousands of distinct routing tables on the highest-end platforms.

Likewise, the Junos data plane is not restricted by traditional destination-based routing
when making forwarding decisions (as you’ll explore in both this and the next section).
It can make forwarding decisions based on nearly any relevant fields in the Layer 3 and
Layer 4 headers.

The power and flexibility that is put in your hands by this combination of highly unique
control plane and equally unique data plane is extraordinary. In an age when virtuali-
zation has become a buzzword, IP routing in Junos is the real deal. You will scratch the
surface of Junos’s power in the following sections.

688 | Chapter 11: Routing

Configuring Routing Instances
The routing-instance is the basic building block for constructing the multiplicity of
custom routing tables, forwarding entries, and routing protocol instantiations that are
possible with the Junos operating system.

In the Junos CLI configuration that follows, you will create a custom routing-
instance with its own routing table, interface, and OSPF, as depicted in Figure 11-11.

Figure 11-11. Routing instances

Here you enter configuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

And edit your new routing-instances DeptA:

[edit]
jamesq@SRX5800-1# edit routing-instances DeptA

You view the CLI help for routing-instance configuration:

[edit routing-instances DeptA]
jamesq@SRX5800-1# set ?
Possible completions:
> access Network access configuration
> access-profile Access profile for this instance
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

Routing Instances | 689

 description Text description of routing instance
 instance-type Type of routing instance
> interface Interface name for this routing instance
 no-irb-layer-2-copy Disable transmission of layer-2 copy of packets of irb
routing-interface
> pbb-options Provider backbone bridging options for routing-instance
> protocols Routing protocol configuration
> routing-options Protocol-independent routing option configuration
> service-groups Service group configuration for routing-instance

You have the option to introduce interfaces, routing protocols, and custom static routes
to the routing-instance configuration, but an instance-type must be defined:

[edit routing-instances DeptA]
jamesq@SRX5800-1# set instance-type ?
Possible completions:
 forwarding Forwarding instance
 no-forwarding Nonforwarding instance
 virtual-router Virtual routing instance

A forwarding instance contains distinct routing and forwarding tables but no instance
level routing protocols or interfaces.

A no-forwarding instance is a vehicle for creating routing tables that will populate for-
warding tables outside the instance.

A virtual-router instance is the full package, encompassing the ability to configure
interfaces, routing protocols, routing tables, and forwarding tables all within the one
routing-instance.

For maximum flexibility in this project, you configure your new routing-instance as a
virtual-router:

[edit routing-instances DeptA]
jamesq@SRX5800-1# set instance-type virtual-router

The configuration of routing protocols within a routing-instance requires the inclusion
of at least one logical interface. You move the ge-9/0/6.0 interface to the new routing-
instance:

[edit routing-instances DeptA]
jamesq@SRX5800-1# set interface ge-9/0/6.0

And then configure it within area 0 of OSPF:

[edit routing-instances DeptA]
jamesq@SRX5800-1# set protocols ospf area 0 interface ge-9/0/6.0

You hop up to the top of the configuration:

[edit routing-instances DeptA]
jamesq@SRX5800-1# top

And view your changes with the show command:

[edit]
jamesq@SRX5800-1# show | compare

690 | Chapter 11: Routing

[edit routing-instances]
+ DeptA {
+ instance-type virtual-router;
+ interface ge-9/0/6.0;
+ protocols {
+ ospf {
+ area 0.0.0.0 {
+ interface ge-9/0/6.0;
+ }
+ }
+ }
+ }

And decide to commit:

[edit]
jamesq@SRX5800-1# commit and-quit
[edit security zones security-zone trust]
 'interfaces ge-9/0/6.0'
 Interface ge-9/0/6.0 must be in the same routing instance as other
interfaces in the zone
error: configuration check-out failed

Oops!

And this is where SRX is different from an ordinary Junos router. On the SRX, interfaces
don’t just live in routing instances; they also live in security zones.

All interfaces configured within the same security zone must also be
configured within the same routing instance.

As the security zone cannot span more than one routing instance, you will either need
to remove the ge-9/0/6.0 interface from the new routing instance or place it in a dif-
ferent security zone. Given the goal of the present project, you remove the
ge-9/0/6.0 interface from the trust zone:

[edit]
jamesq@SRX5800-1# delete security zones security-zone trust interfaces ge-9/0/6.0

And place it in a new DeptA zone:

[edit]
jamesq@SRX5800-1# set security zones security-zone DeptA interfaces ge-9/0/6.0

Which you also quickly configure to allow all traffic for the control plane:

[edit]
jamesq@SRX5800-1# set security zones security-zone DeptA host-inbound-
traffic protocols all

[edit]
jamesq@SRX5800-1# set security zones security-zone DeptA host-inbound-
traffic system-services all

Routing Instances | 691

And now again you view your changes with the show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit security zones security-zone trust interfaces]
- ge-9/0/6.0;
[edit security zones]
 security-zone Mu { ... }
+ security-zone DeptA {
+ host-inbound-traffic {
+ system-services {
+ all;
+ }
+ protocols {
+ all;
+ }
+ }
+ interfaces {
+ ge-9/0/6.0;
+ }
+ }
[edit routing-instances]
+ DeptA {
+ instance-type virtual-router;
+ interface ge-9/0/6.0;
+ protocols {
+ ospf {
+ area 0.0.0.0 {
+ interface ge-9/0/6.0;
+ }
+ }
+ }
+ }

And commit the changes:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

You add the instance option to the show ospf neighbor command to check the adja-
cency within your new instance of OSPF:

jamesq@SRX5800-1> show ospf neighbor instance DeptA
Address Interface State ID Pri Dead
198.18.5.10 ge-9/0/6.0 Full 198.18.5.10 128 34

Great! The adjacency is in a Full state.

Next you add the table option to the show route command to see the new instance’s
custom routing table:

jamesq@SRX5800-1> show route table DeptA

DeptA.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)

692 | Chapter 11: Routing

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 00:00:25, metric 0, tag 0
 > to 198.18.5.10 via ge-9/0/6.0
198.18.5.0/24 *[Direct/0] 00:00:42
 > via ge-9/0/6.0
198.18.5.254/32 *[Local/0] 00:00:42
 Local via ge-9/0/6.0
224.0.0.5/32 *[OSPF/10] 00:00:43, metric 1
 MultiRecv

Beautiful!

And through the magic of routing instances your SRX now has two entirely separate
default routes, the one in the main inet.0 routing table and the second in the new
instance’s DeptA.inet.0 table, as shown in this show route output:

jamesq@SRX5800-1> show route 0/0 exact

inet.0: 18 destinations, 21 routes (18 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 00:12:28, localpref 100
 AS path: 65400 I
 > to 198.18.4.10 via ge-9/0/5.0

DeptA.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[OSPF/150] 00:01:18, metric 0, tag 0
 > to 198.18.5.10 via ge-9/0/6.0

jamesq@SRX5800-1>

Filter-Based Forwarding
Filter-based forwarding (FBF) combines the firewall filter tools explored in Chapter 6
with the routing-instance tools of the preceding section to create an entirely new in-
strument for manipulating traffic flow.

FBF brings the virtualization of the control plane’s routing-instance down into the
data plane’s forwarding table. Rather than segmenting routing and forwarding simply
at the interface level as you did in the preceding section, FBF empowers you to slice
and dice traffic as you see fit.

As depicted in Figure 11-12, if you want web traffic going down one path to the Internet
and all other traffic going down another path, you can do that. If you want your work-
station using one link to the data center for VoIP calls and another for backups, you
can do that too. In fact, there isn’t much that can be dreamt up in the realm of routing
and forwarding that cannot be accomplished with the careful application of FBF.

Filter-Based Forwarding | 693

FBF is sometimes confused with the policy-based routing (PBR) features of legacy and
competing platforms. FBF goes far beyond PBR. PBR is, at best, a more extensible
version of a static route. FBF is PBR on steroids. FBF has all the same traffic matching
capabilities, but it ties them directly into the power of Junos’s full complement of dy-
namic routing protocols.

Ultimately, all this power in FBF is made possible through the existence of just one
simple knob, the then routing-instance action in firewall filter terms. Traffic can first
be divided with all the versatility of firewall filter from criteria, and then it can be acted
upon with the equal versatility of an array of unique routing-instance dynamic routing
configuration.

Configuring Filter-Based Forwarding
In the Junos CLI configuration that follows, you will build a simple example of FBF
splitting of HTTP traffic off to the DeptA instance built in the preceding section.

You begin by entering configuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

And move to the firewall filter configuration hierarchy, creating a new filter named
fbf-redirect:

[edit]
jamesq@SRX5800-1# edit firewall filter fbf-redirect

You inspect CLI help for the very wide array of from options for matching traffic in
firewall filter terms:

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# set term HTTP from ?
Possible completions:
> address Match IP source or destination address
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

Figure 11-12. Filter-based forwarding

694 | Chapter 11: Routing

> destination-address Match IP destination address
+ destination-port Match TCP/UDP destination port
+ destination-port-except Do not match TCP/UDP destination port
> destination-prefix-list Match IP destination prefixes in named list
+ dscp Match Differentiated Services (DiffServ) code point
+ dscp-except Do not match Differentiated Services (DiffServ) code point
+ esp-spi Match IPSec ESP SPI value
+ esp-spi-except Do not match IPSec ESP SPI value
 first-fragment Match if packet is the first fragment
+ forwarding-class Match forwarding class
+ forwarding-class-except Do not match forwarding class
 fragment-flags Match fragment flags (in symbolic or hex formats)
- (Ingress only)
+ fragment-offset Match fragment offset
+ fragment-offset-except Do not match fragment offset
+ icmp-code Match ICMP message code
+ icmp-code-except Do not match ICMP message code
+ icmp-type Match ICMP message type
+ icmp-type-except Do not match ICMP message type
> interface Match interface name
+ interface-group Match interface group
+ interface-group-except Do not match interface group
> interface-set Match interface in set
+ ip-options Match IP options
+ ip-options-except Do not match IP options
 is-fragment Match if packet is a fragment
+ packet-length Match packet length
+ packet-length-except Do not match packet length
+ port Match TCP/UDP source or destination port
+ port-except Do not match TCP/UDP source or destination port
+ precedence Match IP precedence value
+ precedence-except Do not match IP precedence value
> prefix-list Match IP source or destination prefixes in named list
+ protocol Match IP protocol type
+ protocol-except Do not match IP protocol type
 service-filter-hit Match if service-filter-hit is set
> source-address Match IP source address
+ source-port Match TCP/UDP source port
+ source-port-except Do not match TCP/UDP source port
> source-prefix-list Match IP source prefixes in named list
 tcp-established Match packet of an established TCP connection
 tcp-flags Match TCP flags (in symbolic or hex formats)
 tcp-initial Match initial packet of a TCP connection

And settle on just two from options to tease out the HTTP traffic you want to match.
You match on port 80 (the well-known TCP port—here matching regardless of direc-
tion, source, or destination port will do) and protocol 6 (the IP protocol number for
TCP):

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# set term http from port 80

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# set term http from protocol 6

Filter-Based Forwarding | 695

And now the key, you configure a then routing-instance DeptA action to send this
HTTP traffic to the new DeptA instance created in the preceding section:

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# set term http then routing-instance DeptA

Of course, packets cannot actually be “sent” to something that only exists virtually
(such as a routing instance). In reality, “sending” traffic to the DeptA routing instance
simply means the forwarding table lookup for this traffic will be derived from the unique
DeptA.inet.0 routing table of that instance.

The default action of a firewall filter is to drop unmatched traffic (even when it is
built for FBF purposes), so you must configure a final term matching and permitting
all other traffic to steer clear of creating an outage:

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# set term accept then accept

You view your completed firewall filter with a show command:

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# show
term http {
 from {
 protocol 6;
 port 80;
 }
 then {
 routing-instance DeptA;
 }
}
term accept {
 then accept;
}

And then jump to the top of the configuration hierarchy:

[edit firewall filter fbf-redirect]
jamesq@SRX5800-1# top

To apply the new firewall filter fbf-redirect against traffic entering the
ge-9/0/1.0 interface:

[edit]
jamesq@SRX5800-1# set interfaces ge-9/0/1.0 family inet filter input fbf-redirect

You check out the final configuration changes with a show command:

[edit]
jamesq@SRX5800-1# show | compare
[edit interfaces ge-9/0/1 unit 0 family inet]
+ filter {
+ input fbf-redirect;
+ }
[edit firewall]
 filter test { ... }
+ filter fbf-redirect {

696 | Chapter 11: Routing

+ term http {
+ from {
+ protocol 6;
+ port 80;
+ }
+ then {
+ routing-instance DeptA;
+ }
+ }
+ term accept {
+ then accept;
+ }
+ }

And commit the changes:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

jamesq@SRX5800-1>

Case Study 11-5: Dynamic Traffic Engineering
In this case study, you will build upon the redundant Internet topology from Case Study
9-4, but this time you’ll use the fresh twists of FBF and routing instances. You will
create precisely the sort of unique traffic engineered solution that is so special to Junos.

To make all of this magic work, you will use one new concept. The rib-group (RIB for
Routing Information Base, which is just a fancy name for a routing table) is the config-
uration vehicle that enables Junos to combine multiple routing tables into groups and
to thereby populate routes across multiple routing tables simultaneously.

In the Junos CLI configuration that follows, you will pick out two lucky /24 ranges of
your Organization-XYZ hosts and dynamically route each through opposite preferred
Internet paths, all while they are otherwise traveling over the identical topology and
using the very same routes, as depicted in Figure 11-13.

You will start by building two forwarding type routing instances and a new firewall
filter steering the respective /24 host ranges each to its own routing instance.

You will modify your existing import BGP routing policies to manipulate the local-
preference values of the received default Internet routes as they are passed to the in-
stance routing tables. These routing policy modifications will make each instance’s
routing table act as the mirror image of the other. Both instances’ tables will see the
identical two BGP default routes from the identical two Internet peers, but each table
will view these same two routes with opposite local-preference values.

This will in turn lead Junos to create opposite forwarding actions for traffic passed by
the firewall filter to the two routing instances. The two chosen /24 ranges of hosts

Filter-Based Forwarding | 697

will route to the public Internet through opposite Internet connections. This will hap-
pen despite the fact that their traffic is otherwise identical and entering the SRX through
the very same ge-9/0/4.0 interface.

Meanwhile, thanks to the power of Junos, all of this traffic engineering flexibility is
achieved without the loss of one bit of dynamic routing redundancy. Despite opposite
preferred routes, each routing table will nonetheless see the redundant route through
the counterpart’s preferred Internet connection. This redundant route will simply be
placed in each table with a Local Preference opposite to that of the other table.

You begin your work by entering configuration mode with the edit command:

jamesq@SRX5800-1> edit
Entering configuration mode

Figure 11-13. Dynamic traffic engineering

698 | Chapter 11: Routing

And create your two new routing instances named prefer1 and prefer2:

[edit]
jamesq@SRX5800-1# set routing-instances prefer1 instance-type forwarding

[edit]
jamesq@SRX5800-1# set routing-instances prefer2 instance-type forwarding

Both routing instances are as simple as could be. Each contains the required instance-
type statement and nothing more. As forwarding instances, they will both act as
headless containers for new routing and forwarding tables. Neither will contain any
interfaces or routing protocols.

You apply a new firewall filter named prefer to your inbound DeptA zone interface
ge-9/0/4.0:

[edit]
jamesq@SRX5800-1# set interfaces ge-9/0/4.0 family inet filter input prefer

Then you jump to the firewall filter configuration hierarchy to actually create this
new filter:

[edit]
jamesq@SRX5800-1# edit firewall filter prefer

You build the first term prefer1 to match traffic sourced from the 10.1.1.0/24 range
(abbreviated as 10.1.1/24) and pass it to the prefer1 routing instance:

[edit firewall filter prefer]
jamesq@SRX5800-1# set term prefer1 from source-address 10.1.1/24

[edit firewall filter prefer]
jamesq@SRX5800-1# set term prefer1 then routing-instance prefer1

You build the second term prefer2 to match traffic sourced from the 10.1.2.0/24 range
(abbreviated as 10.1.2/24) and pass it to the prefer2 routing instance:

[edit firewall filter prefer]
jamesq@SRX5800-1# set firewall filter prefer term prefer2 from
source-address 10.1.2/24

[edit firewall filter prefer]
jamesq@SRX5800-1# set firewall filter prefer term prefer2 then
routing-instance prefer2

As all firewall filters drop unmatched traffic by default, you create a closing term to
accept all other traffic into the ge-9/0/4.0 interface:

[edit firewall filter prefer]
jamesq@SRX5800-1# set firewall filter prefer term accept then accept

You hop to the top of the configuration hierarchy:

[edit firewall filter prefer]
jamesq@SRX5800-1# top

Filter-Based Forwarding | 699

And edit the import routing policy for the primary Internet peering:

[edit]
jamesq@SRX5800-1# edit policy-options policy-statement ISP-in

You show the routing policy before you begin making changes:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# show
term default-in {
 from {
 route-filter 0.0.0.0/0 exact;
 }
 then accept;
}
term block {
 then reject;
}

You create a new term named higher that will modify all matching received routes with
a higher (more preferred) BGP Local Preference value of 200 when they are passed to
the prefer1.inet.0 routing table:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# set term higher to rib prefer1.inet.0

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# set term higher then local-preference 200

The prefer1.inet.0 RIB is the new IPv4 routing table from the new prefer1 routing
instance (in the same way that inet.0 is the IPv4 routing table outside the routing
instances).

You insert this new higher term at the front of the policy chain before the existing
default-in term:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# insert term higher before term default-in

You show the modified routing policy:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# show
term higher {
 to rib prefer1.inet.0;
 then {
 local-preference 200;
 }
}
term default-in {
 from {
 route-filter 0.0.0.0/0 exact;
 }
 then accept;
}
term block {

700 | Chapter 11: Routing

 then reject;
}

Note that the new higher term, as configured, would not be enough to accomplish your
goal. It does not itself accept any routes. The final block term would reject the matched
routes were it not for the second term default-in matching and accepting the
0.0.0.0/0 prefix as before. This existing default-in term is already generic enough to
accept the default route into any relevant routing table.

Routing policy itself has no effect on populating routes to additional
routing tables. That is accomplished through the rib-group configura-
tion later in this section. Routing policy only acts to modify or filter the
routes that otherwise would be passed wholesale by the default rib-
group configuration.

You pop up one level in the configuration hierarchy:

[edit policy-options policy-statement ISP-in]
jamesq@SRX5800-1# up

And edit the import routing policy for the second Internet peering:

[edit policy-options policy-statement]
jamesq@SRX5800-1# edit policy-statement redundant-ISP-in

You again show the routing policy before making changes:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# show
term redundant-default-in {
 from {
 route-filter 0.0.0.0/0 exact;
 }
 then {
 local-preference 50;
 accept;
 }
}
term block {
 then reject;
}

Here you first delete the existing local-preference policy action:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# delete term redundant-default-in then local-preference 50

Before creating another new term named higher that will likewise modify all matching
received routes with a higher (more preferred) BGP Local Preference value of 200 when
they are passed to the prefer2.inet.0 routing table through this policy:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# set term higher to rib prefer2.inet.0

Filter-Based Forwarding | 701

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# set term higher then local-preference 200

You insert this new higher term at the front of the policy chain before the existing
redundant-default-in term:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# insert term higher before term redundant-default-in

And now show this modified routing policy as well:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# show
term higher {
 to rib prefer2.inet.0;
 then {
 local-preference 200;
 }
}
term redundant-default-in {
 from {
 route-filter 0.0.0.0/0 exact;
 }
 then accept;
}
term block {
 then reject;
}

You hop to the top of the configuration to complete your work:

[edit policy-options policy-statement redundant-ISP-in]
jamesq@SRX5800-1# top

You configure BGP to associate all of its IPv4 routes with a new rib-group named
bgprib:

[edit]
jamesq@SRX5800-1# set protocols bgp family inet unicast rib-group bgprib

You configure this new rib-group bgprib to push the routes (import them, in Junos
terminology) to not only the default inet.0 routing table, but also the new
prefer1.inet.0 and prefer2.inet.0 routing tables:

[edit]
jamesq@SRX5800-1# set routing-options rib-groups bgprib import-rib
[inet.0 prefer1.inet.0 prefer2.inet.0]

And finally, you show your now completed FBF, routing instance, and RIB group
configuration:

[edit]
jamesq@SRX5800-1# show | compare
[edit interfaces]
+ ge-9/0/4 {
+ unit 0 {
+ family inet {

702 | Chapter 11: Routing

+ filter {
+ input prefer;
+ }
+ }
+ }
+ }
[edit routing-options]
+ rib-groups {
+ bgprib {
+ import-rib [inet.0 prefer1.inet.0 prefer2.inet.0];
+ }
+ }
[edit protocols bgp]
+ family inet {
+ unicast {
+ rib-group bgprib;
+ }
+ }
[edit policy-options policy-statement ISP-in]
+ term higher {
+ to rib prefer1.inet.0;
+ then {
+ local-preference 200;
+ }
+ }
 term default-in { ... }
[edit policy-options policy-statement redundant-ISP-in]
+ term higher {
+ to rib prefer2.inet.0;
+ then {
+ local-preference 200;
+ }
+ }
 term redundant-default-in { ... }
[edit policy-options policy-statement redundant-ISP-in term
redundant-default-in then]
- local-preference 50;
[edit firewall]
 filter test { ... }
+ filter prefer {
+ term prefer1 {
+ from {
+ source-address {
+ 10.1.1.0/24;
+ }
+ }
+ then {
+ routing-instance prefer1;
+ }
+ }
+ term prefer2 {
+ from {
+ source-address {
+ 10.1.2.0/24;
+ }

Filter-Based Forwarding | 703

+ }
+ then {
+ routing-instance prefer2;
+ }
+ }
+ term accept {
+ then accept;
+ }
+ }
[edit routing-instances]
+ prefer1 {
+ instance-type forwarding;
+ }
+ prefer2 {
+ instance-type forwarding;
+ }

You commit the changes:

[edit]
jamesq@SRX5800-1# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

And then check out the results with the show route protocol bgp command:

jamesq@SRX5800-1> show route protocol bgp

inet.0: 23 destinations, 27 routes (23 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 01:57:50, localpref 100
 AS path: 65400 I
 > to 198.18.4.10 via ge-9/0/5.0
 [BGP/170] 01:57:46, localpref 100
 AS path: 65500 I
 > to 198.18.5.10 via ge-9/0/6.0

prefer1.inet.0: 1 destinations, 2 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 00:00:15, localpref 200
 AS path: 65400 I
 > to 198.18.4.10 via ge-9/0/5.0
 [BGP/170] 00:00:15, localpref 100
 AS path: 65500 I
 > to 198.18.5.10 via ge-9/0/6.0

prefer2.inet.0: 1 destinations, 2 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 00:00:15, localpref 200
 AS path: 65500 I
 > to 198.18.5.10 via ge-9/0/6.0
 [BGP/170] 00:00:15, localpref 100

704 | Chapter 11: Routing

 AS path: 65400 I
 > to 198.18.4.10 via ge-9/0/5.0

Excellent job!

The default inet.0 table shows the redundant paths through both AS 65400 and AS
65500 with equal Local Preference values of 100, and so it chooses the first path through
AS 65400 for its lower router identification (the next relevant tiebreaker).

But the prefer1.inet.0 and prefer2.inet.0 tables each have more deliberate
tiebreakers.

The prefer1.inet.0 table prefers the AS 65400 path for its carefully engineered Local
Preference value of 200, while it retains the AS 65500 path as a backup at a default Local
Preference value of 100.

The prefer2.inet.0 table prefers the opposite AS 65500 path for its own carefully en-
gineered Local Preference value of 200, while it retains the AS 65400 path as a backup
at the default Local Preference value of 100.

Just as you designed, each table is a mirror image of the other. Your firewall filter
prefer will now dynamically engineer traffic from the 10.1.1.0/24 and 10.1.2.0/24
prefixes through opposite Internet paths.

Summary
With Junos for the SRX, you now have in your hands the most powerful routing plat-
form in the business. And not just in the security business, it is the most powerful
routing platform in the routing business. Junos was built for and is used by the largest
and most complex IP networks in the world.

In this chapter, you’ve had a little taste of the possibilities. You started with the basics
and then explored nearly all of the major IP routing features of Junos for the SRX. You
built static and dynamic routing. You connected your SRX to the global Internet. And
then you explored the most powerful tools of the best router jocks in the business,
routing instances and filter-based forwarding.

But again, this chapter is not meant to replace the extensive coverage of IP routing in
Junos. For more information, see the Juniper Networks Technical Library books pub-
lished by O’Reilly at either http://www.oreilly.com or http://www.juniper.net/books. Ti-
tles include Junos Fundamentals, Junos Enterprise Routing, and the Junos Cookbook.
Please check out these excellent books and expand your horizons even more!

Summary | 705

http://www.oreilly.com
http://www.juniper.net/books
http://oreilly.com/catalog/9780596802325/
http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596100148/

Chapter Review Questions
1. What are the differences between a routing table and a forwarding table?

2. What does Address Resolution Protocol accomplish?

3. Why is dynamic routing typically a better solution than static routing?

4. What interior gateway protocols are supported in Junos?

5. How are routes passed between protocols in Junos?

6. How is equal cost multipath enabled in Junos?

7. What are the most preferred types of routes in a Junos routing table?

8. What protocol is used for Internet peering?

9. What is a routing instance in Junos?

10. What does filter-based forwarding accomplish?

Chapter Review Answers
1. Routing tables contain Layer 3 IP reachability information at a control plane level

where forwarding tables contain data plane level actions for building Layer 2 head-
ers and moving packets through toward their destinations. The control plane uses
the information in the routing table to create the forwarding table.

2. Address Resolution Protocol (ARP) is used for resolving Layer 3 IP addresses to
their Layer 2 Ethernet MAC addresses. This makes it possible for IP packets to be
forwarded over Layer 2 Ethernet links.

3. Dynamic routing improves the availability of a network by allowing systems to
respond to the inevitable failures by forwarding traffic around them. Static routing
makes a fixed forwarding decision which does not change, even in the event of
downstream failures.

4. OSPF, IS-IS, and RIP are the interior gateway protocols (IGPs) supported in Junos.
Where OSPF and IS-IS are modern link-state protocols, RIP is a deprecated
distance-vector protocol typically used for supporting legacy infrastructure.

5. Junos supports routing policy for the exchange of routes between routing protocols
(often termed “route redistribution” within the industry).

6. Equal cost multipath (ECMP) is configured in Junos through a routing policy ap-
plied to the forwarding table.

7. The most preferred routes in a Junos routing table are those for networks directly
connected to the Junos device. The most preferred user-configurable routes are
static routes. And, of course, the preference of a routing protocol is also user-
configurable in Junos.

8. Border Gateway Protocol (BGP) is used for peerings between organizations across
the global Internet.

706 | Chapter 11: Routing

9. A routing instance is a virtual container for, variously, interfaces, routing protocols,
and routing tables within Junos.

10. Filter-based forwarding (FBF) combines Junos firewall filters with routing instan-
ces to create powerful new forwarding table actions that can be based on a variety
of other Layer 3 and Layer 4 header criteria besides the traditional destination IP
address based forwarding decisions typical of IP routers. Uniquely in Junos, this
can all be accomplished with full dynamic routing redundancy.

Chapter Review Answers | 707

CHAPTER 12

Transparent Mode

There are two common challenges to deploying traditional Layer 3 network firewalls
into a network. The first challenge is that you typically must change the IP routing to
support the new firewall into the network, which can be a particularly difficult task,
especially when dealing with readdressing segments. The other challenge with tradi-
tional firewalls is that they are very weak routers, at least in terms of dynamic routing
protocol support, not to mention the fact that the security teams which managed the
firewalls are typically separate from the teams which managed the routing
infrastructure.

Since the SRX runs Junos, you’re already equipped with the best routing platform there
is, so routing support isn’t an issue for the SRX, even though it is for many competitive
firewalls and the previous generation of ScreenOS devices.

Transparent mode essentially allows the SRX to act as a Layer 2 bridge with the added
security functionality of being a stateful firewall, as well as providing additional services
such as intrusion protection services (IPS). At the time of this writing, transparent mode
is only supported on the high-end SRX platforms and not on the branch SRX Series.
However, support is likely to come on the branch SRX platforms in the near future,
and quite possibly while you’re reading these pages.

Transparent Mode Overview
Fundamentally, transparent mode is very similar to Layer 3 routed mode on the SRX
platform. There are some limitations that are discussed later in this chapter that you
should be aware of when balancing the decision to deploy transparent mode, but this
is a feature that certainly has its place in contemporary networking. First this chapter
reviews the reasons for deployment, how the technology functions, and the different
components and concepts to be aware of when deploying transparent mode. After this
review, actual configuration examples are shown. Even if you believe you are already
savvy on the concepts of transparent mode, try to avoid the urge to skip the review,
because these configurations assume your knowledge is current and up-to-date.

709

Why Use Transparent Mode?
You should consider using transparent mode because certain networking scenarios are
not ideal for a Layer 3 implementation of a firewall. The good news is that transparent
mode can be a viable alternative for administrators who want to avoid deployment
dilemmas that Layer 3 implementations can cause.

Here are a few common scenarios in which to implement transparent mode:

Segmenting a Layer 2 domain

Sometimes day-to-day operations require that a firewall be placed where it did not exist
before, a common example being for compliance with security standards such as PCI,
HIPAA, SOX, and other international security standards. For instance, these standards
may require that firewalling is present between a web server farm and a database server
farm existing in a DMZ. Although integrating a Layer 3 firewall might be an option, it
would require you to make IP address changes on at least one set of the devices. This
can be easier than it sounds, especially if you have lots of hooks accessing the applica-
tions by IP address, and if the applications cannot easily change their IP address. In this
situation, you can simply implement a transparent mode firewall between the web and
server farms, without having to change any IP addresses or make any changes on the
application side. At the same time, you can now enforce security between these different
segments.

Figure 12-1 shows a before and after view of how a transparent mode SRX can be
inserted into a network to provide security.

As you can see, if the firewall is in Layer 3 mode, it can’t separate hosts on the same
Layer 2 domain because of where it is logically placed. If you wanted to insert a Layer
3 firewall, you could, but you would need to re-IP-address your network to accommo-
date the changes. Transparent mode firewalls, on the other hand, do not segment your
network from a Layer 3 perspective, and therefore they can sit between hosts on the
same Layer 2 network to protect them from other hosts on the same Layer 2 network,
along with enforcing security against remote attacks.

Complex routing environments

Traditional firewalls typically did not make good routers, both from a routing capacity
perspective and from a feature perspective. Now that Juniper offers a firewall that is on
Junos, there is a very complete routing infrastructure on the firewall itself, so this may
not be as big a concern as it is with other products. Nevertheless, some environments
may feel more comfortable with firewalls only performing security functions, and leav-
ing routing up to separate routers. In these environments, firewalls can sit between
routers transparently and simply inspect the traffic and forward it like a Layer 2 switch.

710 | Chapter 12: Transparent Mode

Figure 12-1. Segmenting a Layer 2 domain

Transparent Mode Overview | 711

Separation of duties

In some environments, separate teams manage the routing, switching, firewalling, and
IPS services, or some combination of these roles. In these environments, having routing
on the firewalls might mean separate teams have to be involved, which may not be
ideal. Although there is no technical reason for using transparent mode in this scenario,
other factors such as logistical and political issues can make transparent mode more
ideal.

Existing transparent mode infrastructure

Sometimes an existing transparent mode firewall infrastructure is in place that must be
upgraded. In these scenarios, swapping out the existing transparent mode firewalls with
new transparent mode firewalls is the easiest transition, as switching from Layer 2 to
Layer 3 would result in changes that need to occur with the Layer 3 infrastructure.

MAC Address Learning
An SRX in transparent mode acts like a switch with regard to how it forwards traffic.
As you know, a true Layer 2 switch does not forward based on IP addresses, but rather
based on the destination Media Access Control (MAC) addresses of the frames it re-
ceives. To forward to a destination, the SRX must learn where the MAC addresses “live”
on the network. To do this, the SRX learns which ports are a path to a MAC address
based on the source MAC address that is learned on that particular port. These entries
are cached into a bridging table on the SRX and are used for packet forwarding, in-
cluding policy lookup, as we will discuss in “Transparent Mode Flow Proc-
ess” on page 721. If the SRX does not know on which port in the virtual LAN (VLAN)
the destination MAC address can be reached, it performs one of two actions depending
on the configuration:

Flood the frame
By default, the SRX simply floods the packet out all interfaces in the same VLAN
except the port on which the packet arrived. This is how a switch normally func-
tions when it doesn’t know the destination MAC address.

ARP with traceroute
In some cases, customers may not wish to flood any packets out for security rea-
sons, so Junos offers you an alternative to flooding the traffic, which is to send an
Address Resolution Protocol (ARP) and optionally an Internet Control Message
Protocol (ICMP) packet with a time to live (TTL) of 1, while queuing the packet.
If no destination responds, the original packet is dropped.

Transparent Mode and Bridge Loops, Spanning Tree Protocol
One thing you must be aware of when working with transparent mode firewalls is that
if you do not properly configure a transparent mode firewall you may trigger a bridge

712 | Chapter 12: Transparent Mode

loop. If you are connecting the SRX directly to routed interfaces on peer devices, this
should not be an issue, but if you are connecting the SRX to switch interfaces, you need
to give some thought to your design. Because at the time of this writing the SRX does
not actively participate in Spanning Tree Protocol (STP) itself, it does forward the Bridge
Protocol Data Units (BPDUs) and the STP messages. Additionally, you may need to
tweak your spanning tree configuration to properly forward traffic to the active SRX
node. If you do not do this, traffic may not pass through the SRX, or failovers between
nodes may not function properly. These different configurations are examined through-
out this chapter.

Transparent Mode Limitations
At the time of this writing, there are some limitations when it comes to transparent
mode on the SRX, particularly in contrast to ScreenOS. You should be aware of the
following limitations before configuring transparent mode:

Transparent mode is only supported on the high-end SRX platform
The biggest limitation of transparent mode today is that it is only available on the
high-end SRX platforms and not on the branch SRX Series platforms (see Chap-
ter 1 for exact definitions of these platforms). There are plans to bring transparent
mode support into the product in the near future; however, the configuration may
vary on the branch SRX Series.

The branch SRX Series does support Ethernet switching, but when
forwarding traffic in a flow-based manner, traffic must be routed
through the branch SRX Series device.

Virtual private network (VPN) support
At the time of this writing, VPN termination on Integrated Routing and Bridging
(IRB) interfaces is not supported in transparent mode. This termination is sup-
ported on virtual LAN (VLAN) interfaces in ScreenOS, but it is not yet supported
on the SRX in transparent mode. This feature will likely be supported in the future.

Mixed mode Layer 2/Layer 3 support
At the time of this writing, you can only configure Layer 2 or Layer 3, but not both,
simultaneously. This was never supported on ScreenOS, however, and is likely to
be supported in the near future on SRX.

IPv6 pass-through
At the time of this writing, IPv6 pass-through is not supported on the SRX in
transparent mode, even with the bypass-all-non-ip flag set. IPv6 in transparent
mode will be supported in the future on the SRX.

Transparent Mode Overview | 713

Network Address Translation (NAT)
At the time of this writing, NAT is not supported in transparent mode. Policy NAT
is supported in ScreenOS starting with version 6.1, but this is not yet supported in
the SRX for transparent mode.

Some application layer gateways (ALGs)
Most, but not all, ALGs are supported in transparent mode. You should consult
the documentation for the release you are planning to use, to ensure that the ALG
you need is supported in the release.

Virtual router support
At the time of this writing, you cannot place IRB interfaces into different virtual
routers; they must remain in the Inet.0 routing table.

QinQ tunneling
QinQ tunneling is not supported on the high-end SRX (either in Layer 3 or in Layer
2) at the time of this writing.

Changing modes
To change from Layer 3 to Layer 2 mode (or vice versa) you must reboot the chassis.

Transparent Mode Components
There are several components of transparent mode, some common to Layer 3 and some
specific to transparent mode itself. This section examines the different components of
transparent mode; configuration examples follow later in the chapter. These compo-
nents are also the building blocks of the case study at the end of the chapter.

Interfaces, family bridge, and bridge domains in transparent mode

Transparent mode ushers in a few new concepts concerning interfaces and forwarding.
Transparent mode follows the same interface model as standard Layer 3 interfaces,
with the use of physical interface properties, followed by logical interface configuration.
The main differences that exist are as follows:

Family bridge
Rather than using family Inet, Inet6, ISO, and so on, since there is no explicit IP
address configuration, we will use the family bridge, which is the same as what the
MX Series uses for its platform.

Interface addressing
In transparent mode, there is no IP address assigned to a logical interface. The SRX
functions as a switch and not as a router. Traffic is switched toward the SRX by
listening for MAC addresses and determining that they live on the other side of the
SRX. The interfaces do have MAC addresses, but the source/destination MAC
addresses of transit traffic will never be of the SRX’s interfaces themselves. A con-
cept of IRB interfaces allows you to send management traffic to the SRX, but other
than that, the traffic will not be addressed to the SRX itself.

714 | Chapter 12: Transparent Mode

Bridge domains
These are the Layer 2 equivalent of virtual routers in Layer 3 mode. Essentially,
bridge domains allow you to separate the Layer 2 traffic, including spanning tree
domains, and other forwarding options. We will cover bridge domains and how
they influence transparent mode in “Configuring Integrated Routing and Bridg-
ing” on page 729.

Interface Modes in Transparent Mode
In transparent mode, there are two different modes in which you can place an interface:
access mode and trunk mode. If you have any experience with the EX Series or MX
Series platforms, the SRX follows the same convention here, although unlike the EX
Series platform (and like the MX Series platform) the SRX uses the family bridge
convention.

Access mode
Access mode is the default mode family bridge interfaces. In access mode, the
interface only has a single unit that uses a single VLAN member, which can be
configured for the interface. Traffic arriving on the interface is classified with the
VLAN which is configured. The term access mode comes from the fact that most
end systems that access the network on these types of interfaces are configured on
a switch. For the SRX, however, access mode simply means there is only a single
VLAN configured on the interface.

Trunk mode
The SRX supports the ability to terminate multiple VLANs on a single interface,
through the use of 802.1q trunking. To accommodate this, you will need to con-
figure an interface in trunk mode, which uses VLAN tagging to differentiate VLANs
for the purposes of separation and classification of traffic. You can use a native
VLAN, which is untagged, or you can use an interface with all tagged VLANs.
When using trunk mode, you can configure multiple units (logical interfaces), each
having one or more VLAN members present on it.

You cannot mix both access mode units and trunk mode units on a
single interface, and, if you are using access mode, you can only have a
single unit present. Just like Layer 3 mode, you can put different logical
interface units into different zones, and you can put different VLANs
into different bridge domains (similar to how you can put different log-
ical interface units into different virtual routers in Layer 3 mode).

Bridge Domains
As mentioned earlier in this chapter, bridge domains are used to logically separate traffic
on the SRX. In reality, they are very similar to VLANs in terms of how the traffic is
processed in the system; however, the bridge domain allows Junos to abstract the

Transparent Mode Overview | 715

VLANs and their associated tags from the actual traffic processing. Typically, most
implementations require that you configure a separate bridge domain for each VLAN,
although this isn’t a strict requirement; you can bridge multiple VLANs together if you
wish.

Within a bridge domain, you can configure either a single or multiple VLANs to be
part of the same bridge domain; however, you can only configure an IRB interface in a
bridge domain if you are using a single VLAN for the bridge domain.

IRB Interfaces
As mentioned, the standard logical interfaces on the SRX do not support IP addresses
when the SRX is configured in transparent mode; however, the SRX does support a
special type of interface called an IRB interface. You can think of an IRB interface as a
VLAN interface from Junos’ switching capabilities. IRB interfaces are virtual interfaces
that allow you to configure IP addressing on the interface so that even in transparent
mode you can communicate with the SRX on data plane interfaces. Of course, even in
transparent mode you can manage the device through the fxp0 interface, which does
have full management capabilities. The purpose of IRB interfaces is so that you can
manage a transparent mode device on the data plane by making an addressable inter-
face. At the time of this writing, the IRB interface cannot route traffic itself; rather, you
can use it to accept inbound management connections, including pings, SSH, Telnet,
and HTTP, and you can make outbound connections on the IRB interface to other
devices.

In transparent mode, you cannot put IRB interfaces into different virtual
routing instances, because different virtual routers are not supported.

Transparent Mode Zones
For those of you who have a rich experience working with ScreenOS, there is a slight
difference with the way security zones are defined in Junos. Unlike ScreenOS, where
you were required to prepend a Layer 2 security zone name with L2-<name>, in Junos
there is no requirement for any special naming convention. Security zones are associ-
ated with Layer 2 by the interfaces that are in them, and therefore the system is smart
enough to know it is a Layer 2 zone without any special naming requirements. So, in
reality, there are no differences between Layer 2 and Layer 3 security zones from a
configuration perspective. Just like Layer 3 security zones, you place the logical inter-
faces (e.g., ge-0/0/4.20) into the security zones, so the SRX can support not only access
mode interfaces but also 802.1q VLANs that are bound to a specific unit on a trunk
link. One exception is that IRB interfaces themselves are not placed within security
zones, but the surrounding Layer 2 interfaces are, so you can still filter out traffic for

716 | Chapter 12: Transparent Mode

them. We will cover this in more detail in the configuration examples later in this
chapter.

Transparent Mode Security Policy
Security policies in transparent mode are almost identical to those in Layer 3, with the
only exception being that VPN is not supported in transparent mode, so therefore
policy-based VPNs would not be supported in the security policies.

For those of you who do not have experience with ScreenOS, the Layer 2 security
policies in Junos are pretty straightforward. In transparent mode, the security policy is
no different from a Layer 3 policy. The transparent mode policy is still composed of
filtering based on From/To zones, source addresses, destination addresses, and appli-
cations (source port, destination port, and protocol). However, one thing to keep in
mind is that unlike ScreenOS, intrazone blocking is always enforced (for both Layer 2
and Layer 3 modes), so you always need a security policy, even for traffic coming from
and going to the same zone (e.g., from Trust to Trust). Also note that in transparent
mode, you cannot filter on Layer 2 components (again, we will cover this later in this
chapter).

Transparent Mode Specific Options
Transparent mode supports the following flow configurations that are not supported
in Layer 3:

Block all non-IP packets
If the SRX sees non-IP packets (or packets that are not involved with IP, such as
ARP, Internet Group Management Protocol [IGMP], or Dynamic Host Configu-
ration Protocol [DHCP], for example), the SRX will silently drop them. This in-
cludes broadcast and multicast traffic.

Bypass all non-IP unicast traffic
This option permits non-IP unicast traffic to be sent through the box. Note that
this does not include IPv6, which is dropped if you attempt to forward it through
the SRX. If you do need to forward IPv6 through the SRX, the recommendation is
to use Generic Route Encapsulation (GRE) tunneling on the routers.

No packet flooding
By default, the SRX floods all packets with an unknown destination MAC address
out all interfaces in the same VLAN on which the packet arrived, except the source
interface. This is the standard behavior for bridging/switching devices when they
do not know on which port the destination MAC address can be reached. Some
administrators would like to avoid this behavior if the destination MAC address is
not known, and have the SRX ARP for the destination MAC address. There are
two options for this: ARP and send an ICMP traceroute, or just simply ARP.

Transparent Mode Overview | 717

QoS in Transparent Mode
Starting in Junos 10.1, the SRX supports the ability to perform Quality of Service (QoS)
in transparent mode. Transparent mode QoS allows you to perform classification and
rewriting based on 802.1p values, along with being able to do standard shaping and
priority processing based on these QoS values. Note that transparent mode does not
support classification or rewriting based on IP precedence or Differentiated Services
Code Point (DSCP) values, only on the Layer 2 802.1p values, so if you need to classify
based on IP precedence or DSCP, you should do it upstream or downstream and copy
the equivalent values into the 802.1p field so that the SRX can apply the appropriate
QoS in transparent mode. “Configuring Transparent Mode QoS” on page 736 takes
a deep look at this functionality.

VLAN Rewriting
Many network engineers consider VLAN rewriting (also known as VLAN retagging)
as the NAT of Layer 2 VLAN tags when in Layer 2 mode. In some networks, VLAN
rewriting is used to ensure that “clean” traffic that may be on the same VLAN has passed
through a firewall; to do this, we can use different VLAN tags on different sides of the
firewall. In other cases, there may be a handoff between different network boundaries
(e.g., between a customer and an Internet service provider [ISP]), so to keep things
simple on the customer end, VLAN rewriting can be used to ensure that there is no
VLAN overlap. In Layer 3 mode, networks can be segmented simply by routing the
traffic between VLANs (including performing other services such as firewalling and
IPS); however, in Layer 2 mode, a device does not perform any of the routing transforms
to route traffic between Layer 3 networks. When you want to transform the VLAN on
one side of the firewall in transparent mode, you would want to use VLAN rewriting.
Essentially, VLAN rewriting simply defines how the VLANs are translated by mapping
VLANs on a one-to-one ratio. For instance, in Figure 12-2, we are mapping VLAN 20
to VLAN 80. We will cover this concept later in the configuration example section.

Only tagged traffic on VLANs can be translated. This means the traffic
on the native VLAN cannot be translated since there is no tag. You
would need to make sure the surrounding networking devices tagged
this native VLAN on their end, for you to translate the VLAN on the
SRX.

High Availability with Transparent Mode
The SRX supports the ability to operate an SRX chassis cluster in transparent mode.
Chassis clustering in transparent mode operates very similarly to Layer 3 mode, but
with the same differences as standalone Layer 3 compared to standalone Layer 2.

718 | Chapter 12: Transparent Mode

Transparent mode features have been developed over time, so you should be aware of
the following high availability (HA) transparent mode features:

Active/passive clusters
Active/passive transparent mode HA is supported in Junos 9.6 and later.

Active/active clusters
Active/active transparent mode HA is supported in Junos 10.2 and later.

IDP support in clusters
IDP is supported in Layer 2 chassis clusters as of Junos 10.0 for active/passive and
active/active.

Figure 12-2. VLAN rewriting

Transparent Mode Overview | 719

When operating in transparent mode HA clusters, you need to be especially aware of
bridge loops, and how transparent mode triggers traffic failovers. In Layer 3 mode, the
SRX will send Gratuitous ARPs (GARPs) out the new active Reth interface member
after a failover to signal to the surrounding switches that the SRX’s MAC address has
moved to a new interface (that of the new active Reth member). In transparent mode,
there is no active MAC address or IP address on which to terminate the traffic, so no
GARPs can be sent. Instead, the SRX flaps the old active interfaces up and down to
trigger an STP recalculation. If STP is not properly configured on the surrounding
switches (if applicable), it can lead to traffic not failing over, or other disruptions. Note
that in active/passive mode, only one SRX in the cluster has its data plane active at a
time (just like in active/passive Layer 3 mode). In Layer 2 active/active mode, an indi-
vidual redundancy group is only active on a single SRX data plane at a time, but both
SRX data planes can have different redundancy groups active on them, just like Layer
3 active/active. Of course, you can’t have an individual redundancy group active on
both cluster members at the same time, as this would cause a bridge loop. This chapter’s
case study includes an example of using transparent mode in HA. In addition, the next
section details where to use STP and what version of STP you should be using, and
Chapter 9 discusses chassis clustering in great detail.

Spanning Tree Protocol in transparent mode Layer 2 deployments

When Layer 3 devices surround the SRX cluster in transparent mode, there really isn’t
much of a concern for spanning tree. However, in many cases, Layer 2 switching will
be deployed surrounding the SRX transparent mode cluster. In these cases, although
the SRX will not forward traffic that it receives on an interface that is not active for its
redundancy group, it will forward the BPDUs, and therefore the switches will view this
as a network loop. Disabling STP is generally a bad idea in a production network be-
cause if someone makes a mistake, it can trigger a bridge loop since STP is disabled. At
the same time, using standard STP can be nonideal because of failover timings (up to
50 seconds after a topology change).

It doesn’t really matter if you are using active/passive or active/active.
The concerns are going to be the same.

Here are some guidelines for what you should use for the transparent mode switching
architecture:

Transparent mode without VLAN trunking
If you are not using VLAN trunking on your transparent mode Reth interfaces, you
can simply use Rapid Spanning Tree Protocol (RSTP), which will provide much
better failover times and reliability than standard STP.

720 | Chapter 12: Transparent Mode

Multiple Spanning Trees Protocol (MSTP)
MSTP is actually preferable to RSTP, although in the case of no VLAN trunking,
it shouldn’t make much of a difference.

Transparent mode with VLAN trunking
If VLAN trunking is used, it is possible that a bridge loop may occur within an
individual VLAN, but not on the entire trunk itself. RSTP does not provide any
way to prevent bridge loops within VLANs on a trunk unless the entire link has a
loop on the native VLAN. Instead, you can use MSTP, which enables you to provide
separate instances of STP. This gives you the same benefits of RSTP in terms of
redundancy, but with the ability to separate STP domains similar to PVST+.

You can use Cisco proprietary protocols such as PVST+ and RPVST,
but there really isn’t much of a point with the standardized implemen-
tations of STP that exist.

Transparent Mode Flow Process
The transparent mode flow process is very similar to that of the routed Layer 3 mode
flow process. Essentially, the differences between Layer 2 and Layer 3 are in the for-
warding process, and at the same time, there are some features that are not supported
in transparent mode. There is no difference in the packet flow in terms of the flow
between the Network Processing Unit (NPU), control point (CP), and Services Pro-
cessing Unit (SPU) on the high-end SRXs; all of this occurs in the same fashion. How-
ever, the actual process within the SPU varies slightly.

Figure 12-3 shows the transparent mode packet flow.

Slow-path packet SPU packet processing

Slow-path packet processing consists of the following steps:

1. The initial packet is forwarded from the NPU to the CP, and then from the CP to
the SPU which the CP selects to process the flow.

2. The policing, stateless filtering, and screens can be performed on the SPU (although
this can also occur elsewhere). Most of the screens are performed on the NPU, but
a few screens are performed on the SPU. These screens are typically related to
processing session limits (in conjunction with the CP, which knows about the ses-
sion numbers of all source/destination IP addresses being processed on the box).

3. The SPU will determine if it knows about the session or not. If the session is known,
it will fast-path the session, but in the case of a new session, additional processing
must be performed.

4. Transparent mode differs from Layer 3 routed mode because not only is there no
IP address on its interfaces, but also it does not perform forwarding based on a

Transparent Mode Overview | 721

routing lookup, but rather based on a bridging lookup, since both network seg-
ments are within the same Layer 3 domain. Two scenarios occur during packet
processing:

a. If the destination MAC address is known, it is “learned” similar to how a bridge
or switch would normally function by simply listening for packets and exam-
ining the source MAC address. When a new source MAC address is learned,
it is added to the bridging table. If the destination MAC address for the packet
that the SRX is forwarding is known, it determines the egress interface (and
therefore the egress zone) based on the bridging lookup.

b. If the destination MAC address is unknown, the SRX must try to determine
what port the destination MAC address lives on (even if only two interfaces
are present). By default, the SRX simply floods the packet out all interfaces in
the same VLAN, except for the port on which the packet arrived. This is how
a switch normally functions when it doesn’t know the destination MAC ad-
dress. In some cases, customers may not wish to flood any packets out for
security reasons. For this reason, Junos offers you an alternative to flooding
the traffic, which is to send an ARP and optionally a traceroute, while queuing
the packet. If no destination responds, the original packet is dropped. You can

Figure 12-3. Packet flow diagram

722 | Chapter 12: Transparent Mode

configure how the platform responds to unknown destination MAC addresses
in the flow configuration, configured later in this chapter.

5. Step 4 determined what destination interface to forward the traffic out of, and
therefore the destination zone is known. The source zone is known as soon as the
packet arrives, because the system knows what interface it arrived on, and therefore
what the source zone is. With the knowledge of the source and destination zones
in hand, the SRX can then do a policy lookup in the from/to zone context. The
SRX performs a policy lookup in the specific from/to zone context to match traffic
on the source IP, destination IP, and application (source/destination ports and
protocol).

6. If ALGs are configured, such as File Transfer Protocol (FTP), the SRX must examine
any control traffic which is matched to an ALG. An example of this would be port
21 for FTP, although custom ports can also be used by the ALG which is configured
in a custom application object. For ALG control traffic, the SRX must do several
things. First it must perform packet reassembly if fragmentation is used, along with
TCP reassembly if the application message spans multiple TCP packets, and then
the ALG determines if any additional data sessions need to be opened on the SRX.

7. After the ALG stage is processed (if present), the SRX performs additional services,
such as IPS, if configuration is present.

8. The last stage of packet processing before forwarding the initial packet is to install
the session. In the case of the high-end SRX, the session will be installed on the
ingress/egress NPUs along with the CP, and of course, the session table of the SPU
processing the traffic itself.

9. The packet is sent to the egress NPU where it will be forwarded out the egress
interface.

Fast-path SPU processing

In Figure 12-3, you can see fast-path processing by following the flowchart and taking
the Match Session “Yes” track. The fast-path packet process consists of the following
steps:

1. An inbound packet is received by an interface and sent to the NPU, which provides
processing for that interface. The NPU performs a session lookup and determines
that it knows the session and the SPU processing it. The NPU then forwards the
packet directly to the SPU which owns the session.

2. Policing, stateless filtering, and screens are performed. Technically, the screens that
are applied after the initial packet setup are all on the NPU on the high-end SRX
platforms.

3. The SPU determines if it knows about the session already, which in this case it
does. The session entry will provide cached instructions on how to process the
packet so that the SRX does not have to do any forwarding or policy checks, as
these have already been determined in the first packet processing. Note that if the

Transparent Mode Overview | 723

egress interface which the session is tied to fails, the SRX will attempt to find a new
forwarding path for the destination MAC address, if possible. It either floods the
packet or sends an ARP, and optionally a traceroute, depending on your
configuration.

4. If ALGs are configured, such as FTP, the SRX must examine any control traffic
which is matched to an ALG. An example of this would be port 21 for FTP, al-
though custom ports can also be used by the ALG, which are configured as custom
application objects. For ALG control traffic, the SRX must do several things. First
it must perform packet reassembly if fragmentation is used, along with TCP reas-
sembly if the application message spans multiple TCP packets. The ALG then de-
termines if any additional data sessions need to be opened on the SRX.

5. After the ALG stage is processed (if present), the SRX performs additional services
such as IPS, if configuration is present.

6. The packet is sent to the egress NPU where it is forwarded out the egress interface.

Session teardown

All sessions must come to an end at some point. A session may be terminated for several
different reasons:

TCP
A FIN or RESET is sent.

Session timeout
Sessions that do not have any traffic after the defined idle timeout for that service
will be cleared as a session ageout.

ALG
An ALG can terminate a session based on the control traffic. This may terminate
the control and/or data portion of the session.

Other
There are other reasons why a session may be cleared out, such as an IPS closing
a session due to an attack being detected. Changes to policies or policy schedules
can also trigger a session to close.

After a session has been closed, the SPU signals to the ingress/egress NPUs, the CP,
and if in an HA chassis cluster, its peer SPU that the session has closed.

Configuring Transparent Mode
Now that you have learned the various components of transparent mode, you can
evaluate the configuration of the SRX in transparent mode. This section covers exam-
ples of the different concepts of transparent mode in the same order in which they were
introduced in the preceding section. Additionally, a transparent mode HA example is
provided in the chapter’s case study.

724 | Chapter 12: Transparent Mode

Configuring Transparent Mode Basics
This example creates four interfaces. Two of the interfaces are going to be in access
mode and two are going to be in trunk mode. Additionally, there are six different
VLANs and six different bridge domains.

The interfaces and VLANS are as follows:

• ge-0/0/1 will be in access mode, with VLAN 10 as its VLAN for unit 0.

• ge-0/0/2 will be in access mode, with VLAN 20 as its VLAN for unit 0.

• ge-0/0/3 will be in trunk mode, with VLAN 10 on unit 10, VLAN 30 on unit 30,
and VLAN 40 on unit 40.

• ge-0/0/4 will be in trunk mode, with VLAN 20 on unit 10, VLAN 50 on unit 50,
and VLAN 60 on unit 60.

The six bridge domains are each called L2-VLAN-XX where XX is the VLAN number. The
bridge domains logically separate the traffic for the different VLANs.

Let’s go:

{secondary:node0}[edit]
root@SRX3400-1# edit interfaces ge-0/0/1 unit 0 family bridge

{secondary:node0}[edit interfaces ge-0/0/1 unit 0 family bridge]
root@SRX3400-1# set interface-mode access vlan-id 10

{secondary:node0}[edit interfaces ge-0/0/1 unit 0 family bridge]
root@SRX3400-1# up 3

{secondary:node0}[edit interfaces]
root@SRX3400-1# edit ge-0/0/2 unit 0 family bridge

{secondary:node0}[edit interfaces ge-0/0/2 unit 0 family bridge]
root@SRX3400-1# set interface-mode access vlan-id 20

{secondary:node0}[edit interfaces ge-0/0/2 unit 0 family bridge]
root@SRX3400-1# up 3

{secondary:node0}[edit interfaces]
root@SRX3400-1# edit ge-0/0/3

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set unit 10 family bridge interface-mode trunk vlan-id-list 10

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set unit 30 family bridge interface-mode trunk vlan-id-list 30

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set unit 40 family bridge interface-mode trunk vlan-id-list 40

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set vlan-tagging

Configuring Transparent Mode | 725

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# up

{secondary:node0}[edit interfaces]
root@SRX3400-1# edit ge-0/0/4

{secondary:node0}[edit interfaces ge-0/0/4]
root@SRX3400-1# set unit 20 family bridge interface-mode trunk vlan-id-list 20

{secondary:node0}[edit interfaces ge-0/0/4]
root@SRX3400-1# set unit 50 family bridge interface-mode trunk vlan-id-list 50

{secondary:node0}[edit interfaces ge-0/0/4]
root@SRX3400-1# set unit 60 family bridge interface-mode trunk vlan-id-list 60

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set vlan-tagging

{secondary:node0}[edit interfaces ge-0/0/4]
root@SRX3400-1# up

{secondary:node0}[edit interfaces]
root@SRX3400-1# show
ge-0/0/1 {
 unit 0 {
 family bridge {
 interface-mode access;
 vlan-id 10;
 }
 }
}
ge-0/0/2 {
 unit 0 {
 family bridge {
 interface-mode access;
 vlan-id 20;
 }
 }
}
ge-0/0/3 {
 vlan-tagging;
 unit 10 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 10;
 }
 }
 unit 30 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 30;
 }
 }
 unit 40 {
 family bridge {

726 | Chapter 12: Transparent Mode

 interface-mode trunk;
 vlan-id-list 40;
 }
 }
}
ge-0/0/4 {
 vlan-tagging;
 unit 20 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 20;
 }
 }
 unit 50 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 50;
 }
 }
 unit 60 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 60;
 }
 }
}

{secondary:node0}[edit interfaces]
root@SRX3400-1# up

{secondary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-10 domain-type bridge vlan-id 10

{secondary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-20 domain-type bridge vlan-id 20

{secondary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-30 domain-type bridge vlan-id 30

{secondary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-40 domain-type bridge vlan-id 40

{secondary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-50 domain-type bridge vlan-id 50

{secondary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-60 domain-type bridge vlan-id 60

{secondary:node0}[edit]
root@SRX3400-1# show bridge-domains
L2-VLAN-10 {
 domain-type bridge;
 vlan-id 10;
}
L2-VLAN-20 {

Configuring Transparent Mode | 727

 domain-type bridge;
 vlan-id 20;
}
L2-VLAN-30 {
 domain-type bridge;
 vlan-id 30;
}
L2-VLAN-40 {
 domain-type bridge;
 vlan-id 40;
}
L2-VLAN-50 {
 domain-type bridge;
 vlan-id 50;
}
L2-VLAN-60 {
 domain-type bridge;
 vlan-id 60;
}

Before you can switch from Layer 3 to Layer 2, you must reboot the firewalls in the
cluster. This is required whenever switching from Layer 3 to Layer 2, or vice versa, at
the time of this writing:

{secondary:node0}[edit]
root@SRX3400-1# commit and-quit
warning: Interfaces are changed from route mode to transparent mode. Please
reboot the device or all nodes in the HA cluster!
node0:
configuration check succeeds
node1:
warning: Interfaces are changed from route mode to transparent mode. Please
reboot the device or all nodes in the HA cluster!
commit complete
node0:
commit complete

{primary:node0}
root@SRX3400-1> request system reboot

{secondary:node2}
root@SRX3400-2> request system reboot

You might be asking yourself, why is vlan-id used for the access mode interfaces, and
vlan-id-list for the trunk mode interfaces? This is because access mode interfaces can
only have a single VLAN ID (which is untagged). With trunk mode interfaces, you can
have multiple units each with different VLANs, or you can tie a group of VLANs to a
single trunk mode logical interface. These will be bridged separately (if they are part of
different bridge domains), but it essentially allows you to take a shortcut with defining
the interfaces themselves.

One important thing to note from this example is that for the trunk interfaces with this
configuration, any untagged packets are dropped (or packets tagged for VLANs that

728 | Chapter 12: Transparent Mode

you are not looking for). If you would like to accept untagged packets, you would want
to use the following code:

{secondary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set native-vlan-id 5

Configuring Integrated Routing and Bridging
Transparent mode does not use Layer 3 IP addresses on its interfaces; therefore, there
is no way to communicate with it directly, or to send traffic from the transparent mode
interfaces themselves. To solve this issue, the SRX supports IRB interfaces, so you can
send traffic from the SRX as well as manage the SRX on these interfaces. IRB interfaces
are not required in transparent mode, but they are required if you want to send traffic
out the data plane, or receive traffic directed at the SRX on the data plane in transparent
mode. In this example, the SRX is configured to send syslog messages out the IRB.0
interface in transparent mode, along with allowing inbound management via SSH and
ping. To do this, configure the following:

• Configure the IRB.0 interface in VLAN 60, with an IP address of 192.168.60.1/24.

• Route traffic to syslog server 192.16.15.20 via next-hop 192.168.60.254.

• Allow inbound SSH and pings for the IRB.0 interface.

{primary:node0}[edit]
root@SRX3400-1# set interfaces irb unit 0 family inet address 192.168.60.1/24

{primary:node0}[edit]
root@SRX3400-1# show interfaces irb
unit 0 {
 family inet {
 address 192.168.60.1/24;
 }
}

{primary:node0}[edit]
root@SRX3400-1# set routing-options static route 192.168.15.20 next-hop
192.168.60.254

{primary:node0}[edit]
root@SRX3400-1# show routing-options
static {
 route 192.168.15.20/32 next-hop 192.168.60.254;
}

{primary:node0}[edit]
root@SRX3400-1# set bridge-domains L2-VLAN-60 routing-interface irb.0

{primary:node0}[edit]
root@SRX3400-1# show bridge-domains L2-VLAN-60
domain-type bridge;
vlan-id 60;

Configuring Transparent Mode | 729

routing-interface irb.0;

{primary:node0}[edit]
root@SRX3400-1# set system services ssh

{primary:node0}[edit]
root@SRX3400-1# show system services
ssh;

{primary:node0}[edit]
root@SRX3400-1# edit firewall family inet filter Services term Inbound

{primary:node0}[edit firewall family inet filter Services term Inbound]
root@SRX3400-1# set Inbound from protocol tcp

{primary:node0}[edit firewall family inet filter Services term Inbound]
root@SRX3400-1# set from destination-port 22

{primary:node0}[edit firewall family inet filter Services term Inbound]
root@SRX3400-1# set then accept

{primary:node0}[edit firewall family inet filter Services term Inbound]
root@SRX3400-1# up

{primary:node0}[edit firewall family inet filter Services]
root@SRX3400-1# edit term ICMP

{primary:node0}[edit firewall family inet filter Services term ICMP]
root@SRX3400-1# set from protocol icmp icmp-type echo-request

{primary:node0}[edit firewall family inet filter Services term ICMP]
root@SRX3400-1# set then accept

{primary:node0}[edit firewall family inet filter Services term ICMP]
root@SRX3400-1# up

{primary:node0}[edit firewall family inet filter Services]
root@SRX3400-1# show
term Inbound {
 from {
 protocol tcp;
 destination-port 22;
 }
 then accept;
}
term ICMP {
 from {
 protocol icmp;
 icmp-type echo-request;
 }
 then accept;
}

730 | Chapter 12: Transparent Mode

{primary:node0}[edit]
root@SRX3400-1# set interfaces irb unit 0 family inet filter input Services

{primary:node0}[edit]
root@SRX3400-1# show interfaces irb
unit 0 {
 family inet {
 filter {
 input Services;
 }
 address 192.168.60.1/24;
 }
}

If you want to restrict what services to listen on for the IRB interface,
you should limit the system services allowed on the surrounding inter-
faces in the zones the VLANs are in, and use standard Junos firewall
filters to limit what services are listened for on the IRB interfaces.

Configuring Transparent Mode Security Zones
Now that you have seen the interfaces and placed them into their respective bridge
domains, let’s add them into security zones on the SRX. As mentioned earlier in the
chapter, the Layer 2 security zones don’t have any special properties to them, and the
configuration is just like Layer 3. In this example, the interfaces that were created two
examples ago are configured as follows:

• Place interface ge-0/0/1.0 into the Trust zone.

• Place interface ge-0/0/2.0 into the Untrust zone.

• Place interfaces ge-0/0/3.40, ge-0/0/4.20, and ge-0/0/4.60 into the Trust zone.

• Place interfaces ge-0/0/3.10, ge-0/0/3.30, and ge-0/04.50 into the Untrust zone.

• Enable ping and SSH for all interfaces in the Trust zone; only allow ping for inter-
faces in the Untrust zone.

{primary:node0}[edit]
root@SRX3400-1# edit security zones security-zone trust

{primary:node0}[edit security zones security-zone trust]
root@SRX3400-1# show
host-inbound-traffic {
 system-services {
 ping;
 ssh;
 }
}
interfaces {
 ge-0/0/1.0;

Configuring Transparent Mode | 731

 ge-0/0/3.40;
 ge-0/0/4.20;
 ge-0/0/4.60;
}

{primary:node0}[edit security zones security-zone trust]
root@SRX3400-1# up

{primary:node0}[edit security zones]
root@SRX3400-1# edit security-zone untrust

{primary:node0}[edit security zones security-zone untrust]
root@SRX3400-1# set interfaces ge-0/0/2.0

{primary:node0}[edit security zones security-zone untrust]
root@SRX3400-1# set interfaces ge-0/0/3.10

{primary:node0}[edit security zones security-zone untrust]
root@SRX3400-1# set interfaces ge-0/0/3.30

{primary:node0}[edit security zones security-zone untrust]
root@SRX3400-1# set interfaces ge-0/0/4.50

{primary:node0}[edit security zones security-zone untrust]
root@SRX3400-1# set host-inbound-traffic system-services ping

{primary:node0}[edit security zones security-zone untrust]
root@SRX3400-1# show
host-inbound-traffic {
 system-services {
 ping;
 }
}
interfaces {
 ge-0/0/2.0;
 ge-0/0/3.10;
 ge-0/0/3.30;
 ge-0/0/4.50;
}

Configuring Transparent Mode Security Policies
Now that the separate logical Layer 2 interfaces have been created and assigned to
security zones, let’s create security policies to dictate what traffic is or isn’t allowed to
pass through the device between the various zones.

In this example, the following properties are configured:

• Create a rule from Trust to Untrust which allows any HTTP, HTTPS, Simple Mail
Transfer Protocol (SMTP), and FTP traffic to go from the three trust networks
172.31.20.0/24, 172.31.40.0/24, and 172.31.60.0/24 to the three untrust networks
172.31.10.0/24, 172.31.30.0/24, and 172.31.50.0/24.

732 | Chapter 12: Transparent Mode

• Create a rule which allows only UDP-DNS and PING to return from the three
untrust networks to the three trust networks.

• Log all policies on session close.

• Set the default policy to Deny-All (it should be set as this by default).

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones trust addreess-book address
172.31.20.0/24 172.31.20.0/24

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones trust address-book address
172.31.40.0/24 172.31.40.0/24

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones trust address-book address
172.31.60.0/24 172.31.60.0/24

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones untrust address-book address
172.31.10.0/24 172.31.10.0/24

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones untrust address-book address
172.31.30.0/24 172.31.30.0/24

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones untrust address-book address
172.31.50.0/24 172.31.50.0/24

{primary:node0}[edit]
root@SRX3400-1# show security zones
security-zone untrust {
 address-book {
 address 172.31.10.0/24 172.31.10.0/24;
 address 172.31.30.0/24 172.31.30.0/24;
 address 172.31.50.0/24 172.31.50.0/24;
 }
 host-inbound-traffic {
 system-services {
 ping;
 }
 }
 interfaces {
 ge-0/0/2.0;
 ge-0/0/3.10;
 ge-0/0/3.30;
 ge-0/0/4.50;
 }
}
security-zone trust {
 address-book {
 address 172.31.20.0/24 172.31.20.0/24;
 address 172.31.40.0/24 172.31.40.0/24;
 address 172.31.60.0/24 172.31.60.0/24;

Configuring Transparent Mode | 733

 }
 host-inbound-traffic {
 system-services {
 ping;
 ssh;
 }
 protocols {
 all;
 }
 }
 interfaces {
 ge-0/0/1.0;
 ge-0/0/3.40;
 ge-0/0/4.20;
 ge-0/0/4.60;
 }
}

{primary:node0}[edit]
root@SRX3400-1# edit security policies from-zone trust to-zone untrust policy
Allow-Traffic

{primary:node0}[edit security policies from-zone trust to-zone untrust policy
Allow-Traffic]
root@SRX3400-1# set match source-address [172.31.20.0/24 172.31.40.0/24
172.31.60.0/24]

{primary:node0}[edit security policies from-zone trust to-zone untrust policy
Allow-Traffic]
root@SRX3400-1# set match destination-address [172.31.10.0/24 172.31.30.0/24
172.31.50.0/24]

{primary:node0}[edit security policies from-zone trust to-zone untrust policy
Allow-Traffic]
root@SRX3400-1# set match application [junos-http junos-https junos-smtp
junos-ftp]

{primary:node0}[edit security policies from-zone trust to-zone untrust policy
Allow-Traffic]
root@SRX3400-1# set then permit

{primary:node0}[edit security policies from-zone trust to-zone untrust policy
Allow-Traffic]
root@SRX3400-1# set then log session-close

{primary:node0}[edit security policies from-zone trust to-zone untrust policy
Allow-Traffic]
root@SRX3400-1# up 2

{primary:node0}[edit security policies]
root@SRX3400-1# edit from-zone untrust to-zone trust policy Allow-Inbound

{primary:node0}[edit security policies from-zone untrust to-zone trust policy
Allow-Inbound]

734 | Chapter 12: Transparent Mode

root@SRX3400-1# set match source-address [172.31.10.0/24 172.31.30.0/24
172.31.50.0/24]

{primary:node0}[edit security policies from-zone untrust to-zone trust policy
Allow-Inbound]
root@SRX3400-1# set match destination-address [172.31.20.0/24 172.31.40.0/24
172.31.60.0/24]

{primary:node0}[edit security policies from-zone untrust to-zone trust policy
Allow-Inbound]
root@SRX3400-1# set match application [junos-dns-udp junos-ping]

{primary:node0}[edit security policies from-zone untrust to-zone trust policy
Allow-Inbound]
root@SRX3400-1# set then permit

{primary:node0}[edit security policies from-zone untrust to-zone trust policy
Allow-Inbound]
root@SRX3400-1# set then log session-close

{primary:node0}[edit security policies from-zone untrust to-zone trust policy
Allow-Inbound]
root@SRX3400-1# up 2

{primary:node0}[edit security policies]
root@SRX3400-1# set default-policy deny-all

{primary:node0}[edit security policies]
root@SRX3400-1# show
from-zone trust to-zone untrust {
 policy Allow-Traffic {
 match {
 source-address [172.31.20.0/24 172.31.40.0/24 172.31.60.0/24];
 destination-address [172.31.10.0/24 172.31.30.0/24 172.31.50.0/24];
 application [junos-http junos-https junos-smtp junos-ftp];
 }
 then {
 permit;
 log {
 session-close;
 }
 }
 }
}
from-zone untrust to-zone trust {
 policy Allow-Inbound {
 match {
 source-address [172.31.10.0/24 172.31.30.0/24 172.31.50.0/24];
 destination-address [172.31.20.0/24 172.31.40.0/24 172.31.60.0/24];
 application [junos-dns-udp junos-ping];
 }
 then {
 permit;
 log {

Configuring Transparent Mode | 735

 session-close;
 }
 }
 }
}
default-policy {
 deny-all;
}

Configuring Bridging Options
Several bridging options can be configured on the SRX to manipulate how it processes
packets and performs learning operations in transparent mode. Typically, you won’t
need to alter the configuration of these options, but just in case, this section demon-
strates how to do exactly that.

In this example, the following configurations are performed:

• Your network has some legacy applications which require IPX, DECNET, Apple-
Talk, and Banyan VINES. Since the SRX does not support these protocols, con-
figure the firewall to just bypass them from the firewall for processing.

• Your security posture is strict in terms of information leakage, so configure the SRX
not to flood any packets with an unknown MAC address.

{primary:node0}[edit]
root@SRX3400-1# edit security flow bridge

{primary:node0}[edit security flow bridge]
root@SRX3400-1# set bypass-non-ip-unicast

{primary:node0}[edit security flow bridge]
root@SRX3400-1# set no-packet-flooding

{primary:node0}[edit security flow bridge]
root@SRX3400-1# show
bypass-non-ip-unicast;
no-packet-flooding;

Configuring Transparent Mode QoS
QoS in transparent mode is essentially the same as Layer 3 mode, with the primary
exceptions of how the classification is performed and how the rewriting can be per-
formed (802.1p bits only).

• Classify traffic matching the 802.1p bits 011 to the Expedited Forwarding Class
(low loss priority), and 802.1p bits 111 to the Assured Forwarding Class (high loss
priority) on interfaces reth0 and reth1.

• On reth0 and reth1, rewrite the outgoing 802.1p bits from 011 to 000 and 111 to
101, respectively.

736 | Chapter 12: Transparent Mode

[edit]
root@SRX3600-1# edit class-of-service classifiers ieee-802.1 011

[edit class-of-service classifiers ieee-802.1 011]
root@SRX3600-1# set forwarding-class expedited-forwarding loss-priority low code-
points 011

[edit class-of-service classifiers ieee-802.1 011]
root@SRX3600-1# up 1

[edit class-of-service classifiers]
root@SRX3600-1# edit ieee-802.1 111

[edit class-of-service classifiers ieee-802.1 111]
root@SRX3600-1# set forwarding-class assured-forwarding loss-priority high code-
points 111

[edit class-of-service classifiers ieee-802.1 111]
root@SRX3600-1# up 2

[edit class-of-service]
root@SRX3600-1# edit rewrite-rules

[edit class-of-service rewrite-rules]
root@SRX3600-1# edit ieee-802.1 011

[edit class-of-service rewrite-rules ieee-802.1 011]
root@SRX3600-1# set forwarding-class expedited-forwarding loss-priority low code-
point 000

[edit class-of-service rewrite-rules ieee-802.1 011]
root@SRX3600-1# up

[edit class-of-service rewrite-rules]
root@SRX3600-1# edit ieee-802.1 111

[edit class-of-service rewrite-rules ieee-802.1 111]
root@SRX3600-1# set forwarding-class assured-forwarding loss-priority high code-
point 101

[edit class-of-service rewrite-rules ieee-802.1 111]
root@SRX3600-1# up 2

[edit class-of-service]
root@SRX3600-1# set interfaces reth0 unit 0 classifiers ieee-802.1 011

[edit class-of-service]
root@SRX3600-1# set interfaces reth0 unit 0 rewrite-rules ieee-802.1 011

[edit class-of-service]
root@SRX3600-1# set interfaces reth1 unit 0 classifiers ieee-802.1 111

[edit class-of-service]
root@SRX3600-1# set interfaces reth1 unit 0 rewrite-rules ieee-802.1 111

Configuring Transparent Mode | 737

[edit class-of-service]
root@SRX3600-1# show
classifiers {
 ieee-802.1 011 {
 forwarding-class expedited-forwarding {
 loss-priority low code-points 011;
 }
 }
 ieee-802.1 111 {
 forwarding-class assured-forwarding {
 loss-priority high code-points 111;
 }
 }
}
interfaces {
 reth0 {
 unit 0 {
 classifiers {
 ieee-802.1 011;
 }
 rewrite-rules {
 ieee-802.1 011;
 }
 }
 }
 reth1 {
 unit 0 {
 classifiers {
 ieee-802.1 111;
 }
 rewrite-rules {
 ieee-802.1 111;
 }
 }
 }
}
rewrite-rules {
 ieee-802.1 011 {
 forwarding-class expedited-forwarding {
 loss-priority low code-point 000;
 }
 }
 ieee-802.1 111 {
 forwarding-class assured-forwarding {
 loss-priority high code-point 101;
 }
 }
}

Configuring VLAN Rewriting
Earlier in this chapter, I mentioned that you can use VLAN rewriting to rewrite one
VLAN to another on an interface. This example does exactly that, with the following
configuration:

738 | Chapter 12: Transparent Mode

• On interface ge-0/0/3, configure VLAN retagging to translate VLAN 100 to VLAN
10. Use unit 10 for this translation.

• On interface ge-0/0/4, configure VLAN retagging to translate VLAN 200 to VLAN
20. Use unit 20 for this translation.

{primary:node0}[edit]
root@SRX3400-1# edit interfaces ge-0/0/3

{primary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# set unit 10 family bridge vlan-rewrite translate 100 10

{primary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# show
vlan-tagging;
unit 10 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 10;
 vlan-rewrite {
 translate 100 10;
 }
 }
}
unit 30 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 30;
 }
}
unit 40 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 40;
 }
}

{primary:node0}[edit interfaces ge-0/0/3]
root@SRX3400-1# up

{primary:node0}[edit interfaces]
root@SRX3400-1# edit ge-0/0/4

{primary:node0}[edit interfaces ge-0/0/4]
root@SRX3400-1# set unit 20 family bridge vlan-rewrite translate 200 20

{primary:node0}[edit interfaces ge-0/0/4]
root@SRX3400-1# show
vlan-tagging;
unit 20 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 20;
 vlan-rewrite {
 translate 200 20;

Configuring Transparent Mode | 739

 }
 }
}
unit 50 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 50;
 }
}
unit 60 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 60;
 }
}

As you can see here, you need to configure vlan-rewrite under a logical unit that is
configured as a trunk link. In the case of ge-0/0/3, traffic that arrives inbound, tagged
with VLAN 100, is translated on ingress to VLAN 10 and processed accordingly. When
traffic on VLAN 10 is leaving the SRX on that interface, it is reverse-translated on egress
to VLAN 100. The same is true for ge-0/0/4 translating from VLAN 200 to 20 and vice
versa. The main command that empowers this is the set interfaces <interface> unit
<unit> family bridge interface-mode trunk translate <incoming-vlan> <transla
ted-vlan> command. In addition, you must define the VLANs which are present on
the unit using the vlan-id-list command.

Transparent Mode Commands and Troubleshooting
Troubleshooting issues in transparent mode are almost identical to troubleshooting
Layer 3, with a few exceptions which are the focus here. First, this section lists some
of the useful commands in Layer 2 that you should be aware of, and then we will work
our way through a step-by-step troubleshooting plan.

The next few commands are unique to transparent mode. We will cover the rest of the
steps in “Transparent Mode Troubleshooting Steps” on page 743.

The show bridge domain Command
The show bridge domain command lists all of the active bridge domains on the device,
along with the associated VLANs and interfaces for those domains. If you are experi-
encing an issue where traffic isn’t flowing, you should check this out first to make sure
you have the correct interface, VLAN, and bridge domain configuration.

root@SRX3400-1> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch L2-VLAN-10 10
 ge-0/0/1.0
 ge-0/0/3.10

740 | Chapter 12: Transparent Mode

default-switch L2-VLAN-20 20
 ge-0/0/2.0
 ge-0/0/4.20
default-switch L2-VLAN-30 30
 ge-0/0/3.30
default-switch L2-VLAN-40 40
 ge-0/0/3.40
default-switch L2-VLAN-50 50
 ge-0/0/4.50
default-switch L2-VLAN-60 60
 ge-0/0/4.60

The show bridge mac-table Command
The show bridge mac-table command is important for looking at the bridge MAC
learning table. If you do not see the MAC addresses for the hosts in the correct bridge
domain on the correct interface of this output, either the SRX is not seeing the MAC
addresses at all (check the surrounding networking devices) or you’re seeing them on
the wrong interface/bridge domain (which might require some configuration changes).

{primary:node0}
root@SRX3400-1> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC,
 SE -Statistics enabled, NM -Non configured MAC)

Routing instance : default-switch
 Bridging domain : L2-VLAN-20, VLAN : 20
 MAC MAC Logical
 address flags interface
 00:1f:12:31:d3:21 D ge-0/0/2.0
 00:1f:12:f4:ef:1c D ge-0/0/2.0

The show l2-learning global-information Command
This command lists the global configuration for the SRX bridge domains:

{primary:node0}
root@SRX3400-1> show l2-learning global-information
Global Configuration:

MAC aging interval : 300
MAC learning : Enabled
MAC statistics : Disabled
MAC limit Count : 131071
MAC limit hit : Disabled
MAC packet action drop: Disabled
LE aging time : 1200
LE BD aging time : 1200

Transparent Mode Commands and Troubleshooting | 741

The show l2-learning global-mac-count Command
You may also want to check how many MAC addresses your system currently knows
about, to ensure that the table is not full. At the time of this writing, the SRX supports
64,000 MAC address entries in the table.

{primary:node0}
root@SRX3400-1> show l2-learning global-mac-count
2 dynamic and static MAC addresses learned globally

The show l2-learning interface Command
Although the SRX doesn’t support STP natively at the time of this writing, it will for-
ward the BPDUs to ensure that there are no bridge loops. Additionally, there may be
reasons why an interface is forwarding, or VLANs within an interface are not forward-
ing, such as the physical interface being down, as shown in this example:

{primary:node0}
root@SRX3400-1> show l2-learning interface
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/1.0 131071
 L2-VLA.. 131071 Forwarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/3.30 131071
 L2-VLA.. 131071 Discarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/3.40 131071
 L2-VLA.. 131071 Discarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/4.20 131071
 L2-VLA.. 131071 Discarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/2.0 131071

742 | Chapter 12: Transparent Mode

 L2-VLA.. 131071 Forwarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/4.50 131071
 L2-VLA.. 131071 Discarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/4.60 131071
 L2-VLA.. 131071 Discarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ge-0/0/3.10 131071
 L2-VLA.. 131071 Discarding

Transparent Mode Troubleshooting Steps
Here are some recommended sequential troubleshooting steps for working in trans-
parent mode:

1. Check the spanning tree.

An issue with the spanning tree is the most common issue when traffic is not flow-
ing through the SRX properly, since surrounding networking gear with spanning
tree enabled may put the data interfaces into a blocking state. This is not an issue
with the SRX itself, but you will need to run the respective commands on the
surrounding networking gear to determine if any of the interfaces that are connec-
ted to the SRX are in the blocking state. In the Juniper Networks EX Series Ethernet
Switches, you would do this in Junos with the show spanning-tree interface com-
mand to look for interfaces in the BLK state. On the MX Series, you would look in
Junos with the show l2-learning interface command.

This is particularly important when dealing with HA clusters, since
the interfaces may be in the blocking state for one member and not
the other. You should test failover to ensure it works properly.

2. Check to see if MAC addresses are being learned.

The absence of MAC addresses in the SRX bridging table certainly indicates that
there is an issue, along with MAC addresses not appearing on the correct VLANs
or interfaces. On the SRX, you can use the show bridge mac-table command.

Transparent Mode Commands and Troubleshooting | 743

3. Check the configuration.

The first common issue that occurs with transparent mode is often a configuration
mistake, including the wrong VLAN IDs or incorrect bridge domains. You must
check the configuration on the surrounding networking devices along with the
SRX. On the SRX, you would want to start by looking at the show bridge domain
command to make sure the VLAN configuration is properly mapped to the correct
domains. You might also want to review the configuration of the surrounding
devices.

4. Check that the native VLANs are properly configured.

On both the SRX and the surrounding networking devices, you must make sure
the correct native VLANs are used (if any), or else there may be an issue with
interpreting the traffic. The same is true for properly matching the correct traffic
to the correct VLAN. If you do not have the correct mappings, there will be issues.
Note that the units do not technically need to match between the two devices, but
making sure the correct tags and the correct classification are used is essential.

5. Check that sessions are being established.

If the traffic appears to be arriving on the SRX on the correct interfaces and VLANs,
you should check to make sure the sessions are being established and matched to
the correct rule. You can do this initially by just looking at the session table using
the show security flow session <modifiers> command along with running the
standard flow tracing operations covered in Chapter 3. For instance, you can enable
the basic-datapath debug and send the output to the file L2Debug. Additionally,
you should configure a packet filter based around the traffic you are looking for to
ensure that you don’t match unnecessary traffic. Make sure to turn the debugging
off after the issue has been resolved to ensure that performance isn’t impacted.

{primary:node0}[edit]
root@SRX3400-1# edit security flow traceoptions

{primary:node0}[edit security flow traceoptions]
root@SRX3400-1# set flag basic-datapath

{primary:node0}[edit security flow traceoptions]
root@SRX3400-1# set file L2Debug

{primary:node0}[edit security flow traceoptions]
root@SRX3400-1# set packet-filter MatchTraffic interface ge-0/0/1.0 source-prefix
 172.31.0.0/16 destination-prefix 192.168.1.1

{primary:node0}[edit security flow traceoptions]
root@SRX3400-1# show
file L2Debug;
flag basic-datapath;
packet-filter MatchTraffic {
 source-prefix 172.31.0.0/16;
 destination-prefix 192.168.1.1/32;

744 | Chapter 12: Transparent Mode

 interface ge-0/0/1.0;
}

6. Examine the debug output.

From your debugs, you should be able to determine that the traffic is entering and
exiting the correct interfaces, along with being matched by the correct security
policy. If this isn’t happening, the output in the debug should provide you with
hints about what you need to change to resolve the issue.

7. Check if you are using any unsupported features or running into a known issue.

Remember that some SRX features are not yet supported in transparent mode. We
covered them in the beginning of this chapter, and you might check with the Ju-
niper documentation for actual timing of these features. For known issues, you
should check the release notes of the version you are running, along with any sub-
sequent releases for issues that have been resolved in case it sounds like a bug. If
you are using these features, that could be causing the issue. Check with the Juniper
Networks Technical Assistance Center (JTAC) if you suspect this.

8. Troubleshoot the surrounding networking equipment.

If the SRX appears to be processing the traffic properly and the traffic appears to
be entering and exiting the SRX, you should access the neighboring devices to make
sure the traffic is actually reaching them, and that they are processing the traffic
correctly. The methodology you would follow on the other devices depends on the
device, but if you can, do an end-to-end packet trace to try to determine where
things are breaking down. That is definitely useful when all other steps seem to
yield no information.

9. Check the Juniper Knowledge Base.

The Juniper Knowledge Base (http://kb.juniper.net/) may have additional informa-
tion for troubleshooting these issues, along with potential major known issues.

10. Call JTAC.

If all else fails, and you have gathered all of the data from your troubleshooting
steps, you should call JTAC for additional assistance in troubleshooting the issue.
Having information such as network diagrams, packet captures, and access to the
devices is very helpful for finding a speedy resolution (see Chapter 9 for a series of
commands to run whose output JTAC may want or need to see).

Case Study 12-1
Now that you have covered all of the concepts related to transparent mode, let’s bring
it all together and provide a full configuration example, along with the use of chassis
clustering to achieve an HA solution.

There really isn’t much difference between clustering a transparent mode pair and
clustering a Layer 3 mode pair, from a configuration or concept perspective—you just

Case Study 12-1 | 745

http://kb.juniper.net/

need to be aware of the surrounding networking configuration to accommodate trans-
parent mode.

This case study performs the following configuration according to this book’s network
diagram (see Figure 12-4):

• Create a chassis cluster with the two SRX3600s that protect the DMZ. Configure
all of the properties of the HA cluster as you see fit (except the interfaces as de-
scribed shortly). Use ge-0/0/9 and ge-13/0/9 for the data links.

• Support trunk link reth0, which will serve as the backbone link. Reth0 will have
two tagged VLANs, one for VLAN 100 and another which allows VLAN 30 in-
bound, but translates it to VLAN 1. Reth0 will be composed of the physical inter-
faces ge-0/0/0 and ge-13/0/0.

• There will be four other Reth interfaces which connect into a switch before con-
necting to the end servers. These will all use the access mode interfaces. Reth1 will
belong to the VoIP PBX zone and will be composed of ge-0/0/1 and ge-13/0/1.
Reth2 will be in the WebApp zone and will be composed of ge-0/0/2 and ge-13/0/2.
Reth3 will be in the Email-Server zone and will be composed of ge-0/0/3 and
ge-13/0/3. Finally, reth4 will be in the Database zone and will be composed of
ge-0/0/4 and ge-13/0/4. All of these interfaces will be in VLAN 30.

— Create the respective bridge domains.

— Create an IRB.30 interface with an IP address of 172.31.30.254/24.

• For your policies create the following:

— Allow Dept-A and Dept-B to talk to the PBX via RTSP and vice versa.

— Allow inbound HTTP and HTTPS to the web server from any IP coming from
the backbone.

— Allow the web server to query the database with SQL.

— Allow SMTP connections into the email server and from the email server out,
along with DNS.

Set the chassis cluster IDs and node config, and reboot as follows:

root@SRX3400-1> set chassis cluster cluster-id 1 node 0 reboot
root@SRX3400-2> set chassis cluster cluster-id 1 node 1 reboot

This is an operational mode command. Also, since this is using
SRX3600s, you don’t need to configure any control ports.

Configure the data links:

{primary:node0}[edit]
root@SRX3400-1# set interfaces fab0 fabric-options member-interfaces ge-0/0/9

746 | Chapter 12: Transparent Mode

Figure 12-4. Case Study 12-1 network diagram

Case Study 12-1 | 747

{primary:node0}[edit]
root@SRX3400-1# set interfaces fab1 fabric-options member-interfaces ge-13/0/9

Configure the node-specific properties:

{primary:node0}[edit]
root@SRX3400-1# set groups node0
{primary:node0}[edit]
root@SRX3400-1# set groups node1
{primary:node0}[edit]
root@SRX3400-1# set groups node0 system host-name SRX3600-1

{primary:node0}[edit]
root@SRX3400-1# set groups node0 interfaces fxp0 unit 0 family inet address
10.3.5.1/24

{primary:node0}[edit]
root@SRX3400-1# set groups node0 system backup-router 10.3.5.254 destination
0.0.0.0/0

{primary:node0}[edit]
root@SRX3400-1# set groups node1 system host-name SRX3600-2

{primary:node0}[edit]
root@SRX3400-1# set groups node1 interfaces fxp0 unit 0 family inet address
10.3.5.2/24

{primary:node0}[edit]
root@SRX3400-1# set groups node1 system backup-router 10.3.5.254 destination
0.0.0.0/0

{primary:node0}[edit]
root@SRX3400-1# set apply-groups ${node}

Configure the Reth count and redundancy groups:

{primary:node0}[edit]
root@SRX3400-1# set chassis cluster reth-count 5

{primary:node0}[edit]
root@SRX3400-1# set chassis cluster redundancy-group 0 node 0 priority 129

{primary:node0}[edit]
root@SRX3400-1# set chassis cluster redundancy-group 0 node 1 priority 128

{primary:node0}[edit]
root@SRX3400-1# set chassis cluster redundancy-group 1 node 0 priority 129

{primary:node0}[edit]
root@SRX3400-1# set chassis cluster redundancy-group 1 node 1 priority 128

Configure the Reth and IRB interfaces:

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-0/0/0 gigether-options redundant-parent reth0

{primary:node0}[edit]

748 | Chapter 12: Transparent Mode

root@SRX3400-1# set interfaces ge-13/0/0 gigether-options redundant-parent reth0

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-0/0/1 gigether-options redundant-parent reth1

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-13/0/1 gigether-options redundant-parent reth1

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-0/0/2 gigether-options redundant-parent reth2

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-13/0/2 gigether-options redundant-parent reth2

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-0/0/3 gigether-options redundant-parent reth3

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-13/0/3 gigether-options redundant-parent reth3

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-0/0/4 gigether-options redundant-parent reth4

{primary:node0}[edit]
root@SRX3400-1# set interfaces ge-13/0/4 gigether-options redundant-parent reth4

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth0 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth1 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth2 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth3 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth4 redundant-ether-options redundancy-group 1

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth0 vlan-tagging

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth0 unit 100 family bridge interface-mode trunk
vlan-id-list 100

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth0 unit 30 family bridge interface-mode trunk

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth0 unit 30 family bridge vlan-rewrite translate
30 1

Case Study 12-1 | 749

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth1 unit 0 family bridge interface-mode access
vlan-id 100

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth2 unit 0 family bridge interface-mode access
vlan-id 100

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth3 unit 0 family bridge interface-mode access
vlan-id 100

{primary:node0}[edit]
root@SRX3400-1# set interfaces reth4 unit 0 family bridge interface-mode access
vlan-id 100

{primary:node0}[edit]
root@SRX3400-1# set interfaces irb unit 100 family inet address 172.31.100.254/24

Configure the bridge domains:

{primary:node0}[edit]
root@SRX3400-1# set bridge-domains VLAN1 domain-type bridge vlan-id 1

{primary:node0}[edit]
root@SRX3400-1# set bridge-domains VLAN100 domain-type bridge vlan-id 100
routing-interface irb.100

Configure security zones and address objects:

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Backbone interfaces reth0.100

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Backbone interfaces reth0.30

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones VoIP interfaces reth1

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones WebApp interfaces reth2

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Email-Server interfaces reth3

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Database interfaces reth4

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Backbone address-book address
Dept-A 10.1.0.0/16

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Backbone address-book address
Dept-B 10.2.0.0/16

{primary:node0}[edit]

750 | Chapter 12: Transparent Mode

root@SRX3400-1# set security zones security-zones VoIP address-book address VoIP-
PBX 172.31.100.50/32

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones WebApp address-book address
WebApp 172.31.100.60/32

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Email-Server address-book
address WebApp 172.31.100.70/32

{primary:node0}[edit]
root@SRX3400-1# set security zones security-zones Database address-book address
172.31.100.80/32

Configure the security policies:

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone VoIP policy Allow-RTSP match
source-address [Dept-A Dept-B] destination-address VoIP-PBX application junos-
rtsp

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone VoIP policy Allow-RTSP then permit

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone VoIP to-zone Backbone policy Allow-RTSP-Out match
source-address VoIP-PBX destination-address [Dept-A Dept-B] application junos-
rtsp

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone VoIP policy Allow-RTSP-Out then
permit

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone WebApp policy Allow-Inbound-Web
match source-address any destination-address WebApp application [junos-http
junos-https]

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone WebApp policy Allow-Inbound-Web
then permit

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone WebApp to-zone Database policy Allow-Web-Queries
match source-address WebApp destination-address Database application
[junos-sql]

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone WebApp to-zone Database policy Allow-Web-Queries
then permit

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone Email-Server policy Allow-Emails-
Inbound match source-address any destination-address Email-Server application
[junos-smtp]

Case Study 12-1 | 751

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Backbone to-zone Email-Server policy Allow-Emails-
Inbound then permit

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Email-Server to-zone Backbone policy Allow-Emails-
Outbound match source-address Email-Server destination-address any application
[junos-smtp junos-dns-udp]

{primary:node0}[edit security policies]
root@SRX3400-1# set from-zone Email-Server to-zone Backbone policy Allow-Emails-
Outbound then permit

{primary:node0}[edit security policies]
root@SRX3400-1# set default-policy deny-all

Summary
Transparent mode is a very powerful feature that can dramatically ease the deployment
of a firewall, while providing advanced support for securing your network. Most of the
configuration relating to transparent mode is just like standard Layer 3 routed mode,
but there are a few new concepts that you need to be aware of regarding the actual
interface and VLAN configurations.

Although transparent mode is typically quite easy to deploy, you do need to be aware
of the potential for bridge loops, along with the fact that spanning tree may cause links
to go into the blocking state, and therefore not pass traffic properly.

In this chapter, we discussed many tools on the SRX and surrounding devices that can
help you to determine the cause of an issue so that you can take appropriate steps to
resolve it.

Lastly, there are a few limitations of transparent mode at the time of this writing that
you need to be aware of. As time goes on, Juniper will continue to strive to eliminate
these limitations and achieve full-feature parity, so monitor the Junos release notes to
determine what new features and support have arrived in the latest release. After all,
Juniper comes out with new software every three months, so things can be developed
quite quickly for the SRX.

Chapter Review Questions
1. Why is transparent mode a popular deployment model for firewall deployments?

2. What is the name of the family used on interfaces in transparent mode?

3. How can a device in transparent mode communicate with other devices on the
network if the interfaces do not have any Layer 3 addressing?

4. What is the difference between interfaces in access mode and trunk mode?

752 | Chapter 12: Transparent Mode

5. What is the default method for resolving an unknown MAC address when the SRX
has received a packet with an unknown MAC address and needs to forward it?

6. If you have non-IP traffic on your network, how can you have the SRX forward it?

7. With what fields can the SRX perform QoS for transit traffic?

8. What is the purpose of VLAN rewriting?

9. What is the most common issue in transparent mode that prevents traffic from
flowing properly through the SRX?

10. How does the SRX inform surrounding networking equipment to recalculate span-
ning tree in the event of a failure?

Chapter Review Answers
1. Transparent mode allows easy deployment of a firewall because the underlying

network structure does not need to change from a Layer 3 perspective, thus making
it easy to deploy a firewall in transparent mode. Additionally, since the device does
not have to perform any routing, this makes it ideal when being inserted into com-
plex routing topologies, although this isn’t so much of an issue with the SRX since
the SRX supports Junos.

2. The family bridge is the family used on the interface in transparent mode.

3. In transparent mode, you can use IRB interfaces within VLANs to provide a virtual
Layer 3 interface which can send and receive traffic, although it cannot route transit
traffic itself at the time of this writing.

4. Access mode interfaces provide a single untagged interface on which traffic may
arrive. Access mode interfaces do allow the interface to classify any traffic being
received on them as being from a particular VLAN; however, the traffic itself is not
tagged. Trunk interfaces allow the interface to accept traffic from multiple VLANs
which are distinguished by different tags (a tag or range of tags can be allowed by
a particular bridge domain) along with the ability to support a native VLAN which
has no tag, but all untagged traffic will be classified as being part of this VLAN on
the system.

5. The default method of resolution is to forward the packet out all interfaces in the
same VLAN except the one on which it was received. Alternatively, you can con-
figure the SRX to ARP for the destination on behalf of the client, along with sending
an ICMP with a TTL of 1 to determine the interface on which the destination MAC
address lives.

6. You will need to enable the set security flow bridge bypass-non-ip-unicast
command to allow all non-IP traffic (except IPv6, which currently will be dropped
unless tunneled) through the SRX.

Chapter Review Answers | 753

7. The SRX can perform classification and rewriting with the 802.1p bits that are
present in 802.1q frames. You cannot use IP precedence or DSCP bits for classifi-
cation on the SRX in transparent mode; you can only do so in Layer 3 mode.

8. VLAN rewriting, also known as VLAN retagging, allows the SRX to swap the in-
coming or outgoing VLAN tag with another which the system will use for internal
processing. This is useful when you want to translate the VLAN tags on the SRX
without using routing to transform the packets.

9. A misconfigured spanning tree can result in surrounding network equipment
thinking there is a loop in the network, and therefore putting interfaces in blocking
mode that otherwise shouldn’t be. This can also impact the failover between chassis
cluster members.

10. The SRX will flap the interfaces for the respective secondary redundancy groups
which are failing over so that the switches will recalculate spanning tree in favor
of the new primary node for the respective redundancy groups.

754 | Chapter 12: Transparent Mode

CHAPTER 13

SRX Management

This chapter discusses some of the ways in which both users and management systems
can interact with an SRX device. At this point in the book, you must be familiar with
the command-line interface (CLI), which provides a text-based interface between the
users and the different subsystems in a device. This is our starting point: the manage-
ment infrastructure and how the CLI interacts with the different system components.

The Management Infrastructure
Central to the Junos management infrastructure is a daemon that interacts with the
different daemons and forwarding elements in a device, called the MGD (management
daemon). This daemon is in charge of performing multiple common tasks on all man-
agement interfaces.

Most management interfaces, such as J-Web and the CLI, communicate with MGD by
sending XML-formatted commands (procedure calls) and receiving the results, also in
XML format. Each user interface then presents the information back to the user in a
human-readable way, as shown in Figure 13-1.

Given its central placement in the system, MGD is the interface between the different
system daemons and the management interfaces, so when MGD receives a request, it
deals with interfacing to the appropriate daemons. In this sense, MGD abstracts the
complexity of the system so that the client applications do not need to keep track of
which particular daemon is in charge of which task.

MGD also owns the configuration schema, so it can determine if commands are syn-
tactically correct. However, it is still possible to create configurations with a valid syntax
that are logically incorrect—for instance, a configuration with an Ethernet interface
configured in switched mode as an access port but associated with two different virtual
LANs (VLANs)—could be correct in its syntax, but impossible to configure.

755

Since you should already be familiar with the CLI by now (and if not you must have
skipped almost the whole book to get here), we will use the CLI to explain some of the
concepts that apply to the entire management infrastructure.

When you type a command in the CLI, the command is passed on to MGD. MGD then
uses the configuration schema to:

• Perform the command completion.

• Provide a list of options when a “?” character is typed.

• Check the command syntax.

It is in this context that one should try to understand the two very different modes in
which the Junos UI operates, either operational or command mode.

Operational Mode
In operational mode, the commands typed by the user are directly translated into com-
mands to the daemons in the system. The results are relayed back to the user and
presented in a readable way. Let’s see what happens when you submit the show ver
sion command (the | display xml rpc modifier indicates to MGD to echo back the
XML Remote Procedure Call [RPC] request that results from typing a given command,
that is, instead of executing the request):

Figure 13-1. The management infrastructure

756 | Chapter 13: SRX Management

pato@SRX240-1> show version | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos">
 <rpc>
 <get-software-information>
 </get-software-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

You can see how the CLI sends a get-interface-information RPC to MGD. After a user
types this command, MGD queries the appropriate daemon over a socket (or, in some
instances, it might execute a shell command directly) and returns the result of the RPC
back to the CLI.

The contents of the banner tags are used as an indication to the CLI to
display a particular banner to the user, and are not germane to this
discussion.

Continuing with our example, the result of the show version command, as received by
the CLI, can be displayed using the | show xml command:

pato@SRX240-1> show version | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos">
 <software-information>
 <host-name>SRX240-1</host-name>
 <product-model>srx240h-poe</product-model>
 <product-name>srx240h-poe</product-name>
 <jsr/>
 <package-information>
 <name>junos</name>
 <comment>JUNOS Software Release [10.2-20100303.0]</comment>
 </package-information>
 </software-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

The result contains an XML-formatted message that is parsed by the CLI and can be
displayed in a more readable way:

pato@SRX240-1> show version
Hostname: SRX240-1
Model: srx240h-poe
JUNOS Software Release [10.2-20100303.0]

The Management Infrastructure | 757

Configuration Mode
In configuration mode, MGD is used to validate and store the configuration changes.
In the backend, after a user enters a new configuration statement, MGD validates the
statement against the configuration schema and, if it is a valid command, stores the
proposed changes in a candidate configuration database. As you already know from
this book or other Junos information sources, this operation does not change the sys-
tem’s behavior until the user commits the changes.

There are a few ways a user can edit the candidate configuration database. When en-
tering configuration mode, MGD by default does shared editing of the database, mean-
ing that any other user logged in to the system is able to see all changes as they are being
made, even before a commit is committed. Obviously, in this mode, when a user com-
mits the candidate configuration it might be sending along with his own edits config-
uration changes made by other users with a shared edit of the database.

Here, for example, user pato is editing the configuration and looks at the system’s host
name:

[edit]
pato@SRX240-1# show system host-name
host-name SRX240-1;

While pato is looking at the config, the test user logs in, edits the shared configuration
database, and changes the hostname from SRX240-1 to SRX240-NEW:

test@SRX240-1> configure
Entering configuration mode
Users currently editing the configuration:
 pato terminal p1 (pid 9956) on since 2010-03-05 00:45:24 PST
 [edit]

[edit]
test@SRX240-1# set system host-name SRX240-NEW

User pato sees the changes in his session as well, because both users are editing the
same candidate configuration database:

[edit]
pato@SRX240-1# show system host-name
host-name SRX240-NEW;

Users can also do a private edit of the database; each user doing a private edit uses a
different candidate configuration database. This has the advantage that the users can
make sure nobody changes their edits, but it can create merging problems as different
users might be overriding the same sections of the configuration. Again, this concept
might be simpler to explain with an example.

Let’s have our users, test and pato, do private configuration edits simultaneously:

pato@SRX240-1> configure private
warning: uncommitted changes will be discarded on exit
Entering configuration mode

758 | Chapter 13: SRX Management

[edit]
test@SRX240-1> configure private
warning: uncommitted changes will be discarded on exit
Entering configuration mode
Users currently editing the configuration:
 pato terminal p1 (pid 9956) on since 2010-03-05 01:00:41 PST
 private [edit]

[edit]

Note how test is notified that a different user (pato) is also doing a private configuration
edit.

Both pato and test will change the hostname and commit their changes, but test is the
last one doing the commit:

pato@SRX240-1# set system host-name SRX240-Pato

[edit]
pato@SRX240-1# commit
commit complete

When test tries to commit his configuration he is notified of the inconsistency: that
he has been working with an old configuration database!

test@SRX240-1# set system host-name SRX240-Test

[edit]
test@SRX240-1# commit
[edit system host-name]
 'host-name SRX240-Pato'
 statement does not match patch: 'SRX240-Pato' != 'SRX240-1'

Our last option, if you want to make sure nobody makes any changes to the configu-
ration while you’re working, is to do an exclusive edit. In this mode, the candidate
configuration is locked and no other user can edit the configuration until the lock is
released:

pato@SRX210-1> configure exclusive
warning: uncommitted changes will be discarded on exit
Entering configuration mode

See what happens after pato acquires an exclusive lock, and test tries to change the
configuration:

test@SRX210-1> configure
Entering configuration mode
Users currently editing the configuration:
 pato terminal p1 (pid 10760) on since 2010-03-05 01:22:13 PST
 exclusive [edit]

The Management Infrastructure | 759

[edit]
test@SRX210-1# set system host-name blah
error: configuration database locked by:
 pato terminal p1 (pid 10760) on since 2010-03-05 01:22:13 PST, idle 00:01:13
 exclusive [edit]

The different edit modes allow great flexibility in environments when multiple users
access the same device simultaneously, as you can simply share the database, or prevent
anyone from making any changes, until you’re done.

But what happens when you commit changes? As mentioned before, by looking at the
configuration schema, MGD can make sure the configuration is syntactically correct,
but how can it make sure it is functionally correct? Well, it can’t, at least not directly.
To make sure the configuration is correct when a commit is initiated, MGD spawns a
new copy of the daemons in charge of the configuration segments that have been
changed. These new instances can verify if the configuration is correct (they can directly
query the configuration database, or, when the configuration for a particular daemon
is small, MGD can pass the configuration to the daemon as arguments) and return
either an error message or an indication that the configuration is valid. This process is
referred to as a commit check, and it’s possible to just invoke a commit check without
applying any changes by issuing the commit check command.

If you look at the processes running while a commit check is in progress, you’ll find
that some processes are running twice (for brevity, the following output has been trun-
cated at the ...):

root@SRX210-1% ps -ax
 PID TT STAT TIME COMMAND
 1082 ?? S 22:18.65 /usr/sbin/chassisd -N
 1083 ?? S 0:38.71 /usr/sbin/alarmd -N
...
 12950 ?? R 0:00.21 /usr/sbin/chassisd -C -X
 860 u0- S 0:00.26 /usr/sbin/usbd -N
...

In this particular case, chassisd has been spawned with the -C option to check the
configuration and return the results to MGD. After the new daemons are done with
the check step, they simply exit, so you end up with a single running copy of each (the
old copy is unaltered, still running and doing its job, and only the newly spawned copies
exit after they are done checking the candidate configuration).

If the commit check process is successful (i.e., no daemon detects any error), MGD
makes the candidate configuration the active config, backs up the old configurations,
and proceeds to signal all running daemons, for which the configurations have changed,
to reload their configs.

If the commit check is not successful, nothing is changed. Daemons are not signaled
to reload their configs and the running configuration database is unaltered. In this
sense, the commit is an atomic operation. If the commit succeeds, all changes are ap-
plied simultaneously; if it fails, none of the modifications get applied.

760 | Chapter 13: SRX Management

This overall architecture is common to most of the management interfaces of Junos.
The CLI is one of many ways to interact with MGD (and therefore the entire system).
Other interfaces present different information and allow users to interact in different
ways with the system, but they all leverage the same underlying infrastructure.

J-Web
J-Web, with its web UI, uses a connection to MGD to send and receive configuration
and operational information. The underlying protocol used is NETCONF, and it’s the
same protocol the CLI and external management systems use to interact with an SRX.

When editing a configuration, J-Web does a shared edit of the configuration database,
meaning that if a CLI user has acquired an exclusive lock, J-Web will not be able to do
any configuration edits until the lock is released. Two modes are available: single com-
mit and automatic commit.

The default (and recommended) way to use J-Web is to do a single commit, where
configuration changes are not automatically applied. The single commit mode mimics
the CLI, and a commit button is provided that allows users to apply all pending changes
since the last commit. Users can also discard all pending changes or show the difference
with the last committed configuration, as shown in the right of the screen capture in
Figure 13-2.

Figure 13-2. J-Web commit options

As an alternative to single commit mode, it is possible to configure J-Web to automat-
ically commit after every change. This option, although sometimes a better alternative
because you are always presented with the most up-to-date configuration information,
is impractical in small devices where committing a configuration can take more than
10 seconds and making relatively simple configuration changes (when they involve
several small steps) can take several minutes.

NSM and Junos Space
Medium to large networks would be difficult to administrate and operate, if every de-
vice were to be individually managed. Both the CLI and J-Web provide ways to monitor

NSM and Junos Space | 761

and configure a single node, but when the number of devices in the network grows,
centralized ways to manage the network are needed.

Two central management systems developed by Juniper can be used to control SRX
devices: Network and Security Manager (NSM), an evolution of the management sys-
tem used to configure NetScreen firewalls, and the new Junos Space, a more Junos-
centric network manager whose aim is to provide higher-level abstraction of the
network.

These two management systems take quite different approaches when dealing with
how the network is configured. Here are some of the most salient points:

• NSM approaches the network management problem from the element-
management point of view. NSM applies network-wide configurations in a similar
way as it does device-specific configurations. That is, device-specific policies and
network policies are the same, with the exception that network policies refer to
objects (like address lists) that are evaluated differently depending on the device.
Junos Space takes a different approach by providing a framework that allows the
definition of network-wide policies.

• NSM is menu-driven, while the Security Builder application in Junos Space is
topology-driven.

• Junos Space provides a framework for multiple applications to be developed. Ap-
plications developed for Junos Space can make use of the different services that
Junos Space provides, such as keeping a configuration database of the devices and
inventory of the network, managing the communication to the devices, providing
a distributed architecture where applications can be load-balanced across multiple
servers, and so forth.

• NSM uses a “heavy” client. A large part of the processing is done at the client,
which needs to be downloaded and installed in the management console. Junos
Space uses an HTTP-based interface instead, where most processing is done at the
server and a standard browser is used to access the different applications.

• NSM was designed with the primary goal of configuring security devices and, later
on, was extended to other device types such as Ethernet switches. Junos Space took
a different line of attack by providing multiple applications to configure different
services (such as virtual private LAN service [VPLS] services involving mainly rout-
ers, or security services involving all the different devices in the network where
security can be enforced).

And the list goes on; as you can probably guess, there are more differences than simi-
larities between the two. That being said, they both have a place depending on the
deployment scenario. Because it has been around for a long time, NSM is better suited
(at least for the time being) for configuring and monitoring security devices, but in the
near future, most of the features available in NSM will be implemented in Junos Space.

762 | Chapter 13: SRX Management

In spite of their differences, both network managers use the same protocol to connect
to Juniper devices, namely, NETCONF (more on that later). In SRXs, NETCONF is
transported over SSH with the TCP session always initiated from the device to the
management server. This way, the device IP address does not have to be known in
advance by the management server. Since the device’s IP might not be known, a unique
device identifier is assigned to every node in the network (for those of you who read
Chapter 6, this is similar to the role that the local/remote identifier plays in IPsec).

On the device side, the configuration is pretty straightforward, mostly requiring the
specification of the IP address of the management system (NSM or Junos Space), the
TCP port listening for NETCONF over SSH connections, the device ID, and the shared
secret:

[edit system services]
outbound-ssh client <client name> {
 <IP address or dns name of the management server> port <port>;
 device-id <device ID as defined in NSM or Space>;
 services netconf;
 secret <shared secret>;
 reconnect-strategy in-order|sticky;
 keep-alive { keep alive parameters };
}

The services netconf parameter is required, and indicates that the SSH connection is
used for the NETCONF protocol (other possible protocols carried over SSH are envi-
sioned, but not yet implemented). The other optional parameters are pretty self-
explanatory.

NETCONF
The NETCONF protocol, described in RFC 4741, is central to Junos management. In
fact, NETCONF was modeled after the internal protocol used between the different
management interfaces (such as J-Web or the CLI) and MGD, which can all obtain
configuration information, change the configuration, or get monitoring information
from the different daemons in the system. The protocols are not identical, but they are
similar enough that, in Junos, NETCONF is implemented by using an adaptation layer
that simply translates the NETCONF calls to the format used internally by the devices.

It is not the objective of this section to go through the details of the protocol, but it is
instructive to review some of the concepts, as they provide a good introduction and
springboard to Junos automation.

NETCONF uses XML-encoded RPCs to exchange information between management
systems and devices. In the particular case of devices running Junos, NETCONF can
be used from remote device managers, like NSM, but it is also the protocol used be-
tween the management daemons in the system. In broad terms, NETCONF follows
the same structure as the Junos CLI—there is a separation of configuration and state
data and different RPCs are used to access and modify this data.

NETCONF | 763

Messages exchanged between peers follow a request–reply structure. Request messages
(normally originating at the management station) are enclosed in <rpc> tags, while reply
messages (from the device) are enclosed in <rpc-reply> tags.

Each device is responsible for defining the different methods that it can process. That
is, the NETCONF protocol does not define which methods are available to the man-
agement applications (with the exception of a few low-level methods that must be
provided), but it does specify the mechanisms to access those methods. In that sense,
NETCONF is similar to SNMP, where both deal with how to provide information to
management applications. In contrast to SNMP, though, the NETCONF protocol pro-
vides a mechanism for management applications to query the schema that defines the
different methods that a device implements (which would be similar to providing a way
for an SNMP client to query and load the set of MIBs that a particular device
implements).

Enough explanation, though, as things are in fact quite simple once you see it working.
Let’s start by enabling NETCONF over SSH, and establishing an SSH session to the
port where NETCONF is configured to listen (don’t forget to enable host inbound
traffic for any service on the zone connected to the management port; otherwise, the
NETCONF traffic will be blocked):

set system services netconf ssh connection-limit 2
set system services netconf ssh port 2000

pato$ ssh root@172.19.101.26 -p 2000 -s netconf
root@172.19.101.26's password:
<!-- No zombies were killed during the creation of this user interface -->
<!-- user root, class super-user -->
<hello>
 <capabilities>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0
</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:confirmed-commit:1.0
</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:validate:1.0
</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?
protocol=http,ftp,file</capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>10164</session-id>
</hello>
]]>]]>

The first thing the NETCONF server (in this case, the SRX) sends back to us is a
<hello> tag. This tag is used to exchange capabilities between the client and server. For
instance, the SRX is stating that it supports the base NETCONF protocol, plus several
other capabilities such as commit confirmed, configuration validate, and so on.

764 | Chapter 13: SRX Management

Now, let’s send a query. Each query is embedded in an <rpc> tag; <rpc> tags must
include a message-id attribute (any arbitrary string), used to correlate requests with
replies. To figure out the format of a method, you can use the | display xml rpc
command. For instance, the show system uptime command in the CLI generates the
following RPC request to MGD:

show system uptime | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos">
 <rpc>
 <get-system-uptime-information>
 </get-system-uptime-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

You can try this out yourself in our NETCONF session:

<rpc message-id="1" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-system-uptime-information/>
</rpc>
]]>]]>

This results in the following output from the server (the]]>]]> characters are used to
signal the end of the XML document and are normally added after every request/reply):

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos" message-id="1"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<system-uptime-information xmlns="http://xml.juniper.net/junos/10.2I0/junos">
<current-time>
<date-time junos:seconds="1269376006">2010-03-23 20:26:46 UTC</date-time>
</current-time>
<system-booted-time>
<date-time junos:seconds="1268355347">2010-03-12 00:55:47 UTC</date-time>
<time-length junos:seconds="1020659">1w4d 19:30</time-length>
</system-booted-time>
<protocols-started-time>
<date-time junos:seconds="1268355616">2010-03-12 01:00:16 UTC</date-time>
<time-length junos:seconds="1020390">1w4d 19:26</time-length>
</protocols-started-time>
<last-configured-time>
<date-time junos:seconds="1269319679">2010-03-23 04:47:59 UTC</date-time>
<time-length junos:seconds="56327">15:38:47</time-length>
<user>pato</user>
</last-configured-time>
<uptime-information>
<date-time junos:seconds="1269376006">
8:26PM
</date-time>
<up-time junos:seconds="1020689">
11 days, 19:31
</up-time>
<active-user-count junos:format="1 user">

NETCONF | 765

1
</active-user-count>
<load-average-1>
11.59
</load-average-1>
<load-average-5>
11.30
</load-average-5>
<load-average-15>
11.21
</load-average-15>
</uptime-information>
</system-uptime-information>
</rpc-reply>
]]>]]>

The output is some XML-formatted data that the management application can parse
to extract the relevant information. Note how the message-id of the <rpc-response>
matches the one of the request. You are encouraged to try this out using different
commands. After a while, you’ll get the hang of how the different CLI commands relate
to the RPC methods.

To close a NETCONF session, simply use the <close-session> tag.

<rpc message-id="2" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <close-session/>
</rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos" message-id="2"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
</rpc-reply>
]]>]]>
<!-- session end at 2010-03-23 20:31:16 UTC -->

How does this all relate to Junos scripting again? Well, you know the CLI uses XML
RPC calls to interact with MGD. Junos scripting allows, via the use of XSLT transfor-
mations, to either modify the contents of the configuration before they are applied (they
are referred to as commit scripts), or simply define subroutines that, using RPC calls,
can operate on the system (referred to as op scripts).

This is all explained in great detail in the next section. Ready for some management fun?

Scripting and Automation
The Junos infrastructure provides a way for users to extend the system’s functionalities.
This section explores the different mechanisms supplied, with an emphasis on provid-
ing examples of how these mechanisms are commonly used.

766 | Chapter 13: SRX Management

Commit Scripts
Perhaps the simplest way to get acquainted with Junos automation is to start by looking
at commit scripts.

As previously explained, several operations take place when a commit operation is
executed. MGD loads the candidate configuration as shown in Figure 13-3, after which
it performs a commit check, and finally, if the commit is successful, it notifies the
affected daemons of the new configuration.

Figure 13-3. Commit model

In fact, this description is incomplete. An intermediate step is performed after the can-
didate configuration is loaded but before the commit check is performed, as shown in
Figure 13-4. In this intermediate step, a set of user-defined XSLT transformations are
applied to the configuration that can be used for things such as the following:

• Verify the configuration (e.g., you can create an XSLT template that makes sure
that interfaces with an IP address configured are assigned to a security zone, or you
could create a template that makes sure the default security policy is not “permit
all”) and emit a warning, an error, or even a syslog message on certain conditions.

• Modify the configuration. A common and quite useful user-defined transformation
is to simplify large configurations that have multiple elements in common. For
example, in most cases, the IPsec configuration of a given device with multiple
tunnels might require several configuration statements per tunnel, but most of
those statements are exactly the same for every tunnel. Using a commit script
(Figure 13-3), users can define their own simplified syntax that, when processing
the configuration, the script expands into the full configuration required by MGD
(i.e., you could create a configuration template with all the common IPsec config-
urations and only ask operators to enter the remote tunnel IP address, local inter-
face, and preshared key). In large deployments, this would highly simplify the
configuration and minimize the risk of configuration errors.

Scripting and Automation | 767

Scripts can be written in XSLT or SLAX. It is not the objective of this chapter to go over
either of these languages (in fact, SLAX is nothing more than XSLT with a different
syntax), as it would require the whole book to do justice to them.

For more information about Junos automation, see Juniper’s Day One
booklet series, freely available PDF instruction books, at http://www.ju
niper.net/dayone.

However, let’s go over some sample scripts and try to explain their basic operation in
an attempt to make you more comfortable with how scripts are written. Anyone inter-
ested in Junos scripts should start playing around with some already written scripts—
once you are familiar with how to define and configure a script in Junos, you can create
some of your own (you will probably want a good book on XSLT).

SLAX may be difficult for some administrators. First, at the time of this
writing, there are no extensions to development environments capable
of parsing and understanding SLAX, which makes it harder to write
large scripts (since you’ll have to do all the spellchecking, variable name
checking, etc., on your own). Second, there are a lot of good resources
on XSLT, but not that many on SLAX (beyond the Day One booklet
series on Junos automation). Since this chapter serves as an introduction
anyway, it seems appropriate to use a language for which there are many
resources available.

Hello World, commit script edition

Our first excursion into a script is to simply print a warning message every time a
configuration is committed. This script is also useful as a template as most of our com-
mit scripts have the same structure.

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

Figure 13-4. Commit scripts

768 | Chapter 13: SRX Management

http://www.juniper.net/dayone
http://www.juniper.net/dayone

 xmlns:junos="http://xml.juniper.net/junos/*/junos"
 xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm"
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

 <xsl:import href="../import/junos.xsl"/>

 <xsl:template match="configuration">
 <xnm:warning>
 <message>Hello World!</message>
 </xnm:warning>
 </xsl:template>

</xsl:stylesheet>

The first few lines are common to most commit scripts and are used for the following
purposes:

The fact that this is an XML formatted document is declared.

The different namespaces used in the document are declared.

Some useful templates and functions that are loaded by default in Junos are impor-
ted. (For a complete list of the functions, please check the latest version of the Junos
scripting manual, found at http://www.juniper.net/techpubs.)

For our purposes, it’s enough to know that these lines are needed in every commit
script. (Understand that there is a lot more about this than meets the eye, and this is
sort of a crash course for you to follow up on.)

When the script is executed (after a user types commit), the candidate configuration file
is passed to the script driver in XML format, which processes the configuration using
the script, as shown in Figure 13-5. The template definition, shown highlighted in the
preceding output, defines the operations that are performed to the sections of the con-
figuration that fit the “match” condition in the template definition (in the first line of
the highlighted output, matching the <configuration> hierarchy).

The result of applying the template to the candidate configuration is to insert a <warn
ing> tag. When a candidate configuration includes this tag, MGD continues processing
the configuration as normal but returns a message to the CLI, which is then displayed
on the user’s terminal.

So, what happens when a user commits a configuration with this script? Well, the result
would be:

pato@SRX650-1# commit check
warning: Hello World!

And a useful tool to see the candidate configuration after all commit scripts have been
applied is the | display commit command:

root@J6350-1# show | display commit-scripts | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/9.5R2/junos">
 <xnm:warning xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm">
 <message>

Scripting and Automation | 769

http://www.juniper.net/techpubs

 Hello World!
 </message>
 </xnm:warning>
 <configuration junos:changed-seconds="1269323753" junos:changed-
localtime="2010-03-23 05:55:53 UTC">
...
</rpc-reply>

But how do you instruct Junos to use this, or any other script, when processing the
configuration file? Read on.

Figure 13-5. Template processing

Adding and enabling commit scripts

Scripts are declared under the [system scripts commit] hierarchy. The script must be
loaded into the device in the /var/db/scripts/commit directory, and you can store it there
using either FTP or SCP. Alternatively, you can instruct Junos to retrieve the script from
a central repository by specifying the URL where it can be downloaded from:

system {
 scripts {
 commit {
 file <file name> {
 checksum {...};
 optional;
 refresh;
 refresh-from <URL where the script can be downloaded from>;
 source <URL where the script can be downloaded from>;

770 | Chapter 13: SRX Management

 }
 }
}

If only the filename is specified, the file must be present in the /var/db/scripts/commit
directory. It is also possible to specify a source URL where the file can be fetched. In
this case, the set system scripts commit file <file name> refresh command triggers
the download process.

Several scripts can be specified, in which case they are all applied in the order they have
been defined. The candidate configuration is processed using the first script. As a result,
a new candidate configuration is created which is then processed with the second script,
and so on.

For our Hello World script, a file named helloworld with the contents of the script has
been uploaded to the /var/db/scripts/commit directory. The configuration to enable the
script looks like this:

set system scripts commit file helloworld

Special tags for MGD

An <xnm:warning> tag was used in our Hello World script as a way to indicate to the
CLI to print a warning message. You can use other tags to trigger MGD to perform
other useful operations:

• The <xnm:warning> tag, as already used, signals MGD to send a message back to
the CLI.

• The <xnm:error> tag is similar to the <warning> tag, but instead of printing a warn-
ing, MGD prints an error message, followed by a commit fail.

• The <xnm:syslog> tag is used to trigger MGD to generate a syslog message. We can
set the message content, facility, and severity.

• The configuration change tags <change> and <transient-change> can be used to
modify the contents of the configuration and are explained in further detail in
“Transient versus persistent changes” on page 776.

Using a script to enforce some condition

You should now be in a position to look at a more useful example (not that it would
not be useful to, say, print annoying messages for other users). Our second script, warn-
permit-all.xslt, checks the configuration and emits a warning message if the default-
permit-all policy is configured (such a default-permit-all policy is useful for debug-
ging purposes, but is not recommended in a production environment if the SRX is used
as a security enforcement point):

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:junos=http://xml.juniper.net/junos/*/junos
 xmlns:xnm=http://xml.juniper.net/xnm/1.1/xnm

Scripting and Automation | 771

 xmlns:ext=http://xmlsoft.org/XSLT/namespace
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

<xsl:import href="../import/junos.xsl"/>

<xsl:template match="configuration/security/policies/default-policy/permit-all">
 <xnm:warning>
 <xsl:call-template name="jcs:edit-path"/>
 <message>All traffic not explicitly dropped will be allowed
 Only use this configuration for debugging!</message>
 </xnm:warning>
 </xsl:template>
</xsl:stylesheet>

Our template only matches the configuration if a <permit-all> tag is found. XSLT uses
a language called XPATH to, among other things, specify different elements in the XML
hierarchy. The language is quite powerful, and a book could be written to detail it, but
the simplest way to see some of the ways XPATH can be used is to specify a node in
the XML hierarchy, similar to how a directory is specified. For instance, say you want
to process all interface nodes in the configuration. Let’s look at the configuration in
XML format to find how the interfaces are defined:

<configuration junos:changed-seconds="1269319679"
junos:changed-localtime="2010-03-23 04:47:59 UTC">
 <version>10.2</version>
...
<interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <unit>
 <name>0</name>
 <family>
 <inet>
 <address>
 <name>172.19.101.26/24</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 <interface>
 <name>ge-0/0/3</name>
 <unit>
 <name>0</name>
 <family>
 <inet>
 <dhcp>
 </dhcp>
 </inet>
 </family>
 </unit>
 </interface>
</interfaces>

772 | Chapter 13: SRX Management

If you wanted to match on any interface (and therefore the template would be applied
twice), the abbreviated XPATH expression to use would be something like /configura
tion/interfaces/interface (this is, in plain English, a way of selecting any <inter
face> node that is a child of an <interfaces> node that is, in turn, a child of a <config
uration> node). If you wanted to only match on a particular interface, you could add
the interface name as a further condition. Nodes are matched using a directory-like
path, while values such as the text ge-0/0/3 can be matched using predicates. Predicates
are embedded in brackets and specify matching conditions for the values of a node or
its attributes. For example, an XPATH expression to select only the ge-0/0/3 interface
could be configuration/interfaces/interface[name='ge-0/0/3'].

Back to our script: the template is only applied if the configuration includes a <permit-
all> node, which is a child of a <default-policy> node. Sure enough, if you look at a
configuration with a default permit-all policy this is what you’ll find:

show security policies default-policy | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos">
 <configuration>
 <security>
 <policies>
 <default-policy>
 <permit-all/>
 </default-policy>
 </policies>
 </security>
 </configuration>
</rpc-reply>

So, our script searches for the existence of a <default-policy> node and, if found, prints
a warning message:

pato@SRX240-1# commit
[edit security policies default-policy permit-all]
 warning: All traffic not explicitly dropped will be allowed
 Only use this configuration for debugging!

Missing security zone binding

Of course, you could check for some more complex conditions. For instance, a common
mistake is to forget to bind a newly created interface to a security zone. The following
script, named checkzones.xslt, uses a template that iterates through all interfaces with
an IP address assigned (by looking at the configuration for an <address> node). The
interface name is extracted and stored in a variable named intfname. If the interface
name is not found in any security zone, a warning message is printed.

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:junos="http://xml.juniper.net/junos/*/junos"
 xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm"
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">
 <xsl:import href="../import/junos.xsl"/>

Scripting and Automation | 773

 <xsl:template match="configuration">

 <xsl:for-each select="./interfaces/interface/unit[family/inet/address]">

 <xsl:variable name="intfname" select="concat(../name,'.',./name)"/>

 <xsl:if test="not(//security/zones/security-zone/interfaces[name=$intfname]
 or //security/zones/functional-zone/management/interfaces[name=$intfname])">

 <xnm:warning>
 <xsl:call-template name="jcs:edit-path">
 <xsl:with-param name="dot" select="."/>
 </xsl:call-template>
 <message>IP address defined but no zone configured.
Add the interface to a security zone.</message>
 </xnm:warning>
 </xsl:if>

 </xsl:for-each>

 </xsl:template>
</xsl:stylesheet>

Creating a Configuration Template
Another useful task for a commit script is to generate a configuration template that is
used to simplify large configurations. For example, say you want to configure an IPsec
tunnel. A common IPsec configuration might require a few lines per tunnel, most of
which are the same for every tunnel. Once you know the configuration you want, you
can create a commit script that acts as a template. You only need to specify the values
that change on a per-tunnel basis (say, the IP address of the remote gateway, preshared
key, or local tunnel interface) and the commit script can, using those values, expand
the configuration based on the template.

The Junos CLI hierarchy provides a placeholder for information to be passed on to
commit scripts, called macros. You can add a macro with a set of attributes and values
anywhere in the Junos hierarchy. These attributes can be anything you wish.

So, as a follow-up to our previous example, you can use a commit script to specify,
under the interface configuration hierarchy, which security zone an interface belongs
to. It’s quite useful not only because one naturally tends to think of the security zone
as an interface-related object, but also because every time an interface is deleted you
do not have to remember to remove its binding to a security zone.

The script would then expand a configuration like the following:

set interfaces ge-0/0/3 unit 0 apply-macro zone test-zone
set interfaces ge-0/0/3 unit 0 family inet dhcp

774 | Chapter 13: SRX Management

into this:

set interfaces ge-0/0/3 unit 0 apply-macro zone untrust
set interfaces ge-0/0/3 unit 0 family inet dhcp
set security zones security-zone test-zone interface ge-0/0/3.0

which is accomplished using names interface-zone.xslt:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:junos=http://xml.juniper.net/junos/*/junos
 xmlns:xnm=http://xml.juniper.net/xnm/1.1/xnm
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

 <xsl:import href="../import/junos.xsl"/>

 <xsl:template match="configuration/interfaces/interface/unit/apply-
macro[name='zone']">

 <xsl:variable name="zone" select="data/name"/>
 <xsl:variable name="ifd" select="../../name"/>
 <xsl:variable name="unit" select="../name"/>
 <xsl:variable name="ifl" select="concat($ifd,'.',$unit)"/>

 <transient-change>
 <security>
 <zones>
 <security-zone>
 <name><xsl:value-of select="$zone"/></name>
 <interfaces>
 <name><xsl:value-of select="$ifl"/></name>
 </interfaces>
 </security-zone>
 </zones>
 </security>
 </transient-change>

 </xsl:template>
</xsl:stylesheet>

Here, the script would look for a macro named zone defined under the [interface
unit] hierarchy. The apply-macro statement is the one that allows you to add some
generic information anywhere in the Junos hierarchy—in this particular script, the
security zone name. And multiple macros can be configured, one per logical interface,
in which case each logical interface would be bound to a zone.

If you follow the logic in the script, the script looks for an apply-macro, and each time
it finds one, it emits a <transient-change> tag with the configuration (in XML format,
of course) to add a binding to the security zone specified in the macro statement.

But what is a transient change? Good question.

Scripting and Automation | 775

Transient versus persistent changes

There are two ways to instruct MGD to modify the configuration via a commit script.

• A <change> tag is used to instruct MGD to add a configuration to the configuration
database. Any configuration enclosed in this tag is added to the candidate config-
uration and, once committed, the changes are saved to the current configuration.
Using this tag is no different from manually typing the configuration. After the
commit script is executed and the configuration database is modified, a show com-
mand can be used to display the changes (just like with any other configuration).

• A <transient-change> tag instructs MGD to add the configuration enclosed in the
tag to the candidate configuration without saving the added configuration to the
candidate config. A transient configuration then is sent to MGD and applied upon
commit, but the configuration changes are not stored.

The transient change option is particularly useful for commit scripts because, when
using a <transient-change> tag, the commit script does not have to worry about clean-
ing up the configuration if the macro (or whatever other indication used to create the
configuration) is removed. When using transient changes, the commit script always
adds the configuration after a commit operation, but if the script or macros are re-
moved, the configuration will not be added, and therefore will not be applied.

Configuration templates part II

Since our commit script emits a <transient-change>, how can you make sure it worked?
The configuration file will not show any of the changes, but the operational commands
from the running configuration will.

Transient changes must be enabled in the Junos configuration; otherwise, the script
will result in an error:

set system scripts commit allow-transients
set system scripts commit file ifl-zone.xslt

With the commit script in the /var/db/script/commit directory you can test the script.
Back to our sample configuration:

set interfaces ge-0/0/3 unit 0 apply-macro zone test-zone
set interfaces ge-0/0/3 unit 0 family inet dhcp

After the commit operation, you should see that a new zone, the test-zone, is created
and bound to the ge-0/0/3.0 interface:

pato@SRX650-1# run show security zones test-zone

Security zone: test-zone
 Send reset for non-SYN session TCP packets: Off
 Policy configurable: Yes
 Interfaces bound: 1
 Interfaces:
 ge-0/0/3.0

776 | Chapter 13: SRX Management

Transient changes will not be reflected in the configuration, but it is still possible to see
the candidate configuration after expansion by the commit scripts. The display com
mit-scripts command can be used to see the new candidate configuration, as can be
seen from this output:

[edit security zones]
pato@SRX650-1# show | display commit-scripts
security-zone test-zone {
 interfaces {
 ge-0/0/3.0;
 }
}

Operational Scripts
You have seen how to modify the configuration before it is passed on to the MGD for
processing, and you know that it could be a very powerful feature, but due to its nature,
it only applies to the configuration.

Another way to use XSLT to interact with MGD is through the use of operational
scripts. Instead of being executed after a commit, operational scripts are executed by a
user, much like any operational mode command (hence their name). They allow you
to interact with the MGD in new ways, to do things such as the following:

• Create new commands to extract and correlate information from different sources
and present it in a new way (e.g., a script that mimics the ScreenOS get inter
face command, showing a list of interfaces, their IP addresses, and the security
zone they belong to).

• Automate a sequence of commands (e.g., you could automate the series of trou-
bleshooting steps required to diagnose a connectivity problem).

The main difference between a commit and an operational script is that, whereas com-
mit scripts receive the configuration file as input and output a modified version of it,
operational scripts do not receive any input. They interact directly with MGD by gen-
erating RPC calls. By interacting directly with MGD, operational scripts can:

• Print out useful information in the CLI, obtained from the different daemons in
the system.

• Modify and commit new configurations.

• Generate log messages.

• Publish generic information in the Utility MIB (this is useful when external SNMP
collectors require some information for which no MIBs are defined).

Operational scripts are defined under the [system scripts op] hierarchy in the same
way as commit scripts are:

system {
 scripts {

Scripting and Automation | 777

 op {
 file <file name> {
 arguments { Optional list of arguments passed to the script };
 checksum {};
 command <Command alias>;
 refresh;
 refresh-from <URL where the script can be downloaded from>;
 source <URL where the script can be downloaded from>;
 }
 }
}

Here you can see two new commands that are present: the arguments command which
allows users to define a set of arguments passed on to the script upon execution, and
the command alias, which allows users to change the name of the command.

Let’s introduce the concepts with an example. We will redo the Hello World commit
script, this time using an op script, named hello-world-op.xslt, as shown in the following
output. If no arguments are sent to it, it simply prints out “Hello World” and exits.

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:junos=http://xml.juniper.net/junos/*/junos
 xmlns:xnm=http://xml.juniper.net/xnm/1.1/xnm
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

 <xsl:import href="../import/junos.xsl"/>

 <xsl:variable name="arguments">
 <argument>
 <name>message</name>
 <description>Display message</description>
 </argument>
 </xsl:variable>
 <xsl:param name="message"/>

 <xsl:template match="/">
 <op-script-results>
 <output>
 <xsl:choose>
 <xsl:when test="$message">
 <xsl:value-of select="jcs:printf('%s',$message)"/>
 </xsl:when>
 <xsl:otherwise>Hello World!</xsl:otherwise>
 </xsl:choose>
 </output>
 </op-script-results>
 </xsl:template>

</xsl:stylesheet>

The first thing to note is that, as opposed to the commit script, the op script is not
passed the configuration, but instead is passed a set of parameters. These parameters
can be defined in two ways: they can be declared within the script using an XSLT

778 | Chapter 13: SRX Management

variable named arguments or they can be declared within the CLI when the script is
defined.

Our script used the first method, defining the parameters it accepts directly in the script.
When an operational script is declared, MGD reads the script file looking for the ar-
gument’s definition that it uses to provide help and command completion, just as it
would any other native Junos CLI command. Operational scripts are invoked using the
op command in operational mode. The op script definition is, therefore, as follows
(provided the script is saved in the /var/db/scripts/op directory):

set system scripts op file hello-wolrd.xslt

Execute the script by using the op command in operational mode.

If you are interested, the script logic is pretty straightforward. If no parameter is pro-
vided (i.e., the script is invoked with no arguments) a <command> tag is printed with the
“Hello World” message. This tag is relayed back to the CLI so that a message is printed
out. If an argument is passed instead, the script simply prints out the argument passed
and exits.

This code executes the script without an argument:

pato@SRX650-1> op hello-world.xslt
Hello World!

This code passes a message to display:

pato@SRX650-1> op hello-wolrd.xslt message "Houston, we have a problem!"
Houston, we have a problem!

Note how the description field is used to provide a help message for each argument.
You can see how command completion and help are both available for our newly cre-
ated script:

pato@SRX650-1> op hello-world.xslt ?
Possible completions:
 <[Enter]> Execute this command
 <name> Argument name
 detail Display detailed output
 message Display message
 | Pipe through a command

If you decide to declare the attributes in the Junos configuration, you can do so using
the arguments command. In this case, it’s not necessary to declare the arguments variable
in the script, but you must still define, for each argument, an XSLT parameter with the
same name as the name of the argument. The conversion of our script to this different
way to pass the parameters yields the following script:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl=http://www.w3.org/1999/XSL/Transform
 xmlns:junos=http://xml.juniper.net/junos/*/junos
 xmlns:xnm=http://xml.juniper.net/xnm/1.1/xnm
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

Scripting and Automation | 779

 <xsl:import href="../import/junos.xsl"/>

 <xsl:param name="message"/>

 <xsl:template match="/">
 <op-script-results>
 <output>
 <xsl:choose>
 <xsl:when test="$message">
 <xsl:value-of select="jcs:printf('%s',$message)"/>
 </xsl:when>
 <xsl:otherwise>Hello World!</xsl:otherwise>
 </xsl:choose>
 </output>
 </op-script-results>
 </xsl:template>

</xsl:stylesheet>

The script declaration must then include the arguments that can be passed to the script:

set system scripts op file hello-wolrd.xslt
set system scripts op file hello-wolrd.xslt arguments message description
"Display message"

You can see how our scripts can receive arguments from the CLI, but how can the script
interact with MGD? This is where NETCONF comes in (or a NETCONF-like
interface).

You can send RPC requests to MGD and retrieve their output, allowing you to interact
with the system in many different ways. Here again the | display xml rpc command
can show you which RPCs to use to obtain information. For example, if you only
wanted to print the list of interfaces with an IP address configured, you can use the
<get-interface-information> RPC to obtain the list of interfaces, iterate through it,
and print only the interfaces with address family inet configured.

First, to warm up, let’s write a script that only queries MGD and prints out the returned
information:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:junos="http://xml.juniper.net/junos/*/junos"
 xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm"
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

 <xsl:import href="../import/junos.xsl"/>

 <!-- This function is used to open a persistent connection to MGD, returning a
handler -->
 <xsl:variable name="connection" select="jcs:open()"/>

 <xsl:template match="/">

 <xsl:variable name="get-int-rpc">
 <rpc>

780 | Chapter 13: SRX Management

 <get-interface-information/>
 </rpc>
 </xsl:variable>

 <!-- Send the request to MGD and store the response -->
 <xsl:variable name="interface-information" select="jcs:execute($connection,
$get-int-rpc)"/>

 <!-- Send the received XML fragment to the CLI -->
 <op-script-results>
 <output>
 <xsl:copy-of select="$interface-information"/>
 </output>
 </op-script-results>

 </xsl:template>

</xsl:stylesheet>

The <xsl:copy-of> element creates a copy of all the nodes in the response. In simpler
terms, it outputs the returned XML tree. Still, the CLI does not know how to print this
information, as evidenced by a sample output:

pato@SRX240-1> op all-interfaces-xml

A closer look reveals that, in fact, the script is sending out the resultant XML output
to the CLI, but not in a format that the CLI can use to display the information (normally
the output has to adhere to some very specific XML format for the CLI to display it in
a human-readable way). But the output using the | display xml modifier shows the
data as passed from the script to the CLI:

pato@SRX240-1> op all-interfaces-xml | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.2I0/junos">
 <output>
 <interface-information xmlns="http://xml.juniper.net/junos/10.2I0/junos-
interface" junos:style="normal">
 <physical-interface>
 <name>
 ge-0/0/0
 </name>
 <admin-status junos:format="Enabled">
 up
 </admin-status>
 <oper-status>
 up
 </oper-status>
 <local-index>
 133
 </local-index>
... (Truncated output)

Used this way, the <xsl:copy-of> element can become pretty handy in debugging script
problems, as it allows us to dump some of the variables in our script.

Scripting and Automation | 781

Back to our goal, to have a variable with the list of all interfaces. Using XPATH it’s easy
to filter them and only print the ones with family INET configured:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:junos="http://xml.juniper.net/junos/*/junos"
 xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm"
 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

 <xsl:import href="../import/junos.xsl"/>

 <!-- This function is used to open a persistent connection to MGD,
returning a handler -->
 <xsl:variable name="connection" select="jcs:open()"/>

 <xsl:template match="/">
 <xsl:variable name="get-int-rpc">
 <rpc>
 <get-interface-information/>
 </rpc>
 </xsl:variable>

 <!-- Send the request to MGD and store the response -->
 <xsl:variable name="interface-information" select="jcs:execute($connection,
$get-int-rpc)"/>

 <!-- Send the received XML fragment to the CLI -->
 <op-script-results>
 <output>
 <xsl:value-of select="jcs:printf('Logical Interfaces with family inet
configured
')"/>
 <xsl:for-each select="$interface-information//physical-interface/logical-
interface[address-family/address-family-name='inet']">
 <xsl:value-of select="jcs:printf('Name: %s Zone: %s
',name,
logical-interface-zone-name)"/>
 </xsl:for-each>
 </output>
 </op-script-results>

 </xsl:template>

</xsl:stylesheet>

If you are still following all this, there are a few things to mention. The character

is the HTML entity code for a newline; a \n could have been used, but at the time of
this writing, the printf extension function supplied as part of the function library did
not interpret the \n character correctly. The other thing to point out is the XPATH
expression in the first line of highlighted code; it selects the <logical-interface> nodes
in the XML result that have an <address-family> child with an <address-family-
name> with value inet configured. The second line of highlighted code uses the
printf library function to display the values of the <name> and <logical-interface-
zone-name> nodes.

782 | Chapter 13: SRX Management

Just like before, save the script (this one is named ip-interfaces.xslt) under the /var/db/
scripts/op directory and declare it in the Junos hierarchy:

set system scripts op file ip-interfaces.xslt

The script will print out a list of interfaces with 'family inet' defined and the security
zones assigned to them:

pato@SRX650-1> op ip-interfaces.xslt
Logical Interfaces with family inet configured
Name: ge-0/0/0.0 Zone: management
Name: ge-0/0/1.0 Zone: trust
Name: fe-0/0/2.0 Zone: untrust
Name: lo0.16384 Zone: Null
Name: lo0.16385 Zone: Null

Event Scripts
Event scripts are plain operational scripts that instead of being executed by a user are
executed by the system in response to an event. They provide a great way to automate
operations or to automatically react to changing network conditions.

The central concept behind event scripts is the use of event policies. They provide a
way to filter and correlate any events generated in the system and, in response, perform
one of the following actions:

• Execute a set of CLI commands and store the resultant output in a file (this file
could be stored in the local filesystem or, if preferred, it can be uploaded to a central
repository).

• Upload the last committed configuration to a central repository.

• Raise a trap.

• Execute an event script.

Event policies follow a similar structure to other policies in the system, such as routing
policies. A set of matching conditions define which events, or group of events, trigger
a policy—a set of actions that specify the procedures to take in response to the events.
Here is a sample:

event-options {
 destinations {
 destination-name {
 archive-sites {
 url <password password>;
 }
 transfer-delay seconds;
 }
 }
 policy policy-name {
 attributes-match {
 event.attribute equals event2.attribute;
 event.attribute matches <regexp>;

Scripting and Automation | 783

 event.attribute starts-with event2.attribute;
 }
 events [event1 event2 ...];
 within <seconds> {
 events [events];
 not events [events];
 trigger (on | after | until) event-count;
 }
 then {
 event-script filename {
 arguments {
 argument-name argument-value;
 }
 destination <destination name> { Destination options }
 output-filename filename;
 output-format (text | xml);
 user-name name;
 }
 execute-commands {
 commands {
 "command";
 }
 destination <destination name> { Destination options }
 output-filename filename;
 output-format (text | xml);
 user-name username;
 }
 ignore;
 raise-trap;
 upload filename (filename | committed) destination destination-name
 { Destination options }
 }
 }
}

The command hierarchy might seem daunting at first, but it is simpler than it appears.
Let’s forget about the destination options for a moment and just concentrate on how
to filter and correlate events.

In its simplest form, a policy will be triggered when any of the events listed in the
“events” list is generated. With every Junos release, the System Log Messages Refer-
ence document is published and it contains an updated list of all the syslog messages
generated by Junos (the list can also be downloaded from the Juniper support site).
Alternatively, the help syslog command provides a list of all the log messages and a
description of each log.

pato@SRX240-1> help syslog ?
Possible completions:
 <[Enter]> Execute this command
 <syslog-tag> System log tag or regular expression
 ACCT_ACCOUNTING_FERROR LOG_PFE,Error occurred during file processing
 ACCT_ACCOUNTING_FOPEN_ERROR LOG_PFE,Open operation failed on file
 ACCT_ACCOUNTING_SMALL_FILE_SIZE LOG_PFE,Maximum file size
is smaller than record size

784 | Chapter 13: SRX Management

 ACCT_BAD_RECORD_FORMAT LOG_PFE,Record format does not match accounting profile
 ACCT_CU_RTSLIB_ERROR LOG_PFE,Error occurred obtaining current class usage
statistics
 ACCT_FORK_ERR LOG_PFE,Could not create child process
... (Truncated output)

Anything that generates an event can potentially trigger an action, including executing
a script. Event scripts are then commonly used to diagnose problems in a system, such
as periodically collecting information, or saving information after an important event
such as a daemon crashing or a card crashing.

Following the style of this chapter, a simple (yet useful) example will help illustrate
some of these concepts a bit better.

A common issue found when running Intrusion Detection and Prevention (IDP) in a
high availability (HA) cluster is that, in some instances, the fxp0 interfaces are not
connected to the Internet. This results in the need to download the security packages
from a revenue port in the system (commonly a Reth interface) and it’s problematic
because the control plane’s backup node (i.e., the secondary node of redundancy group
0) has no connectivity other than from the fxp0 interface. At the expense of digressing
for a bit, this is due to the fact that host-inbound traffic is always sent to the control
plane’s primary node because the primary node is the one in charge of all control plane
operations. The forwarding threads always forward all host-inbound traffic to the pri-
mary node, and so the secondary node cannot receive any traffic, which is why the
fxp0 interface was created. Traffic received through this port is not handled by the
forwarding plane (flowd), but sent directly to the device’s kernel.

So, back to our example. If the backup node has no connectivity to the rest of the world,
how can we make sure the security packages are kept up-to-date in that node?

Well, the primary node has no problems updating its signatures, and when a new se-
curity package is installed an event is generated notifying administrators of the results.
Enter event scripts—this event could trigger a script that copies the downloaded sig-
natures into the backup node followed by a package install.

The event-policy configuration is pretty simple:

set event-options policy idp-update events IDP_SECURITY_INSTALL_RESULT
set event-options policy idp-update attributes-match
idp_security_install_result.status matches successful
set event-options policy idp-update then event-script idp-update.xslt
set event-options event-script file idp-update.xslt

The idp-update.xslt script, when executed, copies the files and sends an RPC to MGD
to install the new security package into the secondary node. Event scripts (including
this one, of course) must be downloaded to the /var/db/scripts/event directory:

<?xml version="1.0" standalone="yes"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:junos="http://xml.juniper.net/junos/*/junos"
 xmlns:xnm="http://xml.juniper.net/xnm/1.1/xnm"
 xmlns:ext="http://xmlsoft.org/XSLT/namespace"

Scripting and Automation | 785

 xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">

 <xsl:import href="../import/junos.xsl"/>

 <!-- Open a connection to MGD-->
 <xsl:variable name="connection" select="jcs:open()"/>

 <!-- Figure out which node is the secondary -->
 <xsl:variable name="cluster-info-rpc">
 <rpc>
 <get-route-engine-information>
 <node>local</node>
 </get-route-engine-information>
 </rpc>
 </xsl:variable>
 <xsl:variable name="cluster-info"
 select="jcs:execute($connection, $cluster-info-rpc)"/>
 <xsl:variable name="local-node"
 select="$cluster-info//multi-routing-engine-item/re-name"/>
 <xsl:variable name="remote-node">
 <xsl:choose>
 <xsl:when test="$local-node = 'node0'">node1</xsl:when>
 <xsl:when test="$local-node = 'node1'">node0</xsl:when>
 </xsl:choose>
 </xsl:variable>

 <xsl:variable name="rg0-master">
 <xsl:call-template name="get-master">
 <xsl:with-param name="redundancy-group">0</xsl:with-param>
 </xsl:call-template>
 </xsl:variable>

 <xsl:template name="get-master">
 <xsl:param name="redundancy-group">0</xsl:param>

 <xsl:variable name="get-cluster-status">
 <rpc>
 <get-chassis-cluster-status>
 <redundancy-group>
 <xsl:value-of select="$redundancy-group"/>
 </redundancy-group>
 </get-chassis-cluster-status>
 </rpc>
 </xsl:variable>
 <xsl:variable name="cluster-status-results"
 select="jcs:execute($connection, $get-cluster-status)"/>

 <!-- Determine the master of the chassis cluster-->
 <xsl:variable name="rg-node0-priority"
 select="$cluster-status-results/redundancy-group
 [$redundancy-group+1]/device-stats/redundancy-group-status[1]"/>
 <xsl:variable name="rg-node1-priority"
 select="$cluster-status-results/redundancy-group
 [$redundancy-group+1]/device-stats/redundancy-group-status[2]"/>
 <xsl:choose>

786 | Chapter 13: SRX Management

 <xsl:when test="$rg-node0-priority = 'primary' and $rg-node1-priority
 != 'primary'">
 <!-- Node0 is the primary returning Node0-->
 <text>node0</text>
 </xsl:when>
 <xsl:when test="$rg-node0-priority != 'primary' and $rg-node1-priority
 = 'primary'">
 <!-- Node1 is the primary returning Node1-->
 <text>node1</text>
 </xsl:when>
 </xsl:choose>
 </xsl:template>

 <xsl:template name="copy-idp-signatures">
 <xsl:param name="from-node"/>
 <xsl:param name="to-node"/>
 <xsl:param name="path">/var/db/idpd/sec-download/</xsl:param>

 <xsl:variable name="ls-rpc">
 <rpc>
 <file-list>
 <path>
 <xsl:value-of select="$path"/>
 </path>
 <detail/>
 </file-list>
 </rpc>
 </xsl:variable>
 <xsl:variable name="files"
 select="jcs:execute($connection, $ls-rpc)//file-information
 [starts-with(file-permissions/@junos:format,'-')]/file-name"/>

 <!-- Loop through the files and copy every file to the new node -->
 <xsl:for-each select="$files">
 <xsl:variable name="file-copy-rpc">
 <rpc>
 <file-copy>
 <source>
 <xsl:value-of select="concat($path, '/', .)"/>
 </source>
 <destination>
 <xsl:value-of
 select="concat($remote-node, ':/var/db/idpd/
 sec-download/')"/>
 </destination>
 </file-copy>
 </rpc>
 </xsl:variable>

 <xsl:value-of select="jcs:execute($connection, $file-copy-rpc)"/>
 </xsl:for-each>

 </xsl:template>

 <xsl:template name="install-packages">

Scripting and Automation | 787

 <xsl:param name="node"/>
 <xsl:variable name="regex-result" select="jcs:regex('node([01])', $node)"/>
 <xsl:variable name="node-id" select="$regex-result[2]"/>
 <xsl:variable name="install-package-rpc">
 <rpc>
 <command> request security idp security-package install node
 <xsl:value-of select="$node-id"/>
 </command>
 </rpc>
 </xsl:variable>

 <xsl:value-of select="jcs:execute($connection, $install-package-rpc)"/>

 </xsl:template>

 <xsl:template match="/">
 <op-script-results>
 <output>
 <xsl:choose>

 <xsl:when test="$local-node = $rg0-master">

 <!-- Copy the security packages to the backup node -->
 <xsl:call-template name="copy-idp-signatures">
 <xsl:with-param name="from-node" select="$local-node"/>
 <xsl:with-param name="to-node" select="$remote-node"/>
 <xsl:with-param name="path">/var/db/idpd/sec-download
 </xsl:with-param>
 </xsl:call-template>
 <!-- If the package was installed by nsm the files are stored
 in a different location -->
 <xsl:call-template name="copy-idp-signatures">
 <xsl:with-param name="from-node" select="$local-node"/>
 <xsl:with-param name="to-node" select="$remote-node"/>
 <xsl:with-param name="path">/var/db/idpd/nsm-download
 </xsl:with-param>
 </xsl:call-template>

 <!-- Installl the packages-->
 <xsl:call-template name="install-packages">
 <xsl:with-param name="node" select="$remote-node"/>
 </xsl:call-template>

 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="jcs:printf('Local node is not the RG0
 master. Nothing to do\n')"/>
 </xsl:otherwise>

788 | Chapter 13: SRX Management

 </xsl:choose>
 </output>
 </op-script-results>
 </xsl:template>

</xsl:stylesheet>

Of course, there is more to the event policies than this. You can correlate several events,
or pass some of the attributes in the received event to the script. For example, say you
wanted to reboot a card if you receive some message about a PIM going offline. The
log message could include the PIM number, and this number could be passed on to
your event script so that it could reboot the appropriate card.

Some of the sample scripts in the case studies at the end of this chapter use more
complex policies that correlate several events. In particular, the event policies for Case
Study 13-5 are complex enough that a commit script was written to generate them.

For those of you who are interested in digging deeper into scripting, the Configuration
and Diagnostic Automation Guide downloadable from the Juniper Networks support
site is a good reference that provides some more examples and, more importantly, a
detailed list of all the available auxiliary functions and configuration options.

In any case, the case studies at the end of this chapter go through how to use some of
the scripts shown here to solve common problems found in SRX deployments. Some
of these issues have already been addressed, but the scripts still provide good insight
into what can be done with Junos automation. But before you get to do that, and since
you are going to be dealing with a bunch of scripts, let’s see how to simplify the de-
ployment of scripts on SRX devices.

Keeping Your Scripts Up-to-Date
It is easy to copy the scripts to a single device, but things can get out of control when
managing multiple devices, or when you want to make sure the scripts are always kept
up-to-date.

Instead of manually downloading the scripts to every single device every time something
changes, you can use a repository and instruct the SRXs to periodically retrieve the
scripts from the repository, and only the repository needs to be up-to-date.

Your repository can be a simple FTP, TFTP, or HTTP server storing the scripts. The
source parameter is used to specify the network location of the scripts and it can be
done on a per-script basis (i.e., each script could be stored in a different repository).

Keeping Your Scripts Up-to-Date | 789

When user authentication is required (commonly the case with FTP) the format of the
URL is service://user:password@server-address:/path. Here are a few examples using
these URLs:

http://server-address/path/filename
ftp://user:pass@server-address/path/filename
tftp://path/filename

Most of the examples in this chapter have used an HTTP server to store all the scripts.
If you have a server that can be used as a central repository, and it is reachable from
your devices, the SRXs can download the script directly from the repository using the
following configuration:

[edit system script]
set system scripts op file int.xslt source http://<address of your repository>/
 <path to the script>/<script filename>

Two commands are provided to trigger a download of the script into the appropriate
directory—this way, you don’t have to remember where to store the scripts; you just
need to specify where to download them from and Junos will store them in the right
place! You can either set the refresh flag in the script’s configuration (note how this
command must be entered in configuration mode):

[edit system script op]
pato@SRX210-1# set file int.xslt refresh
refreshing 'int.xslt' from 'http:///172.19.101.103/op/int.xslt'
/var/home/pato/...transferring.file.........FU100% of 3800 B 629 kBps

or use the request system script command:

pato@SRX650-1> request system scripts refresh-from op url http://
172.19.101.103/op/int.xslt

Note that, in these examples, I am using an HTTP server with the 172.19.101.103
address where all the scripts are stored. There is no command to trigger a periodic
download, however, so to update the scripts automatically simply schedule a periodic
event, which triggers an event policy that executes the update command! Something
close to the following should do:

set event-options generate-event refresh-script time-interval 14400
set event-options policy load-int-script events refresh-script
set event-options policy load-int-script then execute-commands commands "request
system scripts refresh-from op url http://172.19.101.103/op/int.xslt"

Case Studies
By now you should have a basic understanding of the things you can do using Junos
scripts. You’ve been exposed to some examples of how you can use Junos automation
to solve some common problems, so now let’s drill down into a few case studies.

The focus is not on how each script works, but rather how they are used.

790 | Chapter 13: SRX Management

You can download all scripts from this book’s web page at http://www
.oreilly.com/9781449381714.

Case Study 13-1: Displaying the Interface and Zone Information
The int.xslt script shows all the interfaces in the system with an IP address configured
(with the exception of a few pseudointerfaces that do not need to be bound to a zone)
in a ScreenOS-like format:

pato@J6350-1# run op int.xslt
Logical Interface Address Zone Routing Instance Status Description
ge-0/0/0.0 172.19.101.37 management Master Up
pd-0/0/0.32769 Null Master Up
ge-2/0/0.0 10.1.1.5 trust Master Up EX4200-1
ge-3/0/0.0 10.2.1.5 trust Master Up EX4200-1
wx-6/0/0.0 1.1.1.1 wx-zone Master Up
lo0.0 10.255.255.255 trust Master Up
st0.0 10.10.1.1 vpn Master Up

The description field is taken from the description in the unit and, if not present, the
physical interface description is used. Of course, if neither of those is defined, the de-
scription is left blank.

Case Study 13-2: Zone Groups
The zone-groups.xslt script simulates a zone group, or a zone that contains multiple
zones. When used in a policy, the zone group is expanded so that a new policy is added
for each zone in the group (to prevent a zone explosion, a group zone can only be used
as the source zone or the destination zone, but not both).

To use it, load the script under /var/db/scripts/commit/ and add the following to the
config:

set system scripts commit allow-transients
set system scripts commit file zone-groups.xslt

To define a zone group, simply define a normal security zone and add a macro statement
called zone-group with all the zones in the group. For instance, to create a group called
test-zone-group that includes the Management and Untrust zones, add the following
to the config file:

set security zones security-zone test-zone-group apply-macro
zone-group management
set security zones security-zone test-zone-group apply-macro
zone-group untrust

Then use the zone group as you would use any normal zone:

set security policies from-zone trust to-zone test-zone-group policy test match
source-address server-address

Case Studies | 791

http://www.oreilly.com/9781449381714
http://www.oreilly.com/9781449381714

set security policies from-zone trust to-zone test-zone-group policy test match
destination-address any
set security policies from-zone trust to-zone test-zone-group policy test match
application junos-http
set security policies from-zone trust to-zone test-zone-group policy test then
permit

The test policy is expanded into two policies (one from zone Trust to zone Management
and the other from zone Trust to zone Untrust, both matching source IP server-
address, destination IP any, and application junos-http).

Because address book entries are tied to zones, when using a global zone
address book entries defined in that zone will be copied to each member
zone, so please be careful not to add too many entries.

Case Study 13-3: Showing the Security Policies in a Compact Format
The policies.xslt script displays the list of security policies, each in a single line. The
standard format of the show security policy command is somewhat verbose and not
adequate, at a glance, to view the different policies in a system.

For example, only three security policies are shown here, and the output is, well, ver-
bose. Imagine what the output would be like with a more standard configuration with,
say, 20 policies:

pato@SRX650-1> show security policies
Default policy: deny-all
From zone: trust, To zone: trust
 Policy: default-permit, State: enabled, Index: 4, Scope Policy: 0, Sequence
number: 1
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit
From zone: trust, To zone: untrust
 Policy: default-permit, State: enabled, Index: 5, Scope Policy: 0, Sequence
number: 1
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit, application services, log
From zone: untrust, To zone: trust
 Policy: default-permit, State: enabled, Index: 6, Scope Policy: 0, Sequence
number: 1
 Source addresses: any
 Destination addresses: any
 Applications: any
 Action: permit, application services

Instead, the script shows each policy in a single line (well, multiple lines per policy if
it matches across multiple addresses or applications), making it easier (at least for most
people) to follow large configurations:

792 | Chapter 13: SRX Management

pato@SRX650-1# run op policies
From-Zone To-Zone Name Src-Addr Dst-Addr Application Action Comment
trust trust def-permit any any any permit
trust untrust allow-out any any any permit
untrust trust Server-A-in Server-A any any permit

Optionally, a parameter can be passed to instruct the script to output the policies from
the operational information, instead of from the configuration, which is especially use-
ful when the configuration does not reflect all the policies in the system (as is the case
when using the group-zone commit script shown in Case Study 13-2):

pato@J6350-1# run op policies expand yes
From-Zone To-Zone Name Src-Addr Dst-Addr Application Action
trust untrust test-policy addr_10_1_1_1 any junos-http deny
trust trust match-some test-1 addr_10_1_1_1 junos-http permit
 test-2 junos-https
trust trust reject-all any any any deny
group-test trust match-some test-1 addr_10_1_1_1 junos-http permit
 test-2 junos-https
group-test trust reject-all any any any deny
management trust match-some test-1 addr_10_1_1_1 junos-http permit
 test-2 junos-https
management trust reject-all any any any deny

Case Study 13-4: Track-IP Functionality to Trigger a Cluster Failover
In a cluster, the mastership status of a redundancy group can be influenced by moni-
toring the status of a server, or a group of servers, by using simple pings. This allows
you to failover a cluster when, due to some network condition, the connectivity to a
server through a particular node is affected.

High-end SRX devices support this feature natively, but the branch SRX Series devices
do not (yet). For devices in which Track-IP is not supported in a chassis cluster, the
track-ip script can be used to monitor the status of a device and, in a failure, trigger a
failover.

The track-ip script uses the event system to schedule a TRACKIP event every 60 seconds.
An event policy triggered by the TRACKIP event calls the script, which reads the chassis
cluster redundancy group information looking for Track-IP configuration macros. The
macros specify the different parameters used to monitor the device (such as the device’s
IP address, number of pings to send, timeout, etc.):

set chassis cluster reth-count 2;
set chassis cluster control-ports fpc 2 port 0;
set chassis cluster control-ports fpc 14 port 0;
set chassis cluster redundancy-group 0 node 0 priority 254;
set chassis cluster redundancy-group 0 node 1 priority 1;
set chassis cluster redundancy-group 1
set chassis cluster redundancy-group 1 apply-macro track-gateway
set chassis cluster redundancy-group 1 apply-macro track-gateway
server 1.1.1.222;
set chassis cluster redundancy-group 1 apply-macro track-gateway weight 255;

Case Studies | 793

set chassis cluster redundancy-group 1 apply-macro track-gateway count 5; /*
Optional */
set chassis cluster redundancy-group 1 apply-macro track-gateway
routing-instance Test; /* Optional */
set chassis cluster redundancy-group 1 apply-macro track-gateway interval 2; /*
Optional */
set chassis cluster redundancy-group 1 apply-macro track-gateway wait 1; /*
Optional */

The macro name must begin with track- (i.e., the track-ip script will only read the
configuration of the macros defined under the [chassis cluster] hierarchy whose
name starts with the track- prefix) and must contain the server IP address and a weight.
The script then sends some pings to the server’s address; if successful, the script will
exit without any changes. If the pings fail, the script will check the configured weight
and failover for the redundancy group if the weight is equal to or greater than 255.

Multiple hosts can be listed (using multiple macros, one per host), and when several
of them fail, the weights are added and, as in the single host case, checked to see if they
are larger than or equal than 255 in order to trigger a failover. This sequence allows for
configurations where a single failure does not trigger a failover, but a group of them will.

To trigger the script, we need to configure an event to periodically call our track-ip
script. The following configuration shows how to do this on a 60-second interval:

set event-options generate-event TRACK-IP time-interval 60
set event-options policy TRACK-IP events TRACK-IP then event-script track-ip.xsl
set event-options event-script file track-ip.xsl

It’s also possible to pass some options to the script through the use of a macro named
monitoring-options under the [chassis cluster] hierarchy. Two options are available
for the macro:

• The clear-failover option clears the failover flag after a failover is triggered.
Without this option, the track-ip script only fails over once, until the failover flag
is manually cleared by a user.

• The full-failover option triggers a full failover of all redundancy groups, regard-
less of which redundancy group failed its Track-IP checking. This option is useful
to ensure that all redundancy groups are active in the same node:

set chassis cluster apply-macro monitoring-options clear-failover
set chassis cluster apply-macro monitoring-options full-failover

Case Study 13-5: Track-IP Using RPM Probes
Often a simple mechanism is required to detect when problems occur on the network
and to divert traffic accordingly. Routing protocols were designed for this task, but
unfortunately, you cannot always assume they are used in every network deployment.
In particular, small branch devices connected to the Internet using common DSL or
cable links are, most of the time, not able to use dynamic routing protocols with their
service provider.

794 | Chapter 13: SRX Management

To solve this issue (among others), several different approaches are used in Junos.
Bidirectional forwarding detection (BFD) can be used to monitor static routes, or, in
the case of chassis clusters, Track-IP uses ICMP messages to trigger redundancy group
failovers (or the track-ip script in Case Study 13-4). Although BFD is extremely useful,
it requires support on the target machine. By using simple ICMP messages, Track-IP is
much more likely to be supported (as most devices support ICMP), but it can only be
used on chassis cluster configurations and it only measures reliability.

The main idea is to use RPM probes to track a device (or a group of devices) and, based
on the results, either change route metrics or enable or disable an interface.

To use the script, first configure standard rpm probes monitoring the desired resources:

set services rpm probe pato test js-eth1 target address 10.1.1.110;
set services rpm probe pato test js-eth1 probe-count 10;
set services rpm probe pato test js-eth1 probe-interval 1;
set services rpm probe pato test js-eth1 test-interval 1;

set services rpm probe pato test js-eth2 target address 10.2.1.110;
set services rpm probe pato test js-eth2 probe-count 10;
set services rpm probe pato test js-eth2 probe-interval 1;
set services rpm probe pato test js-eth2 test-interval 1;

A macro called rpm-monitor-<name> configured under each tracked route is used to point
to the RPM probe used to track the route. The macro must specify the following:

test-name
This is the name of the RPM test used to track this route.

test-owner
This is the owner of the RPM test.

weight
This is the weight used to increment the route metric after a failover occurs. For
instance, if the original metric is 10 and the weight is 100 after a failover occurs,
the new metric will be set to 110.

hold-down (optional)
This is the minimum time (in seconds) after which the metric is allowed to be
reverted back from the time the first probe failure occurred. It is used to prevent
flapping and it defaults to 300 seconds (five minutes).

The following configuration shows an example using some of the probes previously
configured:

set routing-options static route 10.255.255.255/32
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.1.1.110
apply-macro rpm-monitor hold-down 120
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.1.1.110
apply-macro rpm-monitor test-name js-eth1
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.1.1.110
apply-macro rpm-monitor test-owner pato
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.1.1.110

Case Studies | 795

apply-macro rpm-monitor weight 100
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.1.1.110
metric 150

set routing-options static route 10.255.255.255/32 qualified-next-hop 10.2.1.110
apply-macro rpm-monitor-2 test-name js-eth2;
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.2.1.110
apply-macro rpm-monitor-2 test-owner pato;
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.2.1.110
apply-macro rpm-monitor-2 weight 200;
set routing-options static route 10.255.255.255/32 qualified-next-hop 10.2.1.110
metric 100

The script can also be used to bring up a backup interface when a probe fails. In the
following configuration, the ge-0/0/1 interface is connected to a backup link and it is
enabled only when the RPM probes (routed through the main link) fail:

set interface ge-0/0/1 apply-macro rpm-monitor-ifd test-name js-eth2
set interface ge-0/0/1 apply-macro rpm-monitor-ifd test-owner pato

set interface ge-0/0/1 disable
set interface ge-0/0/1 unit 0 family inet address 10.1.1.90/16

The second use case is commonly found when using the external 3G wireless bridge
(which can be configured to establish a connection through the 3G network when either
the physical Ethernet link is up or, alternatively, a DHCP request is received).

Two scripts are used. A commit script, rpm-monitor-config.xslt, takes care of doing
some config validation and generates event policies based on the configured probes.
These policies are used to trigger an event script, rpm-monitor.xslt, which is used to
change the metrics (and enforce the hold-down time, among other things).

You can rename the commit script as desired, but the event script must be named rpm-
monitor.xslt since this is the event script name used in the event policies configuration,
as expanded by the commit script:

set event-options event-script file rpm-monitor.xslt
set system scripts commit allow-transients
set system scripts commit file rpm-monitor-config.xslt

Case Study 13-6: Top Talkers
Given that both branch and high-end SRX devices can locally store session logs (con-
strained to a max for 1.5k logs/s) it is quite a common request to be able to extract
some useful information such as top talkers, top destinations, and so forth.

Logs are saved in ASCII format, making them easy to process by a script. It is trivial to
configure a file to store session logs in the /var/log directory when a device is configured
in event mode. For instance, the config shown here creates a file named sessions where
all the session logs are stored:

796 | Chapter 13: SRX Management

set system syslog file sessions user info
set system syslog file sessions match RT_FLOW
set system syslog file sessions structured-data brief

Each log contains a lot of useful information. It is enough to see a single record to realize
that it can be a challenging task to make much sense of all the information, when
thousands of logs are stored there, so it’s been truncated into a few lines to make it
more readable:

<14>1 2010-02-15T17:28:30.198-08:00 SRX240-1 RT_FLOW - RT_FLOW_SESSION_CLOSE
[junos@2636.1.1.1.2.39
reason="response received"
source-address="10.1.1.101"
source-port="1"
destination-address="10.2.1.45"
destination-port="12558"
service-name="icmp"
nat-source-address="10.1.1.101" nat-source-port="1"
nat-destination-address="10.2.1.45" nat-destination-port="12558"
src-nat-rule-name="None" dst-nat-rule-name="None"
protocol-id="1"
policy-name="permit-all"
source-zone-name="trust"
destination-zone-name="trust"
session-id-32="59950"
packets-from-client="1" bytes-from-client="84" packets-from-server="1"
bytes-from-server="84"
elapsed-time="3"]

Fortunately, Junos scripting can come to the rescue. You can use an op script to parse
a file with session logs and aggregate the information by any of the fields present in the
log. To that extent, the top-talkers.xslt script takes a filename and attribute as an ar-
gument and it generates a table with the cumulative traffic stats for that attribute.

For instance, say you want to see the traffic stats grouped by source address. You simply
pass the source-address attribute and your sessions filename as parameters and the
script generates output such as the following:

pato@SRX240-1# run op top-talkers filename sessions aggregate source-address
source-address Packets Bytes Sessions
10.1.1.101 290 170073 12

In this case, all the sessions in the session table originate from the 10.1.1.101 address.
Let’s aggregate the records using a couple of other attributes:

pato@SRX240-1# run op top-talkers filename sessions aggregate destination-
address
destination-address Packets Bytes Sessions
10.2.1.45 6 504 3
157.166.226.26 40 26850 1
96.17.141.15 21 10002 1
157.166.255.18 40 26868 1
200.42.136.212 42 26598 1
207.58.150.180 48 36583 1
74.86.132.180 48 26106 2

Case Studies | 797

74.125.19.147 22 11446 1
72.246.175.148 23 5116 1

pato@SRX240-1# run op top-talkers filename sessions aggregate service-name
service-name Packets Bytes Sessions
icmp 6 504 3
junos-http 261 164453 8
junos-https 23 5116 1

pato@SRX240-1# run op top-talkers filename sessions aggregate policy-name
policy-name Packets Bytes Sessions
permit-all 6 504 3
allow-out 284 169569 9

pato@SRX240-1# run op top-talkers filename sessions aggregate reason
reason Packets Bytes Sessions
response received 6 504 3
TCP FIN 191 116424 6
TCP RST 93 53145 3

You should get the idea. Of course, for an analysis of large logfiles or more complex
correlations, an external collector such as STRM, or Junos Space is the way to go.

Case Study 13-7: Destination NAT on Interfaces with Dynamic IP Addresses
Another common question relates to how to do destination NAT when the IP address
of the ingress interface is dynamically assigned.

Consider this simple scenario, where an SRX is connected to the Internet via a DSL
line, and the IP address assigned to the Untrust interface is dynamically assigned, and
therefore is not known at configuration time (it is only known at runtime).

In this hypothetical network shown in Figure 13-6, an HTTP server is connected to the
Trust network and you want to translate all traffic sent to the Internet-facing interface
port 80, to the address of the HTTP server in the DMZ zone (and port 80 as well).

If you knew the public address of the SRX at configuration time, all you would have to
do is to configure a destination NAT rule-set such as the following:

set security nat destination pool http-server-1 address 10.2.1.103/32
set security nat destination pool http-server-1 address port 80
set security nat destination rule-set access-to-DMZ-servers from
interface ge-0/0/0.0
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match destination-address <Address of the Internet-facing Interface>
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match destination-port 80
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
then destination-nat pool http-server-1

798 | Chapter 13: SRX Management

Figure 13-6. Destination NAT on a dynamically assigned interface

Unfortunately, you don’t know the address of the Internet-facing interface in advance.
However, you do know that if the SRX has no other public addresses assigned to it, the
only traffic forwarded to the Untrust interface must be destined to the IP address of
that interface (because you assume that there are no other public addresses configured
behind the SRX), and therefore you can simply match on any destination address:

set security nat destination pool http-server-1 address 10.2.1.103/32
set security nat destination pool http-server-1 address port 80
set security nat destination rule-set access-to-DMZ-servers from
interface ge-0/0/0.0
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match destination-address 0.0.0.0/0
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match destination-port 80
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
then destination-nat pool http-server-1

So far so good, but what if your branch network has a dynamically assigned address
and some public range of addresses that are owned by that branch? In that case, the
traffic received at the Untrust interface could be destined to the IP address of the in-
terface itself, but it could also be destined to the public subnet (or subnets) behind the
SRX. How can you differentiate between the two?

One option is to create a rule matching on the known public subnet with a no-nat
action, followed by a rule matching on any destination address with an action to NAT
the traffic to the address of the HTTP server. You can do that one on your own.

However, a second option is to use a script so that you can match on the address of the
Untrust interface. An event script is executed every time the Untrust interface is

Case Studies | 799

assigned a new address—the script simply changes the destination NAT rule to match
on the newly assigned address. This is a more flexible alternative since you could add
and remove new public subnets without having to modify the NAT configuration.

set event-options policy ip-renew events SYSTEM
set event-options policy ip-renew attributes-match SYSTEM.message
matches "EVENT Add"
set event-options policy ip-renew then event-script dyn-nat.xslt
arguments message "{$$.message}"
set event-options event-script file dyn-nat.xslt

The configuration is identical to the previous one, but this time let’s use a macro state-
ment to indicate to the script which interface address a particular rule is matching on:

set security nat destination pool http-server-1 address 10.2.1.103/32
set security nat destination pool http-server-1 address port 80
set security nat destination rule-set access-to-DMZ-servers from
interface ge-0/0/0.0
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match destination-address 0.0.0.0/0
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match apply-macro match-interface interface ge-0/0/0.0
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
match destination-port 80
set security nat destination rule-set access-to-DMZ-servers rule http-server-1
then destination-nat pool http-server-1

Case Study 13-8: High-End SRX Monitor
Let’s conclude this chapter with a simple but very useful script written for high-end
SRX devices. Due to the device’s distributed nature, multiple moving parts are involved
in forwarding packets across a system. Monitoring the system’s status involves pooling
information from the various processors in a device.

Multiple CLI commands display the status of a particular Services Processing Card
(SPC), but no single command shows an overview of the status of the various CPUs in
the node. The srx-monitor script takes care of this by collecting the statistics of the
different processors and displaying them in a single table:

set system scripts op file srx-monitor.xsl

root@SRX5800-1# run op srx-monitor
Route Engine
Slot Mem Size Mem Used CPU Avg CPU User CPU Bkgd CPU Krnl CPU Intpt CPU Idle
--
 0 2048 18 11 3 0 7 1 89
SPUs
FPC PIC CPU Mem Flow Sess Cur Flow Ses Max CP Ses Cur CP Ses Max

 0 0 0 83 0 0 0 10485760
 0 1 0 67 0 1048576 0 0
 1 0 0 67 0 1048576 0 0
 1 1 0 67 0 1048576 0 0

800 | Chapter 13: SRX Management

 2 0 0 67 0 1048576 0 0
 2 1 0 67 0 1048576 0 0
 3 0 0 67 0 1048576 0 0
 3 1 0 67 0 1048576 0 0

Summary
Due to the complexity of SRX devices, it is difficult to predict the numerous and creative
ways in which people will try to use them to perform the different operations required
on any modern network. Instead of trying to solve every possible problem, Juniper
Networks has chosen to provide a relatively simple but powerful set of features that
allow users to extend the capabilities of the devices in multiple new ways.

The scripting capabilities are not meant to be used in every scenario. Features that
require tighter integration—for example, to perform operations on every packet or to
implement new control-plane protocols—require a different approach, provided by the
Junos SDK. But for relatively simple operations, the scripting infrastructure allows us
to extend Junos capabilities without the effort required to write new programs and
learn multiple new APIs. To someone who has to find quick solutions to the different
problems encountered in new deployments, this trade-off is a real bargain.

Chapter Review Questions
1. What is MGD?

2. When are commit scripts executed?

3. Which languages can be used to write Junos scripts?

4. What is the difference between an operational script and an event script?

5. What are the event policies?

6. How do we pass information to commit scripts?

7. Which are the tags supported by MGD to perform some action?

8. What is the main difference between a transient and a permanent change?

9. In which two ways can we define which parameters can be passed to an operational
script?

10. What is the default mode used to edit the Junos configuration database (for a
standalone device)?

Chapter Review Answers
1. MGD is a daemon running in the control plane and in charge of interfacing between

the different daemons running in the control plane and the forwarding elements
in a Junos device, and the management interface such as J-Web or the CLI.

Chapter Review Answers | 801

2. Commit scripts are triggered by a commit operation.

3. Junos scripts can be written in XSLT or SLAX. In the backend, all scripts are eval-
uated by an XSLT interpreter. SLAX has been developed to provide a cleaner and
more familiar syntax to people who are used to writing programs in C or other C-
like languages.

4. They are identical with the exception of how they are executed. Operation scripts
are invoked by the user, while event scripts are executed by an event policy.

5. Event policies are policies used to process and correlate system-generated events.

6. The full configuration file is passed to the commit scripts. If a particular set of
parameters is required for a script to perform its function, the parameters can be
added to the configuration by using a macro.

7. At the time of this writing, the following tags are the ones executed by MGD:

• <xnm:warning>

• <xnm:error>

• <xnm:syslog>

• <transient-change>

• <change>

8. Although configuration changes done with the <transient-change> tag are not
saved to the running configuration, changes done with the <change> tag are always
saved.

9. Arguments passed to operational scripts can be defined in the Junos configuration
together with the script configuration, using the arguments keyword. Alternatively,
the arguments can be defined directly in the script and are read by Junos when the
script is declared.

10. By default, the configuration database is edited in shared mode. Other edit modes
have to be explicitly invoked with the configuration <mode> command.

802 | Chapter 13: SRX Management

Index

Symbols
3DES (Triple Data Encryption Standard), 254
<xnm:warning>, <xnm:error>, and

<xnm:syslog> tags, 771
| (pipeline character), 90
| display option, 100
| match command, 147
? (question mark), 136

A
access mode, 715
access ports, 116
action, 344
active/active mode configuration

redundancy groups, 574
address pools, 208

pool NAT flows, tracing, 215
pool NAT operational commands, 213
pool NAT, viewing in session tables, 212
pool NAT, viewing traffic flow logs for,

213
source NAT address pool implementation,

209
address-books, 137
address-persistent option, 210
address-sets, 138

configuration example, 178, 185
Advanced Encryption Standard (see AES)
AES (Advanced Encryption Standard), 254
aggregate Ethernet, 582
aggregation switching tier, 10
Aggressive mode IKE Phase 1 negotiation, 262

versus Main mode, 276
AH (Authentication Header) protocol, 257

versus ESP, 276
alarm threshold, 366
ALGs (application layer gateways), 160–168

configuration, 163–168
protection of, 377–380

Anti-Replay protection, 270
antispam, 28, 521
antivirus and covered protocols, 27
antivirus trickling, 505
any-remote-host option, 224
AppDDoS protection, 423–427

configuration in IPS, 449
AppDoS (Application Denial of Service)

prevention, 13, 348, 377
application identification attributes, 419
application layer attacks, 342
application objects, 417
application screening, 424
Application-DDoS rulebase, 408
application-sets, 139

configuration example, 179, 186
apply-groups command, 568
apply-macro statement, 775
ARP (Address Resolution Protocol), 626
AS (autonomous system) numbers, 673
asymmetric routing, 625
attack databases, 416
attack object updates, 417
attack prevention, 341–354

AppDoS, 348
firewall filters, 342, 350
IPS, 348
malicious traffic, types, 341
network reconnaissance, detecting and

stopping, 349–354

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

803

screening, 350
screens, 345
security policies (see security policies)

attack threshold, 366
attacks

application contexts, 405
attack object types, 404
client-to-server attacks, 401
DoS and DDoS attacks, 361
fragments, 355
ICMP floods, 363
port scans, 352
server-to-client attacks, 401
severity levels, 406
signature performance impacts, 407
stages of an attack, 395
SYN cookie attacks, 370
SYN floods, 365
SYN-ACK-ACK proxy attacks, 371
UDP floods, 364

authentication
algorithm, selection of, 278
certificate authentication, preconfiguration

tasks, 279
certificate-based authentication, 260
configuration, 110
IKE authentication, 259

(see also IKE protocol)
IPsec authentication algorithms, 254
preshared key authentication, 259
security policies and, 172

Authentication Header (AH) protocol (see AH)
AX411 Wireless LAN Access Point, 29, 39

B
bandwidth flood, 362
basic-datapath flag, 204
basic-datapath traceoptions, 150
Berkeley sockets, 73
BFD (bidirectional forwarding detection), 605,

660
BGP (Border Gateway Protocol), 625, 672

configuring peerings, 674
Internet redundancy case study, 683
routing tables, 682

bidirectional traffic, 155
blacklists, 497
botnet protection, 424
bots and botnets, 363

branch firewalls, 5
branch port matrix, 27
branch SRX Series product line, 6, 27, 42–45

configuration, 115
hardware, 42
licensing options for features, 44

branches, 21
bridge domains, 715
bridge loops, 712

C
C shell (csh), 89
candidate configuration, 95
CAPROFILE, 281
CAs (certificate authorities), 260
certificate validation, 273
certificate-based authentication, 260

versus preshared keys, 277
chain attack objects, 431
chassis clusters, 540

configuration, 554
troubleshooting, 606–618

additional resources, 617
checking interfaces, 610
core dumps, 615
data plane, verifying, 611
priority 0, 615

chassisd daemon, 599
Check Point firewall, 83
child processes, 43
clear security ipsec statistics command, 312
CLI (command-line interface), 87–100

configuration modes, 94–100
documentation and help, 91
operational mode, 89
shell, 88
standard streams, 90
variable length output, 90

cli command, 89
client-to-server attacks, 401
cloud networks, 19
cluster ID, 545
code examples, xxiv
coldsync, 616
comment flag, 104
commit check command, 100
commit confirmed command, 105
commit model, 100–106
commit scripts, 767–773

804 | Index

addition and enabling of, 770
configuration templates, creating with, 774

transient versus persistent changes, 776
enforcing conditions, 771
Hello World example, 768
missing security zone bindings, 773
special tags for MGD, 771

commits, scheduling, 103
Cone NAT (see persistent NAT)
configuration, 109–121

authentication method, 110
interfaces, 113
switching (branch), 115
system settings, 109
zones, 118

configuration archiving, 102
configuration modes, 94–100
configuration templates, 774
configure command, 95
configure exclusive command, 95
configure private, 554
connection threshold monitoring, 424
Connection-Rate-Threshold, 426
content filtering, 516–521
context profiling, 424
contexts, 405
control links, 602

and data link failure, 603
control plane, 542

control plane heartbeats, 570
control plane states, 556

control ports by platform, 558
copy command, 99
core dumps, 75
CRLs (certificate revocation lists), 273

configuration, 281
custom attack objects, 406, 429
CX111 and CX411 Cellular Broadband Data

Bridges, 29

D
data center edges, 10
data center firewalls, 6
data center services tier, 13
data center SRX Series products, 6, 46

HA hardware requirements, 559
ISSU, 561

data centers, 10
Data Encryption Standard (see DES)

data links, 544, 602
data link and control link failure, 603

data path, 544
data planes, 78, 543, 674

forwarding of packets in, 622
verification, 611

Day One series of Juniper booklets, xviii
DDoS (distributed denial-of-service) attack,

363
deactivate security flow traceoptions

command, 159
debug flow basic command, 149
debugging IPsec VPNs, 312–321
dedicated IPS mode, 402
deep inspection, 1
delete command, 97
deny flag, 144
deployment solutions, 6–26

cloud networks, 19
data center edges, 10
data center services tier, 13
data centers, 10
Junos Enterprise Services Reference

Network, 21–26
large branches, 9
medium branches, 8
mobile carrier networks, 16
service providers, 15
small branches, 7

DES (Data Encryption Standard), 254
destination address, 128
destination NAT, 231–240

implementation, 232
tracing flows, 236
viewing, 234
virtual IP NAT case study, 238–240

destination threshold, 367
destination zone, 128
destination-based session limitation, 372
detail command, 311
detector attributes, 420
detector engines, 417
Diffie-Hellman key exchange, 256, 259

group numbers, 276
Direct routes, 624
disabled state (control plane), 556
distance-vector routing protocols, 662
DNs (distinguished names), 261
DNS application layer gateway (ALG), 161

Index | 805

DoS (denial-of-service) attacks, 342
advanced attacks, 361

DPD (Dead Peer Detection), 268, 603
DSCP (Differentiated Services Code Point),

272
dual mastership, 559
dynamic attack groups, 428
dynamic routing, 583, 624, 631–664

dynamic routing communication, 631
dynamic routing convergence, 632
OSPF protocol (see OSPF protocol)

Dynamic VPNs, 275
clients, 28
configuration, 305

E
edge tier, 10
edit command, 96
edit next-step command, 97
EGPs (exterior gateway protocols), 672
Encapsulating Security Payload protocol (see

ESP)
encryption

algorithm, selection of, 277
IPsec encryption algorithms, 254

ESP (Encapsulating Security Payload) protocol,
257

versus AH, 276
EtherChannel, 582
event scripts, 783–789
EX4200 switches, 9
Exclude-Context-Values, 427
Exempt rulebase, 408, 448

F
fab interface, 563
fabric links, 544

configuring, 563
redundant fabric link ports, 565

failover time, setting, 605
families, 114
family bridges, 714
fast path, 125
FBF (filter-based forwarding), 693–705

configuration, 694
dynamic traffic engineering case study, 697–

705
FIN scans, 352

fin-no-ack screen, 357
firewall filters, 342, 350

default action, 696
loopback interface, applied to, 381
then accept command and, 356

firewall rules, 125
firewalls, 1

integration with operating systems, 2
in service provider environments, 15
stateful firewalls, 540

flooding, 342
flow attributes, 419
flow daemon, 125
forwarding instance, 690
forwarding tables, 622

user entries, 623
FPC (flexible PIC concentrator), 114, 541
fragmentation, 271, 398
fragments, 355
FreeBSD, 73

documentation, 88
FTP application layer gateway (ALG), 161
full mesh VPNs, 250
functional zones, 119
fxp0 interface, 557

G
GARPs (Gratuitous ARPs), 546, 582
global attributes, 420
graceful restarts, 107, 583
graceful upgrades, 584
Group VPN, 274
groups, 567

H
H323 application layer gateway (ALG), 162
HA (high availability), 539–554

chassis clusters, 540
configuration, 554–585

cluster management, 557
cluster upgrades, 584
control ports, 558
differences from standalone

configuration, 554
dynamic routing integration, 583
enabling dual control links, 559
fabric links, 563
heartbeat timers, 570

806 | Index

interfaces, 577–583
JSRPD activation, 555
node-specific information, 567
redundancy groups, 571

control plane, 542
data planes, 543
deployment concepts, 548–554

active/active deployment, 549
active/passive mode, 548
mixed mode deployment, 550
six pack mode, 553

fault monitoring, 586–606
control plane, 605
hardware monitoring, 599
interface monitoring, 586
IP monitoring, 591
Junos automation, 605
manual failover, 595
software monitoring, 604

Junos high availability concepts, 545
operational modes, 548
transparent mode implementation, 718

heartbeat timers, configuring, 570
help commands, 91
high watermark, 385
Hit-Rate-Threshold, 426
host inbound traffic stanza, 120
host shunning, 353
host-inbound-traffic system service, 383
host-inbound-traffic zone configuration, 127
hub and spoke VPNs, 249

I
ICMP floods, 363
ICMP protections, 356
ifp, 158
IGPs (interior gateway protocols), 624

IS-IS, 652–660
OSPF, 652

IKE (Internet Key Exchange) protocol, 255
Autokey IKE versus manual keys, 276
identities

selection, 277
IKE identities, 260
key lifetimes, 272

IKE Phase 1, 256
authentication, 259
configuration on IPsec VPNs, 282–292

dynamic gateways and remote access
clients, 290

Phase 1 gateways, 287
Phase 1 policies, 284
Phase 1 proposals, 282

negotiations, 259
negotiation modes, 261

IKE Phase 2, 257
configuration on IPsec VPNs, 293–300

common IPsec components, 296
Phase 2 proposals, 293

negotiations, 262
IKE/ESP application layer gateway (ALG), 163
immediate restarts, 107
inactivity-timeout option, 224
ineligible state (control plane), 556
inet.0, 624
infection attempts, 396
inline tap IPS mode, 403
insert command, 145
int.xslt script, 791
integrated IPS mode, 402
interface addressing, 714
interface cards, 602
interface component, firewall filters, 344
interface media types, 113
interface NAT, 197–208

operational commands, 202
source NAT rule-set implementation, 198
tracing flows, 203–208
traffic flow logs, viewing, 201
viewing in session tables, 201

interfaces, 546
configuring, 113
naming conventions for, 541

Internet Key Exchange (see IKE protocol)
Internet peering, 625, 672–688, 672

(see also BGP)
Internet redundancy case study, 683

IOCs (input/output cards), 602
IOS (Internetwork Operating System), 73, 82
IP Action table, 461
IP attacks, 341

basic protections, 354
IP routers, 624
IP routing table, 623
IP security virtual private networks (see IPsec

VPNs)

Index | 807

IPS (intrusion protection services), 8, 14, 348,
389–432

antivirus and, 392
AppDDoS protection, 423–427

AppDDoS profiles, 425
attack object types, 404–408
case study, 466–484
configuration on SRX, 432–454

AppDDoS protection, 449
automatic updates, 435
custom attack objects, creating, 442
Exempt rulebase, 448
first steps, 432
IPS modes, 452
rulebase and policy creation and

referencing, 445
SSL decryption, 451
static and dynamic attack groups, 440
useful files, 436–440

custom attack groups and objects, 427–
432

day-to-day management, 456
deploying, 454–456
false positives and false negatives, 394
full IPS and deep inspection/IPS lite, 393
IDP and IPS, 394
licensing, 392
management functionality on SRX, 395
packet processing, 396–404

direction-specific detection, 401
eight stages of processing, 398
processing path, 396
SRX deployment options, 404
SRX IP modes, 401

policy components, 408–416
match criteria, 409
rulebases, 408
Terminate Match, 415
then actions, 410–415

security packages, 416
sensor attributes, 418–421
SSL inspection, 421–423

alternatives to SSL decryption and
inspection, 422

unsupported protocols, 421
troubleshooting, 457–465

application statistics, 459
commit and compilation process, 463
IP action table, 461

IPS attack table, 458
IPS counters, 460
security package version, checking, 458
status checking, 457
useful AppDDoS commands, 462

versus stateful firewalling, 389
IPS attributes, 420
IPSEC certificate, 279
IPsec VPNs, 247–259

authentication algorithms, 254
configuration, 275–306

certificate authentication,
preconfiguration tasks, 279

Dynamic VPN, 305
manual key VPNs, 303
NTP, 279
Phase 1 IKE, 282–292
Phase 2 IKE, 293–300
selection of options, 275

debugging, 312–321
encryption algorithms, 254
flow processing, 264
full mesh connection, 250
hub and spoke connection, 249
IKE (Internet Key Exchange) protocol, 255
manual keys, 258
modes, 258
multipoint VPNs, 250
protocols, 257
remote access case study, 335
remote access VPNs, 251
site-to-site connection, 248
site-to-site VPN case study, 326
tracing, configuration and analysis, 315
troubleshooting, 312

remote access VPNs, 321
site-to-site VPNs, 317

useful commands, 310–312
IRB interfaces, 716
IS-IS (Intermediate System to Intermediate

System) protocol, 652–660
configuration, 653
verification, 655–660

ISSU (unified in-service software upgrade),
561

J
J-Web, 761

management tool, 81

808 | Index

JNTCP (Juniper Networks Technical
Certification Program), xxi

JSRPD (Juniper services redundancy protocol)
activation, 555

jsrpd (Junos stateful redundancy protocol
daemon), 542

log file, 616
jumbo frames, 565
Juniper Express antivirus, 502
Juniper Networks management paradigm, 20
Juniper Networks SRX Series Services

Gateways, xv
Juniper Networks Technical Library, 122
Junos, 2

device management, 3
documentation, 91
routing table support, 688
ScreenOS, comparison with, 3

Junos automation, 108, 605
Junos documentation suite, xviii
Junos Enterprise Services Reference Network,

21–26
Junos operating system, 6, 72–79

addition of new features, 77
and other operating systems

Check Point firewall, 83
IOS and PIX OS, 82
ScreenOS, 80

data plane, 78
data plane processors for different products,

79
development model, 75
FreeBSD and, 73
and other operating systems, 79–84
release train, 76

Junos routing preferences, 643
Junos Space, 762
Junos Space management tool, 84
junos-global zone, 125
junos-wf-cpa-default security profile, 492

K
Kaspersky full antivirus database and engine,

499–502
kernel space, 72
killing a process, 107
ksyncd, 542

L
Land attack, 358
large branches, 9
link agg groups, 582
link-state routing protocols, 633
Linux, 73
local interfaces, 547, 583
Local routes, 624
local-address statement, 677
logging, 179
logging sensor attributes, 419
loopback firewall filters, 381
low watermark, 385
LSAs (link-state advertisements), 633
LSPs (link-state packets), 652

M
Main mode IKE Phase 1 negotiation, 261

versus Aggressive mode, 276
malformed packets, 354
malicious traffic, types, 341
man command, 91
management infrastructure, 755–761

configuration mode, 758–761
MGD (management daemon), 755
operational mode, 756

manual failover, 595
manual key exchange, 255

versus Autokey IKE, 276
master-only IP, 569
match conditions, 344, 350

match criteria, 409
match statement, 128
Max-Context-Values, 426
max-session-number option, 224
MD5 (Message-Digest algorithm 5), 255
medium branches, 8
MGCP (Media Gateway Control Protocol)

protocol, 378
MGCP application layer gateway (ALG), 162
MGD (management daemon) special tags, 771
mobile carrier networks, 16
monitor command, 149
monitor stop command, 465
MSP (managed service provider) environments

firewalls, 15
MSS (Maximum Segment Size), 271
MSTP (Multiple Spanning Tree Protocol), 721

Index | 809

MTU (maximum transmission unit), 271, 565
multipoint VPNs, 250
Multiservices DPCs, 78
MX Series router, 78

N
NAT (Network Address Translation), 193

address pools (see address pools)
destination NAT (see destination NAT)
interface NAT (see interface NAT)
ISP redundancy via PAT, case study, 227–

230
PAT, disabling for address pools, 216
persistent NAT, 223–227
Proxy ARP, 219
source NAT (see source NAT)
SRX processing of, 193
static NAT, 240–245

NAT-T (NAT Traversal), 270
neighbor statement, 677
NETCONF protocol, 761, 763
NetScreen ScreenOS to Junos-ES converter,

188
network communications protocols,

configuring, 114
network deployment scenarios, xxii
network protection tools, 342–349
network reconnaissance, 341

protecting against, 349
NHTB (Next-Hop Tunnel Binding), 268
no-forwarding instance, 690
no-old-master-upgrade, 585
no-old-master-upgrade command, 562
node ID, 545
notifications (UTM), 506
NPC (network processing card), 601
NSM (Network and Security Manager), 82,

762
NTP (Network Time Protocol), 273

configuration, 279
null scans, 352

O
OCSP (Online Certificate Status Protocol),

273
One Junos, 2, 6

development model, 76
one release software delivery cycle, 76

one-time schedulers, 170
op scripts, 189
operating systems

IOS (Internetwork Operating System), 73
Junos operating system (see Junos operating

system)
real-time operating systems, 72
Secure Platform, 84

operational command classification, 89
operational mode, 89
operational scripts, 777–782
OSPF (Open Shortest Path First) protocol, 632–

651
backbone areas, 635
growing OSPF networks, 651
Junos routing preferences and, 643
redundant paths and routing metrics, case

study, 648
securing OSPF adjacencies, case study, 646–

648
security zone configuration, 639
traceoptions configuration, 637
troubleshooting OSPF adjacencies, 636

output command options, 90
output_ifp, 158
overflow-pool, 209, 217

P
packet routing, 622
packet-filter option, 204
parallel processing, 43
pass-through authentication, 174
PAT (Port Address Translation), 197

disabling for address pools, 216
path-vector routing protocols, 673
pattern matching replace command, 98
PDM (PIX Device Manager), 83
peer-as statement, 677
perfect forward secrecy (PFS), 263
persistent-nat configuration option, 211
PFE (Packet Forwarding Engine), 6
PFS (perfect forward secrecy), 263, 278
phone-home traffic, 396
PIC (physical interface card), 113, 541
ping floods, 363
Ping of Death attack, 358
pipeline character (|), 90
PIX OS, 83
point-to-multipoint VPNs, 266

810 | Index

Next-Hop Tunnel Binding, 268
policies.xslt script, 792
policy, 128
policy logging, 145
policy schedulers, 168–171

one-time schedulers, 170
policy statistics, viewing, 133
policy tables, viewing, 130
policy templates, 418
policy test script, 189
policy-based VPNs, 265

Proxy IDs, 265
versus route-based VPNs, 278

pool, 199
port no-translation option, 216
port scans, screening against, 352
port-randomization disable option, 210
power supplies, 603
PPTP application layer gateway (ALG), 162
predefined attack objects, 405
preshared key authentication, 259
preshared keys versus certificate

authentication, 277
private configuration, 95
private mode, 554
process separation, 72, 74
processes, 43
processes, restarting, 106
proposal sets, predefined versus custom, 278
protocol anomaly attack objects, 404
protocol anomaly attack type, 430
protocols traffic, 121
Proxy ARP, 219–223
proxy ID negotiation, 263

Q
QoS (Quality of Service) in transparent mode,

718
question mark (?), 136
Quick mode IKE Phase 2 negotiation, 262

R
RCP application layer gateway (ALG), 163
REAL application layer gateway (ALG), 161
reassembler attributes, 420
reconnaissance, 395
redundancy groups, 545, 571–577

global options, 591

redundancy groups per platform, 575
redundant fabric link ports, 565
reference network, 21
reject flag, 144
remote access VPNs, 251
request chassis cluster failover reset

redundancy group 1 command, 597
request support information command, 618
REs (route engines), 541, 600

and loopback interfaces, 381
Reth (redundant Ethernet interface), 546, 577

MAC addressing, 547
Reth count per platform, 578

RIB (Routing Information Base), 697
rib-group, 697
RIP (Routing Information Protocol), 662–664

verification, 664
rollback command, 103
root, 88
route engines, 71
route lookup, 125
route-based VPNs, 265

point-to-point versus point-to-multipoint,
266

versus policy-based VPNs, 278
routers, 539
routing, 621–626

ARP (Address Resolution Protocol), 626
asymmetric routing, 625
BFD (bidirectional forwarding detection),

660
dynamic routing (see dynamic routing)
filter-based forwarding (see FBF)
forwarding tables, 622
Internet peering (see Internet peering)
IP routing, 623
packet routing, 622
RIP (see RIP)
static routing (see static routing)

routing instances, 688–693
routing instance security zone dependency,

691
routing-instance, 689

routing policy, 664–672
load-balance per-packet action, 671
protocol names and route-filters, 666
terms, 665

routing tables, 623
rpd (routing protocol daemon), 623

Index | 811

RPF (Reverse Path Forwarding), 355
rpm-monitor-<name> macro, 795
rpm-monitor-config.xslt script, 796
rpm-monitor.xslt script, 796
RSH application layer gateway (ALG), 162
RTO (real-time object), 544
RTSP application layer gateway (ALG), 161
rule-sets, 199
rules, 200
run command, 100

S
S2JES (ScreenOS to Junos-ES) converter, 188
scalable services, 5
SCB (switch control board), 600
SCCP application layer gateway (ALG), 162
SCCP application layer gateway protection,

380
SCEP (Simple Certificate Enrollment Protocol),

274
configuration, 281

schedulers, configuration example, 180
screen check, 125
ScreenOS, 2, 80

Junos, comparison with, 3
screens, 16, 127, 345, 350

alarm-without-drop setting for testing, 346
denial-of-service screens, 358
port scan screening, 352
spoofing screens, 355
SYN flood protection configuration, 366

scripting, 766–790
case studies, 790–800

destination NAT on interfaces with
dynamic IP addresses, 798

displaying zone and interface
information, 791

monitoring high-end SRX devices, 800
showing security policies, 792
top talkers, 796
track-ip script for cluster failover, 793
track-ip using RPM probes, 794
zone groups, 791

commit scripts, 767–773
event scripts, 783–789
operational scripts, 777–782
updating, 789

Secure Hash Algorithms (see SHA-1; SHA-2)
Secure Platform operating system, 84

secure tunnel interface, 265
security flow traceoptions, 203, 207
security policies, 125–135, 347

blocking unwanted traffic, 143
case studies, 176–188
configuration, 128

show | compare command, 160
converters and scripts, 188
enabling mail servers, 178
index numbers, 157
logging, 179
ordering of policy evaluation, 129
pass-through authentication, 174
policy logging, 145–149
policy schedulers, 168
policy statistics, viewing, 133
policy structure, 137
preconfigured applications, 139
services configuration, 139
SRX policy processing, 128
SRX policy tables, viewing, 130
transparent mode, 717
troubleshooting output, 152
troubleshooting policies and traffic flows,

149
web and proxy authentication, 172

security zones, 80, 119, 125–128
creating, 137
routing instance security zone dependency,

691
sensor attributes, 418–421
server-to-client attacks, 401
service, 128
service flood, 361
service providers, 15
services, 5
services tier, 13
session limitation, 372
session managers, 488
session synchronization, 563
session tables, searching, 135
sessions

subnet, searching by, 136
viewing session flows, 135

set apply-groups “${node}” command, 569
set command, 82, 97
set gratuitous-arp-count command, 582
set system services ssh command, 112
SFB (switch fabric board), 601

812 | Index

SHA-1 (Secure Hash Algorithm 1), 255
SHA-2 (Secure Hash Algorithm 2), 255
shared configuration, 554
shared edit, 761
shared mode, 95
shell, 88
shellcode execution, 396
show 12-learning global-information

command, 741
show 12-learning global-mac-count command,

742
show 12-learning interface command, 742
show arp command, 626
show bgp summary command, 682
show bridge domain command, 740
show bridge mac-table command, 741
show chassis cluster control-plane statistics

command, 561, 607
show chassis cluster interfaces command, 610
show chassis cluster statistics command, 560
show chassis cluster status command, 557,

606
show chassis fpc pic-status command, 603,

611
show chassis hardware command, 612
show command, 82, 97, 99
show configuration groups junos-defaults

applications command, 139
show isis database command, 669
show log jsrpd command, 616
show ospf database command, 644
show ospf neighbor command, 636
show route advertising-protocol bgp

command, 683
show route command, 623, 641
show route forwarding-table command, 622
show route receive-protocol bgp command,

683
show security flow ip-table command, 462
show security ike security-associations

command, 310
show security ipsec security-associations

command, 311
show security ipsec statistics command, 311
show security policies command, 157
show security screen statistics zone internet

command, 375
show security utm <feature name> status

command1, 523

show security utm anti-virus status command,
523

show security zones command, 375
show system commit command, 104
show system processes command, 106
show version | display xml command, 109
show | compare command, 102, 160
signature-based attack objects, 405, 430
SIP (Session Initiation Protocol) DoS

protection, 378
SIP application layer gateway (ALG), 162
site-to-site VPNs, 248
slow path, 125
small branches, 7
soft restarts, 107
Sophos in-the-cloud antivirus, 504
source address, 128
source NAT, 195

implementing without PAT, 217
viewing without PAT, 218

source threshold, 366
source zone, 128
source-based session limitation, 372
SPC (services processing card), 601
SPF (Shortest Path First) algorithm, 633
split brain, 559
spoof attacks, 355
SPU (Services Processing Unit)

flow process in transparent mode, 721
SQL application layer gateway (ALG), 162
SQL Slammer worm, 345
SRX 3000 Series SCM (SRX Clustering

Module), 560
SRX firewall, 125
SRX management, 755

J-Web, 761
management infrastructure (see

management infrastructure)
NSM and Junos Space, 761
scripting and automation (see scripting)

SRX policy processing, 128
SRX Series platform, 5
SRX Series product line, 26

antivirus, 27
branch SRX Series, 27
evolution from ScreenOS, 1
packet mode and MPLS, 30
SRX 200 Series

SRX210 Services Gateway, 7

Index | 813

SRX240 Services Gateway, 8
SRX100 Series, 30
SRX200 Series, 32
SRX3000 Series, 11

SFB (switch fabric board), 601
SRX5000 Series

control ports, 558
SCB (switch control board), 600

SRX600 Series, 36
SRX VPNs, 264–268

Anti-Replay protection, 270
certificate validation, 273
commands, 310
components, 268–275
Dead Peer Detection, 268
DSCP, 272
Dynamic VPNs, 275
fragmentation, 271
Group VPN, 274
IKE key lifetimes, 272
NAT traversal, 270
NTP, 273
policy-based VPNs, 265
route-based VPNs, 265
SCEP (Simple Certification Enrollment

Protocol), 274
VPN monitoring, 269
XAuth, 269

SRX, protection of, 381–385
srx-monitor script, 800
SRX5800 Services Gateway, 13

for mobile carrier networks, 17
MSP deployment, 15

SRX650 Services Gateway, 9
SSH, 111
SSL decryption, 421

configuration on IPS, 451
SSL inspection attributes, 420
SSL VPNs, 253
st0 interface, 265

numbered versus unnumbered, 266
standard input, standard output, standard

error, 90
stateful firewalls, 389, 540
static attack groups, 427
static NAT, 240–245

double NAT case study, 243
static routes, 624
static routing, 626–631

creating static routes, 627
verifying a static route, 629

statistics detail command, 377
STP (Spanning Tree Protocol), 713

transparent mode layer 2 deployments, 720
summary command, 135
SurfControl solution, 489
switching (branch), configuration, 115
SYN cookie protection, 370
SYN floods, 365
SYN-ACK-ACK proxy attacks, 371
system services stanza, 111
system services traffic, 121
system stanza, 109

T
TALK application layer gateway (ALG), 161
target-host and target-host-port options, 224
TCP protections, 357
TCP three-way handshake, 365
TCP-RST, 126
Teardrop attack, 358
terms, 665
TFTP application layer gateway (ALG), 161
then statement, 128
thread-safety, 44
threads, 43
tight loops, 107
Time-Binding-Count, 427
Time-Binding-Period, 427
timeout, 367
top command, 97
top-talkers.xslt script, 797
traceoptions, 150, 528

turning off, 159
track-ip script, 793, 795
traffic flows, blocking unwanted traffic, 143
traffic logs, 145

filtering, 147
transparent mode, 709–724

bridge domains, 715
bridge loops and STP, 712
case study, 745–751
commands, 740–742

show 12-learning global-information,
741

show 12-learning global-mac-count,
742

show 12-learning interface, 742

814 | Index

show bridge domain, 740
show bridge mac-table, 741

components, 714
configuration, 724–740

basics, 725
bridging options, 736
integrated routing and bridging, 729
QoS, 736
security policies, 732
security zones, 731
VLAN rewriting, 738

flow process, 721
fast-path SPU processing, 723
session teardown, 724
slow-path packet processing, 721

HA (high availability), 718
interface modes, 715
IRB interfaces, 716
limitations, 713
MAC address learning, 712
options, 717
QoS (Quality of Service), 718
reasons for use, 710

complex routing environments, 710
existing transparent mode

infrastructure, 712
layer 2 domain segmentation, 710
separation of duties, 712

security policies, 717
STP in layer 2 deployments, 720
troubleshooting, 743–745
VLAN rewriting, 718
zones, 716

Transport mode, 258
versus Tunnel mode, 276

trim command, 154
Triple Data Encryption Standard (see 3DES)
trunk mode, 715
trunk ports, 118
Trust zone, 125
Tunnel mode, 258

versus Transport mode, 276
two-tier and three-tier switching models for

data centers, 10
TX Matrix products, 541

U
UDP floods, 364
unknown state (control plane), 556

Untrust zone, 125
untrusted-internet profile, 375
untrusted-internet screen profiles, 353
updates, scheduling, 418
URL (universal resource locator) filtering, 28
user accounts, creating, 110
user FQDN (UFQDN), 261
UTM (Unified Threat Management), 487–522

antispam, 521
antivirus, 498–506

antivirus trickling, 505
Juniper Express antivirus, 502
Kaspersky full antivirus, 499–502
Sophos in-the-cloud antivirus, 504
whitelists, 505

application proxy, 488
content filtering, 516–521

ftp traffic, 516
HTTP traffic, 520

fallback events, 514
licensing

UTM features and license requirements,
527

log facility and severity encoding, 508
monitoring (see UTM monitoring)
notifications, 506
problem management, 514
small branch office case study, 530–537

security policies, 533
UTM policies and profiles, 534

tracing UTM sessions, 528
UTM logs, viewing, 508
web filtering, 489

configuring with SurfControl, 490
configuring with Websense redirect,

494
custom category lists, creating, 496
junos-wf-cpa-default profile, 492
local classification with whitelists and

blacklists, 498
UTM monitoring, 523–529

V
Value-Hit-Rate-Threshold, 426
versioning, 76
virtual-router instance, 690
VLAN naming, 117
VLAN rewriting (or retagging), 718
VPN monitoring, 269

Index | 815

VPNs (virtual private networks), 248
(see also IPsec VPNs)
SRX VPNs (see SRX VPNs)

VSD (virtual security device), 572
vulnerability exploration, 395

W
web authentication, 172
Websense redirect solution, 489
whitelists, 497, 505
wildcard delete command, 98
Winnuke, 358

X
XAuth, 269
XML, displaying output in, 108

Z
Z path forwarding, 544
zone-groups.xslt script, 791
zones, 118

816 | Index

About the Authors
Rob Cameron is the technical marketing engineering manager for Juniper Networks’
Data Center Firewall Group, which oversees the data center SRX and high-end
NetScreen platforms. In his 10-plus-year career, he has held positions as a security
reseller, service provider engineer, and security consultant. For the past five years, he
has worked for Juniper Networks as a systems engineer, a data center architect, and a
technical marketing engineer. He is the primary author of the books Configuring
NetScreen Firewalls and Configuring NetScreen and SSG Firewalls, both published by
Syngress. He is also a contributing author of Security Interviews Exposed and the Best
Damn Firewall Book Period, Second Edition (also published by Syngress).

Brad Woodberg (JNCIE-M #356, JNCIS-FWV, JNCIS-SSL, JNCIA-IDP, JNCIA-EX,
JNCIA-UAC, CCNP R&S) holds a bachelor’s degree in computer engineering from
Michigan State University and is a technical marketing engineer for Juniper Networks’
High-End Security Systems organization. Before joining Juniper Networks, he spent
four and a half years working at a Juniper reseller where he designed, deployed, sup-
ported, and managed computer networks worldwide with equipment from a variety of
vendors. In addition to being an author of this book, he is a coauthor of Juniper Net-
works NetScreen and SSG Firewalls and Juniper Networks Secure SSL VPN, both pub-
lished by Syngress.

Patricio Giecco holds a bachelor’s degree in electrical engineering from the Instituto
Tecnologico de Buenos Aires and is currently pursuing a master’s degree in electrical
engineering at UCLA. In his tenure at Juniper he has worked as a solutions engineer
designing best-practice security solutions, and he is currently working as a technical
marketing engineer for the Branch Solutions Business Unit. With more than 10 years
of networking consulting experience working for both vendors and service providers
in Latin America, Europe, Asia, and North America, he specializes in network security
architecture, routing, and high availability.

Tim Eberhard is a member of the Tier III Ops/Engineering team for the 4G wireless
network at Clearwire. Previously, he was a team lead and subject matter expert at
Sprint, supporting Sprint’s wireless data network for more than five years. He is CCSP,
C|EH, JNCIS-FWV, JNCIS-ER, and JNCIS-M certified. He has written two open
source software tools utilized by engineers around the world for supporting production
networks: the NSSA firewall session analyzer and the TPCAT packet capture analyzer.

James Quinn (JNCIE-M #117, JNCIE-ER #40, CCIE #8919) is a consulting systems
engineer for the Strategic Alliances team at Juniper Networks, where he has worked
for more than five years. Most recently he was a technical marketing engineer specialist
in mobile security for Juniper’s High-End Security Systems organization, and before
that he represented Juniper’s Advanced Services team for several years as the senior
resident engineer stationed at one of the largest wireless carriers in the world. Before
Juniper, he was a happily itinerant network geek spending years as a senior engineer
for a large public university system. Today he travels the world making friends,

speaking, teaching, learning everything he can along the way, and helping brilliant
people build some of the magic stuff that is our networking future. His specialties are
mobility, security, and, when he gets his druthers, dreaming up all manner of net-
working wizardry.

Colophon
The animal on the cover of Junos Security is a European night heron. This is a local
name for the black-crowned night heron (Nycticorax nycticorax), which is found on
every continent except Australia and Antarctica. The scientific name means “night
raven,” an apt label for this noisy nocturnal bird. (The black-crowned night heron is
also nicknamed “quark,” an imitation of the sound of its call.)

These medium-size herons have distinctive black crowns and backs and gray or white
bodies. Their necks are short and their bodies stocky. They have red eyes and black
bills. Their relatively short legs are usually yellow, but the legs of both sexes turn pink
once they form a pair during breeding season.

Black-crowned night herons breed in wetlands, forming nesting colonies in trees or on
the ground. These colonies are usually fairly small, but they can include as many as
several thousand families. Up to 30 pairs of herons may nest in a single tree. These
herons may also form multispecies colonies with other herons or ibis. A clutch consists
of three to eight pale blue or green eggs. Black-crowned night herons do not recognize
their own chicks and will brood young from other nests.

Black-crowned night herons are crepuscular (active at dawn and dusk) and nocturnal
(active at night). They are opportunistic feeders, and they will eat prey as varied as fish,
frogs, snakes, lizards, dragonflies, mollusks, small rodents, bats, leeches, and eggs and
chicks of other birds. They may vibrate their bills in the water to lure swimming prey.
They can be highly disruptive to commercial fish hatcheries, and they may be consid-
ered a pest if they nest near humans.

The cover image is from Johnson’s Natural History, Vol. II. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Preface
	This Book’s Assumptions About You
	What’s In This Book?
	Juniper Networks Technical Certification Program (JNTCP)
	Topology for This Book
	Conventions Used in This Book
	Using Code Examples
	We’d Like to Hear from You/How to Contact Us/Comments and Questions
	Safari® Books Online
	About the Tech Reviewers
	Acknowledgments
	From Rob Cameron
	From Tim Eberhard
	From Patricio Giecco
	From Glen Gibson
	From James Quinn
	From Brad Woodberg

	Chapter 1. Introduction to the SRX
	Evolving into the SRX
	ScreenOS to Junos
	Inherited ScreenOS features
	Device management

	The SRX Series Platform
	Built for Services

	Deployment Solutions
	Small Branch
	Medium Branch
	Large Branch
	Data Center
	Data Center Edge
	Data Center Services Tier
	Service Provider
	Mobile Carriers
	Cloud Networks
	The Junos Enterprise Services Reference Network

	SRX Series Product Lines
	Branch SRX Series
	Branch-Specific Features
	SRX100
	SRX200
	Interface modules for the SRX200 line

	SRX600
	Interface modules for the SRX600 line

	AX411
	CX111
	Branch SRX Series Hardware Overview
	Licensing
	Branch Summary

	Data Center SRX Series
	Data Center SRX-Specific Features
	SPC
	NPU
	Data Center SRX Series Session Setup
	Data Center SRX Series Hardware Overview
	SRX3000
	IOC modules

	SRX5000
	IOC modules

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 2. What Makes Junos So Special?
	OS Basics
	FreeBSD
	Process Separation
	Development Model
	Adding New Features
	Data Plane
	Junos Is Junos Except When It’s Junos

	Coming from Other Products
	ScreenOS
	IOS and PIX OS
	Check Point

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 3. Hands-On Junos
	Introduction
	Driving the Command Line
	Operational Mode
	Variable Length Output
	Passing Through the Pipe
	Seeking Immediate Help

	Configuration Mode
	Commit Model
	Restarting Processes
	Junos Automation
	Junos Configuration Essentials
	System Settings
	Interfaces
	Switching (Branch)
	Zones

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 4. Security Policy
	Security Policy Overview
	SRX Policy Processing
	Viewing SRX Policy Tables
	Viewing Policy Statistics
	Viewing Session Flows
	Policy Structure
	Security Zones
	Service Configuration
	Blocking Unwanted Traffic

	Policy Logging
	Troubleshooting Security Policy and Traffic Flows
	Troubleshooting Sample
	Troubleshooting Output
	Turning Off Traceoptions

	Application Layer Gateway Services
	How to Configure an ALG

	Policy Schedulers
	One-Time Schedulers

	Web and Proxy Authentication
	Web Authentication
	Pass-Through Authentication

	Case Study 4-1
	Case Study 4-2
	Converters and Scripts
	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 5. Network Address Translation
	How the SRX Processes NAT
	Source NAT
	Interface NAT
	Implementing a source NAT rule-set
	Viewing interface NAT in the session table
	Viewing traffic flow logs for interface NAT
	Operational commands for interface NAT
	Tracing interface NAT flows

	Address Pools
	Implementing a source NAT address pool
	Viewing pool NAT in the session table
	Viewing traffic flow logs for pool NAT
	Operational commands for pool NAT
	Tracing pool NAT flows

	Removing PAT
	Implementing source NAT without PAT
	Viewing source NAT without PAT

	Proxy ARP
	Implementing proxy ARP
	Viewing proxy ARP in action

	Persistent NAT
	Implementing persistent NAT
	Viewing persistent NAT in action

	Case Study 5-1: ISP Redundancy via PAT
	Implementing redundant ISP PAT

	Conclusion

	Destination NAT
	Implementing Destination NAT
	Viewing Destination NAT
	Tracing Destination NAT Flows
	Case Study 5-2: Virtual IP NAT
	Implementing VIP NAT

	Static NAT
	Case Study 5-3: Double NAT

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 6. IPsec VPN
	VPN Architecture Overview
	Site-to-Site IPsec VPNs
	Hub and Spoke IPsec VPNs
	Full Mesh VPNs
	Multipoint VPNs
	Remote Access VPNs

	IPsec VPN Concepts Overview
	IPsec Encryption Algorithms
	IPsec Authentication Algorithms
	IKE Version 1 Overview
	IKE Phase 1
	IKE Phase 2

	IPSec VPN Protocol
	IPsec VPN Mode
	IPsec Manual Keys

	Phase 1 IKE Negotiations
	IKE Authentication
	Preshared key authentication
	Certificate authentication

	IKE Identities
	Phase 1 IKE Negotiation Modes
	Main mode
	Aggressive mode

	Phase 2 IKE Negotiations
	Perfect Forward Secrecy
	Quick Mode
	Proxy ID Negotiation

	Flow Processing and IPsec VPNs
	SRX VPN Types
	Policy-Based VPNs
	Route-Based VPNs
	Numbered versus unnumbered st0 interfaces
	Point-to-point versus point-to-multipoint VPNs
	Special point-to-multipoint attributes
	Point-to-multipoint NHTB

	Other SRX VPN Components
	Dead Peer Detection
	VPN Monitoring
	XAuth
	NAT Traversal
	Anti-Replay Protection
	Fragmentation
	Differentiated Services Code Point
	IKE Key Lifetimes
	Network Time Protocol
	Certificate Validation
	Simple Certificate Enrollment Protocol
	Group VPN
	Dynamic VPN

	Selecting the Appropriate VPN Configuration
	IPsec VPN Configuration
	Configuring NTP
	Certificate Preconfiguration Tasks
	Phase 1 IKE Configuration
	Configuring Phase 1 proposals
	Configuration for Remote-Office1 proposal with preshared keys

	Configuring Phase 1 policies
	Configuration for Remote-Office1 proposal with certificates
	Configuring Phase 1 IKE policy with preshared key, Main mode
	Configuring Phase 1 IKE policy with preshared key, Aggressive mode
	Configuring Phase 1 IKE policy with certificates

	Configuring Phase 1 gateways
	Configuring an IKE gateway with static IP address and DPD

	Configuring dynamic gateways and remote access clients
	Configuring an IKE gateway with a dynamic IP address
	Configuring an IKE remote access client

	Phase 2 IKE Configuration
	Configuring Phase 2 proposals
	Configuring a Phase 2 proposal for remote offices and client connections

	Configuring Phase 2 IPsec policy
	Configuring an IPsec policy defining the Phase 2 proposal

	Configuring common IPsec VPN components
	Configuring a common site-to-site VPN component

	Configuring policy-based VPNs
	Configuring a policy-based VPN for the East Branch to the Central site VPN

	Configuring route-based VPNs

	Configuring Manual Key IPsec VPNs
	Configuring a manual key IPsec VPN

	Dynamic VPN

	VPN Verification and Troubleshooting
	Useful VPN Commands
	show security ike security-associations
	show security ipsec security-associations
	show security ipsec statistics

	VPN Tracing and Debugging
	VPN troubleshooting process
	Configuring and analyzing VPN tracing
	Troubleshooting a site-to-site VPN
	Troubleshooting a remote access VPN

	Case Studies
	Case Study 6-1: Site-to-Site VPN
	Case Study 6-2: Remote Access VPN

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 7. High-Performance Attack Mitigation
	Network Protection Tools Overview
	Firewall Filters
	Screens
	Security Policy
	IPS and AppDoS

	Protecting Against Network Reconnaissance
	Firewall Filtering
	Screening
	Port Scan Screening
	Summary

	Protecting Against Basic IP Attacks
	Basic IP Protections
	Basic ICMP Protections
	Basic TCP Protections

	Basic Denial-of-Service Screens
	Advanced Denial-of-Service and Distributed Denial-of-Service Protection
	ICMP Floods
	UDP Floods
	SYN/TCP Floods
	SYN Cookies
	SYN-ACK-ACK Proxies

	Session Limitation
	AppDoS
	Application Protection
	SIP
	MGCP
	SCCP

	Protecting the SRX
	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 8. Intrusion Prevention
	The Need for IPS
	How Does IPS Work?
	Licensing
	IPS and antivirus
	What is the difference between full IPS and deep inspection/IPS lite?
	Is it IDP or IPS?
	False positives and false negatives in IPS
	Management IPS functionality on the SRX
	Stages of a system compromise

	IPS Packet Processing on the SRX
	Packet processing path
	Direction-specific detection
	SRX IPS modes
	SRX deployment options

	Attack Object Types
	Application contexts
	Predefined attack objects and groups
	Custom attack objects and groups
	Severities
	Signature performance impacts

	IPS Policy Components
	Rulebases
	Match criteria
	Then actions
	IPS actions
	Notification actions
	Packet logging
	IP actions

	Terminate Match
	Targets and timeouts

	Security Packages
	Attack database
	Attack object updates versus full updates
	Application objects
	Detector engines
	Policy templates
	Scheduling updates

	Sensor Attributes
	Logging sensor attributes
	Application identification attributes
	Flow attributes
	Reassembler attributes
	IPS attributes
	Global attributes
	Detector attributes
	SSL inspection attributes

	SSL Inspection
	SSL decryption/inspection overview
	Alternatives to SSL decryption and inspection

	AppDDoS Protection
	AppDDoS profiles

	Custom Attack Groups and Objects
	Static attack groups
	Dynamic attack groups
	Custom attack objects

	Configuring IPS Features on the SRX
	Getting Started with IPS on the SRX
	Getting started example
	Configuring automatic updates
	Useful IPS files
	Configuring static and dynamic attack groups
	Creating a custom attack object
	Creating, activating, and referencing IPS
	Exempt rulebase
	AppDDoS protection
	SSL decryption
	Configuring IPS modes

	Deploying and Tuning IPS
	First Steps to Deploying IPS
	Building the Policy
	Testing Your Policy
	Actual Deployment
	Day-to-Day IPS Management

	Troubleshooting IPS
	Checking IPS Status
	Checking Security Package Version
	IPS Attack Table
	Application Statistics
	IPS Counters
	IP Action Table
	AppDDoS Useful Commands
	Troubleshooting the Commit/Compilation Process

	Case Study 8-1
	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 9. Unified Threat Management
	What Is UTM?
	Application Proxy
	Web Filtering
	Configuring web filtering using SurfControl
	Configuring web filtering using Websense redirect
	Creating custom category lists
	Using local classification only

	Antivirus
	Kaspersky full antivirus
	Juniper Express antivirus
	Sophos in-the-cloud antivirus
	Antivirus trickling
	Whitelists

	Notifications
	Viewing the UTM Logs
	Controlling What to Do When Things Go Wrong
	Content Filtering
	Filtering FTP traffic
	Filtering HTTP traffic

	Antispam

	UTM Monitoring
	Licensing
	Tracing UTM Sessions

	Case Study 9-1: Small Branch Office
	Security Policies
	UTM Policies and Profiles

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 10. High Availability
	Understanding High Availability in the SRX
	Chassis Cluster
	The Control Plane
	The Data Plane
	Junos High Availability Concepts
	Cluster ID
	Node ID
	Redundancy groups
	Interfaces

	Deployment Concepts
	Active/passive
	Active/active
	Mixed mode
	Six pack

	Configuration
	Differences from Standalone
	Activating JSRPD (Juniper Services Redundancy Protocol)
	Managing Cluster Members
	Configuring the Control Ports
	Configuring the Fabric Links
	Node-Specific Information
	Configuring Heartbeat Timers
	Redundancy Groups
	Configuring Interfaces
	Integrating Dynamic Routing
	Upgrading the Cluster

	Fault Monitoring
	Interface Monitoring
	IP Monitoring
	Manual Failover
	Hardware Monitoring
	Route engine
	Switch control board
	Switch fabric board
	Services Processing Card
	Network Processing Card
	Interface card
	Control link
	Data link
	Control link and data link failure
	Power supplies

	Software Monitoring
	Preserving the Control Plane
	Using Junos Automation

	Troubleshooting the Cluster
	First Steps
	Checking Interfaces
	Verifying the Data Plane
	Core Dumps
	The Dreaded Priority Zero
	When All Else Fails

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 11. Routing
	How the SRX “Routes” IP Packets
	Forwarding Tables
	IP Routing
	Asymmetric Routing
	Address Resolution Protocol (ARP)

	Static Routing
	Creating a Static Route
	Verifying a Static Route

	Dynamic Routing
	Configuring OSPF Routing
	Troubleshooting OSPF adjacencies
	OSPF security zone configuration

	Case Study 11-1: Securing OSPF Adjacencies
	Case Study 11-2: Redundant Paths and Routing Metrics
	Growing OSPF Networks
	IS-IS
	Configuring IS-IS
	Verifying IS-IS
	Configuring BFD
	Configuring RIP
	Verifying RIP

	Routing Policy
	Case Study 11-3: Equal Cost Multipath (ECMP)

	Internet Peering
	Configuring BGP Peerings
	BGP Routing Tables
	Case Study 11-4: Internet Redundancy

	Routing Instances
	Configuring Routing Instances

	Filter-Based Forwarding
	Configuring Filter-Based Forwarding
	Case Study 11-5: Dynamic Traffic Engineering

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 12. Transparent Mode
	Transparent Mode Overview
	Why Use Transparent Mode?
	Segmenting a Layer 2 domain
	Complex routing environments
	Separation of duties
	Existing transparent mode infrastructure

	MAC Address Learning
	Transparent Mode and Bridge Loops, Spanning Tree Protocol
	Transparent Mode Limitations
	Transparent Mode Components
	Interfaces, family bridge, and bridge domains in transparent mode

	Interface Modes in Transparent Mode
	Bridge Domains
	IRB Interfaces
	Transparent Mode Zones
	Transparent Mode Security Policy
	Transparent Mode Specific Options
	QoS in Transparent Mode
	VLAN Rewriting
	High Availability with Transparent Mode
	Spanning Tree Protocol in transparent mode Layer 2 deployments

	Transparent Mode Flow Process
	Slow-path packet SPU packet processing
	Fast-path SPU processing
	Session teardown

	Configuring Transparent Mode
	Configuring Transparent Mode Basics
	Configuring Integrated Routing and Bridging
	Configuring Transparent Mode Security Zones
	Configuring Transparent Mode Security Policies
	Configuring Bridging Options
	Configuring Transparent Mode QoS
	Configuring VLAN Rewriting

	Transparent Mode Commands and Troubleshooting
	The show bridge domain Command
	The show bridge mac-table Command
	The show l2-learning global-information Command
	The show l2-learning global-mac-count Command
	The show l2-learning interface Command
	Transparent Mode Troubleshooting Steps

	Case Study 12-1
	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 13. SRX Management
	The Management Infrastructure
	Operational Mode
	Configuration Mode

	J-Web
	NSM and Junos Space
	NETCONF
	Scripting and Automation
	Commit Scripts
	Hello World, commit script edition
	Adding and enabling commit scripts
	Special tags for MGD
	Using a script to enforce some condition
	Missing security zone binding

	Creating a Configuration Template
	Transient versus persistent changes
	Configuration templates part II

	Operational Scripts
	Event Scripts

	Keeping Your Scripts Up-to-Date
	Case Studies
	Case Study 13-1: Displaying the Interface and Zone Information
	Case Study 13-2: Zone Groups
	Case Study 13-3: Showing the Security Policies in a Compact Format
	Case Study 13-4: Track-IP Functionality to Trigger a Cluster Failover
	Case Study 13-5: Track-IP Using RPM Probes
	Case Study 13-6: Top Talkers
	Case Study 13-7: Destination NAT on Interfaces with Dynamic IP Addresses
	Case Study 13-8: High-End SRX Monitor

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Index

