
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Juniper MX Series

Douglas Richard Hanks, Jr. and Harry Reynolds

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Juniper MX Series
by Douglas Richard Hanks, Jr. and Harry Reynolds

Copyright © 2012 Douglas Hanks, Jr., Harry Reynolds. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Development Editor: Patrick Ames
Production Editor: Holly Bauer
Copyeditor: Absolute Service, Inc.
Proofreader: Rachel Leach

Indexer: Bob Pfahler
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Rebecca Demarest

October 2012: First Edition.

Revision History for the First Edition:
2012-09-24 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319717 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Juniper MX Series, the image of a tawny-shouldered podargus, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31971-7

[LSI]

1348575579

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319717
http://www.it-ebooks.info/

Dedicated to my wife and my parents. You guys
are the best. Love you.

—Douglas

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

I would like to acknowledge my wife, Anita, and
our two lovely daughters, Christina and Marissa,
for once again understanding and accommodating
my desire to engage in this project. And thanks to

Doug, that plucky young lad who managed to
goad me into engaging in this project when my day
job was already rather action-packed. A special
thanks to my manager, Andrew Pangelinan at
Juniper Networks, for his understanding and

support in this project.

—Harry

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

About the Authors . xv

Preface . xvii

1. Juniper MX Architecture . 1
Junos 2

One Junos 3
Software Releases 3
Three Release Cadence 4
Software Architecture 5
Daemons 6
Routing Sockets 11

Juniper MX Chassis 13
MX80 14
Midrange 17
MX240 18
MX480 20
MX960 21

Trio 24
Trio Architecture 25
Buffering Block 26
Lookup Block 27
Interfaces Block 28
Dense Queuing Block 30

Line Cards and Modules 30
Dense Port Concentrator 31
Modular Port Concentrator 32
Packet Walkthrough 41
Modular Interface Card 44
Network Services 46

Switch and Control Board 47

vii

www.it-ebooks.info

http://www.it-ebooks.info/

Ethernet Switch 48
Switch Fabric 52
J-Cell 55
MX Switch Control Board 57
Enhanced MX Switch Control Board 60

MX2020 61
Architecture 61

Summary 67
Chapter Review Questions 69
Chapter Review Answers 70

2. Bridging, VLAN Mapping, IRB, and Virtual Switches . 71
Isn’t the MX a Router? 71
Layer 2 Networking 73

Ethernet II 73
IEEE 802.1Q 74
IEEE 802.1QinQ 75

Junos Interfaces 77
Interface Bridge Configuration 80

Basic Comparison of Service Provider versus Enterprise Style 80
Service Provider Interface Bridge Configuration 83

Tagging 84
Encapsulation 87
Service Provider Bridge Domain Configuration 91

Enterprise Interface Bridge Configuration 94
Interface Mode 94
VLAN Rewrite 97

Service Provider VLAN Mapping 99
Stack Data Structure 99
Stack Operations 100
Stack Operations Map 103
Tag Count 106
Bridge Domain Requirements 107
Example: Push and Pop 107
Example: Swap-Push and Pop-Swap 109

Bridge Domains 111
Learning Domain 112
Bridge Domain Modes 115
Bridge Domain Options 131
Show Bridge Domain Commands 135
Clear MAC Addresses 137
MAC Accounting 139

Integrated Routing and Bridging 141

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

IRB Attributes 142
Virtual Switch 144

Configuration 145
Summary 149
Chapter Review Questions 150
Chapter Review Answers 151

3. Stateless Filters, Hierarchical Policing, and Tri-Color Marking 153
Firewall Filter and Policer Overview 153

Stateless versus Stateful 154
Stateless Filter Components 155
Filters versus Routing Policy 161
Filter Scaling 163
Filtering Differences for MPC versus DPC 166
Enhanced Filter Mode 166

Filter Operation 167
Stateless Filter Processing 167

Policing 173
Rate Limiting: Shaping or Policing? 173
Junos Policer Operation 178
Basic Policer Example 180
Cascaded Policers 181
Single and Two-Rate Three-Color Policers 184
Hierarchical Policers 192

Applying Filters and Policers 195
Filter Application Points 195
Applying Policers 200
Policer Application Restrictions 212

Bridge Filtering Case Study 213
Filter Processing in Bridged and Routed Environments 213
Monitor and Troubleshoot Filters and Policers 214
Bridge Family Filter and Policing Case Study 221
Summary 230

Chapter Review Questions 231
Chapter Review Answers 233

4. Routing Engine Protection and DDoS Prevention . 235
RE Protection Case Study 235

IPv4 RE Protection Filter 236
IPv6 RE Protection Filter 260

DDoS Protection Case Study 271
The Issue of Control Plane Depletion 272
DDoS Operational Overview 273

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration and Operational Verification 279
Late Breaking DDoS Updates 287

DDoS Case Study 287
The Attack Has Begun! 289

Mitigate DDoS Attacks 294
BGP Flow-Specification to the Rescue 295
Summary 301

BGP Flow-Specification Case Study 301
Let the Attack Begin! 306
Summary 314

Chapter Review Questions 315
Chapter Review Answers 316

5. Trio Class of Service . 319
MX CoS Capabilities 319

Port versus Hierarchical Queuing MPCs 320
CoS Capabilities and Scale 323

Trio CoS Flow 330
Intelligent Oversubscription 331
The Remaining CoS Packet Flow 334
CoS Processing: Port- and Queue-Based MPCs 334
Trio Hashing and Load Balancing 339
Key Aspects of the Trio CoS Model 344
Trio CoS Processing Summary 348

Hierarchical CoS 349
The H-CoS Reference Model 350
Level 4: Queues 352
Level 3: IFL 355
Level 2: IFL-Sets 358
Level 1: IFD 362
Remaining 362
Interface Modes and Excess Bandwidth Sharing 368
Priority-Based Shaping 384
Fabric CoS 386
Control CoS on Host-Generated Traffic 387
H-CoS Summary 392

Trio Scheduling and Queuing 393
Scheduling Discipline 393
Scheduler Priority Levels 395
Scheduler Modes 403
H-CoS and Aggregated Ethernet Interfaces 421
Schedulers, Scheduler Maps, and TCPs 423
Trio Scheduling and Priority Summary 430

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

MX Trio CoS Defaults 430
Four Forwarding Classes, but Only Two Queues 431
Default BA and Rewrite Marker Templates 432
MX Trio CoS Defaults Summary 434

Predicting Queue Throughput 434
Where to Start? 435
Trio CoS Proof-of-Concept Test Lab 437
Predicting Queue Throughput Summary 451

CoS Lab 451
Configure Unidirectional CoS 453
Verify Unidirectional CoS 473
Confirm Scheduling Behavior 494

Add H-CoS for Subscriber Access 508
Configure H-CoS 512
Verify H-CoS 516
Trio CoS Summary 529

Chapter Review Questions 529
Chapter Review Answers 532

6. MX Virtual Chassis . 537
What is Virtual Chassis? 537

MX-VC Terminology 539
MX-VC Use Case 540
MX-VC Requirements 541
MX-VC Architecture 543
MX-VC Interface Numbering 554
MX-VC Packet Walkthrough 556
Virtual Chassis Topology 558
Mastership Election 559
Summary 560

MX-VC Configuration 561
Chassis Serial Number 561
Member ID 562
R1 VCP Interface 563
Routing Engine Groups 564
Virtual Chassis Configuration 566
R2 VCP Interface 567
Virtual Chassis Verification 570
Revert to Standalone 572
Summary 573

VCP Interface Class of Service 573
VCP Traffic Encapsulation 573
VCP Class of Service Walkthrough 574

Table of Contents | xi

www.it-ebooks.info

http://www.it-ebooks.info/

Forwarding Classes 575
Schedulers 576
Classifiers 578
Rewrite Rules 580
Final Configuration 581
Verification 583

Summary 584
Chapter Review Questions 585
Chapter Review Answers 586

7. Trio Inline Services . 589
What are Trio Inline Services? 589
J-Flow 590

J-Flow Evolution 591
Inline IPFIX Performance 591
Inline IPFIX Configuration 592
Inline IPFIX Verification 599
IPFIX Summary 601

Network Address Translation 601
Types of NAT 601
Services Inline Interface 603
Service Sets 604
Destination NAT Configuration 618
Network Address Translation Summary 621

Tunnel Services 621
Enabling Tunnel Services 622
Tunnel Services Case Study 623
Tunnel Services Summary 632

Port Mirroring 632
Port Mirror Case Study 634
Port Mirror Summary 639

Summary 640
Chapter Review Questions 640
Chapter Review Answers 641

8. Multi-Chassis Link Aggregation . 643
Multi-Chassis Link Aggregation 643

MC-LAG State Overview 645
MC-LAG Family Support 646
Multi-Chassis Link Aggregation versus MX Virtual-Chassis 647
MC-LAG Summary 648

Inter-Chassis Control Protocol 648
ICCP Hierarchy 649

xii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

ICCP Topology Guidelines 652
How to Configure ICCP 652
ICCP Configuration Guidelines 659
ICCP Split Brain 664
ICCP Summary 665

MC-LAG Modes 665
Active-Standby 666
Active-Active 668
MC-LAG Modes Summary 673

Case Study 673
Logical Interfaces and Loopback Addressing 675
Layer 2 676
Layer 3 689
MC-LAG Configuration 695
Connectivity Verification 707
Case Study Summary 716

Summary 716
Chapter Review Questions 717
Chapter Review Answers 718

9. Junos High Availability on MX Routers . 721
Junos High-Availability Feature Overview 721
Graceful Routing Engine Switchover 723

The GRES Process 723
Configure GRES 728
GRES Summary 740

Graceful Restart 740
GR Shortcomings 741
Graceful Restart Operation: OSPF 741
Graceful Restart and other Routing Protocols 747
Configure and Verify OSPF GR 751
Graceful Restart Summary 761

Nonstop Routing and Bridging 761
Replication, the Magic That Keeps Protocols Running 762
Nonstop Bridging 767
Current NSR/NSB Support 769
This NSR Thing Sounds Cool; So What Can Go Wrong? 776
Configure NSR and NSB 783
Verify NSR and NSB 785
NSR Summary 813

In-Service Software Upgrades 814
ISSU Operation 814
ISSU Layer 3 Protocol Support 819

Table of Contents | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

ISSU Layer 2 Support 819
MX MIC/MPC ISSU Support 820
ISSU: A Double-Edged Knife 820
ISSU Summary 823

ISSU Lab 823
Verify ISSU Readiness 825
Perform an ISSU 827
Summary 834

Chapter Review Questions 834
Chapter Review Answers 836

Index . 839

xiv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Douglas Richard Hanks, Jr. is a Data Center Architect with Juniper Networks and
focuses on solution architecture. Previously, he was a Senior Systems Engineer with
Juniper Networks, supporting large enterprise accounts such as Chevron, HP, and
Zynga. He is certified with Juniper Networks as JNCIE-ENT #213 and JNCIE-SP
#875. Douglas’ interests are network engineering and architecture for enterprise and
service provider technologies. He is the author of several Day One books published by
Juniper Networks Books. Douglas is also the cofounder of the Bay Area Juniper Users
Group (BAJUG). When he isn’t busy with networking, Douglas enjoys computer pro-
gramming, photography, and Arduino hacking. Douglas can be reached at
doug@juniper.net or on Twitter @douglashanksjr.

Harry Reynolds has over 30 years of experience in the networking industry, with the
last 20 years focused on LANs and LAN interconnection. He is CCIE # 4977 and JNCIE
3 and also holds various other industry and teaching certifications. Harry was a
contributing author to Juniper Network Complete Reference (McGraw-Hill) and wrote
the JNCIE and JNCIP Study Guides (Sybex Books). He coauthored Junos Enterprise
Routing and Junos Enterprise Switching (O’Reilly). Prior to joining Juniper, Harry served
in the US Navy as an Avionics Technician, worked for equipment manufacturer Micom
Systems, and spent much time developing and presenting hands-on technical training
curricula targeted to both enterprise and service provider needs. Harry has developed
and presented internetworking classes for organizations such as American Institute,
American Research Group, Hill Associates, and Data Training Resources. Currently,
Harry performs Customer Specific Testing that simulates one of the nation's largest
private IP backbones at multidimensional scale. When the testing and writing is done
(a rare event, to be sure), Harry can be found in his backyard metal shop trying to make
Japanese-style blades.

About the Lead Technical Reviewers
Stefan Fouant is a Technical Trainer and JNCP Proctor at Juniper Networks with over
15 years of experience in the networking industry. His first exposure to Junos was with
Junos 3.4 on the original M40 back in 1998, and it has been a love affair ever since. His

xv

www.it-ebooks.info

http://shop.oreilly.com/product/0636920015963.do
http://shop.oreilly.com/product/0636920015963.do
http://shop.oreilly.com/product/9780596153984.do
http://www.it-ebooks.info/

background includes launching an industry-first DDoS Mitigation and Detection ser-
vice at Verizon Business, as well as building customized solutions for various mission-
critical networks. He holds several patents in the areas of DDoS Detection and Miti-
gation, as well as many industry certifications including CISSP, JNCIE-SP, JNCIE-
ENT, and JNCIE-SEC.

Artur Makutunowicz has over five years of experience in Information Technology.
He was a Technical Team Leader at a large Juniper Elite partner. His main areas of
interest are Service Provider technologies, network device architecture, and Software
Defined Networking (SDN). He was awarded with JNCIE-ENT #297 certification.
Artur was also a technical reviewer of Day One: Scaling Beyond a Single Juniper SRX in
the Data Center, published by Juniper Networks Books. He is currently an independent
contractor and can be reached at artur@makutunowicz.net.

About the Technical Reviewers
Many Junos engineers reviewed this book. They are, in the authors’ opinion, some of
smartest and most capable networking people around. They include but are not limited
to: Kannan Kothandaraman, Ramesh Prabagaran, Dogu Narin, Russell Gerald Kelly,
Rohit Puri, Sunesh Rustagi, Ajay Gaonkar, Shiva Shenoy, Massimo Magnani, Eswaran
Srinivasan, Nitin Kumar, Ariful Huq, Nayan Patel, Deepak Ojha, Ramasamy Rama-
nathan, Brandon Bennett, Scott Mackie, Sergio Danelli, Qi-Zhong Cao, Eric Cheung
Young Sen, Richard Fairclough, Madhu Kopalle, Jarek Sawczuk, Philip Seavey, and
Amy Buchanan.

Proof of Concept Laboratory
In addition, the authors humbly thank the POC Lab in Sunnyvale, California, where
the test bed for this book was cared for and fed by Roberto Hernandez, Ridha Hamidi,
and Matt Bianchi. Without access to test equipment, this book would have been im-
possible.

xvi | About the Authors

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

One of the most popular routers in the enterprise and service provider market is the
Juniper MX Series. The industry is moving to high-speed, high port-density Ethernet-
based routers, and the Juniper MX was designed from the ground up to solve these
challenges.

This book is going to show you, step-by-step, how to build a better network using the
Juniper MX—it’s such a versatile platform that it can be placed in the core, aggregation,
or edge of any type of network and provide instant value. The Juniper MX was designed
to be a network virtualization beast. You can virtualize the physical interfaces, logical
interfaces, control plane, data plane, network services, and even have virtualized serv-
ices span several Juniper MX routers. What was traditionally done with an entire army
of routers can now be consolidated and virtualized into a single Juniper MX router.

No Apologies
We’re avid readers of technology books, and we always get a bit giddy when a new
book is released because we can’t wait to read it and learn more about a specific tech-
nology. However, one trend we have noticed is that every networking book tends to
regurgitate the basics over and over. There are only so many times you can force yourself
to read about spanning tree, the split horizon rule, or OSPF LSA types. One of the goals
of this book is to introduce new and fresh content that hasn’t been published before.

There was a conscious decision made between the authors to keep the technical quality
of this book very high; this created a constant debate whether or not to include primer
or introductory material in the book to help refresh a reader’s memory with certain
technologies and networking features. In short, here’s what we decided:

Spanning Tree
There’s a large chapter on bridging, VLAN mapping, IRB, and virtual switches. A
logical choice would be to include the spanning tree protocol in this chapter.
However, spanning tree has been around forever and quite frankly there’s nothing
special or interesting about it. Spanning tree is covered in great detail in every
JNCIA and CCNA book on the market. If you want to learn more about spanning

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

tree check out Junos Enterprise Switching by O’Reilly or CCNA ICND2 Official
Exam and Certification Guide, Second Edition by Cisco Press.

Basic Firewall Filters
We decided to skip the basic firewall filter introduction and jump right into the
advanced filtering and policing that’s available on the Juniper MX. Hierarchical
policers, two-rate three-color policers, and cascading firewall filters are much more
interesting.

Class of Service
This was a difficult decision because Chapter 5 is over 170 pages of advanced
hierarchal class of service. Adding another 50 pages of class of service basics would
have exceeded page count constraints and provided no additional value. If you
would like to learn more about basic class of service check out QoS-Enabled Net-
works by Wiley, Junos Enterprise Routing, Second Edition by O’Reilly, or Juniper
Networks Certified Internet Expert Study Guide by Juniper Networks.

Routing Protocols
There are various routing protocols such as OSPF and IS-IS used throughout this
book in case studies. No introduction chapters are included for IS-IS or OSPF, and
it’s assumed that you are already familiar with these routing protocols. If you want
to learn more about OSPF or IS-IS, check out the Junos Enterprise Routing, Second
Edition by O’Reilly or Juniper Networks Certified Internet Expert Study Guide by
Juniper Networks.

Virtual Chassis
This was an interesting problem to solve. On one hand, virtual chassis was covered
indepth in the book Junos Enterprise Switching by O’Reilly, but on the other hand
there are many caveats and features that are only available on the Juniper MX. It
was decided to provide enough content in the introduction that a new user could
grasp the concepts, but someone already familiar with virtual chassis wouldn’t
become frustrated. Chapter 6 specifically focuses on the technical prowess of vir-
tual chassis and the Juniper MX implementation of virtual chassis.

After many hours of debate over Skype, it was decided that we should defer to other
books when it comes to introductory material and keep the content of this book at an
expert level. We expect that most of our readers already have their JNCIE or CCIE (or
are well on their way) and will enjoy the technical quality of this book. For beginning
readers, we want to share an existing list of books that are widely respected within the
networking community:

Junos Enterprise Routing, Second Edition, O’Reilly
Junos Enterprise Switching, O’Reilly
Junos Cookbook, O’Reilly
Junos Security, O’Reilly
Junos High Availability, O’Reilly
QoS-Enabled Networks, Wiley & Sons

xviii | Preface

www.it-ebooks.info

http://shop.oreilly.com/product/9780596153984.do
http://www.ciscopress.com/bookstore/product.asp?isbn=158720181X
http://www.ciscopress.com/bookstore/product.asp?isbn=158720181X
http://shop.oreilly.com/product/0636920015963.do
http://www.juniper.net/us/en/training/certification/JNCIE_studyguide.pdf
http://www.juniper.net/us/en/training/certification/JNCIE_studyguide.pdf
http://www.juniper.net/us/en/training/certification/JNCIE_studyguide.pdf
http://www.it-ebooks.info/

MPLS-Enabled Applications, Third Edition, Wiley & Sons
Network Mergers and Migrations, Wiley
Juniper Networks Certified Internet Expert, Juniper Networks
Juniper Networks Certified Internet Professional, Juniper Networks
Juniper Networks Certified Internet Specialist, Juniper Networks
Juniper Networks Certified Internet Associate, Juniper Networks
CCIE Routing and Switching, Fourth Edition, Cisco Press
Routing TCP/IP, Volumes I and II, Cisco Press
OSPF and IS-IS, Addison-Wesley
OSPF: Anatomy of an Internet Routing Protocol, Addison-Wesley
The Art of Computer Programming, Addison-Wesley
TCP/IP Illustrated, Volumes 1, 2, and 3, Addison-Wesley
UNIX Network Programming, Volumes 1 and 2, Prentice Hall PTR
Network Algorithmics: An Interdisciplinary Approach to Designing Fast Networked
Devices, Morgan Kaufmann

Book Topology
Using the same methodology found in the JNCIP-M and JNCIE-M Study Guides, this
book will use a master topology and each chapter will use a subset of the devices that
are needed to illustrate features and case studies. The master topology is quite extensive
and includes four Juniper MX240s, two EX4500s, two EX4200s, and various port test-
ers which can generate traffic and emulate peering and transit links. The topology is
broken into three major pieces:

Data Center 1
The left side of the topology represents Data Center 1. The devices include W1,
W2, S1, S2, R1, R2, P1, and T2. The address space can be summarized as
10.0.0.0/14.

Data Center 2
The right side of the topology represents Data Center 2. It’s common for networks
to have more than one data center, so it made sense to create a master topology
that closely resembles a real production network. The devices include W3, W4,
S3, S4, R3, R4, P2, and T2.

The Core
The core is really just a subset of the two data centers combined. Typically when
interconnecting data centers a full mesh of WAN links aren’t cost effective, so we
decided to only use a pair of links between Data Center 1 and Data Center 2.

For the sake of clarity and readability, the master topology has been broken into five
figures, Figure P-1 through Figure P-5: Interface Names, Aggregate Ethernet Assign-
ments, Layer 2, IPv4 Addressing, and IPv6 Addressing. The breakdown and configu-
ration of the equipment is as follows:

Preface | xix

www.it-ebooks.info

http://www.it-ebooks.info/

W1: Web Server 1. This is a tester port that’s able to generate traffic.
W2: Web Server 2. This is a tester port that’s able to generate traffic.
S1: Access Switch 1. This is a Juniper EX4500 providing both Layer 2 and Layer 3
access.
S2: Access Switch 2. This is a Juniper EX4500 providing both Layer 2 and Layer 3
access.
R1: Core Router/WAN Router 1. Juniper MX240 with a MPC2 Enhanced Queuing
line card.
R2: Core Router/WAN Router 2. Juniper MX240 with a MPC2 Enhanced Queuing
line card.
R3: Core Router/WAN Router 3. Juniper MX240 with a MPC2 line card.
R4: Core Router/WAN Router 4. Juniper MX240 with a MPC2 Queuing line card.
S3: Access Switch 3. Juniper EX4200 providing both Layer 2 and Layer 3 access.
S4: Access Switch 4. Juniper EX4200 providing both Layer 2 and Layer 3 access.
W3: Web Server 3. This is a tester port that’s able to generate traffic.
W4: Web Server 4. This is a tester port that’s able to generate traffic.
P1: Peering Router 1. This is a tester port that’s able to generate traffic.
P2: Peering Router 2. This is a tester port that’s able to generate traffic.
T1: Transit Router 1. This is a tester port that’s able to generate traffic.
T2: Transit Router 2. This is a tester port that’s able to generate traffic.

xx | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Interface Names

Figure P-1. Master topology: Interface names

Preface | xxi

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregate Ethernet Assignments

Figure P-2. Master topology: Aggregate ethernet assignments

xxii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Layer 2

Figure P-3. Master topology: Layer 2

Preface | xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

IPv4 Addressing

Figure P-4. Master topology: IPv4 addressing

xxiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

IPv6 Addressing

Figure P-5. Master topology: IPv6 addressing

Preface | xxv

www.it-ebooks.info

http://www.it-ebooks.info/

What’s in This Book?
This book was written for network engineers by network engineers. The ultimate goal
of this book is to share with the reader the logical underpinnings of the Juniper MX.
Each chapter represents a specific vertical within the Juniper MX and will provide
enough depth and knowledge to provide the reader with enough confidence to imple-
ment and design new architectures for their network using the Juniper MX.

Here’s a short summary of the chapters and what you’ll find inside:

Chapter 1, Juniper MX Architecture
Learn a little bit about the history and pedigree of the Juniper MX and what factors
prompted its creation. Junos is the “secret sauce” that’s common throughout all
of the hardware; this chapter will take a deep dive into the control plane and explain
some of the recent important changes to the release cycle and support structure of
Junos. The star of the chapter is of course the Juniper MX; the chapter will
thoroughly explain all of the components such as line cards, switch fabric, and
routing engines.

Chapter 2, Bridging, VLAN Mapping, IRB, and Virtual Switches
It always seems to surprise people that the Juniper MX is capable of switching; not
only can it switch, it has some of the best bridging features and scalability on the
market. The VLAN mapping is capable of popping, swapping, and pushing new
IEEE 802.1Q headers with ease. When it comes to scale, it can support over 8,000
virtual switches.

Chapter 3, Stateless Filters, Hierarchical Policing, and Tri-Color Marking
Discover the world of advanced policing where the norm is creating two-rate three-
color markers, hierarchical policers, cascading firewall filters, and logical band-
width policers. You think you already know about Junos policing and firewall
filters? You’re wrong; this is a must-read chapter.

Chapter 4, Routing Engine Protection and DDoS Prevention
Everyone has been through the process of creating a 200-line firewall filter and
applying it to the loopback interface to protect the routing engine. This chapter
presents an alternative method of creating a firewall filter framework and only
applies the filters that are specific to your network via firewall filter chains. As of
Junos 10.4, there’s a new feature called Distributed Denial-of-Service Protection
(ddos-protection) that can be combined with firewall filters to add an extra layer
of security to the routing engine.

Chapter 5, Trio Class of Service
This chapter answers the question, “What is hierarchical class of service and why
do I need it?” The land of CoS is filled with mystery and adventure; come join Harry
and discover the advantages of hierarchical scheduling.

xxvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6, MX Virtual Chassis
What’s better than a Juniper MX router? Two Juniper MX routers, of course, unless
you’re talking about virtual chassis; it takes several Juniper MX Routers and
combines them into a single, logical router.

Chapter 7, Trio Inline Services
Services such as Network Address Translation (NAT), IP Information Flow Export
(IPFIX), and tunneling protocols traditionally require a separate services card. Trio
inline services turns this model upside down and allows the network engineer to
install network services directly inside of the Trio chipset, which eliminates the
need for special services hardware.

Chapter 8, Multi-Chassis Link Aggregation
An alternative to virtual chassis is a feature called MC-LAG, which allows two
routers to form a logical IEEE 802.3ad connection to a downstream router and
appear as a single entity. The twist is that MC-LAG allows the two routers to
function independently.

Chapter 9, Junos High Availability on MX Routers
Some of us take high availability for granted. GRES, NSR, NSB, and ISSU make
you feel warm and fuzzy. But how do you really know they work? Put on your hard
hat and go spelunking inside of these features and protocols like you never have
before.

Each chapter includes a set of review questions and exam topics, all designed to get
you thinking about what you’ve just read and digested. If you’re not in the certification
mode, the questions will provide a mechanism for critical thinking, potentially prompt-
ing you to locate other resources to further your knowledge.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, XML tags, macros, the contents of files, and the
output from commands.

Constant width bold
Shows commands and other text that should be typed literally by the user, as well
as important lines of code.

Preface | xxvii

www.it-ebooks.info

http://www.it-ebooks.info/

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your own configuration and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the material. For
example, deploying a network based on actual configurations from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of sample con-
figurations or operational output from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN, for example: “Juniper MX Series by Douglas Richard
Hanks, Jr., and Harry Reynolds. Copyright 2012, Douglas Hanks, Jr., and Harry Rey-
nolds, 978-1-449-31971-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

xxviii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://www.it-ebooks.info/

As with most deep-dive books, the reader will be exposed to a variety
of hidden, Junos Shell, and even MPC-level VTY commands performed
after forming an internal connection to a PFE component. As always,
the standard disclaimers apply.

In general, a command being hidden indicates that the feature is not
officially supported in that release. Such commands should only be used
in production networks after consultation with JTAC. Likewise, the
shell is not officially supported or documented. The commands
available can change, and you can render a router unbootable with
careless use of shell commands. The same holds true for PFE compo-
nent-level shell commands, often called VTY commands, that, again,
when undocumented, are capable of causing network disruption or
damage to the routing platform that can render it inoperable.

The hidden and shell commands that are used in this book were selected
because they were the only way to illustrate certain operational charac-
teristics or the results of complex configuration parameters.

Again, hidden and shell commands should only be used under JTAC
guidance; this is especially true when dealing with a router that is part
of a production network.

You have been duly warned.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have access to thou-
sands of books, training videos, and prepublication manuscripts in one fully searchable
database from publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco
Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and dozens more. For more information about Safari Books Online, please
visit us online.

Preface | xxix

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://www.it-ebooks.info/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/juniper_mx_series or http://cu
bednetworks.com.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxx | Preface

www.it-ebooks.info

http://oreil.ly/juniper_mx_series
http://cubednetworks.com
http://cubednetworks.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

CHAPTER 1

Juniper MX Architecture

Back in 1998, Juniper Networks released its first router, the M40. Leveraging Appli-
cation Specific Integrated Circuits (ASICs), the M40 was able to outperform any other
router architecture. The M40 was also the first router to have a true separation of the
control and data planes, and the M Series was born. Originally, the model name M40
referred to its ability to process 40 million packets per second (Mpps). As the product
portfolio expanded, the “M” now refers to the multiple services available on the router,
such as MPLS with a wide variety of VPNs. The primary use case for the M Series was
to allow Service Providers to deliver services based on IP while at the same time sup-
porting legacy frame relay and ATM networks.

Fast forward 10 years and the number of customers that Service Providers have to
support has increased exponentially. Frame relay and ATM have been decimated, as
customers are demanding high-speed Layer 2 and Layer 3 Ethernet-based services.
Large enterprise companies are becoming more Service Provider-like and are offering
IP services to departments and subsidiaries.

Nearly all networking equipment connects via Ethernet. It’s one of the most well un-
derstood and deployed networking technologies used today. Companies have chal-
lenging requirements to reduce operating costs and at the same time provide more
services. Ethernet enables the simplification in network operations, administration, and
maintenance.

The MX Series was introduced in 2007 to solve these new challenges. It is optimized
for delivering high-density and high-speed Layer 2 and Layer 3 Ethernet services. The
“M” still refers to the multiple services heritage, while the “X” refers to the new switch-
ing capability and focus on 10G interfaces and beyond; it’s also interesting to note that
the Roman numeral for the number 10 is “X.”

It’s no easy task to create a platform that’s able to solve these new challenges. The MX
Series has a strong pedigree: although mechanically different, it leverages technology
from both the M and T Series for chassis management, switching fabric, and the routing
engine.

1

www.it-ebooks.info

http://www.it-ebooks.info/

Features that you have come to know and love on the M and T Series are certainly
present on the MX Series as it runs on the same image of Junos. In addition to the
“oldies, but goodies,” is an entire featureset focused on Service Provider switching and
broadband network gateway (BNG). Here’s just a sample of what is available on the
MX:

High availability
Non-Stop Routing (NSR), Non-Stop Bridging (NSB), Graceful Routing Engine
Switch over (GRES), Graceful Restart (GR), and In-Service Software Upgrade
(ISSU)

Routing
RIP, OSPF, IS-IS, BGP, and Multicast

Switching
Full suite of Spanning Tree Protocols (STP), Service Provider VLAN tag manipu-
lation, QinQ, and the ability to scale beyond 4,094 bridge domains by leveraging
virtual switches

Inline services
Network Address Translation (NAT), IP Flow Information Export (IPFIX), Tunnel
Services, and Port Mirroring

MPLS
L3VPN, L2VPNs, and VPLS

Broadband services
PPPoX, DHCP, Hierarchical QoS, and IP address tracking

Virtualization
Multi-Chassis Link Aggregation, Virtual Chassis, Logical Systems, Virtual
Switches

With such a large featureset, the use case of the MX Series is very broad. It’s common
to see it in the core of a Service Provider network, providing BNG, or in the Enterprise
providing edge routing or core switching.

This chapter introduces the MX platform, features, and architecture. We’ll review the
hardware, components, and redundancy in detail.

Junos
Junos is a purpose-built networking operating system based on one of the most stable
and secure operating systems in the world: FreeBSD. Junos is designed as a monolithic
kernel architecture that places all of the operating system services in the kernel space.
Major components of Junos are written as daemons that provide complete process and
memory separation.

One of the benefits of monolithic kernel architecture is that kernel functions are exe-
cuted in supervisor mode on the CPU while the applications and daemons are executed

2 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

in user space. A single failing daemon will not crash the operating system or impact
other unrelated daemons. For example, if there was an issue with the SNMP daemon
and it crashed, it wouldn’t impact the routing daemon that handles OSPF and BGP.

One Junos
Creating a single network operating system that’s able to be leveraged across routers,
switches, and firewalls simplifies network operations, administration, and mainte-
nance. Network operators need only learn Junos once and become instantly effective
across other Juniper products. An added benefit of a single Junos is that there’s no need
to reinvent the wheel and have 10 different implementations of BGP or OSPF. Being
able to write these core protocols once and then reuse them across all products provides
a high level of stability, as the code is very mature and field tested.

Software Releases
Every quarter for nearly 15 years there has been a consistent and predictable release of
Junos. The development of the core operating system is a single release train. This
allows developers to create new features or fix bugs once and share them across multiple
platforms.

The release numbers are in a major and minor format. The major number is the version
of Junos for a particular calendar year and the minor release indicates which quarter
the software was released. This happens to line up nicely for Junos 11 and Junos 12 as
they directly tied the year released. For example, Junos 11 was released in 2011.

This wasn’t always the case. Before Junos 10.1, the major release didn’t line up to the
year released. Historically, the “.0” release was reserved for major events such as re-
leasing software for new products like the MX240 with Junos 9.0.

Each release of Junos is supported for 18 months. The last release of Junos in the
calendar year is known as the Extended End of Life (EEOL), and this release is sup-
ported for 36 months.

Junos | 3

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-1. Junos release model

There are a couple of different types of Junos that are released more frequently to resolve
issues: maintenance and service releases. Maintenance releases are released about every
six weeks to fix a collection of issues and they are prefixed with “R.” For example, Junos
11.1R2 would be the second maintenance release for Junos 11.1. Service releases are
released on demand to specifically fix a critical issue that has yet to be addressed by a
maintenance release. These releases are prefixed with a “S.” An example would be Junos
11.1S2.

The general rule of thumb is that new features are added every minor release and bug
fixes are added every maintenance release. For example, Junos 11.1 to 11.2 would
introduce new features, whereas Junos 11.1R1 to 11.1R2 would introduce bug fixes.

Most production networks prefer to use the last Junos release of the previous calendar
year; these Junos releases are EEOL releases that are supported for three years. The
advantage is that the EEOL releases become more stable with time. Consider that 11.1
will stop providing bug fixes after 18 months, while 11.4 will continue to have bug fixes
for 36 months.

Three Release Cadence
In 2012, Junos created a new release model to move from four releases per year to three.
This increased the frequency of maintenance releases to resolve more issues more often.
The other benefit is that all Junos releases as of 2012 are supported for 24 months,
while the last release of Junos for the calendar year will still be considered EEOL and
have support for 36 months.

Table 1-1. Junos End of Engineering and End-of-Life schedule

Release Target End of Engineering End of Life

Junos 12.1 March 24 months + 6 months

Junos 12.2 July 24 months + 6 months

4 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Release Target End of Engineering End of Life

Junos 12.3 November 36 months + 6 months

By extending the engineering support and reducing the number of releases, network
operators should be able to reduce the frequency of having to upgrade to a new release
of code.

Figure 1-2. New 2012 Junos three-release candidate

With the new Junos three-release cadence, network operators can feel more confident
using any version of Junos without feeling pressured to only use the EEOL release.

Software Architecture
Junos was designed from the beginning to support a separation of control and for-
warding plane. This is true for the MX Series, where all of the control plane functions
are performed by the routing engine while all of the forwarding is performed by the
packet forwarding engine (PFE). Providing this level of separation ensures that one
plane doesn’t impact the other. For example, the forwarding plane could be routing
traffic at line-rate and performing many different services while the routing engine sits
idle and unaffected.

Control plane functions come in many shapes and sizes. There’s a common miscon-
ception that the control plane only handles routing protocol updates. In fact, there are
many more control plane functions. Some examples include:

• Updating the routing table

• Answering SNMP queries

• Processing SSH or HTTP traffic to administer the router

• Changing fan speed

Junos | 5

www.it-ebooks.info

http://www.it-ebooks.info/

• Controlling the craft interface

• Providing a Junos micro kernel to the PFEs

• Updating the forwarding table on the PFEs

Figure 1-3. Junos software architecture

At a high level, the control plane is implemented entirely within the routing engine
while the forwarding plane is implemented within each PFE using a small, purpose-
built kernel that contains only the required functions to route and switch traffic.

The benefit of control and forwarding separation is that any traffic that is being routed
or switched through the router will always be processed at line-rate on the PFEs and
switch fabric; for example, if a router was processing traffic between web servers and
the Internet, all of the processing would be performed by the forwarding plane.

Daemons
The Junos kernel has four major daemons; each of these daemons play a critical role
within the MX and work together via Interprocess Communication (IPC) and routing
sockets to communicate with the Junos kernel and other daemons. The following dae-
mons take center stage and are required for the operation of Junos.

• Management daemon (mgd)

• Routing protocol daemon (rpd)

• Device control daemon (dcd)

• Chassis daemon (chassisd)

There are many more daemons for tasks such as NTP, VRRP, DHCP, and other tech-
nologies, but they play a smaller and more specific role in the software architecture.

6 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Management Daemon

The Junos User Interface (UI) keeps everything in a centralized database. This allows
Junos to handle data in interesting ways and open the door to advanced features such
as configuration rollback, apply groups, and activating and deactivating entire portions
of the configuration.

The UI has four major components: the configuration database, database schema,
management daemon (mgd), and the command line interface (cli).

The management daemon (mgd) is the glue that holds the entire Junos User Interface
(UI) together. At a high level, mgd provides a mechanism to process information for
both network operators and daemons.

The interactive component of mgd is the Junos cli; this is a terminal-based application
that allows the network operator an interface into Junos. The other side of mgd is the
extensible markup language (XML) remote procedure call (RPC) interface; This pro-
vides an API through Junoscript and Netconf to allow for the development of auto-
mation applications.

The cli responsibilities are:

• Command-line editing

• Terminal emulation

• Terminal paging

• Displaying command and variable completions

• Monitoring log files and interfaces

• Executing child processes such as ping, traceroute, and ssh

mgd responsibilities include:

• Passing commands from the cli to the appropriate daemon

• Finding command and variable completions

• Parsing commands

It’s interesting to note that the majority of the Junos operational commands use XML
to pass data. To see an example of this, simply add the pipe command display xml to
any command. Let’s take a look at a simple command such as show isis adjacency.

{master}
dhanks@R1-RE0> show isis adjacency
Interface System L State Hold (secs) SNPA
ae0.1 R2-RE0 2 Up 23

So far everything looks normal. Let’s add the display xml to take a closer look.

Junos | 7

www.it-ebooks.info

http://www.it-ebooks.info/

{master}dhanks@R1-RE0> show isis adjacency | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/11.4R1/junos">
 <isis-adjacency-information xmlns="http://xml.juniper.net/junos/11.4R1/junos-
routing"
 junos:style="brief">
 <isis-adjacency>
 <interface-name>ae0.1</interface-name>
 <system-name>R2-RE0</system-name>
 <level>2</level>
 <adjacency-state>Up</adjacency-state>
 <holdtime>22</holdtime>
 </isis-adjacency>
 </isis-adjacency-information>
 <cli>
 <banner>{master}</banner>
 </cli>
</rpc-reply>

As you can see, the data is formatted in XML and received from mgd via RPC.

Routing Protocol Daemon

The routing protocol daemon (rpd) handles all of the routing protocols configured
within Junos. At a high level, its responsibilities are receiving routing advertisements
and updates, maintaining the routing table, and installing active routes into the for-
warding table. In order to maintain process separation, each routing protocol config-
ured on the system runs as a separate task within rpd. The other responsibility of rpd
it to exchange information with the Junos kernel to receive interface modifications,
send route information, and send interface changes.

Let’s take a peek into rpd and see what’s going on. The hidden command set task
accounting toggles CPU accounting on and off. Use show task accounting to see the
results.

{master}
dhanks@R1-RE0> set task accounting on
Task accounting enabled.

Now we’re good to go. Junos is currently profiling daemons and tasks to get a better
idea of what’s using the routing engine CPU. Let’s wait a few minutes for it to collect
some data.

OK, let’s check it out:

{master}
dhanks@R1-RE0> show task accounting
Task accounting is enabled.

Task Started User Time System Time Longest Run
Scheduler 265 0.003 0.000 0.000
Memory 2 0.000 0.000 0.000
hakr 1 0.000 0 0.000
ES-IS I/O./var/run/ppmd_c 6 0.000 0 0.000
IS-IS I/O./var/run/ppmd_c 46 0.000 0.000 0.000

8 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

PIM I/O./var/run/ppmd_con 9 0.000 0.000 0.000
IS-IS 90 0.001 0.000 0.000
BFD I/O./var/run/bfdd_con 9 0.000 0 0.000
Mirror Task.128.0.0.6+598 33 0.000 0.000 0.000
KRT 25 0.000 0.000 0.000
Redirect 1 0.000 0.000 0.000
MGMT_Listen./var/run/rpd_ 7 0.000 0.000 0.000
SNMP Subagent./var/run/sn 15 0.000 0.000 0.000

Not too much going on here, but you get the idea. Currently, running daemons and
tasks within rpd are present and accounted for.

The set task accounting command is hidden for a reason. It’s possible
to put additional load on the Junos kernel while accounting is turned
on. It isn’t recommended to run this command on a production network
unless instructed by JTAC. After your debugging is finished, don’t forget
to turn it back off with set task accounting off.

Don’t forget to turn off accounting.

{master}
dhanks@R1-RE0> set task accounting off
Task accounting disabled.

Device Control Daemon

The device control daemon (dcd) is responsible for configuring interfaces based on the
current configuration and available hardware. One feature of Junos is being able to
configure nonexistent hardware, as the assumption is that the hardware can be added
at a later date and “just work.” An example is the expectation that you can configure
set interfaces ge-1/0/0.0 family inet address 192.168.1.1/24 and commit. As-
suming there’s no hardware in FPC1, this configuration will not do anything. As soon
as hardware is installed into FPC1, the first port will be configured immediately with
the address 192.168.1.1/24.

Chassis Daemon (and Friends)

The chassis daemon (chassisd) supports all chassis, alarm, and environmental pro-
cesses. At a high level, this includes monitoring the health of hardware, managing a
real-time database of hardware inventory, and coordinating with the alarm daemon
(alarmd) and the craft daemon (craftd) to manage alarms and LEDs.

Junos | 9

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-4. Juniper MX960 craft interface

It should all seem self-explanatory except for craftd; the craft interface that is the front
panel of the device. Let’s take a closer look at the MX960 craft interface.

The craft interfaces is a collection of buttons and LED lights to display the current status
of the hardware and alarms. Information can also be obtained.

dhanks@R1-RE0> show chassis craft-interface

Front Panel System LEDs:
Routing Engine 0 1

OK * *
Fail . .
Master * .

Front Panel Alarm Indicators:

Red LED .
Yellow LED .
Major relay .
Minor relay .

Front Panel FPC LEDs:
FPC 0 1 2

Red . . .
Green . * *

CB LEDs:
 CB 0 1

Amber . .
Green * *

PS LEDs:
 PS 0 1 2 3

Red
Green * . . .

Fan Tray LEDs:
 FT 0

10 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Red .
Green *

One final responsibility of chassisd is monitoring the power and cooling environmen-
tals. chassisd constantly monitors the voltages of all components within the chassis
and will send alerts if the voltage crosses any thresholds. The same is true for the cool-
ing. The chassis daemon constantly monitors the temperature on all of the different
components and chips, as well as fan speeds. If anything is out of the ordinary,
chassisd will create alerts. Under extreme temperature conditions, chassisd may also
shut down components to avoid damage.

Routing Sockets
Routing sockets are a UNIX mechanism for controlling the routing table. The Junos
kernel takes this same mechanism and extends it to include additional information to
support additional attributes to create a carrier-class network operating system.

Figure 1-5. Routing socket architecture

At a high level, there are two actors when using routing sockets: state producer and
state consumer. The rpd daemon is responsible for processing routing updates and thus
is the state producer. Other daemons are considered state consumers because they
process information received from the routing sockets.

Let’s take a peek into the routing sockets and see what happens when we configure
ge-1/0/0.0 with an IP address of 192.168.1.1/24. Using the rtsockmon command from
the shell will allow us to see the commands being pushed to the kernel from the Junos
daemons.

{master}
dhanks@R1-RE0> start shell
dhanks@R1-RE0% rtsockmon -st

Junos | 11

www.it-ebooks.info

http://www.it-ebooks.info/

 sender flag type op
[16:37:52] dcd P iflogical add ge-1/0/0.0 flags=0x8000
[16:37:52] dcd P ifdev change ge-1/0/0 mtu=1514 dflags=0x3
[16:37:52] dcd P iffamily add inet mtu=1500 flags=0x8000000200000000
[16:37:52] dcd P nexthop add inet 192.168.1.255 nh=bcst
[16:37:52] dcd P nexthop add inet 192.168.1.0 nh=recv
[16:37:52] dcd P route add inet 192.168.1.255
[16:37:52] dcd P route add inet 192.168.1.0
[16:37:52] dcd P route add inet 192.168.1.1
[16:37:52] dcd P nexthop add inet 192.168.1.1 nh=locl
[16:37:52] dcd P ifaddr add inet local=192.168.1.1
[16:37:52] dcd P route add inet 192.168.1.1 tid=0
[16:37:52] dcd P nexthop add inet nh=rslv flags=0x0
[16:37:52] dcd P route add inet 192.168.1.0 tid=0
[16:37:52] dcd P nexthop change inet nh=rslv
[16:37:52] dcd P ifaddr add inet local=192.168.1.1 dest=192.168.1.0
[16:37:52] rpd P ifdest change ge-1/0/0.0, af 2, up, pfx 192.168.1.0/24

The author configured the interface ge-1/0/0 in a different terminal
window and committed the change while the rtstockmon command was
running.

The command rtsockmon is a Junos shell command that gives the user visibility into
the messages being passed by the routing socket. The routing sockets are broken into
four major components: sender, type, operation, and arguments. The sender field is
used to identify which daemon is writing into the routing socket. The type identifies
which attribute is being modified. The operation field is showing what is actually being
performed. There are three basic operations: add, change, and delete. The last field is
the arguments passed to the Junos kernel. These are sets of key and value pairs that are
being changed.

In the previous example, you can see how dcd interacts with the routing socket to
configure ge-1/0/0.0 and assign an IPv4 address.

• dcd creates a new logical interface (IFL).

• dcd changes the interface device (IFD) to set the proper MTU.

• dcd adds a new interface family (IFF) to support IPv4.

• dcd sets the nexthop, broadcast, and other attributes that are needed for the RIB
and FIB.

• dcd adds the interface address (IFA) of 192.168.1.1.

• rpd finally adds a route for 192.168.1.1 and brings it up.

The rtsockmon command is only used to demonstrate the functionality
of routing sockets and how daemons such as dcd and rpd use routing
sockets to communicate routing changes to the Junos kernel.

12 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Juniper MX Chassis

Figure 1-6. Juniper MX family

Ranging from 2U to 44U, the MX comes in many shapes and configurations. From left
to right: MX80, MX240, MX480, MX960, and MX2020. The MX240 and higher mod-
els have chassis that house all components such as line cards, routing engines, and
switching fabrics. The MX80 and below are considered midrange and only accept in-
terface modules.

Table 1-2. Juniper MX Series capacity (Based on current hardware)

Model DPC Capacity MPC Capacity

MX80 N/A 80 Gbps

MX240 240 Gbps 1.280 Tbps

MX480 480 Gbps 3.84 Tbps

MX960 960 Gbps 7.68 Tbps

MX2020 N/A 12.8 Tbps

Juniper MX Chassis | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Please note that the DPC and MPC capacity is based on current hard-
ware—4x10GE DPC and 32x10GE MPC—and is subject to change in
the future as new hardware is released. This information only serves as
an example.

The MX960 can accept up to 12 DPC line cards; using the 4x10GE DPC in the Ta-
ble 1-2 calculations, you can come up with the following calculation:

40 Gbps * 2 (full-duplex) * 12 (maximum number of line cards on the MX960) = 960
Gbps.

Using the same calculation for the MPC capacity, the 32x10GE MPC line card can be
used with the following calculation:

320 Gbps * 2 (full-duplex) * 12 (maximum number of line cards on the MX960) = 7.640
Tbps.

As the MX platform is upgraded with even faster switch fabrics and line cards, these
calculations will change.

MX80
The MX journey begins with the MX80. It’s a small, compact 2U router that comes in
two models: the MX80 and MX80-48T. The MX80 supports two MICs, whereas the
MX80-48T supports 48 10/100/1000BASE-T ports. Because of the small size of the
MX80, all of the forwarding is handled by a single Trio chip and there’s no need for a
switch fabric. The added bonus is that in lieu of a switch fabric, each MX80 comes with
four fixed 10GE ports.

Figure 1-7. Juniper MX80-48T supports 48x1000BASE-T and 4x10GE ports

Each MX80 comes with field-replaceable, redundant power supplies and fan tray. The
power supplies come in both AC and DC. Because the MX80 is so compact, it doesn’t
support slots for routing engines, Switch Control Boards (SCBs), or FPCs. The routing
engine is built into the chassis and isn’t replaceable. The MX80 only supports Modular
Interface Cards (MICs).

14 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The MX80 has a single routing engine and currently doesn’t support
features such as NSR, NSB, and ISSU.

But don’t let the small size of the MX80 fool you. This is a true hardware-based router
based on the Juniper Trio chipset. Here are some of the performance and scaling char-
acteristics at a glance:

• 55 Mpps

• 1,000,000 IPv4 prefixes in the Forwarding Information Base (FIB)

• 4,000,000 IPv4 prefixes in the Routing Information Base (RIB)

• 16,000 logical interfaces (IFLs)

• 512,000 MAC addresses

MX80 Interface Numbering

The MX80 has two FPCs: FPC0 and FPC1. FPC0 will always be the four fixed 10GE
ports located on the bottom right. The FPC0 ports are numbered from left to right
starting with xe-0/0/0 and ending with xe-0/0/3.

Figure 1-8. Juniper MX80 FPC and PIC locations

The dual power supplies are referred to as a Power Entry Module (PEM):
PEM0 and PEM1.

FPC1 is where the MICs are installed. MIC0 is installed on the left side and MIC1 is
installed on the right side. Each MIC has two Physical Interface Cards (PICs). Depend-
ing on the MIC, such as the 20x1GE or 2x10GE, the total number of ports will vary.
Regardless of the number of ports, the port numbering is left to right and always begins
with 0.

Juniper MX Chassis | 15

www.it-ebooks.info

http://www.it-ebooks.info/

MX80-48T Interface Numbering

The MX80-48T interface numbering is very similar to the MX80. FPC0 remains the
same and refers to the four fixed 10GE ports. The only difference is that FPC1 refers
to the 48x1GE ports. FPC1 contains four PICs; the numbering begins at the bottom
left, works its way up, and then shifts to the right starting at the bottom again. Each
PIC contains 12x1GE ports numbered 0 through 11.

Figure 1-9. Juniper MX80-48T FPC and PIC location

Table 1-3. MX80-48T interface numbering

FPC PIC Interface Names

FPC0 PIC0 xe-0/0/0 through xe-0/0/3

FPC1 PIC0 ge-1/0/0 through ge-1/0/11

FPC1 PIC1 ge-1/1/0 through ge-1/1/11

FPC1 PIC2 ge-1/2/0 through ge-1/2/11

FPC1 PIC3 ge-1/3/0 through ge-1/3/11

With each PIC within FPC1 having 12x1GE ports and a total of four PICs, this brings
the total to 48x1GE ports.

The MX80-48T has a fixed 48x1GE and 4x10GE ports and doesn’t support MICs.
These ports are tied directly to a single Trio chip as there is no switch fabric.

The MX80-48T doesn’t have a Queuing Chip, thus doesn’t support
Hierarchical Class of Service (H-CoS). However, each port does support
eight hardware queues and all other Junos Class of Service (CoS) fea-
tures.

16 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Midrange

Figure 1-10. Juniper MX5.

If the MX80 is still too big of a router, there are a selection of licensing options to restrict
the number of ports on the MX80. The benefit is that you get all of the performance
and scaling of the MX80, but at a fraction of the cost. These licensing options are known
as the MX Midrange: the MX5, MX10, MX40, and MX80.

Table 1-4. Midrange port restrictions

Model MIC Slot 0 MIC Slot 1 Fixed 10GE Ports Services MIC

MX5 Available Restricted Restricted Available

MX10 Available Available Restricted Available

MX40 Available Available Two ports available Available

MX80 Available Available All four ports available Available

Each router is software upgradable via a license. For example, the MX5 can be upgraded
to the MX10 or directly to the MX40 or MX80.

When terminating a small number of circuits or Ethernet handoffs, the MX5 through
the MX40 are the perfect choice. Although you’re limited in the number of ports, all
of the performance and scaling numbers are identical to the MX80. For example, given
the current size of a full Internet routing table is about 420,000 IPv4 prefixes, the MX5
would be able to handle over nine full Internet routing tables.

Keep in mind that the MX5, MX10, and MX40 are really just an MX80. There is no
difference in hardware, scaling, or performance. The only caveat is that the MX5,
MX10, and MX40 use a different facia on the front of the router for branding.

There only restriction on the MX5, MX10, and MX40 are which ports are allowed to
be configured. The software doesn’t place any sort of bandwidth restrictions on the
ports at all. There’s a common misconception that the MX5 is a “5-gig router,” but this
isn’t the case. For example, the MX5 comes with a 20x1GE MIC and is fully capable
of running each port at line rate.

Juniper MX Chassis | 17

www.it-ebooks.info

http://www.it-ebooks.info/

MX240

Figure 1-11. Juniper MX240

The MX240 is the first router in the lineup that has a chassis that supports modular
routing engines, SCBs, and FPCs. The MX240 is 5U tall and supports four horizontal
slots. There’s support for one routing engine, or optional support for two routing en-
gines. Depending on the number of routing engines, the MX240 supports either two
or three FPCs.

The routing engine is installed into a SCB and will be described in more
detail later in the chapter.

To support full redundancy, the MX240 requires two SCBs and routing engines. If a
single SCB fails, there is enough switch fabric capacity on the other SCB to support the
entire router at line rate. This is referred to as 1 + 1 SCB redundancy. In this configu-
ration, only two FPCs are supported.

Alternatively, if redundancy isn’t required, the MX240 can be configured to use a single
SCB and routing engine. This configuration allows for three FPCs instead of two.

Interface Numbering

The MX240 is numbered from the bottom up starting with the SCB. The first SCB must
be installed into the very bottom slot. The next slot up is a special slot that supports
either a SCB or FPC, and thus begins the FPC numbering at 0. From there, you may
install two additional FPCs as FPC1 and FPC2.

18 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The SCBs must be installed into the very bottom slots to support 1 + 1
SCB redundancy. These slots are referred to as SCB0 and SCB1. When two SCBs are
installed, the MX240 supports only two FPCs: FPC1 and FPC2.

Figure 1-12. Juniper MX240 interface numbering with SCB redundancy

When a single SCB is used, it must be installed into the very bottom slot
and obviously doesn’t provide any redundancy; however, three FPCs are supported. In
this configuration, the FPC numbering begins at FPC0 and ends at FPC2.

Figure 1-13. Juniper MX240 interface numbering without SCB redundancy

Full Redundancy.

No Redundancy.

Juniper MX Chassis | 19

www.it-ebooks.info

http://www.it-ebooks.info/

MX480

Figure 1-14. Juniper MX480

The MX480 is the big brother to the MX240. There are eight horizontal slots total. It
supports two SCBs and routing engines as well as six FPCs in only 8U of space. The
MX480 tends to be the most popular in enterprise because six slots is the “sweet spot.”

Like its little brother, the MX480 requires two SCBs and routing engines for full re-
dundancy. If a single SCB were to fail, the other SCB would be able to support all six
FPCs at line rate.

All components between the MX240 and MX480 are interchangeable. This makes the
sparing strategy cost effective and provides FPC investment protection.

There is custom keying on the SCB and FPC slots so that an SCB cannot
be installed into a FPC slot and vice versa. In the case where the chassis
supports either an SCB or FPC in the same slot, such as the MX240 or
MX960, the keying will allow for both.

20 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The MX480 is a bit different from the MX240 and MX960, as it has two dedicated SCB
slots that aren’t able to be shared with FPCs.

Interface Numbering

The MX480 is numbered from the bottom up. The SCBs are installed into the very
bottom of the chassis into SCB0 and SCB1. From there, the FPCs may be installed and
are numbered from the bottom up as well.

Figure 1-15. Juniper MX480 interface numbering with SCB redundancy

The MX480 slots are keyed specifically for two SCB and six FPC cards,
while the MX240 and MX960 offer a single slot that’s able to accept
either SCB or FPC.

MX960
Some types of traffic require a big hammer. Enter the MX960. It’s the sledgehammer
of the MX Series. The MX960 is all about scale and performance. It stands at 16U and
weighs in at 334lbs. The SCBs and FPCs are installed vertically into the chassis so that
it can support 14 slots side to side.

Juniper MX Chassis | 21

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-16. Juniper MX960

22 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Because of the large scale, three SCBs are required for full redundancy. This is referred
to as 2 + 1 SCB redundancy. If any SCB fails, the other two SCB are able to support all
11 FPCs at line rate.

If you like living life on the edge and don’t need redundancy, the MX960 requires at
least two SCBs to switch the available 12 FPCs.

The MX960 requires special power supplies that are not interchangeable
with the MX240 or MX480.

Interface Numbering

The MX960 is numbered from the left to the right. The SCBs are installed in the middle,
whereas the FPCs are installed on either side. Depending on whether or not you require
SCB redundancy, the MX960 is able to support 11 or 12 FPCs.

The first six slots are reserved for FPCs and are numbered from left to
right beginning at 0 and ending with 5. The next two slots are reserved and keyed for
SCBs. The next slot is keyed for either a SCB or FPC. In the case of full redundancy,
SCB2 needs to be installed into this slot. The next five slots are reserved for FPCs and
begin numbering at 7 and end at 11.

Figure 1-17. Juniper MX960 interface numbering with full 2 + 1 SCB redundancy

Full Redundancy.

Juniper MX Chassis | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Running with two SCBs gives you the benefit of being able to switch 12
FPCs at line rate. The only downside is that there’s no SCB redundancy. Just like before,
the first six slots are reserved for FPC0 through FPC5. The difference now is that SCB0
and SCB1 are to be installed into the next two slots. Instead of having SCB2, you install
FPC6 into this slot. The remaining five slots are reserved for FPC7 through FPC11.

Figure 1-18. Juniper MX960 interface numbering without SCB redundancy

Trio
Juniper Networks prides itself on creating custom silicon and making history with
silicon firsts. Trio is the latest milestone:

• 1998: First separation of control and data plane

• 1998: First implementation of IPv4, IPv6, and MPLS in silicon

• 2000: First line-rate 10 Gbps forwarding engine

• 2004: First multi-chassis router

• 2005: First line-rate 40 Gbps forwarding engine

• 2007: First 160 Gbps firewall

• 2009: Next generation silicon: Trio

• 2010: First 130 Gbps PFE; next generation Trio

No Redundancy.

24 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Trio is a fundamental technology asset for Juniper that combines three major compo-
nents: bandwidth scale, services scale, and subscriber scale. Trio was designed from
the ground up to support high-density, line-rate 10G and 100G ports. Inline services
such as IPFLOW, NAT, GRE, and BFD offer a higher level of quality of experience
without requiring an additional services card. Trio offers massive subscriber scale in
terms of logical interfaces, IPv4 and IPv6 routes, and hierarchical queuing.

Figure 1-19. Juniper Trio scale: Services, bandwidth, and subscribers.

Trio is built upon a Network Instruction Set Processor (NISP). The key differentiator
is that Trio has the performance of a traditional ASIC, but the flexibility of a field-
programmable gate array (FPGA) by allowing the installation of new features via soft-
ware. Here is just an example of the inline services available with the Trio chipset:

• Tunnel encapsulation and decapsulation

• IP Flow Information Export

• Network Address Translation

• Bidirectional Forwarding Detection

• Ethernet operations, administration, and management

• Instantaneous Link Aggregation Group convergence

Trio Architecture
The Trio chipset comprises of four major building blocks: Buffering, Lookup, Inter-
faces, and Dense Queuing.

Trio | 25

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-20. Trio functional blocks: Buffering, lookup, interfaces, and dense queuing

Each function is separated into its own block so that each function is highly optimized
and cost efficient. Depending on the size and scale required, Trio is able to take these
building blocks and create line cards that offer specialization such as hierarchical queu-
ing or intelligent oversubscription.

Buffering Block
The Buffering Block ties together all of the other functional Trio blocks. It primarily
manages packet data, fabric queuing, and revenue port queuing. The interesting thing
to note about the Buffering Block is that it’s possible to delegate responsibilities to other
functional Trio blocks. As of the writing of this book, there are two primary use cases
for delegating responsibility: process oversubscription and revenue port queuing.

In the scenario where the number of revenue ports on a single MIC is less than 24x1GE
or 2x10GE, it’s possible to move the handling of oversubscription to the Interfaces
Block. This opens doors to creating oversubscribed line cards at an attractive price point
that are able to handle oversubscription intelligently by allowing control plane and
voice data to be processed during congestion.

The Buffering Block is able to process basic per port queuing. Each port has eight
hardware queues, large delay buffers, and low latency queues (LLQs). If there’s a re-
quirement to have hierarchical class of service (H-QoS) and additional scale, this func-
tionality can be delegated to the Dense Queuing Block.

26 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Lookup Block
The Lookup Block has multi-core processors to support parallel tasks using multiple
threads. This is the bread and butter of Trio. The Lookup Block supports all of the
packet header processing such as:

• Route lookups

• MAC lookups

• Class of Service (QoS) Classification

• Firewall filters

• Policers

• Accounting

• Encapsulation

• Statistics

A key feature in the Lookup Block is that it supports Deep Packet Inspection (DPI) and
is able to look over 256 bytes into the packet. This creates interesting features such as
Distributed Denial of Service (DDoS) protection, which is covered in Chapter 4.

As packets are received by the Buffering Block, the packet headers are sent to the
Lookup Block for additional processing. All processing is completed in one pass
through the Lookup Block regardless of the complexity of the workflow. Once the
Lookup Block has finished processing, it sends the modified packet headers back to
the Buffering Block to send the packet to its final destination.

In order to process data at line rate, the Lookup Block has a large bucket of reduced-
latency dynamic random access memory (RLDRAM) that is essential for packet pro-
cessing.

Let’s take a quick peek at the current memory utilization in the Lookup Block.

{master}
dhanks@R1-RE0> request pfe execute target fpc2 command "show jnh 0 pool usage"
SENT: Ukern command: show jnh 0 pool usage
GOT:
GOT: EDMEM overall usage:
GOT: [NH///|FW///|CNTR//////|HASH//////|ENCAPS////|--------------]
GOT: 0 2.0 4.0 9.0 16.8 20.9 32.0M
GOT:
GOT: Next Hop
GOT: [*************|-------] 2.0M (65% | 35%)
GOT:
GOT: Firewall
GOT: [|--------------------] 2.0M (1% | 99%)
GOT:
GOT: Counters
GOT: [|--] 5.0M (<1% | >99%)
GOT:
GOT: HASH

Trio | 27

www.it-ebooks.info

http://www.it-ebooks.info/

GOT: [***] 7.8M (100% | 0%)
GOT:
GOT: ENCAPS
GOT: [***] 4.1M (100% | 0%)
GOT:
LOCAL: End of file

The external data memory (EDMEM) is responsible for storing all of the firewall filters,
counters, next-hops, encapsulations, and hash data. These values may look small, but
don’t be fooled. In our lab, we have an MPLS topology with over 2,000 L3VPNs in-
cluding BGP route reflection. Within each VRF there is a firewall filter applied with
two terms. As you can see, the firewall memory is barely being used. These memory
allocations aren’t static and are allocated as needed. There is a large pool of memory
and each EDMEM attribute can grow as needed.

Interfaces Block
One of the optional components is the Interfaces Block. Its primary responsibility is to
intelligently handle oversubscription. When using a MIC that supports less than
24x1GE or 2x10GE MACs, the Interfaces Block is used to manage the oversubscription.

As new MICs are released, they may or may not have an Interfaces Block
depending on power requirements and other factors. Remember that
the Trio function blocks are like building blocks and some blocks aren’t
required to operate.

Each packet is inspected at line rate, and attributes such as Ethernet Type Codes, Pro-
tocol, and other Layer 4 information are used to evaluate which buffers to enqueue the
packet towards the Buffering Block. Preclassification allows the ability to drop excess
packets as close to the source as possible, while allowing critical control plane packets
through to the Buffering Block.

There are four queues between the Interfaces and Buffering Block: real-time, control
traffic, best effort, and packet drop. Currently, these queues and preclassifications are
not user configurable; however, it’s possible to take a peek at them.

Let’s take a look at a router with a 20x1GE MIC that has an Interfaces Block.

dhanks@MX960> show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis JN10852F2AFA MX960
Midplane REV 02 710-013698 TR0019 MX960 Backplane
FPM Board REV 02 710-014974 JY4626 Front Panel Display
Routing Engine 0 REV 05 740-031116 9009066101 RE-S-1800x4
Routing Engine 1 REV 05 740-031116 9009066210 RE-S-1800x4
CB 0 REV 10 750-031391 ZB9999 Enhanced MX SCB
CB 1 REV 10 750-031391 ZC0007 Enhanced MX SCB
CB 2 REV 10 750-031391 ZC0001 Enhanced MX SCB

28 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

FPC 1 REV 28 750-031090 YL1836 MPC Type 2 3D EQ
 CPU REV 06 711-030884 YL1418 MPC PMB 2G
 MIC 0 REV 05 750-028392 JG8529 3D 20x 1GE(LAN) SFP
 MIC 1 REV 05 750-028392 JG8524 3D 20x 1GE(LAN) SFP

We can see that FPC1 supports two 20x1GE MICs. Let’s take a peek at the preclassi-
fication on FPC1.

dhanks@MX960> request pfe execute target fpc1 command "show precl-eng summary"
SENT: Ukern command: show precl-eng summary
GOT:
GOT: ID precl_eng name FPC PIC (ptr)
GOT: --- -------------------- ---- --- --------
GOT: 1 IX_engine.1.0.20 1 0 442484d8
GOT: 2 IX_engine.1.1.22 1 1 44248378
LOCAL: End of file

It’s interesting to note that there are two preclassification engines. This makes sense as
there is an Interfaces Block per MIC. Now let’s take a closer look at the preclassification
engine and statistics on the first MIC.

dhanks@MX960> request pfe execute target fpc1 command "show precl-eng 1 statistics"
SENT: Ukern command: show precl-eng 1 statistics
GOT:
GOT: stream Traffic
GOT: port ID Class TX pkts RX pkts Dropped pkts
GOT: ------ ------- ---------- --------- ------------ ------------
GOT: 00 1025 RT 000000000000 000000000000 000000000000
GOT: 00 1026 CTRL 000000000000 000000000000 000000000000
GOT: 00 1027 BE 000000000000 000000000000 000000000000

Each physical port is broken out and grouped by traffic class. The number of packets
dropped is maintained in a counter on the last column. This is always a good place to
look if the router is oversubscribed and dropping packets.

Let’s take a peek at a router with a 4x10GE MIC that doesn’t have an Interfaces Block.

{master}
dhanks@R1-RE0> show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis JN111992BAFC MX240
Midplane REV 07 760-021404 TR5026 MX240 Backplane
FPM Board REV 03 760-021392 KE2411 Front Panel Display
Routing Engine 0 REV 07 740-013063 1000745244 RE-S-2000
Routing Engine 1 REV 06 740-013063 1000687971 RE-S-2000
CB 0 REV 03 710-021523 KH6172 MX SCB
CB 1 REV 10 710-021523 ABBM2781 MX SCB
FPC 2 REV 25 750-031090 YC5524 MPC Type 2 3D EQ
 CPU REV 06 711-030884 YC5325 MPC PMB 2G
 MIC 0 REV 24 750-028387 YH1230 3D 4x 10GE XFP
 MIC 1 REV 24 750-028387 YG3527 3D 4x 10GE XFP

Here we can see that FPC2 has two 4x10GE MICs. Let’s take a closer look and the
preclassification engines.

Trio | 29

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@R1-RE0> request pfe execute target fpc2 command "show precl-eng summary"
SENT: Ukern command: show precl-eng summary
GOT:
GOT: ID precl_eng name FPC PIC (ptr)
GOT: --- -------------------- ---- --- --------
GOT: 1 MQ_engine.2.0.16 2 0 435e2318
GOT: 2 MQ_engine.2.1.17 2 1 435e21b8
LOCAL: End of file

The big difference here is the preclassification engine name. Previously, it was listed as
“IX_engine” with MICs that support an Interfaces Block. MICs such as the 4x10GE do
not have an Interfaces Block, so the preclassification is performed on the Buffering
Block, or, as listed here, the “MQ_engine.”

The author has used hidden commands to illustrate the roles and re-
sponsibilities of the Interfaces Block. Caution should be used when us-
ing these commands as they aren’t supported by Juniper.

The Buffering Block’s WAN interface can operate either in MAC mode or in the Uni-
versal Packet over HSL2 (UPOH) mode. This creates a difference in operation between
the MPC1 and MPC2 line cards. The MPC1 only has a single Trio chipset, thus only
MICs that can operate in MAC mode are compatible with this line card. On the other
hand, the MPC2 has two Trio chipsets. Each MIC on the MPC2 is able to operate in
either mode, thus compatible with more MICs. This will be explained in more detail
later in the chapter.

Dense Queuing Block
Depending on the line card, Trio offers an optional Dense Queuing Block that offers
rich Hierarchical QoS that supports up to 512,000 queues with the current generation
of hardware. This allows for the creation of schedulers that define drop characteristics,
transmission rate, and buffering that can be controlled separately and applied at mul-
tiple levels of hierarchy.

The Dense Queuing Block is an optional functional Trio block. The Buffering Block
already supports basic per port queuing. The Dense Queuing Block is only used in line
cards that require H-QoS or additional scale beyond the Buffering Block.

Line Cards and Modules
To provide the high-density and high-speed Ethernet services, a new type of Flexible
Port Concentrator (FPC) had to be created called the Dense Port Concentrator (DPC).
This first-generation line card allowed up to 80 Gbps ports per slot.

30 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The DPC line cards utilize a previous ASIC from the M series called the I-CHIP. This
allowed Juniper to rapidly build the first MX line cards and software.

The Modular Port Concentrator (MPC) is the second-generation line card created to
further increase the density to 160 Gbps ports per slot. This generation of hardware is
created using the Trio chipset. The MPC supports MICs that allow you to mix and
match different modules on the same MPC.

Table 1-5. Juniper MX line card and module types

FPC Type/Module Type Description

Dense Port Concentrator (DPC) First-generation high-density and high-speed Ethernet line cards

Modular Port Concentrator (MPC) Second-generation high-density and high-speed Ethernet line cards supporting modules

Module Interface Card (MIC) Second-generation Ethernet and optical modules that are inserted into MPCs

It’s a common misconception that the “modular” part of MPC derives its name only
from its ability to accept different kinds of MICs. This is only half of the story. The
MPC also derives its name from being able to be flexible when it comes to the Trio
chipset. For example, the MPC-3D-16x10GE-SFPP line card is a fixed port configura-
tion, but only uses the Buffering Block and Lookup Block in the PFE complex. As new
line cards are introduced in the future, the number of fundamental Trio building blocks
will vary per card as well, thus living up to the “modular” name.

Dense Port Concentrator
The DPC line cards come in six different models to support varying different port con-
figurations. There’s a mixture of 1G, 10G, copper, and optical. There are three DPC
types: routing and switching (DPCE-R), switching (DPCE-X), and enhanced queuing
(DPCE-Q).

The DPCE-R can operate at either Layer 3 or as a pure Layer 2 switch. It’s generally the
most cost-effective when using a sparing strategy for support. The DPCE-R is the most
popular choice as it supports very large route tables and can be used in a pure switching
configuration as well.

The DPCE-X has the same features and services as the DPCE-R; the main difference is
that the route table is limited to 32,000 prefixes and cannot use L3VPNs on this DPC.
These line cards make sense when being used in a very small environment or in a pure
Layer 2 switching scenario.

The DPCE-Q supports all of the same features and services as the DPCE-R and adds
additional scaling around H-QoS and number of queues.

Table 1-6. DPC line card types

Model DPCE-R DPCE-X DPCE-Q

40x1GE SFP Yes Yes Yes

Line Cards and Modules | 31

www.it-ebooks.info

http://www.it-ebooks.info/

Model DPCE-R DPCE-X DPCE-Q

40x1GE TX Yes Yes No

20x1GE SFP No No Yes

4x10GE XFP Yes Yes Yes

2x10GE XFP Yes No No

20x1GE and 2x10GE Yes Yes Yes

The DPC line cards are still supported, but there is no active develop-
ment of new features being brought to these line cards. For new de-
ployments, it’s recommended to use the newer, second-generation MPC
line cards. The MPC line cards use the Trio chipset and are where Ju-
niper is focusing all new features and services.

Modular Port Concentrator
The MPC line cards are the second generation of line cards for the MX. There are two
significant changes when moving from the DPC to MPC: chipset and modularity. All
MPCs are now using the Trio chipset to support more scale, bandwidth, and services.
The other big change is that now the line cards are modular using MICs.

Figure 1-21. High-level architecture of MPCs and MICs

The MPC can be thought of as a type of intelligent shell or carrier for MICs. This change
in architecture allows the separation of physical ports, oversubscription, features, and
services. All of the oversubscription, features, and services are managed within the
MPC. Physical port configurations are isolated to the MIC. This allows the same MIC

32 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

to be used in many different types of MPCs depending on the number of features and
scale required.

As of Junos 11.4, there are three different categories of MPCs. Each model has a dif-
ferent number of Trio chipsets providing different options of scaling and bandwidth.

Table 1-7. Modular port concentrator models

Model # of Trio chipsets Trio Bandwidth Interface Support

MPC1 1 40 Gbps 1GE and 10GE

MPC2 2 80 Gbps 1GE and 10GE

MPC3E 1 130 Gbps 1GE, 10GE, 40GE, and 100GE

The MPC3 is the first of many more MPCs that will use an enhanced Trio chipset that
is designed to support 40G and 100G interfaces. The MPC3 was designed to be similar
to the MPC1 architecture whereby a single Trio chipset handles both MICs and is
intentionally oversubscribed to offer an attractive price point.

It’s important to note that the MPC bandwidth listed previously repre-
sents current-generation hardware that’s available as of the writing of
this book and is subject to change with new software and hardware
releases.

Similar to the first-generation DPC line cards, the MPC line cards also support the
ability to operate in Layer 2, Layer 3, or enhanced queuing modes. This allows you
choose only the features and services required.

Table 1-8. MPC feature matrix

Model Full Layer 2 Full Layer 3 Enhanced Queuing

MX-3D Yes No No

MX-3D-Q Yes No Yes

MX-3D-R-B Yes Yes No

MX-3D-Q-R-B Yes Yes Yes

Most Enterprise customers tend to choose the MX-3D-R-B model as it supports both
Layer 2 and Layer 3. Typically, there’s no need for enhanced queuing or scale when
building a data center. Most Service Providers prefer to use the MX-3D-Q-R-B as it
provides both Layer 2 and Layer 3 services in addition to enhanced queuing. A typical
use case for a Service Provider is having to manage large routing tables, many customers,
and provide H-QoS to enforce customer service level agreements (SLAs).

• The MX-3D-R-B is the most popular choice, as it offers full Layer 3 and Layer 2
switching support.

Line Cards and Modules | 33

www.it-ebooks.info

http://www.it-ebooks.info/

• The MX-3D has all of the same features and services as the MX-3D-R-B but has
limited Layer 3 scaling. When using BGP or an IGP, the routing table is limited to
32,000 routes. The other restriction is that MPLS L3VPNs cannot be used on these
line cards.

• The MX-3D-Q has all of the same features, services, and reduced Layer 3 capacity
as the MX-3D, but offers enhanced queuing. This adds the ability to configure H-
QoS and increase the scale of queues.

• The MX-3D-Q-R-B combines all of these features together to offer full Layer 2,
Layer 3, and enhanced queuing together in one line card.

MPC1

Let’s revisit the MPC models in more detail. The MPC starts off with the MPC1, which
has a single Trio chipset. The use case for this MPC is to offer an intelligently oversub-
scribed line card for an attractive price. All of the MICs that are compatible with the
MPC1 have the Interfaces Block built into the MIC to handle oversubscription.

Figure 1-22. MPC1 architecture

With the MPC1, the single Trio chipset handles both MICs. Each MIC is required to
share the bandwidth that’s provided by the single Trio chipset, thus the Interfaces Block
is delegated to each MIC to intelligently handle oversubscription. Because each Trio
chipset can only operate in MAC mode or UPOH mode, the MPC1 must operate in

34 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

MAC mode to be able to support the 20x1GE and 2x10GE MICs. Unfortunately, the
4x10GE MIC only operates in UPOH mode and isn’t compatible with the MPC1.

MPC2

The MPC2 is very similar in architecture to the MPC1, but adds an additional Trio
chipset for a total count of two.

Figure 1-23. MPC2 architecture. B = Buffering Block, LU = LookUp Block, and DQ = Dense Queuing
Block

The MPC2 offers a dedicated Trio chipset per MIC, effectively doubling the bandwidth
and scaling from the previous MPC1. In the MPC2 architecture example, it’s possible
to combine MICs such as the 2x10GE and 4x10GE. Figure 1-23 illustrates the MPC2
being able to operate in both MAC mode and UPOH mode. Please note that Fig-
ure 1-23 uses several abbreviations:

• B = Buffering Block

• LU = Lookup Block

• DQ = Dense Queuing Block

The 2x10GE MIC is designed to operate in both the MPC1 and MPC2 and thus has an
Interfaces Block to handle oversubscription. In the case of the 4x10GE MIC, it’s de-
signed to only operate in the MPC2 and thus doesn’t require an Interfaces Block as it
ties directly into a dedicated Buffering Block.

Line Cards and Modules | 35

www.it-ebooks.info

http://www.it-ebooks.info/

MPC-3D-16X10GE-SFPP

The MPC-3D-16X10GE-SFPP is a full-width line card that doesn’t support any MICs.
However, it does support 16 fixed 10G ports. This MPC is actually one of the most
popular MPCs because of the high 10G port density and offers the lowest price per 10G
port.

Figure 1-24. High-level architecture of MPC-3D-16x10GE-SFPP

The MPC-3D-16X10GE-SFPP has four Trio chipsets equally divided between the 16
ports. This allows each group of 4x10G interfaces to have a dedicated Trio chipset.
This enables the MPC-3D-16X10GE-SFPP to operate at line rate for all ports.

If you’re ever curious how many PFEs are on a FPC, you can use the show chassis
fabric map command.

First, let’s find out which FPC the MPC-3D-16X10GE-SFPP is installed into.

dhanks@MX960> show chassis hardware | match 16x
FPC 3 REV 23 750-028467 YJ2172 MPC 3D 16x 10GE

We found what we were looking for. The MPC-3D-16X10GE-SFPP is installed into
FPC3. Now let’s take a peek at the fabric map and see which links are Up, thus detecting
the presence of PFEs within FPC3.

dhanks@MX960> show chassis fabric map | match DPC3
DPC3PFE0->CB0F0_04_0 Up CB0F0_04_0->DPC3PFE0 Up
DPC3PFE1->CB0F0_04_1 Up CB0F0_04_1->DPC3PFE1 Up
DPC3PFE2->CB0F0_04_2 Up CB0F0_04_2->DPC3PFE2 Up
DPC3PFE3->CB0F0_04_3 Up CB0F0_04_3->DPC3PFE3 Up
DPC3PFE0->CB0F1_04_0 Up CB0F1_04_0->DPC3PFE0 Up
DPC3PFE1->CB0F1_04_1 Up CB0F1_04_1->DPC3PFE1 Up
DPC3PFE2->CB0F1_04_2 Up CB0F1_04_2->DPC3PFE2 Up

36 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

DPC3PFE3->CB0F1_04_3 Up CB0F1_04_3->DPC3PFE3 Up
DPC3PFE0->CB1F0_04_0 Up CB1F0_04_0->DPC3PFE0 Up
DPC3PFE1->CB1F0_04_1 Up CB1F0_04_1->DPC3PFE1 Up
DPC3PFE2->CB1F0_04_2 Up CB1F0_04_2->DPC3PFE2 Up
DPC3PFE3->CB1F0_04_3 Up CB1F0_04_3->DPC3PFE3 Up
DPC3PFE0->CB1F1_04_0 Up CB1F1_04_0->DPC3PFE0 Up
DPC3PFE1->CB1F1_04_1 Up CB1F1_04_1->DPC3PFE1 Up
DPC3PFE2->CB1F1_04_2 Up CB1F1_04_2->DPC3PFE2 Up
DPC3PFE3->CB1F1_04_3 Up CB1F1_04_3->DPC3PFE3 Up

That wasn’t too hard. The only tricky part is that the output of the show chassis fabric
command still lists the MPC as DPC in the output. No worries, we can perform a match
for DPC3. As we can see, the MPC-3D-16X10GE-SFPP has a total of four PFEs, thus
four Trio chipsets. Note that DPC3PFE0 through DPC3PFE3 are present and listed as Up.
This indicates that the line card in FPC3 has four PFEs.

The MPC-3D-16X10GE-SFPP doesn’t support H-QoS because there’s no Dense Queu-
ing Block. This leaves only two functional Trio blocks per PFE on the
MPC-3D-16X10GE-SFPP: the Buffering Block and Lookup Block.

Let’s verify this by taking a peek at the preclassification engine:

dhanks@MX960> request pfe execute target fpc3 command "show precl-eng summary"
SENT: Ukern command: show prec sum
GOT:
GOT: ID precl_eng name FPC PIC (ptr)
GOT: --- -------------------- ---- --- --------
GOT: 1 MQ_engine.3.0.16 3 0 4837d5b8
GOT: 2 MQ_engine.3.1.17 3 1 4837d458
GOT: 3 MQ_engine.3.2.18 3 2 4837d2f8
GOT: 4 MQ_engine.3.3.19 3 3 4837d198
LOCAL: End of file

As expected, the Buffering Block is handling the preclassification. It’s interesting to
note that this is another good way to see how many Trio chipsets are inside of a FPC.
The preclassifications engines are listed ID 1 through 4 and match our previous calcu-
lation using the show chassis fabric map command.

MPC3E

The MPC3E is the first modular line card for the MX Series to accept 100G and 40G
MICs. It’s been designed from the ground up to support interfaces beyond 10GE, but
also remains compatible with some legacy MICs.

Line Cards and Modules | 37

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-25. MPC3E architecture

There are several new and improved features on the MPC3E. The most notable is that
the Buffering Block has been increased to support 130 Gbps and number of Lookup
Blocks has increased to four in order to support 100GE interfaces. The other major
change is that the fabric switching functionality has been moved out of the Buffering
Block and into a new Fabric Functional Block.

The MPC3E can provide line-rate performance for a single 100GE interface; otherwise
it’s known that this line card is oversubscribed 1.5:1. For example, the MPC3E can
support 2x100GE interfaces, but the Buffering Block can only handle 130Gbps. This
can be written as 200:130, or roughly 1.5:1 oversubscription.

Enhanced Queuing isn’t supported on the MPC3E due to the lack of a Dense Queuing
Block. However, this doesn’t mean that the MPC3E isn’t capable of class of service.
The Buffering Block, just like the MPC-3D-16x10GE-SFPP, is capable of basic port-
level class of service.

All MPC line cards previous to the MPC3E had a single
Lookup Block per Trio chipset; thus, no Lookup Block synchronization was required.
The MPC3E is the first MPC to introduce multiple Lookup Blocks. This creates an
interesting challenge in synchronizing the Lookup Block operations.

In general, the Buffering Block will spray packets across all Lookup Blocks in a round-
robin fashion. This means that a particular traffic flow will be processed by multiple
Lookup Blocks.

Multiple Lookup Block Architecture.

38 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

At a high level, the MPC3E learns the source MAC address from the
WAN ports. One of the four Lookup Blocks is designated as the master and the three
remaining Lookup blocks are designated as the slaves.

Figure 1-26. MPC3E source MAC learning

The Master Lookup Block is responsible for updating the other Slave Lookup Blocks.
Figure 1-26 illustrates the steps taken to synchronize all of the Lookup Blocks.

1. The packet enters the Buffering Block and happens to be sprayed to LU1, which
is designated as a Slave Lookup Block.

2. LU1 updates its own table with the source MAC address. It then notifies the Master
Lookup Block LU0. The update happens via the Buffering Block to reach LU0.

3. The Master Lookup Block LU0 receives the source MAC address update and up-
dates its local table accordingly. LU0 sends the source MAC address update to the
MPC CPU.

4. The MPC CPU receives the source MAC address update and in turn updates all
Lookup Blocks in parallel.

The MPC3E learns destination MAC addresses based off the
packet received from other PFEs over the switch fabric. Unlike the source MAC learn-
ing, there’s no concept of a master or slave Lookup Block.

Source MAC Learning.

Destination MAC Learning.

Line Cards and Modules | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-27. MPC3E destination MAC learning

The Lookup Block that receives the packet from the switch fabric is responsible for
updating the other Lookup Blocks. Figure 1-27 illustrates how destination MAC ad-
dresses are synchronized:

1. The packet enters the Fabric Block and Buffering Block. The packet happens to be
sprayed to LU1. LU1 updates its local table.

2. LU1 then sends updates to all other Lookup Blocks via the Buffering Block.

3. The Buffering Block takes the update from LU1 and then updates the other Lookup
Blocks in parallel. As each Lookup Block receives the update, the local table is
updated accordingly.

Recall that the Buffering Block on the MPC3E sprays packets across Lookup
Blocks evenly, even for the same traffic flow. Statistically, each Lookup Block receives
about 25% of all traffic. When defining and configuring a policer, the MPC3E must
take the bandwidth and evenly distribute it among the Lookup Blocks. Thus each
Lookup Block is programmed to police 25% of the configured policer rate. Let’s take
a closer look:

firewall {
 policer 100M {
 if-exceeding {
 bandwidth-limit 100m;
 burst-size-limit 6250000;
 }
 then discard;
 }
}

The example policer 100M is configured to enforce a bandwidth-limit of 100m. In the case
of the MPC3E, each Lookup Block will be configured to police 25m. Because packets
are statistically distributed round-robin to all four Lookup blocks evenly, the aggregate
will equal the original policer bandwidth-limit of 100m. 25m * 4 (Lookup Blocks) = 100m.

Policing.

40 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Packet Walkthrough
Now that you have an understanding of the different Trio functional blocks and the
layout of each line card, let’s take a look at how a packet is processed through each of
the major line cards. Because there are so many different variations of functional blocks
and line cards, let’s take a look at the most sophisticated configurations that use all
available features.

MPC1 and MPC2 with Enhanced Queuing

The only difference between the MPC1 and MPC2 at a high level is the number of Trio
chipsets. Otherwise, they are operationally equivalent. Let’s take a look at how a packet
moves through the Trio chipset. There are couple of scenarios: ingress and egress.

Figure 1-28. MPC1/MPC2 packet walk through: Ingress

Ingress packets are received from the WAN ports on the MIC and are destined to
another PFE.

1. The packet enters the Interfaces Block from the WAN ports. The Interfaces Block
will inspect each packet and perform preclassification. Depending on the type of
packet, it will be marked as high or low priority.

2. The packet enters the Buffering Block. The Buffering Block will enqueue the packet
as determined by the preclassification and service the high priority queue first.

Line Cards and Modules | 41

www.it-ebooks.info

http://www.it-ebooks.info/

3. The packet enters the Lookup Block. A route lookup is performed and any services
such as firewall filters, policing, statistics, and QoS classification are performed.

4. The packet is sent back to the Buffering Block and is enqueued into the switch
fabric where it will be destined to another PFE. If the packet is destined to a WAN
port within itself, it will simply be enqueued back to the Interfaces Block.

Figure 1-29. MPC1/MPC2 packet walk through: Egress

Egress packets are handled a bit differently. The major difference is that the Dense
Queuing Block will perform class of service, if configured, on egress packets.

1. The packet enters the Buffering Block. If class of service is configured, the Buffering
Block will send the packet to the Dense Queuing Block.

2. The packet enters the Dense Queuing Block. The packet will then be subject to
scheduling, shaping, and any other hierarchical class of service as required. Packets
will be enqueued as determined by the class of service configuration. The Dense
Queuing Block will then dequeue packets that are ready for transmission and send
them to the Buffering Block.

3. The Buffering Block receives the packet and sends it to the Lookup Block. A route
lookup is performed as well as any services such as firewall filters, policing, statis-
tics, and accounting.

4. The packet is then sent out to the WAN interfaces for transmission.

42 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

MPC3E

The packet flow of the MPC3E is similar to the MPC1 and MPC2, with a couple of
notable differences: introduction of the Fabric Block and multiple Lookup Blocks. Let’s
review the ingress packet first:

1. The packet enters the Buffering Block from the WAN ports and is subject to pre-
classification. Depending on the type of packet, it will be marked as high or low
priority. The Buffering Block will enqueue the packet as determined by the pre-
classification at service the high-priority queue first. A Lookup Block is selected
via round-robin and the packet is sent to that particular Lookup Block.

2. The packet enters the Lookup Block. A route lookup is performed and any services
such as firewall filters, policing, statistics, and QoS classification are performed.
The Lookup Block sends the packet back to the Buffering Block.

3. The packet is sent back to the Fabric Block and is enqueued into the switch fabric
where it will be destined to another PFE. If the packet is destined to a WAN port
within itself, it will simply be enqueued back to the Interfaces Block.

4. The packet is sent to the switch fabric.

Figure 1-30. MPC3E packet walk through: Ingress.

Egress packets are very similar to ingress, but the direction is simply reversed. The only
major difference is that the Buffering Block will perform basic class of service, as it
doesn’t support enhanced queuing due to the lack of a Dense Queuing Block.

Line Cards and Modules | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-31. MPC3E packet Walkthrough: Egress.

1. The packet is received from the switch fabric and sent to the Fabric Block. The
Fabric Block sends the packet to the Buffering Block.

2. The packet enters the Buffering Block. The packet will then be subject to sched-
uling, shaping, and any other class os service as required. Packets will be enqueued
as determined by the class of service configuration. The Buffering Block will then
dequeue packets that are ready for transmission and send them to a Lookup Block
selected via round-robin.

3. The packet enters the Lookup Block. A route lookup is performed as well as any
services such as firewall filters, policing, statistics, and QoS classification. The
Lookup Block sends the packet back to the Buffering Block.

4. The Buffering Block receives the packet and sends it to the WAN ports for trans-
mission.

Modular Interface Card
As described previously, the MICs provide the physical ports and are modules that are
to be installed into various MPCs. Two MICs can be installed into any of the MPCs.
There is a wide variety of physical port configurations available. The speeds range from
1G to 100G and support different media such as copper or optical.

MIC-3D-20GE-SFP
Supports 20x1G SFP ports

MIC-3D-40GE-TX
Double-wide MIC that supports 40x1G RJ-45

MIC-3D-2XGE-XFP
Supports 2x10G XFP ports

MIC-3D-4XGE-XFP
Supports 4x10G XFP ports; only operates in UPOH mode

44 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

MIC-3D-1X100G-CFP
Supports 1x100G CFP port

MIC-3D-4CHOC3-2CHOC12
Supports four ports of channelized OC-3 or two ports of channelized OC-12

MIC-3D-4OC4OC12-1OC48
Supports four ports of nonchannelized OC-3 or OC-12 or one port of nonchan-
nelized OC-48

MIC-3D-8CHOC3-4CHOC12
Supports eight ports of channelized OC-3 or four ports of channelized OC-12

MIC-3D-8OC3OC12-4OC48
Supports eight ports of nonchannelized OC-3 through OC-12 or four ports of
nonchannelized OC-48

MIC-3D-8CHDS3-E3-B
Supports eight ports of channelized DS3 or non-channelized E3

MIC-3D-8DS3-E3
Supports eight ports of nonchannelized DS3 or nonchannelized E3

The MIC-3D-40GE-TX is a bit of an odd man out as it’s a double-wide
MIC that consumes both MIC slots on the MPC.

Being modular in nature, the MICs are able to be moved from one MPC to another.
They are hot-swappable and do not require a reboot to take effect. MICs offer the
greatest investment protection as they’re able to be used across all of the MX platforms
and various MPCs. However, there are a few caveats specific to the 4x10GE and
1x100GE MICs. Please see the following compatibility table to determine what MIC
can be used where.

Table 1-9. MIC compatibility chart

MIC MPC1 MPC2 MPC3 MX80 MX240 MX480 MX960

MIC-3D-20GE-SFP Yes Yes Yes Yes Yes Yes Yes

MIC-3D-40GE-TX Yes Yes No Yes Yes Yes Yes

MIC-3D-2XGE-XFP Yes Yes Yes Yes Yes Yes Yes

MIC-3D-4XGE-XFP No Yes No No Yes Yes Yes

MIC-3D-1X100G-CFP No No Yes No Yes Yes Yes

MIC-3D-4CHOC3-2CHOC12 Yes Yes No Yes Yes Yes Yes

MIC-3D-4OC3OC12-1OC48 Yes Yes No Yes Yes Yes Yes

MIC-3D-8CHOC3-4CHOC12 Yes Yes No Yes Yes Yes Yes

MIC-3D-8OC3OC12-4OC48 Yes Yes No Yes Yes Yes Yes

Line Cards and Modules | 45

www.it-ebooks.info

http://www.it-ebooks.info/

MIC MPC1 MPC2 MPC3 MX80 MX240 MX480 MX960

MIC-3D-8CHDS3-E3-B Yes Yes No Yes Yes Yes Yes

MIC-3D-8DS3-E3 Yes Yes No Yes Yes Yes Yes

Network Services
The MX240, MX480, and MX960 are able to operate with different types of line cards
at the same time. For example, it’s possible to have a MX240 operate with FPC1 using
a DPCE-R line card while FPC2 using a MX-MPC-R-B line card. Because there are many
different variations of DPC, MPC, Ethernet, and routing options, a chassis control
feature called network services can be used force the chassis into a particular compat-
ibility mode.

If the network services aren’t configured, then by default when a MX chassis boots up,
the FPC that is powered up first will determine the mode of the chassis. If the first FPC
to be powered up is DPC, then only DPCs within the chassis will be allowed to power
up. Alternatively, if the first powered up FPC is MPC, then only MPCs within the chassis
will be allowed to power up.

The chassis network services can be configured with set chassis network-services
knob. There are five different options the network services can be set to:

ip
Allow all line cards to power up, except for DPCE-X. The ip hints toward being
able to route, thus line cards such as the DPCE-X will not be allowed to power up
as they only support bridging.

ethernet
Allow all line cards to power up. This includes the DPCE-X, DPCE-R, and
DPCE-Q.

enhanced-ip
Allow all Trio-based MPCs to be powered up.

enhanced-ethernet
Allow only Trio-based MPC-3D, MPC-3D-Q, and MPC-3D-EQ line cards to be
powered up.

all-ip
Allow both DPC and MPC line cards to be powered up, except for DPCE-X line
cards. This option was hidden in Junos 10.0 and was used for manufacturing test-
ing.

all-ethernet
Allow both DPC and MPC line cards to be powered up. This includes the DPCE-
X and other line cards that are Layer 2 only. This option was hidden in Junos 10.0
and was used for manufacturing testing.

46 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

The all-ip and all-ethernet modes are deprecated and shouldn’t be
used. These options were used exclusively for developer and manufac-
turing testing.

It’s possible to change the value of network services while the chassis is running. There
are many different combinations; some require a reboot, while others do not:

Change from ip to ethernet
Any DPCE-X will boot up. No reboot required.

Change from ethernet to ip
This change will generate a commit error. It’s required that any DPCE-X line cards
be powered off before the change can take effect.

Change enhanced-ip to enhanced-ethernet
Any MPC-3D, MPC-3D-Q, and MPC-3D-EQ line cards will boot up. No reboot
required.

Change enhanced-ethernet to enhanced-ip
No change.

Change between ip or ethernet to enhanced-ip or enhanced-ethernet
The commit will complete but will require a reboot of the chassis.

To view which mode the network services is currently set to, use the show chassis
network-services command:

dhanks@R1> show chassis network-services
Network Services Mode: IP

dhanks@R1>

Switch and Control Board
At the heart of the MX Series is the Switch and Control Board (SCB). It’s the glue that
brings everything together. The SCB has three primary functions: switch data between
the line cards, control the chassis, and house the routing engine. The SCB is a single-
slot card and has a carrier for the routing engine on the front. A SCB contains the
following components:

• An Ethernet switch for chassis management

• Two switch fabrics

• Control board (CB) and routing engine state machine for mastership arbitration

• Routing engine carrier

Switch and Control Board | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-32. Switch and control board components

Depending on the chassis and level of redundancy, the number of SCBs vary. The
MX240 and MX480 require two SCBs for 1 + 1 redundancy, whereas the MX960 re-
quires three SCBs for 2 + 1 redundancy.

Ethernet Switch
Each SCB contains a 24-port Gigabit Ethernet switch. This internal switch connects
the two routing engines and all of the FPCs together. Each routing engine has two
networking cards. The first NIC is connected to the local onboard Ethernet switch,
whereas the second NIC is connected to the onboard Ethernet switch on the other SCB.
This allows the two routing engines to have internal communication for features such
as NSR, NSB, ISSU, and administrative functions such as copying files between the
routing engines.

Each Ethernet switch has connectivity to each of the FPCs. This allows for the routing
engines to communicate to the Junos microkernel onboard each of the FPCs. A good
example would be when a packet needs to be processed by the routing engine. The FPC
would need to send the packet across the SCB Ethernet switch and up to the master
routing engine. Another good example is when the routing engine modifies the for-
warding information base (FIB) and updates all of the PFEs with the new information.

48 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-33. MX-SCB Ethernet switch connectivity

It’s possible to view information about the Ethernet switch inside of the SCB. The
command show chassis ethernet-switch will show which ports on the Ethernet switch
are connected to which devices at a high level.

{master}
dhanks@R1-RE0> show chassis ethernet-switch

Displaying summary for switch 0
Link is good on GE port 1 connected to device: FPC1
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 2 connected to device: FPC2
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 12 connected to device: Other RE
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled

Link is good on GE port 13 connected to device: RE-GigE
 Speed is 1000Mb
 Duplex is full
 Autonegotiate is Enabled
 Flow Control TX is Disabled
 Flow Control RX is Disabled
 Receive error count = 012032

Switch and Control Board | 49

www.it-ebooks.info

http://www.it-ebooks.info/

The Ethernet switch will only be connected to FPCs that are online and routing engines.
As you can see, R1-RE0 is showing that its Ethernet switch is connected to both FPC1
and FPC2. Let’s check the hardware inventory to make sure that this information is
correct.

{master}
dhanks@R1-RE0> show chassis fpc
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Empty
 1 Online 35 21 0 2048 12 13
 2 Online 34 22 0 2048 11 16

{master}
dhanks@R1-RE0>

As you can see, FPC1 and FPC2 are both online. This matches the previous output
from the show chassis ethernet-switch. Perhaps the astute reader noticed that the
Ethernet switch port number is paired with the FPC location. For example, GE port 1
is connected to FPC1 and GE port 2 is connected to FPC2, so on and so forth all the
way up to FPC11.

Although each Ethernet switch has 24 ports, only 14 are being used. GE ports 0 through
11 are reserved for FPCs, while GE ports 12 and 13 are reserved for connections to the
routing engines.

Table 1-10. MX-SCB Ethernet switch port assignments

GE Port Description

0 FPC0

1 FPC1

2 FPC2

3 FPC3

4 FPC4

5 FPC5

6 FPC6

7 FPC7

8 FPC8

9 FPC9

10 FPC10

11 FPC11

12 Other Routing Engine

13 Routing Engine GE

50 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

One interesting note is that the show chassis ethernet-switch com-
mand is relative to where it’s executed. GE port 12 will always be the
other routing engine. For example, when the command is executed from
re0, the GE port 12 would be connected to re1 and GE port 13 would
be connected to re0.

To view more detailed information about a particular GE port on the SCB Ethernet
switch, you can use the command show chassis ethernet-switch statistics command.
Let’s take a closer look at GE port 13, which is connected to the local routing engine.

{master}
dhanks@R1-RE0> show chassis ethernet-switch statistics 13

Displaying port statistics for switch 0
Statistics for port 13 connected to device RE-GigE:
 TX Packets 64 Octets 29023890
 TX Packets 65-127 Octets 101202929
 TX Packets 128-255 Octets 14534399
 TX Packets 256-511 Octets 239283
 TX Packets 512-1023 Octets 610582
 TX Packets 1024-1518 Octets 1191196
 TX Packets 1519-2047 Octets 0
 TX Packets 2048-4095 Octets 0
 TX Packets 4096-9216 Octets 0
 TX 1519-1522 Good Vlan frms 0
 TX Octets 146802279
 TX Multicast Packets 4
 TX Broadcast Packets 7676958
 TX Single Collision frames 0
 TX Mult. Collision frames 0
 TX Late Collisions 0
 TX Excessive Collisions 0
 TX Collision frames 0
 TX PAUSEMAC Ctrl Frames 0
 TX MAC ctrl frames 0
 TX Frame deferred Xmns 0
 TX Frame excessive deferl 0
 TX Oversize Packets 0
 TX Jabbers 0
 TX FCS Error Counter 0
 TX Fragment Counter 0
 TX Byte Counter 2858539809

<output truncated for brevity>

Although the majority of the traffic is communication between the two routing engines,
exception traffic is also passed through the Ethernet switch. When an ingress PFE re-
ceives a packet that needs additional processing—such as a BGP update or SSH traffic
destined to the router—the packet needs to be encapsulated and sent to the routing
engine. The same is true if the routing engine is sourcing traffic that needs to be sent
out an egress PFE.

Switch and Control Board | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Switch Fabric
The switch fabric connects all of the ingress and egress PFEs within the chassis to create
a full mesh. Each SCB has two switch fabrics. Depending on the MX chassis, each switch
fabric can have either one or two fabric planes.

The MX240 and MX480 support two SCBs for a total of four switch fabrics and eight
fabric planes. The MX960 supports three SCBs for a total of six switch fabrics and six
fabric planes.

This begs the question, what is a fabric plane? Think of the switch fabric as a fixed unit
that can support N connections. When supporting 48 PFEs on the MX960, all of these
connections on the switch fabric are completely consumed. Now think about what
happens when you apply the same logic to the MX480. Each switch fabric now only
has to support 24 PFEs, thus half of the connections aren’t being used. What happens
on the MX240 and MX480 is that these unused connections are grouped together and
another plane is created so that the unused connections can now be used. The benefit
is that the MX240 and MX480 only require a single SCB to provide line rate throughput,
thus only require an additional SCB for 1 + 1 SCB redundancy.

Table 1-11. MX-SCB fabric plane scale and redundancy assuming four PFEs per FPC

MX-SCB MX240 MX480 MX960

PFEs 12 24 48

SCBs 2 2 3

Switch Fabrics 4 4 6

Fabric Planes 8 8 6

Spare Planes 4 (1 + 1 SCB redundancy) 4 (1 + 1 SCB redundancy) 2 (2 + 1 SCB redundancy)

MX240 and MX480 Fabric Planes

Given that the MX240 and MX480 only have to support a fraction of the number of
PFEs as the MX960, we’re able to group together the unused connections on the switch
fabric and create a second fabric plane per switch fabric. Thus we’re able to have two
fabric planes per switch fabric, as shown in Figure 1-34.

Figure 1-34. Juniper MX240 and MX480 switch fabric planes

52 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, each control board has two switch fabrics: SF0 and SF1. Each switch
fabric has two fabric planes. Thus the MX240 and MX480 have eight available fabric
planes. This can be verified with the command show chassis fabric plane-location.

{master}
dhanks@R1-RE0> show chassis fabric plane-location
------------Fabric Plane Locations-------------
Plane 0 Control Board 0
Plane 1 Control Board 0
Plane 2 Control Board 0
Plane 3 Control Board 0
Plane 4 Control Board 1
Plane 5 Control Board 1
Plane 6 Control Board 1
Plane 7 Control Board 1

{master}
dhanks@R1-RE0>

Because the MX240 and MX480 only support two SCBs, they support 1 + 1 SCB re-
dundancy. By default, SCB0 is in the Online state and processes all of the forwarding.
SCB1 is in the Spare state and waits to take over in the event of a SCB failure. This can
be illustrated with the command show chassis fabric summary.

{master}
dhanks@R1-RE0> show chassis fabric summary
Plane State Uptime
 0 Online 18 hours, 24 minutes, 57 seconds
 1 Online 18 hours, 24 minutes, 52 seconds
 2 Online 18 hours, 24 minutes, 51 seconds
 3 Online 18 hours, 24 minutes, 46 seconds
 4 Spare 18 hours, 24 minutes, 46 seconds
 5 Spare 18 hours, 24 minutes, 41 seconds
 6 Spare 18 hours, 24 minutes, 41 seconds
 7 Spare 18 hours, 24 minutes, 36 seconds

{master}
dhanks@R1-RE0>

As expected, planes 0 to 3 are Online and planes 4 to 7 are Spare. Another useful tool
from this command is the Uptime. The Uptime column displays how long the SCB has
been up since the last boot. Typically, each SCB will have the same uptime as the system
itself, but it’s possible to hot-swap SCBs during a maintenance; the new SCB would
then show a smaller uptime than the others.

MX960 Fabric Planes

The MX960 is a different beast because of the PFE scale involved. It has to support
twice the number of PFEs as the MX480, while maintaining the same line rate perfor-
mance requirements. An additional SCB is mandatory to support these new scaling and
performance requirements.

Switch and Control Board | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-35. Juniper MX960 switch fabric planes

Unlike the MX240 and MX480, the switch fabrics only support a single fabric plane
because all available links are required to create a full mesh between all 48 PFEs. Let’s
verify this with the command show chassis fabric plane-location.

{master}
dhanks@MX960> show chassis fabric plane-location
------------Fabric Plane Locations-------------
Plane 0 Control Board 0
Plane 1 Control Board 0
Plane 2 Control Board 1
Plane 3 Control Board 1
Plane 4 Control Board 2
Plane 5 Control Board 2

{master}
dhanks@MX960>

As expected, things seem to line up nicely. We see there are two switch fabrics per
control board. The MX960 supports up to three SCBs providing 2 + 1 SCB redundancy.
At least two SCBs are required for basic line rate forwarding, and the third SCB provides
redundancy in case of a SCB failure. Let’s take a look at the command show chassis
fabric summary.

{master}
dhanks@MX960> show chassis fabric summary
Plane State Uptime
 0 Online 18 hours, 24 minutes, 22 seconds
 1 Online 18 hours, 24 minutes, 17 seconds
 2 Online 18 hours, 24 minutes, 12 seconds
 3 Online 18 hours, 24 minutes, 6 seconds
 4 Spare 18 hours, 24 minutes, 1 second
 5 Spare 18 hours, 23 minutes, 56 seconds

54 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@MX960>

Everything looks good. SCB0 and SCB1 are Online, whereas the redundant SCB2 is
standing by in the Spare state. If SCB0 or SCB1 fails, SCB2 will immediately transition
to the Online state and allow the router to keep forwarding traffic at line rate.

J-Cell
As packets move through the MX from one PFE to another, they need to traverse the
switch fabric. Before the packet can be placed onto the switch fabric, it first must be
broken into J-cells. A J-cell is a 64-byte fixed-width unit.

Figure 1-36. Cellification of variable length packets

The benefit of J-cells is that it’s much easier for the router to process, buffer, and trans-
mit fixed-width data. When dealing with variable length packets with different types
of headers, it adds inconsistency to the memory management, buffer slots, and trans-
mission times. The only drawback when segmenting variable data into a fixed-width
unit is the waste, referred to as “cell tax.” For example, if the router needed to segment
a 65-byte packet, it would require two J-cells: the first J-cell would be fully utilized, the
second J-cell would only carry 1 byte, and the other 63 bytes of the J-cell would go
unused.

For those of you old enough (or savvy enough) to remember ATM, go
ahead and laugh.

J-Cell Format

There are some additional fields in the J-cell to optimize the transmission and process-
ing:

Switch and Control Board | 55

www.it-ebooks.info

http://www.it-ebooks.info/

• Request source and destination address

• Grant source and destination address

• Cell type

• Sequence number

• Data (64 bytes)

• Checksum

Each PFE has an address that is used to uniquely identify it within the fabric. When J-
cells are transmitted across the fabric a source and destination address is required, much
like the IP protocol. The sequence number and cell type aren’t used by the fabric, but
instead are important only to the destination PFE. The sequence number is used by the
destination PFE to reassemble packets in the correct order. The cell type identifies the
cell as one of the following: first, middle, last, or single cell. This information assists in
the reassembly and processing of the cell on the destination PFE.

J-Cell Flow

As the packet leaves the ingress PFE, the Trio chipset will segment the packet into J-
cells. Each J-cell will be sprayed across all available fabric links. The following illus-
tration represents a MX960 fully loaded with 48 PFEs and 3 SCBs. The example packet
flow is from left to right.

Figure 1-37. Juniper MX960 fabric spray and reordering across the MX-SCB

56 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

J-cells will be sprayed across all available fabric links. Keep in mind that only PLANE0
through PLANE3 are Online, whereas PLANE4 and PLANE5 are Standby.

Request and Grant

Before the J-cell can be transmitted to the destination PFE, it needs to go through a
three-step request and grant process:

1. The source PFE will send a request to the destination PFE.

2. The destination PFE will respond back to the source PFE with a grant.

3. The source PFE will transmit the J-cell.

The request and grant process guarantees the delivery of the J-cell through the switch
fabric. An added benefit of this mechanism is the ability to quickly discover broken
paths within the fabric and provide a method of flow control.

Figure 1-38. Juniper MX fabric request and grant process

As the J-cell is placed into the switch fabric, it’s placed into one of two fabric queues:
high or low. In the scenario where there are multiple source PFEs trying to send data
to a single destination PFE, it’s going to cause the destination PFE to be oversubscribed.
One tool that’s exposed to the network operator is the fabric priority knob in the class
of service configuration. When you define a forwarding class, you’re able to set the
fabric priority. By setting the fabric priority to high for a specific forwarding class, it
will ensure that when a destination PFE, is congested, the high-priority traffic will be
delivered. This is covered more in detail in Chapter 5.

MX Switch Control Board
The MX SCB is the first-generation switch fabric for the MX240, MX480, and MX960.
This MX SCB was designed to work with the first-generation DPC line cards. As de-
scribed previously, the MX SCB provides line-rate performance with full redundancy.

The MX240 and MX480 provide 1 + 1 MX SCB redundancy when used with the DPC
line cards. The MX960 provides 2 + 1 MX SCB redundancy when used with the DPC
line cards.

Switch and Control Board | 57

www.it-ebooks.info

http://www.it-ebooks.info/

Each of the fabric planes on the first-generation SCB is able to process 20 Gbps of
bandwidth. The MX240 and MX480 use eight fabric planes across two SCBs, whereas
the MX960 uses six fabric planes across three SCBs. Because of the fabric plane virtu-
alization, the aggregate fabric bandwidth between the MX240, MX480, and MX960 is
different.

Table 1-12. First-Generation SCB bandwidth

Model SCBs Switch Fabrics Fabric Planes Fabric Bandwidth per Slot

MX240 2 4 8 160 Gbps

MX480 2 4 8 160 Gbps

MX960 3 6 6 120 Gbps

MX SCB and MPC Caveats

The only caveat is that the first-generation MX SCBs are not able to provide line-rate
redundancy with some of the new-generation MPC line cards. When the MX SCB is
used with the newer MPC line cards, it places additional bandwidth requirements onto
the switch fabric. The additional bandwidth requirements come at a cost of oversub-
scription and a loss of redundancy.

The new-generation Enhanced MX SCB is required to provide line-rate
fabric bandwidth with full redundancy for high-density MPC line cards
such as the MPC-3D-16x10GE-SFPP.

MX240 and MX480

As described previously, the MX240 and MX480 have a total of eight fabric planes
when using two MX SCBs. When the MX SCB and MPCs are being used on the MX240
and MX480, there’s no loss in performance and all MPCs are able to operate at line
rate. The only drawback is that all fabric planes are in use and are Online.

Let’s take a look at a MX240 with the first-generation MX SCBs and new-generation
MPC line cards.

{master}
dhanks@R1-RE0> show chassis hardware | match FPC
FPC 1 REV 15 750-031088 ZB7956 MPC Type 2 3D Q
FPC 2 REV 25 750-031090 YC5524 MPC Type 2 3D EQ

{master}
dhanks@R1-RE0> show chassis hardware | match SCB
CB 0 REV 03 710-021523 KH6172 MX SCB
CB 1 REV 10 710-021523 ABBM2781 MX SCB

{master}
dhanks@R1-RE0> show chassis fabric summary
Plane State Uptime

58 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

 0 Online 10 days, 4 hours, 47 minutes, 47 seconds
 1 Online 10 days, 4 hours, 47 minutes, 47 seconds
 2 Online 10 days, 4 hours, 47 minutes, 47 seconds
 3 Online 10 days, 4 hours, 47 minutes, 47 seconds
 4 Online 10 days, 4 hours, 47 minutes, 47 seconds
 5 Online 10 days, 4 hours, 47 minutes, 46 seconds
 6 Online 10 days, 4 hours, 47 minutes, 46 seconds
 7 Online 10 days, 4 hours, 47 minutes, 46 seconds

As we can see, R1 has the first-generation MX SCBs and new-generation MPC2 line
cards. In this configuration, all eight fabric planes are Online and processing J-cells.

If a MX SCB fails on a MX240 or MX480 using the new-generation MPC line cards,
the router’s performance will degrade gracefully. Losing one of the two MX SCBs would
result in a loss of half of the router’s performance.

MX960

In the case of the MX960, it has six fabric planes when using three MX SCBs. When
the first-generation MX SCBs are used on a MX960 router, there isn’t enough fabric
bandwidth to provide line-rate performance for the MPC-3D-16X10GE-SPFF or
MPC3-3D line cards. However, with the MPC1 and MPC2 line cards, there’s enough
fabric capacity to operate at line rate, \ except when used with the 4x10G MIC.

Let’s take a look at a MX960 with a first-generation MX SCB and second-generation
MPC line cards.

dhanks@MX960> show chassis hardware | match SCB
CB 0 REV 03.6 710-013385 JS9425 MX SCB
CB 1 REV 02.6 710-013385 JP1731 MX SCB
CB 2 REV 05 710-013385 JS9744 MX SCB

dhanks@MX960> show chassis hardware | match FPC
FPC 2 REV 14 750-031088 YH8454 MPC Type 2 3D Q
FPC 5 REV 29 750-031090 YZ6139 MPC Type 2 3D EQ
FPC 7 REV 29 750-031090 YR7174 MPC Type 2 3D EQ

dhanks@MX960> show chassis fabric summary
Plane State Uptime
 0 Online 11 hours, 21 minutes, 30 seconds
 1 Online 11 hours, 21 minutes, 29 seconds
 2 Online 11 hours, 21 minutes, 29 seconds
 3 Online 11 hours, 21 minutes, 29 seconds
 4 Online 11 hours, 21 minutes, 28 seconds
 5 Online 11 hours, 21 minutes, 28 seconds

As you can see, the MX960 has three of the first-generation MX SCB cards. There’s also
three second-generation MPC line cards. Taking a look at the fabric summary, we can
surmise that all six fabric planes are Online. When using high-speed MPCs and MICs,
the oversubscription is approximately 4:3 with the first-generation MX SCB. Losing a
MX SCB with the new-generation MPC line cards would cause the MX960 to gracefully
degrade performance by a third.

Switch and Control Board | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Enhanced MX Switch Control Board
The second-generation Enhanced MX Switch Control Board (SCBE) doubles perfor-
mance from the previous MX SCB. The SBCE was designed to be used specifically with
the new-generation MPC line cards to provide full line-rate performance and redun-
dancy without a loss of bandwidth.

Table 1-13. Second-generation SCBE bandwidth

Model SCBs Switch Fabrics Fabric Planes Fabric Bandwidth Per Slot

MX240 2 4 8 320 Gbps

MX480 2 4 8 320 Gbps

MX960 3 6 6 240 Gbps

MX240 and MX480

When the SCBE is used with the MX240 and MX480, only one SCBE is required for
full line-rate performance and redundancy.

Let’s take a look at a MX480 with two SCBEs and 100G MPC3 line cards.

dhanks@paisa> show chassis hardware | match SCB
CB 0 REV 14 750-031391 ZK8231 Enhanced MX SCB
CB 1 REV 14 750-031391 ZK8226 Enhanced MX SCB

dhanks@paisa> show chassis hardware | match FPC
FPC 0 REV 24 750-033205 ZJ6553 MPC Type 3
FPC 1 REV 21 750-033205 ZG5027 MPC Type 3

dhanks@paisa> show chassis fabric summary
Plane State Uptime
 0 Online 5 hours, 54 minutes, 51 seconds
 1 Online 5 hours, 54 minutes, 45 seconds
 2 Online 5 hours, 54 minutes, 45 seconds
 3 Online 5 hours, 54 minutes, 40 seconds
 4 Spare 5 hours, 54 minutes, 40 seconds
 5 Spare 5 hours, 54 minutes, 35 seconds
 6 Spare 5 hours, 54 minutes, 35 seconds
 7 Spare 5 hours, 54 minutes, 30 seconds

Much better. You can see that there are two SCBEs as well 100G MPC3 line cards.
When taking a look at the fabric summary, we see that all eight fabric planes are present.
The big difference is that now four of the planes are Online while the other four are
Spare. These new SCBEs are providing line-rate fabric performance as well as 1 + 1 SCB
redundancy.

Because the MX SCBE is twice the performance of the previous MX SCB, the MX960
can now go back to the original 2 + 1 SCB for full line-rate performance and redundancy.

60 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

MX960

Let’s check out a MX960 using three MX SCBEs and 100G MPC3 line cards.

dhanks@bellingham> show chassis hardware | match SCB
CB 0 REV 10 750-031391 ZB9999 Enhanced MX SCB
CB 1 REV 10 750-031391 ZC0007 Enhanced MX SCB
CB 2 REV 10 750-031391 ZC0001 Enhanced MX SCB

dhanks@bellingham> show chassis hardware | match FPC
FPC 0 REV 14.3.09 750-033205 YY8443 MPC Type 3
FPC 3 REV 12.3.09 750-033205 YR9438 MPC Type 3
FPC 4 REV 27 750-033205 ZL5997 MPC Type 3
FPC 5 REV 27 750-033205 ZL5968 MPC Type 3
FPC 11 REV 12.2.09 750-033205 YW7060 MPC Type 3

dhanks@bellingham> show chassis fabric summary
Plane State Uptime
 0 Online 6 hours, 7 minutes, 6 seconds
 1 Online 6 hours, 6 minutes, 57 seconds
 2 Online 6 hours, 6 minutes, 52 seconds
 3 Online 6 hours, 6 minutes, 46 seconds
 4 Spare 6 hours, 6 minutes, 41 seconds
 5 Spare 6 hours, 6 minutes, 36 seconds

What a beautiful sight. We have three MX SCBEs in addition to five 100G MPC3 line
cards. As discussed previously, the MX960 has six fabric planes. We can see that four
of the fabric planes are Online, whereas the other two are Spare. We now have line-rate
fabric performance plus 2 + 1 MX SCBE redundancy.

MX2020
The release of this book has been timed with a new product announcement from Ju-
niper. The MX2020 is a new router in the MX Series that’s designed to solve the 10G
and 100G high port density needs of Content Service Providers (CSP), Multisystem
Operators (MSO), and traditional Service Providers. At a glance, the MX2020 supports
20 line cards, 8 switch fabric boards, and 2 routing engines. The chassis takes up an
entire rack and has front-to-back cooling.

Architecture
The MX2020 is a standard backplane-based system, albeit at a large scale. There are
two backplanes connected together with centralized switch fabric boards (SFB). The
routing engine and control board is a single unit that consumes a single slot, as illus-
trated in Figure 1-39 on the far left and right.

MX2020 | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-39. Illustration of MX2020 architecture

The FPC numbering is the standard Juniper method of starting at the bottom and
moving left to right as you work your way up. The SFBs are named in the same method
starting with zero starting on the left and going all the way to seven on the far right.
The routing engine and control boards are located in the middle of the chassis on the
far left and far right.

Switch Fabric Board

Each backplane has 10 slots that are tied into eight SFBs in the middle of the chassis.
Because of the high number of line cards and PFEs the switch fabric must support, a
new SFB was created specifically for the MX2020. The SFB is able to support more
PFEs and has a much higher throughput compared to the previous SCBs. Recall that
the SCB and SCBE presented its chipsets to Junos as a fabric plane and can be seen with
the show chassis fabric summary command; the new SFB has multiple chipsets as well,
but presents them as an aggregate fabric plane to Junos. In other words, each SFB will
appear as a single fabric plane within Junos. Each SFB will be in an Active state by
default. Let’s take a look at the installed SFBs first:

dhanks@MX2020> show chassis hardware | match SFB
SFB 0 REV 01 711-032385 ZE5866 Switch Fabric Board
SFB 1 REV 01 711-032385 ZE5853 Switch Fabric Board
SFB 2 REV 01 711-032385 ZB7642 Switch Fabric Board

62 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

SFB 3 REV 01 711-032385 ZJ3555 Switch Fabric Board
SFB 4 REV 01 711-032385 ZE5850 Switch Fabric Board
SFB 5 REV 01 711-032385 ZE5870 Switch Fabric Board
SFB 6 REV 04 711-032385 ZV4182 Switch Fabric Board
SFB 7 REV 01 711-032385 ZE5858 Switch Fabric Board

There are eight SFBs installed; now let’s take a look at the switch fabric status:

dhanks@MX2020> show chassis fabric summary
Plane State Uptime
 0 Online 1 hour, 25 minutes, 59 seconds
 1 Online 1 hour, 25 minutes, 59 seconds
 2 Online 1 hour, 25 minutes, 59 seconds
 3 Online 1 hour, 25 minutes, 59 seconds
 4 Online 1 hour, 25 minutes, 59 seconds
 5 Online 1 hour, 25 minutes, 59 seconds
 6 Online 1 hour, 25 minutes, 59 seconds
 7 Online 1 hour, 25 minutes, 59 seconds

Depending on which line cards are being used, only a subset of the eight SFBs need to
be present in order to provide a line-rate switch fabric, but this is subject to change
with line cards.

Power Supply

The power supply on the MX2020 is a bit different than the previous MX models. The
MX2020 power system is split into two sections: top and bottom. The bottom power
supplies provide power to the lower backplane line cards, lower fan trays, SFBs, and
CB-REs. The top power supplies provide power to the upper backplane line cards and
fan trays. The MX2020 provides N + 1 power supply redundancy and N + N feed
redundancy. There are two major power components that supply power to the
MX2020:

Power Supply Module
The Power Supply Modules (PSM) are the actual power supplies that provide
power to a given backplane. There are nine PSMs per backplane, but only eight are
required to fully power the backplane. Each backplane has 8 + 1 PSM redundancy.

Power Distribution Module
There are two Power Distribution Modules (PDM) per backplane, providing 1 +
1 PDM redundancy for each backplane. Each PDM contains nine PSMs to provide
8 + 1 PSM redundancy for each backplane.

MX2020 | 63

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-40. Illustration of MX2020 power supply architecture

Air Flow

The majority of data centers support hot and cold aisles, which require equipment with
front to back cooling to take advantage of the airflow. The MX2020 does support front
to back cooling and does so in two parts, as illustrated in Figure 1-42. The bottom inlet
plenum supplies cool air from the front of the chassis and the bottom fan trays force
the cool air through the bottom line cards; the air is then directed out of the back of
the chassis by a diagonal airflow divider in the middle card cage. The same principal
applies to the upper section. The middle inlet plenum supplies cool air from the front
of the chassis and the upper fan trays push the cool air through the upper card cage;
the air is then directed out the back of the chassis.

64 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1-41. Illustration of MX2020 front-to-back air flow

Line Card Compatibility

The MX2020 is compatible with all Trio-based MPC line cards; however, there will be
no backwards compatibility with the first-generation DPC line cards. The caveat is that
the MPC1E, MPC2E, and MPC3E line cards will require a special MX2020 Line Card
Adapter. The MX2020 can support up to 20 Adapter Cards (ADC) to accommodate
20 MPC1E through MPC3E line cards. Because the MX2020 uses a newer-generation
SFB with faster bandwidth, line cards that were designed to work with the SCB and
SCBE must use the ADC in the MX2020.

The ADC is merely a shell that accepts MPC1E through MPC3E line cards in the front
and converts power and switch fabric in the rear. Future line cards built specifically for
the MX2020 will not require the ADC. Let’s take a look at the ADC status with the
show chassis adc command:

dhanks@MX2020> show chassis adc
Slot State Uptime
 3 Online 6 hours, 2 minutes, 52 seconds
 4 Online 6 hours, 2 minutes, 46 seconds
 8 Online 6 hours, 2 minutes, 39 seconds
 9 Online 6 hours, 2 minutes, 32 seconds

MX2020 | 65

www.it-ebooks.info

http://www.it-ebooks.info/

11 Online 6 hours, 2 minutes, 26 seconds
16 Online 6 hours, 2 minutes, 19 seconds
17 Online 6 hours, 2 minutes, 12 seconds
18 Online 6 hours, 2 minutes, 5 seconds

In this example, there are eight ADC cards in the MX2020. Let’s take a closer look at
FPC3 and see what type of line card is installed:

dhanks@MX2020> show chassis hardware | find "FPC 3"
FPC 3 REV 22 750-028467 YE2679 MPC 3D 16x 10GE
 CPU REV 09 711-029089 YE2832 AMPC PMB
 PIC 0 BUILTIN BUILTIN 4x 10GE(LAN) SFP+
 Xcvr 0 REV 01 740-031980 B10M00015 SFP+-10G-SR
 Xcvr 1 REV 01 740-021308 19T511101037 SFP+-10G-SR
 Xcvr 2 REV 01 740-031980 AHK01AS SFP+-10G-SR
 PIC 1 BUILTIN BUILTIN 4x 10GE(LAN) SFP+
 PIC 2 BUILTIN BUILTIN 4x 10GE(LAN) SFP+
 Xcvr 0 REV 01 740-021308 19T511100867 SFP+-10G-SR
 PIC 3 BUILTIN BUILTIN 4x 10GE(LAN) SFP+

The MPC-3D-16X10GE-SFPP is installed into FPC3 using the ADC for compatibility.
Let’s check the environmental status of the ADC installed into FPC3:

dhanks@MX2020> show chassis environment adc | find "ADC 3"
ADC 3 status:
 State Online
 Intake Temperature 34 degrees C / 93 degrees F
 Exhaust Temperature 46 degrees C / 114 degrees F
 ADC-XF1 Temperature 51 degrees C / 123 degrees F
 ADC-XF0 Temperature 61 degrees C / 141 degrees F

Each ADC has two chipsets, as shown in the example output: ADC-XF1 and ADC-
XF2. These chipsets convert the switch fabric between the MX2020 SFB and the
MPC1E through MPC3E line cards.

Aside from the simple ADC carrier to convert power and switch fabric, the
MPC-3D-16X10GE-SFPP line card installed into FPC3 works just like a regular line
card with no restrictions. Let’s just double check the interface names to be sure:

dhanks@MX2020> show interfaces terse | match xe-3
Interface Admin Link Proto Local Remote
xe-3/0/0 up down
xe-3/0/1 up down
xe-3/0/2 up down
xe-3/0/3 up down
xe-3/1/0 up down
xe-3/1/1 up down
xe-3/1/2 up down
xe-3/1/3 up down
xe-3/2/0 up down
xe-3/2/1 up down
xe-3/2/2 up down
xe-3/2/3 up down
xe-3/3/0 up down
xe-3/3/1 up down

66 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

xe-3/3/2 up down
xe-3/3/3 up down

Just as expected: the MPC-3D-16X10GE-SFPP line card has 16 ports of 10GE interfaces
grouped into four PICs with four interfaces each.

Summary
This chapter has covered a lot of topics, ranging from software to hardware. It’s im-
portant to understand how the software and hardware are designed to work in con-
junction with each other. This combination creates carrier-class routers that are able
to solve the difficult challenges networks are facing with the explosion of high-speed
and high-density Ethernet services.

Junos has a very simple and elegant design that allows for the clear and distinct sepa-
ration of the control and data planes. Juniper has a principle of “distribute what you
can and centralize what you must” There are a handful of functions that can be dis-
tributed to the data plane to increase performance. Examples include period packet
management such as Hello packets of routing protocols and point of local repair (PLR)
features such as MPLS Fast Reroute (FRR) or Loop Free Alternate (LFA) routes in
routing protocols. By distributing these types of features out to the data plane, the
control plane doesn’t become a bottleneck and the system is to scale with ease and can
restore service in under 50 ms.

The MX Series ranges from a small 2U router to a giant 44U chassis that’s able to
support 20 line cards. The Trio chipset is the pride and joy of the MX family; the chipset
is designed for high-density and high-speed Ethernet switching and routing. Trio has
the unique ability to provide inline services directly within the chipset without having
to forward the traffic to a special service module. Example services include NAT, GRE,
IP tunneling, port mirroring, and IP Flow Information Export (IPFIX).

The Juniper MX is such a versatile platform that it’s able to span many domains and
use cases. Both Enterprise Environments (EE) and Service Providers have use cases that
are aligned with the feature set of the Juniper MX:

Data Center Core and Aggregation
Data centers that need to provide services to multiple tenants require multiple
learning domains, routing instances, and forwarding separation. Each instance is
typically mapped to a specific customer and a key requirement is collecting ac-
counting and billing information.

Data Center Interconnect
As the number of data centers increase, the transport between them must be able
to deliver the services mandated by the business. Legacy applications, storage rep-
lication, and VM mobility may require a common broadcast domain across a set
of data centers. MPLS provides two methods to extend a broadcast domain across
multiple sites: Virtual Private LAN Service (VPLS) and Ethernet VPN (E-VPN).

Summary | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Wide Area Network
As enterprise customers grow, the number of data centers, branch offices, and
campuses increase and create a requirement to provide transport between each
entity. Most customers purchase transport from a Service Provider, and the most
common provider edge (PE) to customer edge (CE) routing protocol is BGP.

Service Provider Core and Aggregation
The core of a Service Provider network requires high-density and high-speed in-
terfaces to switch MPLS labels. Features such as LFA in routing protocols and
MPLS FRR are a requirement to provide PLR within 50 ms.

Service Provider Edge
The edge of Service Provider networks requires high scale in terms of routing in-
stances, number of routing prefixes, and port density to support a large number of
customers. To enforce customer service level agreements (SLA) features such as
policing and hierarchical class of service (H-CoS) are required.

Broadband Subscriber Management
Multiplay and triple play services require high subscriber scale and rich features
such as authentication, authorization, and accounting (AAA); change of authori-
zation (CoA); and dynamic addressing and profiles per subscriber.

Mobile Backhaul
The number of cell phones has skyrocketed in the past 10 years and is placing high
demands on the network. The varying types of service require class of service to
ensure that voice calls are not queued or dropped, interactive applications are re-
sponsive, and web browsing and data transfer is best effort. Another key require-
ment is packet-based timing support features such as E-Sync and 1588v2.

The Juniper MX supports a wide variety of line cards that have Ethernet interfaces such
as 1GE, 10GE, 40GE, and 100GE. The MPC line cards also support traditional time-
division multiplexing (TDM) MICs such as T1, DS3, and OC-3. The line cards account
for the bulk of the investment in the MX family, and a nice investment protection is
that the line cards and MICs can be used in any Juniper MX chassis.

Each chassis is designed to provide fault protection through full hardware and software
redundancy. All power supplies, fan trays, switch fabric boards, control boards, routing
engines, and line cards can be host-swapped and do not require downtime to replace.
Software control plane features such as graceful routing engine switchover (GRES),
non-stop routing (NSR), and non-stop bridging (NSB) ensure that routing engine fail-
ures do not impact transit traffic while the backup routing engine becomes the new
master. The Juniper MX chassis also supports In Service Software Upgrades (ISSU) that
allows you to upgrade the software of the routing engines without impacting transit
traffic or downtime. Junos high availability features will be covered in Chapter 9. The
Juniper MX is a phenomenal piece of engineering that’s designed from the ground up
to forward packets and provide network services at all costs.

68 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter Review Questions
1. Which version of Junos is supported for three years?

a. The first major release of the year

b. The last maintenance release of the year

c. The last major release of the year

d. The last service release of the year

2. Which is not a function of the control plane?

a. Processing SSH traffic destined to the router

b. Updating the RIB

c. Updating the FIB

d. Processing a firewall filter on interface xe-0/0/0.0

3. How many Switch Control Boards does the MX960 require for redundancy?

a. 1 + 1

b. 2 + 1

c. 1

d. 2

4. Which is a functional block of the Trio architecture?

a. Interfaces Block

b. Routing Block

c. BGP Block

d. VLAN Block

5. Which MPC line card provides full Layer 2 and limited Layer 3 functionality?

a. MX-3D-R-B

b. MX-3D-Q-R-B

c. MX-3D

d. MX-3D-X

6. How many Trio chipsets does the MPC2 line card have?

a. 1

b. 2

c. 3

d. 4

7. What’s the purpose of the Ethernet switch located on the SCB?

a. To provide additional SCB redundancy

b. Remote management

Chapter Review Questions | 69

www.it-ebooks.info

http://www.it-ebooks.info/

c. Provide communication between line cards and routing engines

d. To support additional H-QoS scaling

8. What J-cell attribute is used by the destination PFE to reassemble packets in the
correct order?

a. Checksum

b. Sequence number

c. ID number

d. Destination address

Chapter Review Answers
1. Answer: C. The last major release of Junos of a given calendar year is known as

the Extended End of Life (EEOL) release and is supported for three years.

2. Answer: D. The data/forwarding plane handles all packet processing such as fire-
wall filters, policers, or counters on the interface xe-0/0/0.0.

3. Answer: B. The MX960 requires three SCBs for full redundancy. This is known
as 2 + 1 SCB redundancy.

4. Answer: A. The major functional blocks of Trio are Interfaces, Buffering, Dense
Queuing, and Lookup.

5. Answer: C. The MX-3D provides full Layer 2 and limited Layer 3 functionality.
There’s a limit of 32,000 prefixes in the route table.

6. Answer: B. The MPC2 line card has two Trio chipsets. This allows each MIC to
have a dedicated Trio chipset.

7. Answer: C. The Ethernet switch located on the MX SCB is used to create a full
mesh between all line cards and routing engines. This network processes updates
and exception packets.

8. Answer: B. The sequence number is used to reassemble out of order packets on
the destination PFE.

70 | Chapter 1: Juniper MX Architecture

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Bridging, VLAN Mapping, IRB, and
Virtual Switches

This chapter covers the bridging, VLAN mapping, Integrated Routing and Bridging
(IRB), and virtual switch features of the Juniper MX. As you make your way through
this chapter, feel free to pause and reflect on the differences between traditional bridging
and advanced bridging, and where this could solve some interesting challenges in your
network. Many readers may not be familiar with advanced bridging, and we encourage
you to read this chapter several times. Throughout this chapter, you’ll find that features
such as bridge domains, learning domains, and VLAN mapping are tightly integrated,
and it may be a bit challenging to follow the first time through; however, as you reread
the chapter a second time, many features and caveats will become clear.

Isn’t the MX a Router?
At first it may seem odd—a router is able to switch—but on the other hand it’s quite
common for a switch to be able to route. So what’s the difference between a switch
that’s able to route and a router that’s able to switch? Is this merely a philosophical
discussion, or is there something more to it?

Traditionally, switches are designed to handle only a single Layer 2 network. A Layer
2 network is simply just a collection of one or more broadcast domains. Within the
constraint of a single Layer 2 network, a switch makes sense. It’s able to flood, filter,
and forward traffic for 4,094 VLANs without a problem.

The problem becomes interesting as the network requirements grow, such as having
to provide Ethernet services to multiple Layer 2 networks. Let’s take the scenario to
the next level and think about adding multiple Layer 3 networks so the requirement is
to support multiple Layer 2 and Layer 3 networks on the same physical interface that
has overlapping VLAN IDs, MAC addresses, and IP addresses. This challenge becomes
even more interesting as you think about how to move data between these different
Layer 2 and Layer 3 networks.

71

www.it-ebooks.info

http://www.it-ebooks.info/

There’s no distinction between the terms “bridging” and “switching,”
and they are used interchangeably in this book.

It’s always helpful to see an illustration, so take a moment with Figure 2-1.

Figure 2-1. Traditional switch compared to the Juniper MX

On the left of Figure 2-1 is a traditional switch that simply supports a single Layer 2
network; within this Layer 2 network is support for 4,094 VLAN IDs and some IRB
interfaces. To the right is the Juniper MX. It takes the concept of a traditional switch
and virtualizes it to support multiple Layer 2 networks. This provides the ability to
provide service to multiple customers with overlapping VLAN IDs.

For example, customer Green could be assigned to the upper Layer 2 network in the
illustration, while customer Orange could be assigned to the lower Layer 2 network.
Both customers could use identical VLAN IDs and MAC addresses without any issues
using this architecture. To make it more interesting, there could be four additional
customers requiring Layer 3 network services. Each customer could have overlapping
IP addresses and wouldn’t cause an issue.

Because of the level of virtualization, each customer is unaware of other customers
within the Juniper MX. This virtualization is performed through the use of what Junos
calls a routing instance. When you create a routing instance, you also need to specify
what type of routing instance it is. For example, if you wanted to create a Layer 2 routing
instance, the type would be virtual-switch, whereas a Layer 3 routing instance would
be a virtual-router.

The final piece of virtualization is the separation of bridge domains and learning do-
mains. A learning domain is simply a database of Layer 2 forwarding information.

72 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Typically, a learning domain is attached to a bridge domain in a 1:1 ratio. A traditional
switch will have a learning domain for every bridge domain. For example, VLAN ID
100 would have a single bridge domain and learning domain. The Juniper MX is able
to have multiple learning domains within a single bridge domain. This creates inter-
esting scenarios such as creating a single bridge domain that supports a range of VLAN
IDs or simply every VLAN ID possible. It might be a bit difficult to wrap your head
around this at first, but this book will walk you through every step in the process.

Layer 2 Networking
Let’s take a step back and review what exactly a Layer 2 network is. This chapter in-
troduces a lot of new topics related to Layer 2 switching in the MX, and it’s critical that
you have an expert understanding of the underlying protocols.

Specifically, we’ll take a look at Ethernet. A Layer 2 network, also known as the data
link layer in the seven-layer Open Systems Interconnection (OSI) model, is simply a
means to transfer data between two adjacent network nodes. The feature we’re most
interested in is virtual local area networks (VLANs) and how they’re processed.

A bridge domain is simply a set of interfaces that share the same flooding, filtering, and
forwarding characteristics. A bridge domain and broadcast domain are synonymous in
definition and can be used interchangeably with each other.

Ethernet II
By default, an Ethernet frame isn’t aware of which VLAN it’s in as there’s no key to
unique identify this information. As the frame is flooded, filtered, or forwarded, it’s
done so within the default bridge domain of the interface. Let’s take a look at the format
of a vanilla Ethernet II frame.

Figure 2-2. Ethernet II frame format

There are seven fields in an Ethernet II frame: preamble, start frame delimiter (SFD),
destination address (DA), source address (SA), type, data, and frame check sequence
(FCS). Let’s take a closer look at each.

Preamble
This eight-octet field is used by hardware to be able to easily identify the start of a
new frame. If you take a closer look, it’s actually two fields: preamble and SFD.
The preamble is seven octets of alternating 0s and 1s. The SFD is a single octet of
1010 1011 to signal the end of the preamble, and the next bit is immediately fol-
lowed by the destination MAC address.

Layer 2 Networking | 73

www.it-ebooks.info

http://www.it-ebooks.info/

Destination Address
The destination MAC address is six octets in length and specifies where the Ether-
net frame is to be forwarded.

Source Address
The source MAC address is six octets in length and specifies the MAC address from
which the Ethernet frame was originally sent.

EtherType
The EtherType is a two-octet field that describes the encapsulation used within the
payload of the frame and generally begins at 0x0800. Some of the most common
EtherTypes are listed in Table 2-1.

Table 2-1. Common EtherTypes

EtherType Protocol

0x0800 Internet Protocol Version 4 (IPv4)

0x86DD Internet Protocol Version 6 (IPv6)

0x0806 Address Resolution Protocol (ARP)

0x8847 MPLS unicast

0x8848 MPLS multicast

0x8870 Jumbo Frames

0x8100 IEEE 802.1Q (VLAN-tagging)

0x88A8 IEEE 802.1QinQ

Payload
This field is the only variable length field in an Ethernet frame. Valid ranges are 46
to 1500 octets, unless Jumbo Frames are being used. The actual data being trans-
mitted is placed into this field.

Frame Check Sequence
This four-octet field is simply a checksum using the cyclic redundancy check (CRC)
algorithm. The algorithm is performed against the entire frame by the transmitting
node and appended to the Ethernet frame. The receiving node runs the same al-
gorithm and compares it to the FCS field. If the checksum calculated by the re-
ceiving node is different than the FCS field on the Ethernet frame, this indicates an
error occurred in the transmission of the frame and it can be discarded.

IEEE 802.1Q
Now let’s take a look at how it’s possible for an Ethernet II frame to suggest which
VLAN it would like to be in because, as you will see later in this chapter, it’s possible
to configure the MX to normalize and change VLAN IDs regardless of the IEEE 802.1Q
header. The IEEE 802.1Q standard defines how VLANs are supported within an
Ethernet II frame. It’s actually an elegant solution because there’s no encapsulation

74 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

performed and only a small four-octet shim is inserted between the Source Address and
Type fields in the original Ethernet II frame, as shown in Figure 2-3.

Figure 2-3. Ethernet II and IEEE 802.1Q frame format

This new four-octet shim is divided into two major parts: tag protocol identifier (TPID)
and tag control identifier (TCI). The elegant part about the TPID is that it actually
functions as a new EtherType field with a value of 0x8100 to indicate that the Ethernet
II frame supports IEEE 802.1Q. Notice that both the EtherType in the original Ethernet
II frame and the new TPID field in the new IEEE 802.1Q frame begin at the exact same
bit position. The TCI is subdivided into three more parts:

Priority Code Point (PCP)
These three bits describe the frame priority level. This is further defined by IEEE
802.1p.

Canonical Format Indicator (CFI)
This is a one-bit field that specifies which direction to read the MAC addresses. A
value of 1 indicates a noncanonical format, whereas a value of 0 indicates a can-
onical format. Ethernet and IEEE 802.3 always use a canonical format and the least
significant bits first, whereas Token Ring is the opposite and sends the most sig-
nificant bit first. This is really just an outdated relic and the CFI will always have
a value of 0 on any modern Ethernet network.

VLAN Identifier (VID)
The VID is a 12-bit value that indicates which VLAN the Ethernet frame belongs
to. There are 4,094 possible values, as 0x000 and 0xFFF are reserved.

IEEE 802.1QinQ
The next logical progression from IEEE 802.1Q is IEEE 802.1QinQ. This standard
takes the same concept of inserting a four-octet shim and expands on it. The challenge
is, how do you allow customers to operate their own VLAN IDs inside of the Service
Provider’s network?

Layer 2 Networking | 75

www.it-ebooks.info

http://www.it-ebooks.info/

The solution is just as elegant as before. IEEE 802.1QinQ inserts an additional four-
octet shim before the IEEE 802.1Q header and after the source MAC address, as shown
in Figure 2-4.

Figure 2-4. IEEE 802.1QinQ frame format

The IEEE 802.1QinQ frame now has two four-octet shims. The first four-octet shim is
known as the Service Tag (S-TAG) or outer tag. The second four-octet shim is called
the Customer Tag (C-TAG) or inner tag.

The S-TAG has an EtherType of 0x88A8 to signify the presence of an inner tag and
indicate that the frame is IEEE 802.1QinQ. The S-TAG is used to provide separation
between different customers or Ethernet services.

The C-TAG has an EtherType of 0x8100 to indicate that the frame supports IEEE
802.1Q. The C-TAG represents the original customer VLAN ID.

For example, let’s assume there are two customers: Orange and Blue. Let’s say that
each of the customers internally use the following VLAN IDs:

Orange
The Orange customer uses VLAN ID 555.

Blue
The Blue customer uses VLAN ID 1234.

Now let’s change the point of view back to the Service Provider, who needs to assign
a unique VLAN ID for each customer; say, customer Orange VLAN ID 100 and cus-
tomer Blue VLAN ID 200.

What you end up with are the following frame formats:

Customer Orange
S-TAG = 100, C-TAG = 555

Customer Blue
S-TAG = 200, C-TAG = 1234

76 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

This allows Service Providers to provide basic Layer 2 Ethernet services to customers
while maintaining the original VLAN IDs set by the customer. However, there a few
drawbacks:

Maximum of 4,094 customers or S-TAGs
Because each customer would be mapped to an S-TAG, the maximum number of
customers supported would be the 4,094. You can calculate this scaling issue with
the following formula: customers = (2^12) – 2. Recall that the VID is 12 bits in
width and the values 0x000 and 0xFFF are reserved.

MAC learning
Because the customer destination and source MAC addresses are still present in
the IEEE 802.1QinQ frame, all of the equipment in the Service Provider network
must learn every host on every customer network. Obviously, this doesn’t scale
very well, as it could quickly reach the maximum number of MAC addresses sup-
ported on the system.

To be fair, a new standard IEEE 802.1AH (MAC-in-MAC) was created
to help alleviate the drawbacks listed previously. However, many Ser-
vice Providers have opted to move straight to MPLS and provide VPLS
instead.

Junos Interfaces
Before discussing bridging, a closer look at how Junos handles interfaces is required.
Bridging on the MX is fundamentally different than on the EX due to the types of
challenges being solved. As you move into the finer points of bridging and virtualization
within the MX, it’s critical that you have a clear understanding of how interfaces are
created and applied within bridge domains, routing instances, and other features.

Let’s take a look at a single, generic interface that supports multiple units, families, and
addresses in Figure 2-5.

Junos Interfaces | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-5. Junos interface hierarchy

Interface Device (IFD)
This represents the physical interface such as xe-0/0/0. This is the root of the hi-
erarchy and all other components are defined and branched off at this point. Fea-
tures such as maximum transmission unit (MTU), link speed, and IEEE 802.3ad
are configured at this level.

Interface Logical (IFL)
The IFL simply defines a unit number under the IFD such as xe-0/0/0.0 or
xe-0/0/0.1. Regardless of the configuration, at least a single unit is required. A
common example of multiple IFLs are VLAN ID when using IEEE 802.1Q.

Interface Family (IFF)
Each IFL needs an address family associated with it, as Junos supports multiple
protocols. Common examples include inet for IPv4, inet6 for IPv6, and iso when
configuring the IS-IS routing protocol.

Interface Address (IFA)
Finally, each IFF needs some sort of address depending on the type of IFF config-
ured. For example, if the IFF was configured as inet, an address might look like
192.168.1.1/24, whereas if the IFF was configured as inet6, an address might look
like 2001:DB8::1/128.

Let’s piece the puzzle together and see what it looks like by configuring the interface
xe-0/0/0 with an IPv6 address 2001:DB8::1/128, shown in Figure 2-6.

78 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-6. IFD, IFL, IFD, and IFA example set commands

Given the logical hierarchical structure of the interfaces within Junos, it’s easy to see
how each section is nicely laid out. This is a perfect example of taking a complex prob-
lem and breaking it down into simple building blocks.

Although the Junos interface structure is a good example, the same principles apply
throughout the entire design of Junos. It’s very natural and easy to understand because
it builds upon the good tenets of computer science: divide and conquer with a hier-
archical design. For example, enabling IEEE 802.1Q on interface xe-0/0/0 and sup-
porting two VLAN IDs with both IPv4 and IPv6 would look something like Figure 2-7.

Figure 2-7. IFD, IFL, IFF, and IFA hierarchy with IPv4 and IPv6 families

Junos Interfaces | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Interface Bridge Configuration
The MX supports two methods of configuring interfaces for bridging, and each method
has its own benefits and drawbacks. One method is geared for more control but requires
additional configuration, and the other method is geared toward ease of use but offers
less functionality. Both methods are covered in detail.

Service Provider Style
As mentioned previously in this chapter, Service Providers have very unique chal-
lenges in terms of providing both scale and Ethernet-based services to their cus-
tomers. Such a solution requires extreme customization, flexibility, and scale. The
drawback is that when crafting advanced bridging designs, the configuration be-
comes large. The obvious benefit is that all bridging features are available and can
be arranged in any shape and size to provide the perfect Ethernet-based services
for customers.

Enterprise Style
Typical Enterprise users only require traditional switching requirements. This
means a single Layer 2 network with multiple bridge domains. Because the re-
quirements are so simple and straightforward, the Juniper MX offers a simplified
and condensed method to configure Layer 2 interfaces.

Basic Comparison of Service Provider versus Enterprise Style
Let’s start with a very basic example and create two bridge domains and associate two
interfaces with each bridge domain, as shown in Figure 2-8, which would require the
interfaces to use VLAN tagging.

Figure 2-8. Two interfaces and two bridge domains

Service Provider Style

This style requires explicit configuration of each feature on the interface. Once the
interfaces are configured, each bridge domain needs to explicitly reference the interface
as well. Let’s review the interface requirements:

80 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

vlan-tagging
This option modifies the IFD to operate in IEEE 802.1Q mode, also known as a
trunk interface.

extended-vlan-bridge
This encapsulation is applied to the IFD to enable bridging on all IFLs.

unit
Each VLAN ID that needs to be bridged is required to be broken out into its own
IFL. It’s common practice to name the unit number the same as the VLAN ID it’s
associated with.

Armed with this new information, let’s take a look at how to configure two interfaces
for bridging across two bridge domains:

interfaces {
 xe-0/0/0 {
 vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 100 {
 vlan-id 100;
 }
 unit 200 {
 vlan-id 200;
 }
 }
 xe-0/0/1 {
 vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 100 {
 vlan-id 100;
 }
 unit 200 {
 vlan-id 200;
 }
 }
}
bridge-domains {
 VLAN-100 {
 vlan-id 100;
 interface xe-0/0/0.100;
 interface xe-0/0/1.100;
 }
 VLAN-200 {
 vlan-id 200;
 interface xe-0/0/0.200;
 interface xe-0/0/1.200;
 }
}

As you can see, each IFD has vlan-tagging enabled as well as the proper encapsulation,
as shown in Figure 2-9. Each VLAN ID is broken out into its own IFL.

Interface Bridge Configuration | 81

www.it-ebooks.info

http://www.it-ebooks.info/

The bridge domain configuration is very easy. Each bridge domain is given a name,
VLAN ID, and a list of interfaces.

Enterprise Style

This style is very straightforward and doesn’t require explicit configuration of every
feature, which reduces the amount of configuration required, but as you will see later
in this chapter, also limits the number of features this style is capable of.

Let’s review the interface requirements:

family
Each IFL requires family bridge to be able to bridge.

interface-mode
Each IFL requires the interface-mode to indicate whether the IFD should operate
as an access port (untagged) or trunk (IEEE 802.1Q).

vlan-id
Each IFL requires a vlan-id to specify which bridge it should be part of.

Sounds easy enough. Let’s see what this looks like compared to the previous Service
Provider style:

interfaces {
 xe-0/0/0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
 xe-0/0/1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}
bridge-domains {
 VLAN-100 {
 vlan-id 100;
 }
 VLAN-200 {
 vlan-id 200;
 }
}

That’s a pretty big difference. There are no more options for vlan-tagging, setting the
encapsulation type, or creating an IFL for each VLAN ID. Simply set the interface-
type to either access or trunk, set a vlan-id or vlan-id-list, and you’re good to go.

82 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Notice how the illustration in Figure 2-10 has changed to reflect the use of a single IFL
per IFD:

Figure 2-9. Service Provider style

Figure 2-10. Enterprise Style

The best part is that you no longer have to explicitly place interfaces in each bridge
domain. When you commit the configuration, Junos will automatically parse the in-
terface structure, identify any interfaces using the Enterprise-style configuration, and
place each interface into the appropriate bridge domain based off the vlan-id when
using IEEE 802.1Q and based-off the inner VLAN IDs when using IEEE 802.1QinQ.

Service Provider Interface Bridge Configuration
It’s very common for Service Providers to have multiple customers connected to the
same physical port on Provider Equipment (PE). Each customer has unique require-
ments that require additional features on the PE. For example, a customer may have
the following requirements:

• IEEE 802.1Q or 802.1QinQ VLAN mapping

• Class of Service (CoS) based on Layer 4 information, VLAN ID, or IEEE 802.1p

• Acceptable VLAN IDs used by the customer

• Input and output firewall filtering

The Service Provider-style interface configuration is a requirement when dealing with
IEEE 802.1Q and 802.1QinQ VLAN mapping or forcing IFLs into a particular bridge
domain without relying on Junos to make bridge domain determinations.

Service Provider Interface Bridge Configuration | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Tagging
There are several different types of VLAN tagging available with the Service Provider-
style interface configuration. When implementing VLAN tagging, you have the option
to support single tag, dual tag, or a combination of both on the same interface. It’s
required to explicitly define which VLAN tagging is needed on the interface, as there’s
no automation.

VLAN Tagging

The most basic type of VLAN tagging is the vanilla IEEE 802.1Q, enabled by applying
the option vlan-tagging to the IFD. Let’s take a look:

interfaces {
 ae5 {
 vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 100 {
 vlan-id 100;
 }
 unit 200 {
 vlan-id 200;
 }
 unit 300 {
 vlan-id 300;
 }
 }
}

In this example, interface ae5 will support IEEE 802.1Q for the VLAN IDs 100, 200,
and 300. It’s required that each VLAN ID has its own IFL unless you’re using a special
type of bridge domain that doesn’t have a VLAN ID. This is more of a corner case that
will be reviewed in depth later in this chapter.

Although vlan-tagging enables IEEE 802.1Q, it’s important to note that
vlan-tagging is really just parsing the outermost tag in the frame. For
example, if interface ae5.100 received a frame with a S-TAG of 100 and
C-TAG of 200, it would be valid and switched based off the S-TAG, as
it matches the vlan-id of interface ae5.100.

There will be times where it makes sense to accept a range of VLAN IDs,
but the configuration may be burdensome. The vlan-id-range option allows you to
specify a range of VLAN IDs and associate it to a single IFL:

interfaces {
 ae5 {
 stacked-vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 0 {
 vlan-id-range 100-500;

vlan-id-range.

84 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
}

The vlan-id-range can only be used with IFLs associated with bridge-
domain vlan-id all. Any other type of bridge domain doesn’t support
vlan-id-range.

If the goal is to reduce the size of the configuration, and you do not need
any advanced VLAN mapping, you might want to consider using the
Enterprise-style interface configuration (covered in detail later in the
chapter).

Stacked VLAN Tagging

The next logical progression is to support dual tags or IEEE 802.1QinQ. You’ll need
to use the stacked-vlan-tagging option on the IFD to enable this feature:

interfaces {

 ae5 {
 stacked-vlan-tagging;
 encapsulation extended-vlan-bridge;

 unit 1000 {
 vlan-tags outer 100 inner 1000;
 }

 unit 2000 {
 vlan-tags outer 100 inner 2000;
 }

 unit 3000 {
 vlan-tags outer 100 inner 3000;
 }
 }
}

A couple of things have changed from the previous example with the vanilla IEEE
802.1Q tagging. Notice that the keyword stacked-vlan-tagging is applied to the IFD;
the other big change is that each IFL is no longer using the vlan-id option, but instead
now uses the vlan-tags option. This allows the configuration of both an outer and
inner tag. The outer tag is often referred to as the S-TAG, and the inner tag is often
referred to as the C-TAG.

There is a subtle but very important note with regard to stacked-vlan-tagging: this
option isn’t required to bridge IEEE 802.1QinQ. As mentioned previously, the vlan-
tagging option has no problem bridging IEEE 802.1QinQ frames, but will only use the
S-TAG when making bridging decisions. The key difference is that stacked-vlan-tag
ging is required if you want to make bridging decisions based off the inner or C-TAG.

Service Provider Interface Bridge Configuration | 85

www.it-ebooks.info

http://www.it-ebooks.info/

To illustrate the point better, let’s expand the bridging requirements. For each C-TAG,
let’s apply different filtering and policing:

interfaces {
 ae5 {
 stacked-vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 1000 {
 vlan-tags outer 100 inner 1000;
 layer2-policer {
 input-policer 50M;
 }
 }
 unit 2000 {
 vlan-tags outer 100 inner 2000;
 family bridge {
 filter {
 input mark-ef;
 }
 }
 unit 3000 {
 vlan-tags outer 100 inner 3000;
 family bridge {
 filter {
 input mark-be;
 }
 }
 }
}

Now, this is more interesting. Although each frame will have identical S-TAGs (vlan-
id 100), each C-TAG will be subject to different filtering and policing.

• All traffic with a S-TAG of 100 and C-TAG of 1000 will be subject to a policer.

• All traffic with a S-TAG of 100 and C-TAG of 2000 will be subject to a filter that
puts all traffic into the EF forwarding class.

• And finally, all traffic with a S-TAG of 100 and C-TAG of 3000 will be subject to
a filter that puts all traffic into the BE forwarding class.

Flexible VLAN Tagging

The final VLAN tagging option combines all of the previous methods together. This
option is known as flexible-vlan-tagging and allows for both single tag (vlan-tag
ging) and dual tag (stacked-vlan-tagging) to be defined per IFL. Let’s see it in action:

interfaces {
 ae5 {
 flexible-vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 100 {
 vlan-id 100;
 }
 unit 200 {

86 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 vlan-tags outer 200 inner 2000;
 }
 unit 300 {
 vlan-id 300
 }
 }
}

This is pretty straightforward. IFL ae5.100 is bridging based off a single tag, IFL ae5.200
is bridging based off dual tags, and IFL ae5.300 is bridging off a single tag.

It’s recommended to use flexible-vlan-tagging whenever you need to tag frames. The
benefit is that it works with either method of tagging and as you modify and scale your
network in the future, you won’t run into annoying commit messages about vlan-
tags not being supported with vlan-tagging.

The other great benefit of flexible-vlan-tagging is the ability to configure IFLs that
have dual tags, but can accept a single tag or untagged frame:

interfaces {
 ae5 {
 flexible-vlan-tagging;
 encapsulation extended-vlan-bridge;
 native-vlan-id 100;
 unit 200 {
 vlan-tags outer 100 inner 200;
 }
 unit 300 {
 native-inner-vlan-id 300;
 vlan-tags outer 100 inner 300;
 }
 }
}

You can see in this example that ae5 has a native-vlan-id of 100, meaning that any IFL
can accept frames with a single tag and the IFL will assume that such frames have a S-
TAG of 100. For example, if a frame arrived with a single tag of 200, IFL ae5.200 would
accept it. Taking the example even further, if an untagged frame arrived on ae5, IFL
ae5.300 would accept it because it would assume that the S-TAG would be 100 and the
C-TAG would be 300. Notice the IFL ae5.300 has the option native-inner-vlan-id 300.

Encapsulation
To be able to support bridging, the Juniper MX requires that the proper encapsulation
be applied to the interface. At a high level, there’s support for Ethernet bridging, VLAN
Layer 2 bridging, cross-connects, and VPLS.

This book focuses only on Ethernet and VLAN bridging. Cross-connect
and VPLS encapsulations types are out of the scope of this book.

Service Provider Interface Bridge Configuration | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Ethernet Bridge

In order to create untagged interfaces, also referred to as access ports, the encapsulation
type of ethernet-bridge needs to be used. Access ports receive and transmit frames
without any IEEE 802.1Q and 802.1QinQ shims. The most common use case for un-
tagged interfaces is when you need to directly connect a host or end-device to the MX.
Let’s take a closer look:

interfaces {
 xe-0/0/0 {
 encapsulation ethernet-bridge;
 unit 0;
 }
}

Untagged interfaces are deceivingly simple. No need to define a bunch of IFLs or VLAN
IDs here. Set the encapsulation to ethernet-bridge, and you’re good to go. It’s almost
too easy. But wait a second—if you don’t need to define a VLAN ID, how do you put
an untagged interface into the right bridge domain? The answer lies within the bridge-
domain configuration:

bridge-domains {
 vlan-100 {
 domain-type bridge;
 vlan-id 100;
 interface xe-0/0/0.0;
 }
}

When you configure a bridge domain, simply associate the untagged interface into the
bridge domain. When using the Service Provider-style configuration, it’s always re-
quired that you manually place every single IFL you want to be bridged into a bridge
domain. This is covered in detail later in the chapter.

When using an IFD encapsulation of ethernet-bridge, it requires a sin-
gle IFL of 0 to be created. No other IFL number is valid.

Extended VLAN Bridge

When you’re configuring an interface for VLAN tagging, it doesn’t matter what type
of tagging you use because there’s a single encapsulation to handle them all: extended-
vlan-bridge. This encapsulation type has already been used many times in previous
examples. Let’s take a look at one of those previous example and review the encapsu-
lation type:

interfaces {
 ae5 {
 flexible-vlan-tagging;
 encapsulation extended-vlan-bridge;
 unit 100 {

88 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 vlan-id 100;
 }
 unit 200 {
 vlan-tags outer 200 inner 2000;
 }
 unit 300 {
 vlan-id 300;
 }
 }
}

When using the extended-vlan-bridge encapsulation type, it can only be applied to the
IFD. The added benefit when using extended-vlan-bridge is that it automatically ap-
plies the encapsulation vlan-bridge to all IFLs, so there’s no need to apply an encap-
sulation for every single IFL.

Flexible Ethernet Services

Providing Ethernet-based services to many customers on the same physical interface
creates some interesting challenges. Not only do the services need to be isolated, but
the type of service can vary from vanilla bridging, VPLS bridging, or a Layer 3 handoff.
The MX provides an IFD encapsulation called flexible-ethernet-services to provide
per IFL encapsulation, allowing each IFL to independently provide Ethernet-based
services. Consider this:

interfaces {
 ae5 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 100 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 unit 200 {
 encapsulation vlan-vpls;
 vlan-id 200;
 }
 unit 1000 {
 encapsulation vlan-bridge;
 vlan-tags outer 300 inner 1000;
 }
 unit 3000 {
 vlan-id 3000;
 family inet6 {
 address 2001:db8:1:3::0/127;
 }
 }
 }
}

This example is interesting because each IFL is providing a different type of Ethernet-
based service. Three of the IFLs are associated with bridge domains, whereas the last

Service Provider Interface Bridge Configuration | 89

www.it-ebooks.info

http://www.it-ebooks.info/

IFL is simply a routed interface associated with the inet6.0 route table. Flexible Ether-
net services is illustrated in Figure 2-11.

Figure 2-11. Illustration of Flexible Ethernet Services.

Let’s walk through each IFL in Figure 2-11 and review what is happening there.

IFL ae5.100
This is a vanilla IEEE 802.1Q configuration accepting frames with the vlan-id of
100. Notice the IFL has an encapsulation of vlan-bridge to accept frames with a
TPID of 0x8100. Without this IFL encapsulation, it wouldn’t be able to bridge.

IFL ae5.200
This is another vanilla IEEE 802.1Q configuration accepting frames with the vlan-
id of 200. The big difference here is that this IFL is part of a VPLS routing instance
and uses an IFL encapsulation of vlan-vpls.

IFL ae5.1000
This is a bit more advanced, but nothing you haven’t seen before. Allowing dual
tags is actually a function of the IFD option flexible-vlan-tagging, but it’s in-
cluded here to make the example more complete. This IFL also requires the en-
capsulation type of vlan-bridge so that it’s able to bridge.

90 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

IFL ae5.3000
This is the odd man out because no bridging is going on here at all, and thus no
IFL encapsulation is required. IEEE 802.1Q is being used on this IFL with a vlan-
id of 3000 and providing IPv6 services via family inet6.

An interesting side effect of flexible-ethernet-services is that you can combine this
with the native-vlan-id option to create an untagged interface as well. The only caveat
in creating a pure untagged port is that it can only contain a single IFL and the vlan-
id must match the native-vlan-id of the IFD:

interfaces {
 ae5 {
 flexible-vlan-tagging;
 native-vlan-id 100;
 encapsulation flexible-ethernet-services;
 unit 0 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 }
}

This configuration allows the interface ae5.0 to receive and transmit untagged frames.
As always, there is more than one way to solve a challenge in Junos, and no one way is
considered wrong.

Service Provider Bridge Domain Configuration
The final piece of configuring Service Provider-style bridging is associating interfaces
with bridge domains. It isn’t enough to simply refer to the vlan-id in the IFL configu-
ration. Each IFL needs to be included as part of a bridge domain in order to bridge
properly. Simply use the interface knob under the appropriate bridge domain to enable
bridging.

Let’s take a look at the previous Flexible Ethernet Services interface configuration and
place it into some bridge domains:

interfaces {
 ae5 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 100 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 unit 200 {
 encapsulation vlan-vpls;
 vlan-id 200;
 }
 unit 1000 {
 encapsulation vlan-bridge;
 vlan-tags outer 300 inner 1000;

Service Provider Interface Bridge Configuration | 91

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 unit 3000 {
 vlan-id 3000;
 family inet6 {
 address 2001:db8:1:3::0/127;
 }
 }
 }
}

There are three IFLs that need to be bridged: ae5.100, ae5.200, and ae5.1000. Let’s
create a bridge domain for each and install the IFLs into each respective bridge domain:

bridge-domains {
 bd-100 {
 vlan-id 100;
 interface ae5.100;
 }
 bd-200 {
 vlan-id 200;
 interface ae5.200;
 }
 bd-300 {
 vlan-id 300;
 interface ae5.1000;
 }
}

To make it more interesting let’s create an untagged interface and place it into bridge
domain bd-100:

interfaces {
 xe-0/0/0 {
 encapsulation ethernet-bridge;
 unit 0;
 }
}

Now that there’s an access port, you still have to install it into bridge domain bd-100:

bridge-domains {
 bd-100 {
 vlan-id 100;
 interface ae5.100;
 interface xe-0/0/0.0;
 }
 bd-200 {
 vlan-id 200;
 interface ae5.200;
 }
 bd-300 {
 vlan-id 300;
 interface ae5.1000;
 }
}

92 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Simple enough. Create an interface, configure the appropriate IFLs, set the vlan-id,
and install it into a bridge domain. Although simple, every good engineer wants to
know what’s happening behind the covers, so let’s inspect the interface for some more
clues:

dhanks@R2-RE0> show interfaces ae5.100
 Logical interface ae5.100 (Index 326) (SNMP ifIndex 574)
 Flags: SNMP-Traps 0x24004000 VLAN-Tag [0x8100.100] Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 981977 1 99889800 816
 Output: 974005 0 99347628 0
 Protocol bridge, MTU: 1518

There you go, and the most important bit is VLAN-Tag [0x8100.100]. You can see the
TPID and VLAN ID associated with this IFL.

What’s stopping you from placing interface ae5.100 into a bridge domain with a mis-
matched VLAN ID? Currently, ae5.100 is configured with a vlan-id of 100, so let’s
move it into a bridge domain with a vlan-id of 200:

bridge-domains {
 bd-100 {
 vlan-id 100;
 interface xe-0/0/0.0;
 }
 bd-200 {
 vlan-id 200;
 interface ae5.100;
 interface ae5.200;
 }
 bd-300 {
 vlan-id 300;
 interface ae5.300;
 }
}

This should be interesting. Let’s take another look at the interface:

dhanks@R2-RE0> show interfaces ae5.100
 Logical interface ae5.100 (Index 324) (SNMP ifIndex 729)
 Flags: SNMP-Traps 0x24004000 VLAN-Tag [0x8100.100] In(swap .200) Out(swap .100)
 Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 4 0 272 0
 Output: 38 0 2992 0
 Protocol bridge, MTU: 1518

Very interesting indeed! The VLAN-Tag has changed significantly. It’s now showing
0x8100.100 with some additional In and Out operations. This is called VLAN normal-
ization or rewriting, and it’s covered in more detail later in the chapter.

Service Provider Interface Bridge Configuration | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Enterprise Interface Bridge Configuration
Enterprise users generally have very basic requirements compared to Service Providers
customers. Instead of providing Ethernet-based services, they are consuming Ethernet-
based services. This means that each port is connected to a host or providing a trunk
to another switch.

Because of the simplicity of these requirements, it wouldn’t be fair to enforce the same
configuration. Instead, the Juniper MX provides an Enterprise-style interface configu-
ration that provides basic bridging functionality with a simplified configuration.

Some of the obvious drawbacks of a simplified configuration are the loss of advanced
features like VLAN normalization. But the big benefit is that you no longer have to
worry about the different VLAN tagging or encapsulation options. When you commit
a configuration, Junos will automatically walk the interface tree and look for IFLs using
the Enterprise-style interface configuration and determine what VLAN tagging and
encapsulation options are needed.

The icing on the cake is that you no longer have to specify which bridge domain each
interface belongs to; this happens automatically on commit, but it doesn’t actually
modify the configuration. Junos will walk the interface tree and inspect all of the En-
terprise-style IFLs, look and see which VLAN IDs have been configured, and automat-
ically place the IFLs into the matching bridging domain. Now you can see why advanced
VLAN normalization isn’t possible.

Interface Mode
The Enterprise-style interface configuration revolves around the interface-mode option
that places the IFL in either an access or trunk mode. For readers familiar with the
Juniper EX switches, these options will look very similar.

Access

To create an untagged interface, you need to use the interface-mode with the access
option, and you will also need to specify which VLAN the access port will be part of
using the vlan-id option. Let’s see what this looks like:

interfaces {
 xe-0/0/0 {
 unit 0 {
 family bridge {
 interface-mode access;
 vlan-id 100;
 }
 }
 }
}
bridge-domains {
 VLAN-100 {

94 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 vlan-id 100;
 }
}

Attention to detail is critical when setting the vlan-id in access mode.
It must be applied on the IFF under family bridge. If you try setting the
vlan-id on the IFL, you will get an error.

• CORRECT

set interfaces xe-0/0/0.0 family bridge vlan-id 100

• INCORRECT

set interfaces xe-0/0/0.0 vlan-id 100

You can see that this is much easier. No more encapsulations, VLAN tagging options,
or having to put the IFL into the appropriate bridge domain. The Enterprise style is
very straightforward and resembles the EX configuration. Table 2-2 is an Enterprise
cheat sheet for the MX versus the EX configuration style.

Table 2-2. MX versus EX Interface Configuration Cheat Sheet.

MX EX

family bridge family ethernet-switching

interface-mode port-mode

vlan-id vlan members

vlan-id-list vlan members

Trunk

The other option when using interface-mode is trunk mode, which creates an IEEE
802.1Q IFL. And there’s no need to fiddle with VLAN tagging options, as the
interface-mode will take care of this automatically:

interfaces {
 xe-0/0/0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-4094;
 }
 }
 }
}
bridge-domains {
 VLAN-100 {
 vlan-id 100;
 }
 VLAN-200 {
 vlan-id 200;

Enterprise Interface Bridge Configuration | 95

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

To define which bridge domains the trunk participates in, you need to use the vlan-
id-list option and specify the VLAN IDs. Also note there’s no need to include the IFL
in a specific bridge-domain, as Junos will do this automatically and match up IFLs and
bridge domains based off the vlan-id. In this specific example, the IFL xe-0/0/0.0 has
a vlan-id-list that includes all possible VLANs, so it will be part of both bridge do-
mains VLAN-100 and VLAN-200. It’s acceptable to have a single VLAN ID on the IFL.

IEEE 802.1QinQ

The Enterprise-style interface configuration also supports dual tags. The S-TAG is de-
fined with the IFL option vlan-id and the C-TAG is defined with the IFF option inner-
vlan-id-list. Let’s review:

interfaces {
 xe-2/1/1 {
 flexible-vlan-tagging;
 unit 0 {
 vlan-id 100;
 family bridge {
 interface-mode trunk;
 inner-vlan-id-list [1000 2000];
 }
 }
 }
}

One important thing to remember is that flexible-vlan-tagging is required when cre-
ating IFLs that support IEEE 802.1QinQ with the Enterprise-style interface configu-
ration. In this example, the S-TAG is VLAN ID 100, and the C-TAG supports either
VLAN ID 1000 or 2000.

When Junos walks the interface tree and determines which bridge domain to place the
IFL with the Enterprise-style interface configuration, all IFLs with dual tags will be
placed into a bridge domain based off of their C-TAG(s) or IFL vlan-id. In this example,
Junos would place xe-2/1/1.0 into the bridge domain that was configured with VLAN
ID 1000 and 2000.

IEEE 802.1Q and 802.1QinQ Combined

Using an IFD encapsulation of flexible-ethernet-services, you can combine IEEE
802.1Q and 802.1QinQ on a single interface.

interfaces {
 xe-1/0/7 {
 description "IEEE 802.1Q and 802.1QinQ";
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 100 {
 description "IEEE 802.1Q";

96 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 encapsulation vlan-bridge;
 family bridge {
 interface-mode trunk;
 vlan-id-list [100];
 }
 }
 unit 1000 {
 description "IEEE 802.1QinQ";
 encapsulation vlan-bridge;
 vlan-id 200;
 family bridge {
 interface-mode trunk;
 inner-vlan-id-list [1000 1001];
 }
 }
 }
}
bridge-domains {
 VLAN100 {
 vlan-id 100;
 }
 VLAN1000 {
 vlan-id 1000;
 }
 VLAN1001 {
 vlan-id 1001;
 }
}

In this example, there are two IFLs. The first unit 100 is configured for IEEE 802.1Q
and will be automatically placed into the bridge domain VLAN100. The second unit 1000
is configured for IEEE 802.1QinQ and will be automatically placed into bridge domains
VLAN1000 and VLAN1001.

dhanks@R1> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch VLAN100 100 xe-1/0/7.100
default-switch VLAN1000 1000 xe-1/0/7.1000
default-switch VLAN1001 1001 xe-1/0/7.1000

It’s always a bit tricky dealing with IEEE 802.1QinQ because you have to remember
that the IFL will automatically be placed into bridge domains based off the C-TAG(s)
and not the S-TAG of the IFL. In this example, you can see that xe-1/0/7.1000 is in two
bridge domains based off its C-TAGs of 1000 and 1001.

VLAN Rewrite
Imagine a scenario where a downstream device is using IEEE 802.1Q and you need to
integrate it into your existing network. The problem is that the VLAN ID being used
by the downstream device conflicts with an existing VLAN ID being in your network
and you’re unable to modify this device. The only device you have access to is the

Enterprise Interface Bridge Configuration | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Juniper MX. One of the solutions is to simply change the VLAN to something else. This
is referred to as VLAN rewriting or normalization.

The Enterprise-style interface configuration supports very basic VLAN rewriting on
trunk interfaces. The only caveat is that you can only rewrite the outer tag. Let’s create
a scenario where you need to rewrite VLAN ID 100 to 500 and vice versa:

interfaces {
 ae0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 500;
 vlan-rewrite {
 translate 100 500;
 }
 }
 }
 }
 ae1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 500;
 }
 }
 }
}

The keyword in the configuration is vlan-rewrite. You’re able to specify multiple
translate actions, but for this example you only need one. What you want to do is
accept frames with the VLAN ID of 100, then translate that into VLAN ID 500. The
opposite is true for frames that need to be transmitted on ae0.0: translate VLAN ID
500 to VLAN ID 100. An example of VLAN rewrite is illustrated in Figure 2-12.

Figure 2-12. Example of Enterprise-style VLAN rewrite on interface ae0.0.

98 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Keep in mind this will only be applied on a per-IFL basis and will not impact other IFDs
or IFLs. As mentioned previously, it’s possible to have multiple VLAN translations, so
let’s also translate VLAN ID 101 to VLAN ID 501 on top of our current configuration:

interfaces {
 ae0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 500;
 vlan-rewrite {
 translate 100 500;
 translate 101 501;
 }
 }
 }
 }
}

You can see it’s as simple as appending another translate operation to vlan-rewrite,
but sometimes it’s easy to get things mixed up, so keep in mind that the VLAN rewrite
format is always vlan-rewrite translate <from> <to>.

Service Provider VLAN Mapping
Now that you have a taste for some basic VLAN rewriting, let’s expand on the topic.
Sometimes changing just the S-TAG of a frame isn’t enough. Service Providers provide
Ethernet services to many customers, and each customer has their own unique set of
requirements. When you need to go beyond doing a simple VLAN rewrite, you have
to come back to the Service Provider-style configuration.

Stack Data Structure
Service Provider VLAN mapping allows you to modify the packet in many different
ways. Because IEEE 802.1Q and IEEE 802.1QinQ was designed to simply insert a four-
octet shim into the frame, you can leverage a computer science data structure called a
stack. A stack can best be characterized by “last in, first out.”

Figure 2-13 illustrates the basic concept of a stack. As items are added to the stack, they
are pushed further down. Items can only be removed from the top of the stack. Hence,
the last item in is the first out, and the first in is the last out.

There are three basic operations that are used with a stack data structure:

Push
This operation adds data to the top of the stack.

Pop
This operation will remove the top of the stack.

Service Provider VLAN Mapping | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Swap
This operation will swap/exchange the top of the stack with new data.

Figure 2-13. Basic stack data structure

When applying the stack data structure to VLAN mapping, the stack becomes the stack
of IEEE 802.1Q shims. As new tags are applied to the frame, the last tag to be added
will be at the top of the stack. The reverse is true when removing tags from the frame.
The last frame to be added will be the first tag to be removed, while the first tag that
was added will be the last to be removed.

Stack Operations
The MX supports eight different stack operations, which may seem a bit awkward
because a basic stack supports three operations: push, pop, and swap. The answer lies
with IEEE 802.1QinQ, as it’s very common to manipulate frames with two tags. Five
new operations have been added to allow the operator to manipulate two tags at once.

Let’s walk through each operation to understand how it manipulates the frame. As you
walk through each operation, keep in mind that the top of stack is considered the tag
and the bottom of the stack is considered the innermost tag in the frame, as noted in
Figure 2-14:

Figure 2-14. Illustrating the IEEE 802.1Q stack in an Ethernet frame

push
This will simply push a new tag onto the frame. This tag will become the new outer
tag, as shown in Figure 2-15.

100 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-15. Push operation

pop
This will remove the outermost tag, as shown in Figure 2-16.

Figure 2-16. Pop operation

swap
This will swap/exchange the outermost tag with a new user-specified tag, as in
Figure 2-17.

Figure 2-17. Swap operation

push-push
This operation is very similar to push, except that this will push two user-specified
tags to the frame, as shown in Figure 2-18.

Service Provider VLAN Mapping | 101

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-18. Push-push operation

pop-pop
This will remove the two outermost tags on the frame, as in Figure 2-19.

Figure 2-19. Pop-pop operation

swap-swap
This will swap the two outermost tags with user-specified tags, as in Figure 2-20.

Figure 2-20. Swap-swap operation

swap-push
This is a tricky one but only at first. It’s actually two operations combined as one.
The first operation is to swap/exchange the outermost tag with a user-specified
tag, and the next operation is to push a new user-specified tag to the frame, as
shown in Figure 2-21.

102 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-21. Swap-push operation

pop-swap
Here’s another tricky one. This operation is two operations combined as one. The
first operation removed the outermost tag from the frame, and the second opera-
tion is to swap/exchange the outer most tag with a user-specified tag, as shown in
Figure 2-22.

Figure 2-22. Pop-swap operation

This may all seem a bit daunting, due to the new stack operations and operating on
two tags at once, but there is a method to the madness. The key to any complex problem
is to break it down into simple building blocks, and the simplest form of advanced
VLAN mapping is to fully understand how each stack operation modifies a packet and
nothing more. The pieces will then be put back together again so you can see the sol-
ution come full circle.

Stack Operations Map
Let’s understand how these operations can be used in conjunction with each other to
perform interesting functions. Each function is designed to be paired with another.

Service Provider VLAN Mapping | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Even more interesting is how the functionality changes depending on the traffic flow.
Let’s take a look and see how these stack operations can be paired together in different
directions, first by reviewing Figure 2-23.

Figure 2-23. Stack operations

You can see that each stack operation is designed to be paired up with another stack
operation. For example, if you push something onto a stack, the opposite action would
be to pop it. Push and pop are considered complementary pairs. There are two types
of VLAN maps that deal with the direction of the frame: input-vlan-map and output-
vlan-map.

Think of the two functions input-vlan-map and output-vlan-map as invertible functions,
as shown in Figure 2-24, where:

Figure 2-24. Invertible function

This is only true if output-vlan-map isn’t given any explicit arguments. The default
behavior for the function output-vlan-map is to use the vlan-id or vlan-tags of the
corresponding IFL.

input-vlan-map

The input-vlan-map is a function that’s applied to an IFL to perform VLAN mapping
to ingress frames. There are five options that can be applied to input-vlan-map:

104 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Stack operation
This is the stack operation to be applied to the ingress frame: pop, swap, push, push-
push, swap-push, swap-swap, pop-swap, or pop-pop.

tag-protocol-id
This is an optional argument that can be used to set the TPID of the outer tag. For
example, tag-protocol-id 0x9100 and vlan-id 200 would effectively create a
0x9100.200 tag.

vlan-id
This is the user-specified VLAN ID used for the outer tag.

inner-tag-protocol-id
This argument is very similar to tag-protocol-id. The difference is that this sets
the TPID for the inner tag. This is required when using the stack operation swap-
push.

inner-vlan-id
This argument is the user-specified inner VLAN ID and is required when using the
stack operations push-push, swap-push, and swap-swap.

output-vlan-map

The output-vlan-map is also a function that’s applied to an IFL. The difference is that
this function is used to apply VLAN mapping to egress frames.

Stack operation
This is the stack operation to be applied to the egress frame: pop, swap, push, push-
push, swap-push, swap-swap, pop-swap, or pop-pop. This must be complementary to
the input-vlan-map stack operation. Please refer to Figure 2-23 to see which stack
operations can be used with each other.

tag-protocol-id
This is an optional argument that can be used to set the TPID of the outer tag. If
no argument is given, the output-vlan-map will use the TPID of the IFL to which
it’s applied.

vlan-id
This is the user-specified VLAN ID used for the outer tag. If no argument is given,
the output-vlan-map will use the vlan-id of the IFL to which it’s applied.

inner-tag-protocol-id
This is another optional argument that is very similar to tag-protocol-id. The
difference is that this sets the TPID for the inner tag. If this argument is omitted,
the TPID of the IFL will be used.

inner-vlan-id
This argument is the user-specified inner VLAN ID and is required when using the
stack operations push-push, swap-push, and swap-swap. Again, if no inner-vlan-id

Service Provider VLAN Mapping | 105

www.it-ebooks.info

http://www.it-ebooks.info/

is specified, output-vlan-map will use the vlan-tags inner on the IFL to which it’s
applied.

There is a lot of confusion regarding the output-vlan-map function. It’s
functionally different from input-vlan-map and doesn’t require you to
specify a vlan-id or inner-vlan-id. The default is to use the vlan-id or
vlan-tags of the IFL.

The default behavior guarantees that the output-vlan-map will translate
the egress frame back into its original form. The only reason you should
ever specify a vlan-id or inner-vlan-id in output-vlan-map is in a corner
case where you require the egress frame to have a different VLAN ID
than received.

Tag Count
With many different stack operations available, it becomes difficult to keep track of
how many tags were modified and which frames can be used with which stack opera-
tions. Table 2-3 should assist you in this case. For example, it doesn’t make any sense
to use the pop stack operation on an untagged frame.

Table 2-3. Incoming frame: Change in number of tags per stack operation

Operation Untagged Single Tag Two Tags Change in Number of Tags

pop no yes yes −1

push yes1 yes yes +1

swap no yes yes 0

push-push yes1 yes yes +2

swap-push no yes yes +1

swap-swap no no yes 0

pop-swap no no yes −1

pop-pop no no yes −2

All of the stack operations are available when there’s an incoming frame with two tags.
When an ingress frame with a single tag is received, there’s a small subset of stack
operations that aren’t allowed because they require at least two tags on a frame.

1The rewrite operation isn’t supported on untagged IFLs. However this
will work on tagged interfaces using a native-vlan-id and receiving an
untagged frame.

The MX doesn’t care if the incoming frame has more than two tags. It’s completely
possible to use all of these stack operations on an Ethernet frame with three tags. The

106 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

stack operations will continue to work as advertised and modify the first and second
tags, but not touch the third tag—unless you force a scenario where you either push
or pop a third tag manually.

Bridge Domain Requirements
Service Provider-style VLAN mapping can only be used with a default bridge-domain.
A default bridge domain doesn’t specify any type of vlan-id or vlan-tags. All of the
VLAN ID mappings are required to be performed manually per IFL using input-vlan-
map and output-vlan-map.

Let’s take a look at what a default bridge domain looks like with only two interfaces:

bridge-domains {
 domain-type bridge;
 interface ae0.100;
 interfaces ae1.100;
}

It’s so simple, it’s actually a bit deceiving and counterintuitive. Network engineers are
trained to always include a VLAN ID when creating bridge domains and VLANs—it
just seems so natural.

But the secret here is that when you define a vlan-id or vlan-tags inside of a bridge-
domain, it’s actually just a macro for creating automatic VLAN mappings. Therefore,
when you use a bridge-domain with a defined vlan-id, it’s simply a VLAN mapping
macro to normalize all VLAN IDs to that specific VLAN ID. For example, if you create
a bridge-domain called APPLICATION with a vlan-id of 100, and include an interface
of ae.200 with a vlan-id of 200, all frames on interface ae.200 will be swapped with
VLAN ID 100.

This may be a bit confusing at first, but it’s covered in depth later in the chapter. For
right now, just remember that when using Service Provider-style VLAN mapping, it’s
required to use a default bridge domain without defining a vlan-id or vlan-tags.

Example: Push and Pop
Let’s start with one of the most commonly used stack operations: push and pop. When
you want to perform IEEE 802.1QinQ and add a S-TAG, it’s very easy to push an S-
TAG onto an ingress frame from the customer edge (CE) and pop the S-TAG when
sending egress frames destined to the CE, as shown in Figure 2-25.

Service Provider VLAN Mapping | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-25. Example of ingress IEEE 802.1QinQ push operation

Figure 2-26. Example of egress IEEE 802.1QinQ pop operation

In this example, the MX receives an ingress frame on interface ae0.0, which has a single
C-TAG. Looking at the input-vlan-map, you can see that the stack operation is pushing
an S-TAG with a vlan-id of 600. As the frame is bridged and egresses interface ae1.0,
it now has both a S-TAG and C-TAG.

What happens when a frame egresses interface ae0.0? The opposite is true. The output-
vlan-map that’s associated with ae0.0 will be applied to any egress frames. Take a closer
took by studying Figure 2-26.

Notice that the original frame has both a S-TAG and C-TAG. This frame is destined
back to the CE so it will have to egress the interface ae0.0. Because there’s an output-

108 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

vlan-map associated with ae0.0, the frame is subject to the pop operation. This will
remove the outermost frame, which is the S-TAG. When the CE receives the frame, it
now only contains the original C-TAG.

Example: Swap-Push and Pop-Swap
Now let’s take a look at two of the more advanced stack operations: swap-push and
pop-swap. Remember that at a high level, the only purpose of input-vlan-map and
output-vlan-map is to apply a consistent and reversible VLAN map to ingress and egress
frames.

In this example, our requirements are:

Ingress

1. Receive IEEE 802.1Q frames with a single tag with a VLAN ID of 2.

2. Swap VLAN ID 2 with VLAN ID 4.

3. Push an outer tag with VLAN ID 5.

4. Transmit IEEE 802.1QinQ frames with an outer VLAN ID of 5 and inner
VLAN ID of 4.

Egress

1. Receive IEEE 802.1QinQ frames with an outer VLAN ID of 5 and inner VLAN
ID of 4.

2. Pop the outer tag.

3. Swap VLAN ID 4 with VLAN ID 2.

4. Transmit IEEE 802.1Q frames with a single tag with VLAN ID of 2.

Let’s begin by creating the input-vlan-map function. Because you’re taking an ingress
frame with a single tag and turning it into a frame with a dual tag, you’ll need to define
the inner TPID. In this example, let’s use 0x8100. You also need to specify the inner
and outer VLAN IDs. The outer-vlan-map function is very easy: Simply use pop-swap
without any additional arguments, and because no arguments are specified, outer-
vlan-map will use the ae5.2 vlan-id as the default.

interfaces {
 ae5 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 2 {
 encapsulation vlan-bridge;
 vlan-id 2;
 input-vlan-map {
 swap-push;
 inner-tag-protocol-id 0x8100;
 vlan-id 5;
 inner-vlan-id 4;
 }

Service Provider VLAN Mapping | 109

www.it-ebooks.info

http://www.it-ebooks.info/

 output-vlan-map pop-swap;
 }
 }
}

Now let’s take a look at how the packet is transformed as it ingresses and egresses
interface ae5.2, as shown in Figure 2-27.

Figure 2-27. Ingress swap-push

As you can see, the packet ingresses interface ae5.2, and the outer tag is swapped with
VLAN ID 4. Next push VLAN ID 5, which becomes the new outer tag while VLAN ID
becomes the new inner tag. Set the inner TPID to 0x8100.

Now let’s review the VLAN mapping in the opposite direction in Figure 2-28.

110 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-28. Egress pop-swap

The interface ae5.2 receives the dual tagged frame and pops the outer tag. Next swap
the remaining tag with interface ae5.2 vlan-id of 2.

As engineers, we always trust, but we also need to verify. Let’s take a look at the interface
ae5.2 to confirm the VLAN mapping is working as expected:

1 dhanks@R2-RE0> show interfaces ae5.2
2 Logical interface ae5.2 (Index 345) (SNMP ifIndex 582)
3 Flags: SNMP-Traps 0x24004000
VLAN-Tag [0x8100.2] In(swap-push .5 0x0000.4) Out(pop-swap .2)
 Encapsulation: VLAN-Bridge
4 Statistics Packets pps Bytes bps
5 Bundle:
6 Input : 1293839 424 131971384 346792
7 Output: 1293838 424 131971350 346792
8 Protocol bridge, MTU: 1522

Notice on line 3 there are three important things: VLAN-Tag, In, and Out. The VLAN-Tag
tells us exactly how the IFL is configured to receive ingress frames. The In and Out are
the input-vlan-map and output-vlan-map functions. As expected, you can see that
input-vlan-map is using swap-push with the VLAN IDs 5 and 4. Likewise, the output-
vlan-map is using pop-swap with the IFL’s vlan-id of 2.

Bridge Domains
Wow. Who would have guessed that bridge domains would be so far down into the
chapter? There was a lot of fundamental material that needed to be covered before
encountering bridge domains. First, take a look at Figure 2-29.

Bridge Domains | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-29. Learning hierarchy of Juniper MX bridging

Because the MX allows for advanced customization of bridging, it was best to start at
the bottom and work up through interface hierarchy, configuration styles, and finally
VLAN mapping.

Let’s get into it. What’s a bridge domain?

A bridge domain is simply a set of IFLs that share the same flooding, filtering, and
forwarding characteristics. A bridge domain and broadcast domain are synonymous in
definition and can be used interchangeably with each other.

Learning Domain
Bridge domains require a method to learn MAC addresses. This is done via a learning
domain. A learning domain is simply a MAC forwarding database. Bridge domains by
default have a single learning domain, but it’s possible to have multiple learning do-
mains per bridge domain, as shown in Figure 2-30.

Figure 2-30. Illustration of Single Learning Domain and Multiple Learning Domains per Bridge
Domain

112 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Single Learning Domain

A single learning domain per bridge domain is the system default. When a bridge do-
main is configured with a single learning domain, all MAC addresses learned are asso-
ciated with the learning domain attached to the bridge domain.

The most common use case is creating a standard, traditional switch with no qualified
MAC learning. Within the bridge domain, only unique MAC addresses can exist as
there is a single learning domain.

Let’s take a look at how to create a default bridge domain with a single learning domain,
using VLAN IDs of 100 and 200 and naming them appropriately:

dhanks@R2-RE0> show configuration bridge-domains
VLAN100 {
 vlan-id 100;
 routing-interface irb.100;
}
VLAN200 {
 vlan-id 200;
 routing-interface irb.200;
}

The bridge domains are created under the bridge-domain hierarchy, calling our bridge
domains VLAN100 and VLAN200. Now let’s take a look at a couple of show commands
and see the bridge domain to learning domain relationship:

dhanks@R2-RE0> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch VLAN100 100 ae0.0
 ae1.0
 ae2.0
default-switch VLAN200 200 ae0.0
 ae1.0
 ae2.0

As expected, the bridge domains under the default-switch routing instance with a
VLAN ID of 100 and 200. Let’s take a look at the MAC database for this bridge domain.

{master}
dhanks@R2-RE0> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : VLAN100, VLAN : 100
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D ae0.0
 5c:5e:ab:72:c0:80 D ae2.0
 5c:5e:ab:72:c0:82 D ae2.0

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned

Bridge Domains | 113

www.it-ebooks.info

http://www.it-ebooks.info/

 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : VLAN200, VLAN : 200
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D ae1.0
 5c:5e:ab:72:c0:80 D ae2.0
 5c:5e:ab:72:c0:82 D ae2.0

Again, you can see that there’s a single learning domain attached to each bridge domain.
It’s interesting to note that the two learning domains contain the exact same informa-
tion.

Multiple Learning Domains

Having more than one learning domain is a bit of a corner case. The primary use case
for multiple learning domains is for Service Providers to tunnel customer VLANs. The
big advantage is that multiple learning domains allows for qualified MAC address
learning. For example, the same MAC address can exist in multiple learning domains
at the same time.

Let’s take a look how to configure multiple learning domains. It’s very straightforward
and requires a single option vlan-id all:

{master}[edit]
dhanks@R1-RE0# show bridge-domains
ALL {
 vlan-id all;
 interface ae0.100;
 interface ae0.200;
 interface ae1.100;
 interface ae1.200;
 interface ae2.100;
 interface ae2.200;
}

In order to create a bridge domain with multiple learning domains, use the vlan-id
all option. Let’s take a look at the MAC table for bridge domain ALL and look for a
single bridge domain with multiple learning domains:

{master}
dhanks@R1-RE0> show bridge mac-table bridge-domain ALL

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : ALL, VLAN : 100
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D ae1.100
 5c:5e:ab:72:c0:80 D ae2.100

114 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : ALL, VLAN : 200
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D ae0.200
 5c:5e:ab:72:c0:80 D ae2.200

In this specific example, the bridge domain ALL has two learning domains. There’s a
learning domain for each VLAN configured on the IFLs in the bridge domain. The
example is only using VLAN ID 100 and 200, so there are two learning domains.

The interesting thing to note is that you can see the qualified MAC learning in action.
The MAC address 5c:5e:ab:6c:da:80 exists in both learning domains associated with
different IFLs and VLANs IDs, but note there’s only a single bridge domain.

Bridge Domain Modes
Bridge domains have six different modes available: default, none, all, range, single, and
dual, as listed in Table 2-4. Bridge domain modes were introduced to the MX to provide
shortcuts so that it’s no longer required use input-vlan-map and output-vlan-map com-
mands on every single IFL in the bridge-domain. Bridge-domain modes are the easiest
way to provide VLAN normalization through automatic VLAN mapping.

Table 2-4. Bridge-Domain Modes.

Mode
Learning
Domains

Bridge-
Domains

Bridge-
Domain
Tags IRB

Enter-
prise
Style
IFLs

Service
Pro-
vider
Style
IFLs

VLAN
Mapping

Bridge-
Domain
Limit Per
Routing
Instance

Default 1 1 N/A No No Yes Manual Unlimited

None 1 1 0 Yes No Yes Automatic Unlimited

All 4094 1 1 No No Yes Automatic 1

List Na Na 1 No Yes No Automatic 1

Single 1 1 1 Yes Yes Yes Automatic 4094

Dual 1 1 2 Yes No Yes Automatic 16.7M
a When a bridge domain mode is set to be in a list, the number of bridge domain and learning domains depend on how many VLANs there

are in the list. For example, if the list is bridge-domain vlan-id-list [1-10] there would be 10 bridge domains and 10
learning domains. The ratio of bridge domains to learning domains will always be 1:1.

Bridge Domains | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Each of the bridge domain modes provides a different type of VLAN
mapping automation. This makes the process of supporting Ethernet-
based services seamless and simple to configure. For example, what if
you had to deliver a Layer 2 network to three different locations, each
requiring a different VLAN ID? By using bridge domain modes, you’re
able to deliver this type of service by simply configuring the IFLs as
necessary and including them into a bridge domain. The bridge domain
mode takes care of all calculating VLAN mapping, stack operations, and
normalization.

Default

The default mode behaves just like the M/T Series and requires that you configure
input-vlan-map and output-vlan-map commands on every single IFL. There is no VLAN
mapping automation, and it is required that you define each stack operation manually.
This mode is used when you require advanced VLAN mapping that isn’t available
through automatic VLAN mapping functions used with other bridge domain modes
addressed later in the chapter.

None

The bridge domain mode of none is very interesting because it strips the frame of any
tags inside of the bridge-domain. There’s no requirement to use the same VLAN ID on
the IFLs that make up a bridge domain mode of none. There’s also no restriction on
mixing IFLs with single, dual, or no tags at all. This can make for a very creative Layer
2 network like that shown in Figure 2-31.

Figure 2-31. Bridge-Domain vlan-id none.

This bridge domain contains three IFLs, all of which differ in the number of tags as well
as VLAN IDs. As frames are bridged across this network, each IFL will automatically
pop tags so that each frame is stripped of all tags entering and leaving the bridge domain.

116 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

A bridge domain in the vlan-id none mode cannot support IFLs using
the Enterprise-style interface configuration. It’s required to use the Ser-
vice Provider-style interface configuration.

Regardless of the VLAN ID and the number of tags on an IFL, the bridge domain mode
none only has a single learning domain. When interface xe-0/0/0.0 sends Broadcast,
Unknown Unicast, or Multicast (BUM), it will be sent out to every other IFL within
the bridge domain. Once the traffic reaches every other IFL in the bridge domain, each
IFL will perform any automatic VLAN mapping to send the traffic out of the bridge
domain. Because there is a single learning domain, there can be no overlapping MAC
addresses within the bridge domain.

Let’s review the configuration:

interfaces {
 xe-0/0/0 {
 encapsulation ethernet-bridge;
 unit 0;
 }
 xe-1/0/0 {
 encapsulation flexible-ethernet-services;
 flexible-vlan-tagging;
 unit 200 {
 encapsulation vlan-bridge;
 vlan-id 200;
 }
 }
 xe-2/0/0 {
 encapsulation flexible-ethernet-services;
 flexible-vlan-tagging;
 unit 300 {
 encapsulation vlan-bridge;
 vlan-tags outer 300 inner 400;
 }
 }
}
bridge-domains {
 BD_NONE {
 vlan-id none;
 interface xe-0/0/0.0;
 interface xe-1/0/0.200;
 interface xe-2/0/0.300;
 }
}

As mentioned previously, bridge domain modes automatically apply VLAN mapping
to the IFLs. Each IFL has its own automatic VLAN mapping depending on how it’s
configured, as listed in Table 2-5.

Bridge Domains | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-5. Bridge-Domain Mode None Automatic VLAN Mapping.

IFL input-vlan-map output-vlan-map

xe-0/0/0.0 none none

xe-1/0/0.200 pop push

xe-2/0/0.300 pop-pop push-push

You can verify this automatic VLAN mapping with the show interfaces command for
each IFL. Let’s take a look at xe-1/0/0.200 and xe-2/0/0.300:

dhanks@R1-RE0> show interfaces xe-1/0/0.200
 Logical interface xe-1/0/01.200 (Index 354) (SNMP ifIndex 5560)
 Flags: SNMP-Traps 0x24004000 VLAN-Tag [0x8100.200] In(pop) Out(push 0x0000.200)
 Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 4 0 244 0
 Output: 0 0 0 0
 Protocol bridge, MTU: 1522

You can see that xe-1/0/0.200 is accepting ingress frames with the VLAN ID of 200.
The automatic In function is using the pop operation to clear the single tag so that the
frame becomes untagged as it’s switched through the bridge. The automatic Out func-
tion takes incoming untagged frames and pushes the VLAN ID 200.

Let’s verify interface xe-2/0/0.300:

dhanks@R1-RE0> show interfaces xe-2/0/0.300
 Logical interface xe-2/0/0.300 (Index 353) (SNMP ifIndex 5602)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.300 0x8100.400] \ In(pop-pop)
 Out(push-push 0x0000.300 0x0000.400)
 Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 0 0 0 0
 Output: 0 0 0 0
 Protocol bridge, MTU: 1522

You can see that this IFL has a bit more happening because of the dual tags. When it
receives ingress frames, it needs to perform a pop-pop to remove both tags before being
bridged. Egress frames need to have the dual tags applied with a push-push so the
downstream device gets the appropriate tags.

All

So the opposite of bridge domain mode of none would be all, right? Not quite. The
interesting thing about bridge domain mode all is that there’s a single bridge domain
but 4,094 learning domains.

118 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-32. Single Bridge-Domain with Multiple Learning Domains.

The astute reader will see that the number of learning domains is mapped to each VLAN
ID, enabling qualified MAC learning on a per-VLAN ID basis. This is a perfect for
tunneling customer VLANs with a single command set bridge-domain BD-ALL vlan-
id all.

A bridge domain in the all mode cannot support IFLs using the Enter-
prise-style interface configuration. It’s required to use the Service Pro-
vider-style interface configuration.

The automatic VLAN mapping is a bit hybrid for the bridge domain mode all. Frames
entering and leaving the bridge domain will have a single VLAN tag that corresponds
to the vlan-id on an IFL with a single tag and the vlan-tags inner on an IFL with dual
tags. So, in summary, only VLAN mapping automation happens for frames with dual
tags. The outer tag is popped and uses the inner tag for bridging. In order for the frame
to be switched, the egress IFL needs to have a matching VLAN ID.

Figure 2-33. Bridge-Domain Mode vlan-id all.

Although there are 4,094 learning domains with qualified MAC learning, a single bridge
domain still exists. Because of the single bridge domain, all ingress BUM frames re-

Bridge Domains | 119

www.it-ebooks.info

http://www.it-ebooks.info/

ceived on a source IFL must be sent to all other destination IFLs in the bridge-
domain, even if the destination IFL doesn’t have a matching vlan-id. What happens is
that the destination IFL receives the frame, inspects the vlan-id, and if there’s a match
it will bridge the frame. If the vlan-id doesn’t match the destination IFL, it’s simply
discarded.

Let’s take the example of ae1.100 being the source IFL with a vlan-id of 100. When
ingress BUM frames on ae1.100 are received, they are sent to all destination IFLs, which
include ae0.0 and xe-2/1/1.300. IFL ae0.0 inspects the ingress frame and sees that it
has a vlan-id of 100. Because ae0.0 has a vlan-id-range 1-4094, it considers the frame
a match and accepts and bridges the frame. IFL xe-2/1/1.300 also receives the ingress
frame with a vlan-id of 100. Because xe-2/1/1.300 doesn’t have a matching vlan-id,
it simply discards the frame.

The astute reader should realize that if you have bridge-domain vlan-id all with a lot
of IFLs that do not have matching VLAN IDs or ranges, it becomes a very inefficient
way to bridge traffic. Take, for example, bridge-domain vlan-id all with 100 IFLs.
Suppose that only two of the IFLs accepted frames with a vlan-id of 100. What happens
is that when an ingress BUM frame with a vlan-id of 100 enters the bridge domain, it
has to be flooded to the other 99 IFLs. This is because although there are 4,094 learning
domains, there’s still only a single bridge domain, so the traffic has to be flooded
throughout the bridge domain.

Because bridge-domain vlan-id all has 4,094 learning domains and a
single bridge domain, all ingress BUM frames have to be flooded to all
IFLs within the bridge domain, regardless if the destination IFL can
accept the frame or not.

It’s recommended that if you use bridge-domain vlan-id all you only
include IFLs with matching VLAN IDs. This prevents unnecessary
flooding across the SCB. For example, use matching IFL configurations
such as vlan-id-range 300-400 throughout the bridge domain.

Let’s take a look at how to configure this type of bridge domain:

interfaces {
 xe-2/1/1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 300 {
 encapsulation vlan-bridge;
 vlan-tags outer 300 inner 400;
 }
 }
 ae0 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 0 {
 encapsulation vlan-bridge;
 vlan-id-range 1-4094;

120 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 ae1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 100 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 }
}
bridge-domains {
 BD_ALL {
 vlan-id all;
 interface ae1.100;
 interface ae0.0;
 interface xe-2/1/1.300;
 }
}

This example is interesting because of the diversity of the IFLs. For example,
xe-2/1/1.300 has dual tags, ae0.0 has a range of tags, and ae1.100 has a single tag. The
only automatic VLAM mapping that needs to happen is with the dual tag IFL
xe-2/1/1.300. Recall that when using bridge-domain vlan-id all, the VLAN ID cor-
responds to the VLAN ID on each IFL, except when IFLs with two tags. In the case
with an IFL with dual tags, you simply pop the outer label and bridge the inner. Let’s
take a closer look at each interface:

{master}
dhanks@R1-RE0> show interfaces xe-2/1/1.300
 Logical interface xe-2/1/1.300 (Index 345) (SNMP ifIndex 5605)
 Flags: SNMP-Traps 0x20004000
VLAN-Tag [0x8100.300 0x8100.400] In(pop) Out(push 0x8100.300)
 Encapsulation: VLAN-Bridge
 Input packets : 0
 Output packets: 123
 Protocol bridge, MTU: 1522

Notice that the xe-2/1/1.300 has two tags, but ingress frames are subject to pop and
egress frames are subject to a push.

{master}
dhanks@R1-RE0> show interfaces ae1.100
 Logical interface ae1.100 (Index 343) (SNMP ifIndex 5561)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.100] Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 2 0 124 0
 Output: 292 0 19844 272
 Protocol bridge, MTU: 1522

There’s no automatic VLAN mapping for IFL ae1.100. As you can see, it’s simply
0x8100.100.

Bridge Domains | 121

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@R1-RE0> show interfaces ae0.0
 Logical interface ae0.0 (Index 346) (SNMP ifIndex 5469)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.1-4094] Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 7921 1 539414 544
 Output: 86 0 6662 0
 Protocol bridge, MTU: 1522

Finally, with IFL ae0.0, you can see that it’s also not performing any automatic VLAN
mapping. It simply bridges all VLAN IDs between 1 and 4094.

The IFL option vlan-id-range can only be used with bridge-domain
vlan-id all.

It’s an interesting thing—a single bridge domain with 4,094 learning domains. How
can this be verified? The best method is to view the MAC table of the bridge domain
using the show bridge mac-table command:

{master}
dhanks@R1-RE0> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD_ALL, VLAN : 100
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D ae1.100
 5c:5e:ab:72:c0:80 D ae0.0
 5c:5e:ab:72:c0:82 D ae0.0

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD_ALL, VLAN : 200
 MAC MAC Logical
 address flags interface
 5c:5e:ab:72:c0:82 D ae0.0

Notice the bridge-domain BD_ALL has learning domains active in this example. In the
authors’ test bed, there is traffic going across VLAN ID 100 and 200, thus there are two
active learning domains. That qualified MAC learning is taking place can also be veri-
fied because the MAC address 5c:5e:ab:72:c0:82 exists in both learning domains.

122 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

List

This bridge mode is the most recent mode added to the family of bridge domain modes
and can be functionally identical to bridge-domain vlan-id all. The major difference
is that bridge-domain vlan-id-list creates a bridge domain and learning domain for
every VLAN specified. For example, bridge-domain vlan-id-list 1-10 would create
10 bridge domains and 10 learning domains, whereas bridge-domain vlan-id-list
1-4094 would create 4,094 bridge domains and 4,094 learning domains. The ratio of
bridge domains to learning domains is always 1:1, as shown in Figure 2-34.

Figure 2-34. Bridge-Domain Mode List: Bridge-Domain to Learning Domain Ratio is Always 1:1.

The new bridge-domain vlan-id-list mode was created to complement the bridge-
domain vlan-id all mode. The key benefit is that you no longer have to worry about
making sure that the IFL’s vlan-id is matched up to prevent unnecessary flooding across
the SCB. When you create bridge-domain vlan-id-list, Junos treats this as a shortcut
to create N bridge domains and learning domains. Let’s take a look at an example:

interfaces {
 xe-2/1/1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 300;
 }
 }
 }
 ae0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-4094;
 }
 }
 }
 ae1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-4094;
 }
 }
 }
}
bridge-domains {
 BD_LIST {

Bridge Domains | 123

www.it-ebooks.info

http://www.it-ebooks.info/

 vlan-id-list 1-4094;
 }
}

Notice that when creating a bridge-domain vlan-id-list, there isn’t a list of interfaces.
This is because bridge-domain vlan-id-list requires to you use Enterprise-style inter-
face configurations. When you commit the configuration, Junos automatically walks the
interface structure, finds all of the IFLs, and matches them to the corresponding bridge
domains.

Service Provider-style interface configurations aren’t supported when
using bridge-domain vlan-id-list.

The vlan-id-list is really just a shortcut to create N bridge domains. Let’s take a closer
look with show bridge domain:

{master}
dhanks@R1-RE0> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch BD_LIST-vlan-0001 1 ae0.0
 ae1.0
default-switch BD_LIST-vlan-0002 2 ae0.0
 ae1.0
default-switch BD_LIST-vlan-0003 3 ae0.0
 ae1.0
default-switch BD_LIST-vlan-0004 4 ae0.0
 ae1.0

Notice that the bridge domain BD_LIST is named, but the name that appears in show
bridge-domain has the VLAN ID appended in the format of –vlan-N. This eases the
creation of 4,094 bridge domains, using the Enterprise-style interface configuration,
and doesn’t waste switch fabric bandwidth when flooding across the bridge domain.

There can only be one bridge-domain vlan-id-list per routing instance.

Recall that bridge-domain vlan-id all is a single bridge domain, and that any BUM
traffic has to be flooded out to all IFLs in the bridge domain, regardless if the destination
IFL can process the frame or not, as shown in Figure 2-35.

124 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-35. Illustration of BD_LIST Example with Three IFLs.

When using bridge-domain vlan-id-list, Junos creates a bridge domain for each
VLAN ID. Flooding BUM traffic will only happen in the constraints of that bridge
domain. Because Junos automatically places IFLs into the corresponding bridge do-
main, it is guaranteed that the destination IFL will be able to process any frames it
receives.

Remember that automatic VLAN mapping isn’t performed on bridge
domain mode vlan-id-list because it requires the use of Enterprise-
style interface configuration.

Because bridge-domain vlan-id-list is simply a shortcut to create N bridge domains,
you’ll see each bridge domain listed out individually with show bridge-domain. If you
wish to set some custom settings on a specific VLAN ID, you’ll need to pull that VLAN
ID out of the vlan-id-list and explicitly configure it by hand. Let’s take a look:

bridge-domains {
 BD_LIST {
 vlan-id-list [100 200-249 251-299];
 }
 BD_LIST-vlan-0250 {
 vlan-id 250;
 bridge-options {
 interface-mac-limit {
 2000;
 }
 }
 }
}

In this example, the bridge domain BD_LIST supports a variety of VLAN IDs. Suppose
you wanted to have a bridge domain for VLAN ID 250 but wanted to increase the

Bridge Domains | 125

www.it-ebooks.info

http://www.it-ebooks.info/

default MAC limit per interface for VLAN ID 250. In order to do this, you have to
remove VLAN ID 250 from the BD_LIST and place it into its own bridge domain. There’s
no requirement for the bridge domain name, but the author decided to use BD_LIST-
vlan-0250 to keep with the vlan-id-list naming convention.

The bridge domain BD_LIST-vlan-0250 interface MAC limit has been increased to 2,000.
Let’s verify with show l2-learning interface:

{master}
dhanks@R1-RE0> show l2-learning interface
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ae0.0 8192
 BD_LIS.. 1024 Forwarding
 BD_LIS.. 1024 Forwarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ae1.0 8192
 BD_LIS.. 1024 Forwarding
 BD_LIS.. 1024 Forwarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
xe-2/1/1.0 8192
 BD_LIS.. 2000 Forwarding

It’s a bit difficult to see because the BD column was truncated, but the bridge domain
BD_LIST-vlan-0250 is showing a MAC limit of 2,000 as opposed to 1,024 as the other
bridge domains.

Single

A bridge domain with a single VLAN ID is the most basic bridge domain possible and
is what you typically see in Enterprise environments. You simply create a bridge do-
main, assign a VLAN ID to it, throw in a few IFLs, and call it a day. The astute reader
should already know how to configure such a basic bridge domain at this point in the
chapter:

interfaces {
 xe-2/1/1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 300 {
 vlan-tags outer 300 inner 400;
 }

126 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 ae0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
 ae1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 200 {
 encapsulation vlan-bridge;
 vlan-id 200;
 }
 unit 1000 {
 encapsulation vlan-bridge;
 vlan-id 1000;
 }
 }
}
bridge-domains {
 BD100 {
 vlan-id 100;
 interface ae1.200;
 interface ae1.1000;
 interface xe-2/1/1.300;
 }
 BD200 {
 vlan-id 200;
 }
}

We have to keep you on your toes and mix Enterprise-style and Service Provider-style
interface configuration as well as including single and dual tags on IFLs! As you can
see, a single bridge domain is pretty flexible. It can simply bridge a VLAN ID or perform
automatic VLAN mapping when combined with Service Provider-style interface con-
figuration, as shown in Figure 2-36.

Bridge Domains | 127

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-36. Pair of Single Bridge-Domains with a Mixture of Enterprise-style and Service Provider–
style Interface Configuration.

The interesting concept with this example is that we’re using a pair of single bridge
domains—BD100 and BD200—but each bridge domain has different types of IFL con-
figurations and automatic VLAN mapping.

BD100 is the most interesting bridge domain because there are many different things
happening. To start, it is supporting xe-2/1/1.300, which is using a Service Provider-
style interface configuration with dual tags. Because the outer tag of IFL
xe-2/1/1.300 is VLAN ID 300, the bridge domain has automatically applied a pop-
swap and swap-push for frames entering and leaving the IFL. This maintains the C-TAG
of 400 while changing the S-TAG from 300 to 100:

{master}
dhanks@R1-RE0> show interfaces xe-2/1/1.300
 Logical interface xe-2/1/1.300 (Index 326) (SNMP ifIndex 5605)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.300 0x8100.400] In(pop-swap .100)
 Out(swap-push 0x8100.300 .400) Encapsulation: VLAN-Bridge
 Input packets : 0
 Output packets: 16
 Protocol bridge, MTU: 1522

The other IFL using the Service Provider-style interface configuration is ae1.1000. This
IFL is using a single tag with a vlan-id of 1,000. Because BD100 has a vlan-id of 100,
IFL ae1.1000 performed automatic VLAN mapping to swap the two VLAN IDs as the
frames enter and exit the IFL:

{master}
dhanks@R1-RE0> show interfaces ae1.1000
 Logical interface ae1.1000 (Index 343) (SNMP ifIndex 5606)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.1000] In(swap .100) Out(swap .1000)
 Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps

128 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 Bundle:
 Input : 4 0 312 0
 Output: 93 0 6392 272
 Protocol bridge, MTU: 1522

BD200 is the other bridge domain in this example. It ties together the two IFLs: ae0.0
and ae1.200. These IFLs already have support for VLAN ID 200, so there’s no need to
perform any automatic VLAN mapping.

Dual

A dual bridge domain is very similar to a single bridge domain except that frames
entering and leaving the bridge domain have dual tags, as shown in Figure 2-37. Other-
wise, these two bridge domains operate in the same fashion. Because a dual tagged
bridge domain offers advanced bridging, you must use the Service Provider-style in-
terface configuration—the Enterprise-style interface configuration isn’t supported.

Figure 2-37. Illustration of a Bridge Domain with Dual Tags.

This is another interesting example because each of the IFLs has very specific vlan-
tags that interact and conflict with the bridge-domain vlan-tags. Notice that IFL
ae0.333 has the same S-TAG as the bridge domain and IFL xe-2/1/1.300 has the same
C-TAG as the bridge domain:

interfaces {
 xe-2/1/1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 300 {
 encapsulation vlan-bridge;
 vlan-tags outer 300 inner 444;
 }
 }
 ae0 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 333 {

Bridge Domains | 129

www.it-ebooks.info

http://www.it-ebooks.info/

 encapsulation vlan-bridge;
 vlan-tags outer 333 inner 555;
 }
 }
 ae1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 1000 {
 encapsulation vlan-bridge;
 vlan-id 1000;
 }
 }
}
bridge-domains {
 BD333_444 {
 vlan-tags outer 333 inner 444;
 interface ae1.1000;
 interface xe-2/1/1.300;
 interface ae0.333;
 }
}

Interface ae0.333 has the same S-TAG as the bridge domain: 333. How does Junos
simply change only the C-TAG? Because there’s no such thing as null-swap, Junos just
uses swap-swap instead. When the swap-swap operation is executed, Junos is smart
enough to see that the outer tags match and can simply move to the next tag:

{master}
dhanks@R1-RE0> show interfaces ae0.333
 Logical interface ae0.333 (Index 350) (SNMP ifIndex 5609)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.333 0x8100.555] In(swap-swap .333
 .444) Out(swap-swap .333 .555) Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 0 0 0 0
 Output: 90 1 9540 848
 Protocol bridge, MTU: 1522

You can see that the ingress frames are subject to swap-swap .333 .444, with the end
result being that the C-TAG is swapped to 444 while the S-TAG remains as 333. When
frames egress the IFL, Junos simply reverses the operation to restore the original C-
TAG with swap-swap .333 .555, so that only the C-TAG is ever modified regardless of
ingress or egress.

Interface xe-2/1/1.300 has the opposite configuration of ae0.333—its C-TAG is the
same as the bridge domain BD333_444. The automatic VLAN mapping is very simple;
Junos only needs to swap the outer tag:

{master}
dhanks@R1-RE0> show interfaces xe-2/1/1.300
 Logical interface xe-2/1/1.300 (Index 328) (SNMP ifIndex 5605)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.300 0x8100.444] In(swap .333)
 Out(swap .300) Encapsulation: VLAN-Bridge
 Input packets : 0

130 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 Output packets: 4
 Protocol bridge, MTU: 1522

The last interface, ae1.1000, is the simplest; it’s configured only with a single tag of
vlan-id 1000. As ingress frames are received, Junos will automatically swap-push .333 .
444 so that the original C-TAG is changed and a new S-TAG is pushed onto the frame,
resulting in a S-TAG of 333 and a C-TAG of 444:

{master}
dhanks@R1-RE0> show interfaces ae1.1000
 Logical interface ae1.1000 (Index 345) (SNMP ifIndex 5606)
 Flags: SNMP-Traps 0x20004000 VLAN-Tag [0x8100.1000] In(swap-push 0x0000.333 .444)
 Out(pop-swap .1000) Encapsulation: VLAN-Bridge
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 3570 1 258850 816
 Output: 195 0 17570 0
 Protocol bridge, MTU: 1522

The opposite is true for egress frames going through ae1.1000. The pop-swap .1000 is
applied to egress frames, which pops the S-TAG of 333 and swaps the remaining tag
with the original value of 1,000.

Bridge Domain Options
As you begin configuring and using the MX in your network, there will be times when
you need to change the MAC learning characteristics or set limits within the routing
instance or bridge domain. Let’s review the most common bridge domain options.

MAC Table Size

The MX gives you several different options for how to limit the number of MAC ad-
dresses. You can do this globally across the entire system, for an entire routing instance,
for a specific bridge domain, or enforce a MAC limit per interface.

When the MAC limit is set globally, it takes into account all logical systems,
routing instances, bridge domains, and interfaces. To set this limit, you’ll need to mod-
ify protocols l2-learning:

protocols {
 l2-learning {
 global-mac-limit {
 100;
 }
 }
}

This isn’t very useful, but it makes a point. Now the global MAC limit is set to 100.
Let’s verify this:

{master}
dhanks@R1-RE0> show l2-learning global-information
Global Configuration:

Global.

Bridge Domains | 131

www.it-ebooks.info

http://www.it-ebooks.info/

MAC aging interval : 300
MAC learning : Enabled
MAC statistics : Enabled
MAC limit Count : 100
MAC limit hit : Disabled
MAC packet action drop: Disabled
LE aging time : 1200
LE BD aging time : 1200

It’s generally a good idea to set the global MAC limit as a last resort or safety net. A
common model for MAC limits is to apply the Russian doll architecture—start per
interface and make your way up to the global limit, increasing the value as you go.

Setting the MAC limit per bridge domain is very easy. First, let’s set the
bridge-options:

bridge-domains {
 BD333_444 {
 vlan-tags outer 333 inner 444;
 interface ae1.1000;
 interface xe-2/1/1.300;
 interface ae0.333;
 bridge-options {
 mac-table-size {
 2000;
 }
 }
 }
}

Now, the bridge domain BD333_444 has a MAC limit of 2,000. Let’s verify:

{master}
dhanks@R1-RE0> show l2-learning instance bridge-domain BD333_444 detail

Information for routing instance and bridge-domain:
Routing instance : default-switch
 Bridging domain : BD333_444
 RTB Index: 4 BD Index: 8534
 MAC limit: 2000 MACs learned: 3
 Sequence number: 2 Handle: 0x88b3600
 BD Vlan Id: 333,444
 Flags: Statistics enabled
 Config BD Vlan Id : 333,444 Config operation: none
 Config params: mac tbl sz: 2000, mac age: 300000000, intf mac limit: 1024,
 Config flags: mac stats enablevlan
 Config BD Static MAC count : 0
 Config ownership flags: config
 Config RG Id: 0 Active RG Id: 0
 Config Service Id: 0 Active Service Id: 0
 Kernel ownership flags: config
 MVRP ref count: 0
 Counters:
 Kernel write errors : 0

Bridge domain.

132 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

The hidden option detail had to be used, but it got the job done. You can see that the
MAC limit is now 2,000.

The last option is to limit the number of MAC addresses per IFL. This setting
is applied under bridge-domains bridge-options:

bridge-domains {
 BD333_444 {
 vlan-tags outer 333 inner 444;
 interface ae1.1000;
 interface xe-2/1/1.300;
 interface ae0.333;
 bridge-options {
 interface-mac-limit {
 100;
 }
 }
 }
}

This will set a MAC limit of 100 for every IFL in the bridge domain BD333_444: ae1.1000,
xe-2/1/1.300, and ae0.333:

{master}
dhanks@R1-RE0> show l2-learning interface
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
xe-2/1/1.300 0
 BD333_.. 100 Forwarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ae0.333 0
 BD333_.. 100 Forwarding
Routing Instance Name : default-switch
Logical Interface flags (DL -disable learning, AD -packet action drop,
 LH - MAC limit hit, DN - Interface Down)
Logical BD MAC STP Logical
Interface Name Limit State Interface flags
ae1.1000 0
 BD333_.. 100 Forwarding

No need for a hidden command this time around, as you can clearly see the MAC limit
of 100 is now applied for all of the IFLs in the bridge domain BD333_444.

No MAC learning

Someone engineers might say, “What good is a bridge domain without a MAC table?”
but there will always be a reason to disable MAC learning within a bridge domain. For

Interface.

Bridge Domains | 133

www.it-ebooks.info

http://www.it-ebooks.info/

example, suppose the bridge domain was tunneling customer or “customer of cus-
tomer” traffic between two IFLs. At a high level, all the MX is doing is moving frames
from IFL A to IFL B, so why does it care about MAC learning? But in this use case,
MAC learning isn’t required because there’s only one IFL to which the frame could be
flooded to. Let’s look at the bridge domain MAC table before any changes are made:

dhanks@R1-RE0> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD333_444, VLAN : 333,444
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D,SE ae1.1000
 5c:5e:ab:72:c0:80 D,SE ae0.333
 5c:5e:ab:72:c0:82 D,SE ae0.333

Looks about right. There are three MAC addresses in the bridge domain BD333_444.
Now let’s enable no-mac-learning:

bridge-domains {
 BD333_444 {
 vlan-tags outer 333 inner 444;
 interface ae1.1000;
 interface ae0.333;
 bridge-options {
 no-mac-learning;
 }
 }
}

Now, let’s take another look at the MAC table for bridge domain BD333_444:

{master}
dhanks@R1-RE0> show bridge mac-table

{master}
dhanks@R1-RE0>

At this point, the bridge domain has turned itself into a functional hub (without all of
the collision domains). It doesn’t care about learning MAC addresses, and all ingress
frames will be flooded to all IFLs in the bridge domain. Don’t forget the golden rule of
bridging loop prevention: the frame will be flooded out all interfaces except the inter-
face from the frame was originally received.

The benefit of no-mac-learning with only two IFLs in a bridge domain is that the MX
doesn’t have to worry about learning MAC addresses and storing them. Imagine a
scenario where you needed to provide basic Ethernet bridging between two customers
and the number of MAC addresses going across the bridge domain was in the millions.
With no-mac-learning, the Juniper MX simply bridges the traffic and doesn’t care if
there are a trillion MAC addresses, as the frames are just replicated to the other IFLs

134 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

blindly. Using no-mac-learning in a bridge domain with more than three IFLs isn’t
recommended because it’s inefficient.

Show Bridge Domain Commands
Throughout this chapter, you have become an expert at configuring and understanding
the different types of bridge domains. Now let’s review some of the show commands
that will help you troubleshoot and verify settings related to bridging. For your refer-
ence, here is the current bridge domain that is used when demonstrating the various
show commands:

bridge-domains {
 BD333_444 {
 vlan-tags outer 333 inner 444;
 interface ae1.1000;
 interface xe-2/1/1.300;
 interface ae0.333;
 }
}

It’s just a single bridge domain using dual tags and contains three IFLs.

show bridge domain

Let’s start with the most basic command to view the bridge domains currently config-
ured on the system:

{master}
dhanks@R1-RE0> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch BD333_444 333,444
 ae0.333
 ae1.1000
 xe-2/1/1.300

There are four important fields here: Routing instance, Bridge domain, VLAN ID, and
Interfaces. As you configure bridge domains, it’s important to verify that Junos is
executing what you think you configured. In this example, you can see that the bridge
domain BD333_444 is located in the default-switch, which could also be thought of as
the default routing table. To the right of the bridge domain, you can see what VLAN
IDs are configured and what interfaces are currently participating within the bridge
domain.

show bridge mac-table

To view the bridge domain’s MAC table, use the show bridge mac-table command:

{master}
dhanks@R1-RE0> show bridge mac-table bridge-domain BD333_444

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned

Bridge Domains | 135

www.it-ebooks.info

http://www.it-ebooks.info/

 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD333_444, VLAN : 333,444
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D ae1.1000
 5c:5e:ab:72:c0:80 D ae0.333
 5c:5e:ab:72:c0:82 D ae0.333

This example shows that there are three dynamically learned MAC addresses in the
BD333_444 bridge domain. Two of the MAC addresses were learned by ae0.333, and the
other MAC address was learned by ae1.1000.

show bridge statistics

A great way to get a bird’s eye view of a bridge domain is to look at the statistics. From
this vantage point, you’re able to quickly see how many packets have been bridged.

{master}
dhanks@R1-RE0> show bridge statistics bridge-domain BD333_444
 Local interface: ae0.333, Index: 343
 Broadcast packets: 2
 Broadcast bytes : 120
 Multicast packets: 1367
 Multicast bytes : 92956
 Flooded packets : 486
 Flooded bytes : 49572
 Unicast packets : 2593
 Unicast bytes : 264444
 Current MAC count: 2 (Limit 1024)
 Local interface: xe-2/1/1.300, Index: 328
 Broadcast packets: 0
 Broadcast bytes : 0
 Multicast packets: 0
 Multicast bytes : 0
 Flooded packets : 0
 Flooded bytes : 0
 Unicast packets : 0
 Unicast bytes : 0
 Current MAC count: 0 (Limit 1024)
 Local interface: ae1.1000, Index: 345
 Broadcast packets: 16537
 Broadcast bytes : 992220
 Multicast packets: 0
 Multicast bytes : 0
 Flooded packets : 2402
 Flooded bytes : 244886
 Unicast packets : 4634
 Unicast bytes : 472508
 Current MAC count: 1 (Limit 1024)

As you can see, the statistics are broken out per IFL, as well as the type of packet.

136 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

show l2-learning instance detail

Another method of seeing a bird’s eye view of a bridge domain is to use the l2-learning
show commands. This will only show the Layer 2 learning details of the bridge domain:

{master}
dhanks@R1-RE0> show l2-learning instance detail

Information for routing instance and bridge-domain:
Routing instance : default-switch
 Bridging domain : BD333_444
 RTB Index: 4 BD Index: 8534
 MAC limit: 2000 MACs learned: 3
 Sequence number: 6 Handle: 0x88b3600
 BD Vlan Id: 333,444
 Config BD Vlan Id : 333,444 Config operation: none
 Config params: mac tbl sz: 2000, mac age: 300000000, intf mac limit: 1024,
 Config flags: vlan
 Config BD Static MAC count : 0
 Config ownership flags: config
 Config RG Id: 0 Active RG Id: 0
 Config Service Id: 0 Active Service Id: 0
 Kernel ownership flags: config
 MVRP ref count: 0
 Counters:
 Kernel write errors : 0

This example is showing the bridge-domain BD333_444. You can see that the current
MAC limit for this bridge domain is 2,000, and there have only been three MAC ad-
dresses learned thus far. You can also see the default per interface MAC limit is currently
set to 1,024.

Clear MAC Addresses
Sooner or later, you’re going to need to clear a MAC address entry in the bridge domain.
There are several options of clearing MAC addresses: you can simply clear the entire
table, or cherry-pick a specific MAC address.

Specific MAC Address

First, here’s how to clear a specific MAC address:

{master}
dhanks@R1-RE0> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD333_444, VLAN : 333,444
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D,SE ae1.1000

Bridge Domains | 137

www.it-ebooks.info

http://www.it-ebooks.info/

 5c:5e:ab:72:c0:80 D,SE ae0.333
 5c:5e:ab:72:c0:82 D,SE ae0.333

Suppose that you needed to clear the MAC address 5c:5e:ab:6c:da:80. You can do so
using the clear bridge command:

{master}
dhanks@R1-RE0> clear bridge mac-table bridge-domain BD333_444 5c:5e:ab:6c:da:80

Again, you should always verify. Let’s use the show bridge mac-table command once
again to make sure it’s been removed:

{master}
dhanks@R1-RE0> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD333_444, VLAN : 333,444
 MAC MAC Logical
 address flags interface
 5c:5e:ab:72:c0:80 D,SE ae0.333
 5c:5e:ab:72:c0:82 D,SE ae0.333

As suspected, the MAC address 5c:5e:ab:6c:da:80 has been removed and is no longer
in the MAC table.

Entire Bridge-Domain

You can use the same command, minus the MAC address, to completely clear the MAC
table for a specific bridge domain, and dynamically remove all learned MAC addresses.
Let’s view the MAC table before blowing it away:

{master}
dhanks@R1-RE0> show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : BD333_444, VLAN : 333,444
 MAC MAC Logical
 address flags interface
 5c:5e:ab:6c:da:80 D,SE ae1.1000
 5c:5e:ab:72:c0:80 D,SE ae0.333
 5c:5e:ab:72:c0:82 D,SE ae0.333

As you can see, the bridge domain BD333_444 has three MAC addresses. Now let’s blow
them all away:

{master}
dhanks@R1-RE0> clear bridge mac-table bridge-domain BD333_444

Ah. With great power comes great responsibility. Let’s verify once again:

138 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@R1-RE0> show bridge mac-table

{master}
dhanks@R1-RE0>

That definitely did it. Not a single MAC address left. If you’re feeling content with this
new power, let’s move on to MAC accounting before we get into more trouble.

MAC Accounting
How do you know how many times a specific MAC address has been used as a source
or destination when bridging? By default, this information is available and requires the
use of MAC accounting. With MAC accounting enabled, Junos will enable counters
in the Forwarding Information Base (FIB) to keep track of how many times each des-
tination MAC address has been used as a source or destination when bridged. MAC
accounting can be turned on globally or within a specific bridge domain. Let’s take a
look at the global configuration:

protocols {
 l2-learning {
 global-mac-statistics;
 }
}

Again, let’s trust that this configuration is correct, but verify with the show command:

{master}
dhanks@R1-RE0> show l2-learning global-information
Global Configuration:

MAC aging interval : 300
MAC learning : Enabled
MAC statistics : Enabled
MAC limit Count : 393215
MAC limit hit : Disabled
MAC packet action drop: Disabled
LE aging time : 1200
LE BD aging time : 1200

Here you can see that the “MAC statistics” is Enabled and Junos is keeping track of
each MAC address in the FIB. Before moving on, let’s see how to enable a MAC account
on a specific bridge domain:

Bridge Domains | 139

www.it-ebooks.info

http://www.it-ebooks.info/

bridge-domains {
 BD333_444 {
 vlan-tags outer 333 inner 444;
 interface ae1.1000;
 interface xe-2/1/1.300;
 interface ae0.333;
 bridge-options {
 mac-statistics;
 }
 }
}

All you need to do is enable the bridge-options for mac-statistics and you’re good to
go. Yet again, trust, but verify:

{master}
dhanks@R1-RE0> show l2-learning instance
Information for routing instance and bridge domain:

Flags (DL -disable learning, SE -stats enabled,
 AD -packet action drop, LH -mac limit hit)

Inst Logical Routing Bridging Index IRB Flags BD
Type System Instance Domain Index vlan
BD Default default-switch BD333_444 8534 SE 333,444

And here you can see that the bridge domain BD333_444 has the SE flag set. You can see
the legend on the top indicated that SE means “stats enabled.”

Now that the MAC account is turned on, what’s the big deal? Let’s take a look at a
MAC address in the FIB:

{master}
dhanks@R1-RE0>
show route forwarding-table bridge-domain BD333_444 extensive destination
 5c:5e:ab:72:c0:82/48
Routing table: default-switch.bridge [Index 4]
Bridging domain: BD333_444.bridge [Index 8534]
VPLS:

Destination: 5c:5e:ab:72:c0:82/48
 Learn VLAN: 0 Route type: user
 Route reference: 0 Route interface-index: 343
 IFL generation: 861 Epoch: 29
 Sequence Number: 14 Learn Mask: 0x00000004
 L2 Flags: accounting
 Flags: sent to PFE
 Next-hop type: unicast Index: 558 Reference: 6
 Next-hop interface: ae0.333
 Route used as destination:
 Packet count: 0 Byte count: 0
 Route used as source:
 Packet count: 23 Byte count: 1564

With MAC accounting turned on you get two additional fields: route used as destina-
tion and route used as source. Each field also keeps track of the number of packets and

140 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

bytes. In this specific example, the book’s lab used a CE device to ping
255.255.255.255 out the interface going to the MX router R1. You can see that the MAC
address of the CE is 5c:5e:ab:72:c0:82, and it has been used as a source 23 times.
Pinging the broadcast address 255.255.255.255 from the CE was just an easy way to
guarantee that frames would be destined toward R1 without the chance of a reply.
Otherwise, if you pinged a regular address successfully, the packet count for “route
used as destination” and “route used as source” would be equal.

Integrated Routing and Bridging
How does one take the quantum leap from Layer 2 into Layer 3? The secret is that you
need a gateway that has access to a Routing Information Base (RIB) and sits in the same
bridge domain as you. The Junos way of making this happen is through a logical in-
terface called irb. The astute reader knows that irb stands for Integrated Routing and
Bridging.

Although IRB is a bit more than a simple gateway, it has other features such as handling
control packets for routing protocols such as OSPF, IS-IS, and BGP. If you’re running
a multicast network, it will also handle the copying of frames for the bridge domain.

Figure 2-38. Illustration of IRB and Bridge-Domain Integration.

The hierarchy of Figure 2-38 should look familiar, as it follows the same interface hi-
erarchy discussed previously in the chapter. At the top of the hierarchy sits the interface
irb—this is a pseudo interface inside of Junos that acts as the gateway between bridge
domains at the RIB. The irb is able to do this because it has both Layer 2 and Layer 3
that are associated to bridge domains and route tables. Let’s take a look at a basic
example:

interfaces {

Integrated Routing and Bridging | 141

www.it-ebooks.info

http://www.it-ebooks.info/

 irb {
 unit 100 {
 family inet6 {
 address 2001:db8:1:10::1/64;
 }
 }
 unit 200 {
 family inet6 {
 address 2001:db8:1:20::1/64;
 }
 }
 }
}
bridge-domains {
 BD100 {
 vlan-id 100;
 routing-interface irb.100;
 }
 BD200 {
 vlan-id 200;
 routing-interface irb.200;
 }
}

This example demonstrates how to configure the two bridge domains BD100 and
BD200 to use the irb interface for routing. The magic is in the keyword
routing-interface, specifying which irb IFL the bridge domain should use for routing.

For example, hosts that sit in BD1000 and an IPv6 address in the 2001:db8:1:10::/64
range and use 2001:db8:1:10::1 as the gateway would be able to route outside of the
bridge domain. A good example would be a host sitting in BD100 and trying to ping the
irb.200 IFA 2001:db8:1:20::1 that sits in BD200.

IRB Attributes
The irb interface has a couple attributes that are automatically calculated: Maximum
Transmission Unit (MTU) and interface speed. However, these values can be config-
ured manually and override the defaults. The irb interface speed is set to 1G by default.
There’s no automatic calculation that happens, and it’s purely cosmetic, as it doesn’t
place any sort of restrictions on the actual speed of the interface.

The irb IFL MTU is automatically calculated by Junos by looking at all of the IFLs in
the bridge domain that specifies the routing-interface of the irb. For example, if
BD100 specified irb.100 as the routing-interface, Junos will look at all of the IFLs
associated with the bridge domain BD100. The irb IFL MTU will automatically be set
to the lowest MTU of any of the IFLs of the corresponding bridge domain. Let’s look
at an example:

interfaces {
 ae0 {
 vlan-tagging;

142 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 mtu 8888;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 }
 ae1 {
 mtu 7777;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 }
 ae2 {
 mtu 6666;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 }
}
bridge-domains {
 BD100 {
 vlan-id 100;
 routing-interface irb.100;
 }
 BD200 {
 vlan-id 200;
 routing-interface irb.200;
 }
}

In this example, you can see that interfaces ae0, ae1 and ae2 are using the Enterprise-
style interface configuration and are members of both bridge domains BD100 and
BD200. You can also see that BD100 is using irb.100 as the routing-interface, and
BD200 is using irb.200 as the routing-interface. The interface ae2 has the lowest MTU
of all three interfaces. Let’s take a look at the show interfaces irb command; you
should see that both irb IFLs will have a MTU of 6666.

{master}
dhanks@R1-RE0> show interfaces irb
Physical interface: irb, Enabled, Physical link is Up
 Interface index: 142, SNMP ifIndex: 1191
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link type : Full-Duplex
 Link flags : None
 Current address: 00:1f:12:b8:8f:f0, Hardware address: 00:1f:12:b8:8f:f0

Integrated Routing and Bridging | 143

www.it-ebooks.info

http://www.it-ebooks.info/

 Last flapped : Never
 Input packets : 0
 Output packets: 0

 Logical interface irb.100 (Index 330) (SNMP ifIndex 1136)
 Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
 Bandwidth: 1000mbps
 Routing Instance: default-switch Bridging Domain: VLAN100+100
 Input packets : 348
 Output packets: 66278
 Protocol inet, MTU: 6652
 Flags: Sendbcast-pkt-to-re
 Destination: 192.0.2.0/26, Local: 192.0.2.1, Broadcast: 192.0.2.63
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.0.2.0/26, Local: 192.0.2.2, Broadcast: 192.0.2.63
 Protocol multiservice, MTU: 6652

 Logical interface irb.200 (Index 349) (SNMP ifIndex 5557)
 Flags: SNMP-Traps 0x4004000 Encapsulation: ENET2
 Bandwidth: 1000mbps
 Routing Instance: default-switch Bridging Domain: VLAN200+200
 Input packets : 3389
 Output packets: 63567
 Protocol inet, MTU: 6652
 Flags: Sendbcast-pkt-to-re
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.0.2.64/26, Local: 192.0.2.66, Broadcast: 192.0.2.127
 Protocol multiservice, MTU: 6652

That’s interesting. It would be logical to expect the MTU of irb.100 and irb.200 to be
6666, but as you can see it’s clearly set to 6652. What happened is that Junos auto-
matically subtracted the Layer 2 header, which is 14 bytes (MAC addresses + Ether-
Type), from the lowest MTU of any IFLs in the bridge domain, which was 6666. This
is how you come up with an MTU of 6652.

Virtual Switch
Now that you have all of the pieces of the MX puzzle, let’s put them together and
virtualize it. Recall from the very beginning of the chapter that the MX supports multiple
Layer 2 networks, which is done via a feature called a routing instance. Each routing
instance must have an instance type, and when it comes to virtualizing Layer 2, the
instance type will be a virtual switch.

144 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 2-39. Virtual Switch Hierarchy.

In Figure 2-39, VS1 and VS2 represent routing instances with the type of virtual switch,
while the default routing instance is referred to as the default-switch routing instance.
Notice that each instance is able to have overlapping bridge domains because each
routing instance has its own namespace. For example, bridge domain BD1 is present
in the default-switch, VS1, and VS2 routing instances, but each bridge domain has its
own learning domain per bridge domain.

Perhaps the real question is, what is the use case for virtual switches? This question
goes back to the beginning of the chapter to help address scaling and isolation chal-
lenges. Perhaps your network provides Ethernet-based services to many different cus-
tomers. Well, virtual switches are a great tool to segment customers and provide scale,
qualified learning, and overlapping bridge domains. Each virtual switch is able to have
its own set of IFLs, route tables, bridge domains, and learning domains.

Configuration
For those of you that are already familiar with routing instances, you’ll find that creating
virtual switches is very easy. Instead of showing you how to simply create a virtual
switch, let’s make it more interesting and actually migrate an existing Layer 2 network
from the default-switch routing instance into its own private virtual switch. Let’s take
a look at what there is to start with:

interfaces {
 ae0 {
 vlan-tagging;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 }
 ae1 {
 unit 0 {
 family bridge {
 interface-mode trunk;

Virtual Switch | 145

www.it-ebooks.info

http://www.it-ebooks.info/

 vlan-id-list 1-999;
 }
 }
 }
 ae2 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 }
}

There are three vanilla IEEE 802.1Q trunk interfaces accepting VLANs 1 through 999.
Nothing fancy. You should even notice that these IFLs are configured using the Enter-
prise-style configuration. Let’s take a look at any irb interfaces:

interfaces {
 irb {
 unit 100 {
 family inet {
 address 192.0.2.2/26;
 }
 }
 unit 200 {
 family inet {
 address 192.0.2.66/26;
 }
 }
 }
}

There are two irb IFLs—irb.100 and irb.200—and each IFL has its own /26 IPv4
address. Let’s see how these are set up in the bridge-domains:

bridge-domains {
 VLAN100 {
 vlan-id 100;
 routing-interface irb.100;
 }
 VLAN200 {
 vlan-id 200;
 routing-interface irb.200;
 }
}

These are two very basic bridge domains: VLAN100 and VLAN200. Each bridge domain
has its own vlan-id and references to the corresponding irb interface. Let’s verify our
findings with some show commands:

{master}
dhanks@R1-RE0> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch VLAN100 100

146 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

 ae0.0
 ae1.0
 ae2.0
default-switch VLAN200 200
 ae0.0
 ae1.0
 ae2.0

Everything is as expected. The bridge domain, VLAN ID, and interfaces all match what
you observed in the configuration. The most interesting field is the “Routing instance.”
Both VLAN100 and VLAN200 are part of the default-switch routing instance. Before you
move on to the migration, you decide that it’s best to check the forwarding table for
VLAN100:

{master}
dhanks@R1-RE0> show route forwarding-table bridge-domain VLAN100
Routing table: default-switch.bridge
Bridging domain: VLAN100.bridge
VPLS:
Destination Type RtRef Next hop Type Index NhRef Netif
5c:5e:ab:6c:da:80/48 user 0 ucst 561 7 ae1.0
5c:5e:ab:72:c0:80/48 user 0 ucst 595 7 ae2.0

You confirm that the FIB indicates that the bridge domain VLAN100 is part of the default-
bridge routing instance. Content with this verification, you decide to move forward
with the virtual switch migration.

What are the steps to migrate this basic bridging example from the default-switch
routing instance into a new virtual switch?

1. Create a new routing-instance with the instance-type of virtual-switch.

2. Associate the IFLs ae0.0, ae1.0, and ae2.0 with the new routing-instance.

3. Move the bridge-domains from the default-switch into the new routing-instance.

Let’s go ahead and create the basic routing instance:

{master}[edit]
dhanks@R1-RE0# set routing-instances CUSTOMER-A instance-type virtual-switch

Now, add the IFLs ae0.0, ae1.0, and ae2.0:

routing-instances {
 CUSTOMER-A {
 instance-type virtual-switch;
 interface ae0.0;
 interface ae1.0;
 interface ae2.0;
 }
}

The tricky part is moving the existing bridge domains into the new virtual switch. Let’s
use the load merge command to make the job easier:

{master}[edit]
dhanks@R1-RE0# delete bridge-domains

Virtual Switch | 147

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
dhanks@R1-RE0# edit routing-instances CUSTOMER-A

{master}[edit routing-instances CUSTOMER-A]
dhanks@R1-RE0# load merge terminal relative
[Type ^D at a new line to end input]
bridge-domains {
 VLAN100 {
 vlan-id 100;
 routing-interface irb.100;
 }
 VLAN200 {
 vlan-id 200;
 routing-interface irb.200;
 }
}
^D
load complete

Very cool; let’s see what’s there now:

routing-instances {

 CUSTOMER-A {
 instance-type virtual-switch;
 interface ae0.0;
 interface ae1.0;
 interface ae2.0;
 bridge-domains {

 VLAN100 {
 vlan-id 100;
 routing-interface irb.100;
 }

 VLAN200 {
 vlan-id 200;
 routing-interface irb.200;
 }
 }
 }
}

We’ve successfully created the new routing instance, associated the IFLs with the rout-
ing instance, and migrated the bridge domains into the routing instance. The astute
reader might be curious about the irb interfaces. When creating virtual switches, there’s
no requirement to associate the irb interfaces with the routing instance. Junos takes
care of this automatically for you.

Let’s verify the behavior of this new virtual router with the same show commands as
before.

148 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@R1-RE0> show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
CUSTOMER-A VLAN100 100
 ae0.0
 ae1.0
 ae2.0
CUSTOMER-A VLAN200 200
 ae0.0
 ae1.0
 ae2.0

Very interesting; you now see that bridge domains VLAN100 and VLAN200 are part of the
CUSTOMER-A routing instance instead of the default-switch. Let’s review the FIB as well:

{master}
dhanks@R1-RE0> show route forwarding-table table CUSTOMER-A bridge-domain VLAN100
Routing table: CUSTOMER-A.bridge
Bridging domain: VLAN100.bridge
VPLS:
Destination Type RtRef Next hop Type Index NhRef Netif
5c:5e:ab:6c:da:80/48 user 0 ucst 561 9 ae1.0
5c:5e:ab:72:c0:80/48 user 0 ucst 557 9 ae2.0

Everything is working as expected. The FIB is also showing that bridge domain
VLAN100 is using the routing table CUSTOMER-A.bridge.

Summary
If this is your first time with advanced bridging, take a look at the chapter review ques-
tions and see how well you do. If your results are mediocre, it may be beneficial to go
back and reread this chapter again, as the advanced bridging features and concepts are
tightly integrated. As you reread the chapter with this core knowledge behind your belt,
you will have a new perspective and understanding and be able to grok advanced
bridging.

The chapter started with the basics: Ethernet. Sometimes you take the basics for gran-
ted, don’t review them for several years, and the details become fuzzy. It’s important
to fully understand Ethernet frame formats, including IEEE 802.1Q and IEEE
802.1QinQ, before moving into advanced bridging.

Next the chapter took a step back and pulled back the covers of the Junos interface
hierarchy and introduced terms such as IFD, IFL, and IFF that are typically reserved
for Juniper engineer employees. The Junos interface hierarchy is critical to fully un-
derstanding how advanced bridging on the MX works.

Giving a brief overview of the Enterprise Style versus Service Provider Style should give
the reader a glimpse into the flexibility of the MX—it caters to all types of customers
and networks. The Enterprise Style gives you the ability to write simple configurations

Summary | 149

www.it-ebooks.info

http://www.it-ebooks.info/

to perform basic bridging, while the Service Provider Style takes bridging to another
level and introduces VLAN mapping.

To firm up all your understanding of bridging, the chapter took a deep dive into bridge
domains. You learned that there are many different types of bridge domains and how
they’re really just different ways to apply automatic VLAN mapping or solving inter-
esting challenges. You should have also learned how to interact with bridge domains
by enabling MAC limits, accounting, and other features.

The chapter then took the quantum leap from Layer 2 to Layer 3 with integrated routing
and bridging. Such a simple, yet powerful feature; after all, what’s the use of a bridge
domain if you can never go outside of its boundaries and route?

To wrap things up and put your understanding into high gear, the chapter introduced
a case study involving advanced bridging that didn’t try to insult your intelligence with
IPv4, but opted for IPv6 in each example.

Chapter Review Questions
1. How many VLAN tags are in an IEEE 802.1Q frame?

a. 1

b. 2

c. 3

d. All of the above

2. Which type of IFL VLAN tagging is required to support IEEE 802.1QinQ?

a. vlan-tagging

b. stacked-vlan-tagging

c. flexible-vlan-tagging

d. vlan-tags

3. When would you want to use encapsulation flexible-ethernet-services?

a. Creating access ports

b. To automatically set the encapsulation for each IFL to vlan-bridge

c. To independently set the encapsulation for each IFL

d. To support multiple customers from the same IFD

4. Does the Enterprise-style interface configuration support VLAN mapping?

a. Yes

b. No

5. If there was an ingress frame (C-TAG = 100) and you needed to perform VLAN
mapping so that the egress frame was (S-TAG = 5, C-TAG = 444), which stack
operation would you need for input-vlan-map?

150 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

a. Swap-swap

b. Pop-swap

c. Swap-push

d. Push-push

6. How many learning domains are in a bridge domain configured with vlan-id none?

a. 0

b. 1

c. 4,000

d. 4,094

7. How many learning domains are in a bridge domain configured with vlan-id all?

a. 0

b. 1

c. 4,000

d. 4,094

8. What does MAC accounting do?

a. Counts the number of MAC addresses globally

b. Counts the number of dropped ARP requests

c. Keeps track of MAC address movement between IFLs in a bridge domain

d. Keeps track of how many times a particular MAC address has been used for
source or destination bridging

9. What’s the default speed of the interface irb?

a. 100 Mbps

b. 1,000 Mbps

c. Determined by the number of ports in the bridge domain

d. Set to the highest port speed in the bridge domain

10. Can a bridge domain with the same vlan-id be configured across multiple virtual
switches?

a. Yes

b. No

Chapter Review Answers
1. Answer: A. There’s only a single VLAN ID in IEEE 802.1Q.

2. Answer: B,C. This is a tricky one, as both stacked-vlan-tagging and flexible-
vlan-tagging will support IEEE 802.1QinQ frames.

Chapter Review Answers | 151

www.it-ebooks.info

http://www.it-ebooks.info/

3. Answer: C,D. When using encapsulation flexible-ethernet-services, this ena-
bles per IFL encapsulation, which is most often used when supporting multiple
customers per port.

4. Answer: A. The Enterprise Style supports basic VLAN mapping via the family
bridge vlan-rewrite function.

5. Answer: C. The ingress frame has a single C-TAG and the objective is to perform
VLAN mapping to support both a S-TAG and a C-TAG. The tricky part of the
requirement is that the original C-TAG is removed and the remaining S-TAG and
a C-TAG are completely different VLAN IDs. The stack operation swap-push will
swap the outer tag and push a new tag, resulting in the proper S-TAG and C-TAG.

6. Answer: B. When a bridge domain is configured with vlan-id none, it supports a
single bridge domain and learning domain; it also requires that you use input-vlan-
map and output-vlan-map to perform VLAN mapping.

7. Answer: D. When a bridge domain is configured with vlan-id all, it supports a
single bridge domain with 4,094 learning domains.

8. Answer: D. MAC accounting will enable per MAC statistics that keep track of
how many times it has been used as a source or destination address. Use the show
route forwarding-table command to verify.

9. Answer: B. The interface irb is automatically set to a speed of 1,000 Mbps; how-
ever, this doesn’t actually impact the performance of the interface because it’s just
a cosmetic attribute.

10. Answer: A. The answer is a definite yes. The entire purpose of a virtual switch is
to provide a scalable method to create isolated Layer 2 networks.

152 | Chapter 2: Bridging, VLAN Mapping, IRB, and Virtual Switches

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Stateless Filters, Hierarchical Policing,
and Tri-Color Marking

This chapter covers stateless firewall filters and policers on MX routers. The MX Series
has some special features and hardware that can make firewall filters and policers not
only stronger, faster, and smarter, but also, once you get the hang of their operation,
easier. So even if you think you know how to protect the routing engine, don’t skip this
chapter or the next. The MX Series is one awesome piece of iron, and users are always
finding new ways to deploy its features for revenue. As critical infrastructure, it’s well
worth protecting; after all, the best rock stars have bodyguards these days.

By the way, this chapter is an overview, but is required reading for Chapter 4, where
we blast right into case studies of IPv4 and IPv6 routing engine protection filters and
coverage of the new DDoS policing feature available on Trio platforms. Chapter 4 is
not going to pause to go back and reiterate the key concepts found here in Chapter 3.

The topics discussed in this chapter include:

• Firewall filtering and policing overview

• Filter operation

• Policer types and operation

• Filter and policer application points

• Transit filtering case study: Bridging with BUM protection

Firewall Filter and Policer Overview
The primary function of a firewall filter is to enhance security by blocking packets based
on various match criteria. Filters are also used to perform multifield classification, a
process whereby various fields in a packet (or frame) are inspected, with matching
traffic being subjected to some specialized handling. For example, subjecting the traffic
to a policer for rate limiting, assigning the traffic to a CoS forwarding class for later

153

www.it-ebooks.info

http://www.it-ebooks.info/

queuing and packet rewrite operations, or directing the traffic to a specific routing
instance where it can be forwarded differently than nonmatching traffic to achieve what
is known as Filter-Based Forwarding (FBF) in Junos, a concept akin to Policy-Based
Routing (PBR) in other vendors’ equipment.

Policers are used to meter and mark traffic in accordance to bandwidth and burst size
settings. Policing at the edge enforces bandwidth-related SLAs and is a critical aspect
of Differentiated Services (DS) when supporting real-time or high-priority traffic, as
this is the primary mechanism to ensure that excess traffic cannot starve conforming
traffic that is scheduled at a lower priority. In addition to discard actions, policers can
mark (or color) out of conformance traffic, or alter its classification to place it into a
new forwarding class.

Those familiar with the IOS way of doing things quickly recognize that stateless Junos
filters provide functionality that is similar to Access Control Lists (ACLs), whereas
policers provide rate enforcement through a mechanism that is similar to Committed
Access Rate (CAR).

Stateless versus Stateful
Filters are categorized as being stateful or stateless based on whether they maintain
connection or flow state tables versus simply treating each packet in a flow in a stand-
alone manner. As with all things on Earth, there are advantages and disadvantages to
both forms of filtering.

Stateless

As the name implies, a stateless filter does not maintain flow state or packet context
beyond that of a single packet. There is no flow table, or, for that matter, no concept
of a flow (with a flow being defined by some tuple such as Source Address, Destination
Address, Protocol, and Ports). The upside is relatively low cost and raw performance,
at near wire rate for all but the most complex of filter statements. All MX routers can
perform stateless firewall functionality with no additional hardware or licenses needed.

The downside to a stateless filter is you have to either allow or deny a given packet, and
the decision must be based solely on the information carried in the packet being pro-
cessed. For example, if you expect to perform ping testing from your router, you will
have to allow inbound ICMP Echo Reply packets in your filter. While you can place
additional constraints on the allowed ICMP response, such as a specific source and
destination addresses, whether fragmented packet replies are allowed, or the specific
ICMP type, you still have to open a hole in the stateless filter for the expected reply
traffic, and this hole remains open whether or not you have recently generated any
requests.

154 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Stateful

A stateful firewall (SFW) tracks session state and is capable of matching specific pro-
tocols requests to a corresponding reply. For example, it allows ICMP replies, but only
when in response to a recently sent packet such as an ICMP echo request (ping). Rather
than always allowing incoming ICMP echo replies, a SFW’s flow table is dynamically
created when an allowed outbound ICMP echo reply is detected, which begins a timer
during which the response to that flow is permitted.

The added flow state allows for more sophisticated capabilities such as subjecting cer-
tain packets to additional scrutiny, a process known as Deep Packet Inspection, or by
recognizing threats based on general anomaly detection or specific attack signatures,
based on analyzing multiple packets in the context of a flow, something a stateless
firewall can never do.

But, alas, nothing comes for free. An SFW is a high-touch device that requires a sig-
nificant amount of RAM to house its flow tables, and processing power to plow through
all those tables, which can easily become a performance bottleneck when taxed with
too many flows, or simply too high of a data rate on any individual flow.

Trio-based MPCs can provide in-line services such as NAT and port mirroring without
the need for additional hardware such as a services PIC. More demanding SFW and
services-related function require the MX router be equipped with a MS-DPC to provide
the hardware acceleration and flow state storage needed at scale.

SFW and related services like IPSec are beyond the scope of this book. However, the
good news is that as the MS-DPC and Trio are Junos based, in-line services are con-
figured and monitored using pretty much the same syntax and commands as used on
the J-series Adaptive Service Module (ASM) or the M/T series Advanced Services PIC
(ASP)/Multi-Services PICs, both of which are covered in Junos Enterprise Routing, Sec-
ond Edition, also published by O’Reilly.

This chapter focuses on MX router support for stateless firewall filtering. Unless other-
wise stated, all references to filters in this chapter are assumed to be in the context of
a stateless filter.

Stateless Filter Components
Stateless filters can be broken down into five distinct components. These are filter types,
protocol families, terms, match criteria, and the actions to be performed on matching
traffic.

Stateless Filter Types

The Junos OS supports three different types of stateless filters: stateless, service filters,
and simple filters. This chapter focuses on the stateless type because they are by far the

Firewall Filter and Policer Overview | 155

www.it-ebooks.info

http://www.it-ebooks.info/

most commonly deployed. While a detailed review is outside the scope of this book, a
brief description of the other stateless filters types is provided for completeness.

Service Filter
A service filter is applied to logical interfaces that are configured on a services device
such as a MX router’s MS-DPC. The service filter is used to filter traffic prior to or
after it has been processed by the related service set. Service filters are defined at
the [dynamic-profiles <profile-name> firewall family <family-name> service-
filter] hierarchy.

Simple Filter
Simple filters are available to provide some level of filtering support on FPCs that
use commercial off-the-shelf (COTS) TCAM for firewall structures, namely IQ2
PICs and the MX’s EQ-DPC, both of which are based on the EZChip. Simple filters
are defined at the [set firewall family inet simple-filter] hierarchy. There are
many restrictions to this type of filter because existing Junos match conditions were
deemed too demanding for a TCAM-based engine; combined with their support
on a limited and now long in the tooth hardware set, this explains why simple filters
are rarely used. The restrictions for simple filters on MX routers are many:

• Simple filters are not supported on Modular Port Concentrator (MPC) inter-
faces, including Enhanced Queuing MPC interfaces.

• Simple filters are not supported for interfaces in an aggregated Ethernet bun-
dle.

• You can apply simple filters to family inet traffic only. No other protocol fam-
ily is supported.

• You can apply simple filters to ingress traffic only. Egress traffic is not sup-
ported.

• You can apply only a single simple filter to a supported logical interface. Input
lists are not supported.

• On MX Series routers with the Enhanced Queuing DPC, simple filters do not
support the forwarding-class match condition.

• Simple filters support only one source address and one destination address
prefix for each filter term. If you configure multiple prefixes, only the last one
is used.

• Simple filters do not support negated match conditions, such as the protocol-
except match condition or the except keyword.

• Simple filters support a range of values for source and destination port match
conditions only. For example, you can configure source-port 400-500 or des
tination-port 600-700. With a conventional stateless filter you can match
ports as a range, or list, such as destination-port [20 73 90].

• Simple filters do not support noncontiguous mask values.

156 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Protocol Families

You configure a filter under one of several protocol families to specify the type of traffic
that is to be subjected to the filter. This action indirectly influences the possible match
types, given that some match types are only possible for specific protocols and certain
types of hardware. For example, a number of match conditions for VPLS traffic are
supported only on the MX Series 3D Universal Edge Routers. Table 3-1 lists the pro-
tocol families supported by Trio filters:

Table 3-1. Supported Protocol Families for Filtering.

Nature of Traffic Protocol Family Comment

Protocol Agnostic family any All protocol families configured on a logical interface.

Internet Protocol version 4
(IPv4)

family inet The family inet statement is optional for IPv4 as this is the default
family.

Internet Protocol version 6
(IPv6)

family inet6 Use for IPv6 traffic.

MPLS/ MPLS-tagged IPv4 family mpls Use when matching fields in one or more MPLS labels. For MPLS-
tagged IPV4 traffic, family supports matching on IP addresses and
ports in a stack of up to five MPLS labels with the ip-version
ipv4 keyword.

Virtual private LAN service
(VPLS)

family vpls Used to match VPLS traffic being tunneled over GRE or MPLS.

Layer 2 Circuit Cross-Connec-
tion

family ccc Used for CCC style Layer 2 point-to-point connections.

Layer 2 Bridging family bridge Supported on MX Series routers only, used for bridged traffic.

Filter Terms

A firewall filter can contain one or many terms; at a minimum, at least one term must
be present. Each term normally consists of two parts: a set of match criteria specified
with a from keyword and a set of actions to be performed for matching traffic defined
with a then keyword.

Consider the following filter named tcp_out:

[edit firewall filter tcp_out]
regress@halfpint# show

term 1 {
 from {
 protocol tcp;
 destination-port [23 21 20];
 }
 then {
 count tcp_out;
 accept;
 }
}

Firewall Filter and Policer Overview | 157

www.it-ebooks.info

http://www.it-ebooks.info/

term 2 {
 then count other;
}

The tcp_out filter consists of two terms. The first term specifies a set of match conditions
as part of the from statement. It’s important to note that a logical AND is performed
for each distinct match within a term, which is to say that all of the conditions shown
on separate lines must be true for a match to be declared. In contrast, when you specify
multiple matches of the same type, for example a sequence or range of destination port
values, the grouping is shown on the same line in brackets and a logical OR function
is performed.

In this case, the filter first tests for the TCP protocol by looking for a 06 in the IP packet’s
protocol field (which is the protocol number assigned to TCP by IANA), and then for
either a 20, 21, or 23 in the destination port field. The nature of this type of match
implies that we have also located an IP protocol packet at Layer 3. In fact, there is no
protocol ip match option for an IPv4 filter; the IPv4 protocol is assumed by virtue of
the filter being of the inet family, which is the default when no protocol family is defined
within a firewall filter.

When a match is declared in the first term, the tcp_out counter is incremented and the
traffic is accepted with no additional filter processing. All non-TCP traffic and all TCP
traffic that does not have one of the specified destination ports will not match the first
term and therefore falls through to the second term.

Note that the first term has both a from condition and a then action, while the second
term only has a then action specified. The lack of a from condition is significant because
it means we have a term with no match criteria, which means all traffic of the associated
family will be deemed a match. In our example, this means that any IP-based traffic
that is not matched in the first term will match the final term, and as a result increments
the other counter.

This seems like a good place for the standard warning about including
a protocol match condition when you are also interested in matching
on a protocol field such as a port. Had the operator not included the
protocol tcp condition along with a port value in the telnet_out filter,
it would be possible to match against UDP, or other non-TCP protocols
such as ICMP, that just so happen to have the specified “port value” as
part of their header or payload. Always take the time to specify as com-
plete a set of match criteria as possible to avoid unpredictable filter be-
havior that is often very hard to fault isolate.

It must be stressed that stateless filters always end with an im-
plicit deny-all term that silently discards all traffic that reaches it. Some users may opt
for a security philosophy in which you deny known bad traffic and then allow all else.
In such a case, you must add an explicit accept-all term at the end of your stateless filter

The Implicit Deny-All Term.

158 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

chain to ensure all remaining “good” traffic is accepted before it can hit the implicit
deny-all.

Most users prefer a stronger security model where unknown threats are thwarted by
specifically accepting known good traffic and denying all that remains. While this case
can rely on the implicit deny-all term, most operators prefer to add their own explicit
deny-all term, often with a counter or a log function added to assist in debugging and
attack/anomaly recognition. The extra work involved for a final explicit term is trivial,
but the added clarity can help avoid mistakes that often lead to outages of a valid service
such as your routing or remote access protocols!

Filter Matching

There are a great many possible match criteria supported in Junos. You specify one or
more match criteria within a term using the from keyword. Recall that a term with no
from clause matches everything, and a term with multiple distinct match conditions
results in an AND function, with a match only declared when all evaluate as true. The
choice of filter family can influence what type of matches are available. For example,
on a Trio-based MX router, the following match options are available for family
bridge in release 11.4:

user@r1# set firewall family bridge filter foo term 1 from ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> destination-mac-address Destination MAC address
+ destination-port Match TCP/UDP destination port
+ destination-port-except Do not match TCP/UDP destination port
> destination-prefix-list Match IP destination prefixes in named list
+ dscp Match Differentiated Services (DiffServ) code point
+ dscp-except Do not match Differentiated Services (DiffServ) code point
+ ether-type Match Ethernet type
+ ether-type-except Do not match Ethernet type
+ forwarding-class Match forwarding class
+ forwarding-class-except Do not match forwarding class
+ icmp-code Match ICMP message code
+ icmp-code-except Do not match ICMP message code
+ icmp-type Match ICMP message type
+ icmp-type-except Do not match ICMP message type
> interface Match interface name
+ interface-group Match interface group
+ interface-group-except Do not match interface group
> interface-set Match interface in set
> ip-address Match IP source or destination address
> ip-destination-address Match IP destination address
+ ip-precedence Match IP precedence value
+ ip-precedence-except Do not match IP precedence value
+ ip-protocol Match IP protocol type
+ ip-protocol-except Do not match IP protocol type
> ip-source-address Match IP source address
+ isid Match Internet Service ID
+ isid-dei Match Internet Service ID DEI bit

Firewall Filter and Policer Overview | 159

www.it-ebooks.info

http://www.it-ebooks.info/

+ isid-dei-except Do not match Internet Service ID DEI bit
+ isid-except Do not match Internet Service ID
+ isid-priority-code-point Match Internet Service ID Priority Code Point
+ isid-priority-code-point-except Do not match Internet Service ID Priority Code Point
+ learn-vlan-1p-priority Match Learned 802.1p VLAN Priority
+ learn-vlan-1p-priority-except Do not match Learned 802.1p VLAN Priority
+ learn-vlan-dei Match User VLAN ID DEI bit
+ learn-vlan-dei-except Do not match User VLAN ID DEI bit
+ learn-vlan-id Match Learnt VLAN ID
+ learn-vlan-id-except Do not match Learnt VLAN ID
+ loss-priority Match Loss Priority
+ loss-priority-except Do not match Loss Priority
+ port Match TCP/UDP source or destination port
+ port-except Do not match TCP/UDP source or destination port
> prefix-list Match IP source or destination prefixes in named list
> source-mac-address Source MAC address
+ source-port Match TCP/UDP source port
+ source-port-except Do not match TCP/UDP source port
> source-prefix-list Match IP source prefixes in named list
 tcp-flags Match TCP flags
+ traffic-type Match Match traffic type
+ traffic-type-except Do not match Match traffic type
+ user-vlan-1p-priority Match User 802.1p VLAN Priority
+ user-vlan-1p-priority-except Do not match User 802.1p VLAN Priority
+ user-vlan-id Match User VLAN ID
+ user-vlan-id-except Do not match User VLAN ID
+ vlan-ether-type Match VLAN Ethernet type
+ vlan-ether-type-except Do not match VLAN Ethernet type

Certainly a lengthy list of match options, and given that family bridge is a Layer 2
protocol family, one cannot help but be struck by the rich set of protocol match options
at Layer 3 (IP) and Layer 4 (TCP/UDP). Trio’s ability to peer deep (up to 256 bytes)
into Layer 3 traffic, even when functioning as a bridge, really drives home the power
and flexibility of the Trio PFE chipset!

This chapter, as well as others that build on filter or policer functionality, expose the
reader to a variety of match conditions for common protocols families. Given there are
so many options, it just does not make sense to go into all of them here; besides, all are
documented in various user manuals. It bears mentioning that for the bridge family
you specify a user-vlan match type when matching on (C) tags associated with access
ports and the learn-vlan match type for trunk ports when matching on Service Provider
(S) tags. For example, this link takes you to documentation that defines stateless filter
match capabilities for each protocol family, as of Junos release v11.4:

http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/firewall-filter
-stateless-guidelines-for-configuring.html#jd0e392

Many protocol field patterns can be matched using a prede-
fined symbolic name that’s designed to be user-friendly. For example, matching on the
SYN bit in a TCP header can be done with the keyword syn, or a hexadecimal value
0x2. While it may impress your geeky friends to have a hex-based packet filter, it’s
considered best practice to use the symbolic names when they’re available to help im-

A Word on Bit Field Matching.

160 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/firewall-filter-stateless-guidelines-for-configuring.html#jd0e392
http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/firewall-filter-stateless-guidelines-for-configuring.html#jd0e392
http://www.it-ebooks.info/

prove filter legibility and lessen the chances of a mistake. Table 3-2 shows some of the
more common bit field match types and their keyword aliases.

Table 3-2. Text Synonyms.

Text Synonym Match Equivalent Common Use

first-fragment Offset = 0, MF = 1 Match on the first fragment of a packet for counting and logging.

is-fragment Offset does not equal
zero

Protect from fragmented DOS attacks

tcp-established ack or rst Allow only established TCP sessions over an interface. This option does not implicitly
check that the protocol is TCP. Combine with a protocol TCP match condition. Known
as established in IOS ACLs.

tcp-initial syn and not ack Allow TCP sessions to be initiated in the outbound direction only. Combine with a
protocol TCP match condition. Equal to TCP flags of match-all +syn –ack in
IOS ACLs

Junos also supports a range of boolean operators such as negations and logical AND/
OR functions. Consult the documentation for a complete list of available bit field
matches and supported operations. This information is documented for the v11.4 re-
lease at: http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/firewall-filter
-stateless-match-conditions-bit-field-values.html.

Filter Actions

You use a then statement to list one or more actions that are to be performed on traffic
that matches a filter term. If you omit the then keyword, the default action is to accept
the matching traffic. Besides the basic discard and accept actions, filter can also mark
packets to influence CoS processing, alter the traffic’s drop probability, or count/log
matches to assist in anomaly detection or to aid in troubleshooting filter operation.
With Junos, you have the flexibility of specifying multiple actions in a single term, or
you can use the next-term flow-control action (detailed in a later section) to have the
same traffic match against multiple terms, where each such term has its own specific
action.

Filters versus Routing Policy
Readers familiar with Junos routing policy will recognize many similarities between
filter and policy configuration syntax and processing logic. Both filters and policy
statements can consist of one or more terms (though a policy is allowed to have a single
unnamed term and filters require all terms be explicitly named), with those terms based
on a set of match criteria along with an associated action. They both support the con-
cept of chaining, where you link small pieces of modular code to act as if it were a single,
large piece filter or policy. Both support application for inbound or outbound flows,

Firewall Filter and Policer Overview | 161

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/firewall-filter-stateless-match-conditions-bit-field-values.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/firewall-filter-stateless-match-conditions-bit-field-values.html
http://www.it-ebooks.info/

in the data and control planes, respectively, and both support the concept of a “default
action” for traffic that’s not been explicitly matched by a preceding term.

While so very similar, routing policy and filters perform two completely different func-
tions that can sometimes achieve similar effects, and so their differences warrant a brief
discussion here. Filters operate in the data plane, whereas policy functions in the Con-
trol Plane (CP). Filters can affect transit traffic directly, regardless of whether there is a
viable next-hop for the traffic, by filtering the traffic itself. In contrast, policy can affect
transit traffic indirectly by virtue of allowing a given next-hop, or not, in the routing
table through filtering of route updates. Filters can affect traffic to the router itself, or
transit traffic destined for a remote machine. Policy always acts on traffic destined to
the local host in the form of a routing protocol update. Note that filtering such a route
update at ingress can in turn impact how traffic in the data plane egresses the local
router, but this is indirect compared to a filter’s direct action in the data plane.

With regards to traffic destined to the local host, filters are used primarily for security
whereas policy is used to influence the routing table and to control what routes you
advertise to downstream peers. A comparison of the two features is given in Table 3-3.

Table 3-3. Firewall Filters versus Routing Policies.

Feature Firewall filter Routing policy

Operates in . . . Forwarding plane Control plane

Match keyword from from

Action keyword then then

Match attributes Packet fields Routes and their attributes

Default action Discard Depends on default policy of each particular routing
protocol

Applied to . . . Interfaces/Forwarding Tables Routing protocols/tables

Named terms required Yes No

Chains allowed Yes Yes

Absence of from Match all Match all

Boolean operations when applied No Yes

As a final comparison point, consider the goal of wanting to prevent a given BGP update
from entering your router. You could use a filter to block all BGP, or perhaps just BGP
from a given peer. But this is a heavy hammer, as it affects all the routes that peer can
ever advertise. Policy, on the other hand, operates on the individual routes that are
received via routing protocol update, which in turn allows per-prefix control for filter-
ing or attribute modification.

Like peanut butter and chocolate, the two go great together. You deploy filters to block
unsupported routing protocols while also using policy to filter individual route updates
from within those supported protocols.

162 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Filter Scaling
Everything has a limit, and pushing anything too far will affect its performance, some-
times dramatically. Customers often ask questions like “How many terms can I have
in a filter?” or “How many filters can I apply at any one time?” While reasonable, this
type of question is hard to answer because filtering is only one dimension of system
scaling, and most production networks deploy nodes that must scale in multiple di-
mensions simultaneously. As is so often true, you cannot have your cake and also keep
it in safe storage for later consumption, which in this case means if you are pushing the
box to scale with large numbers of BGP peers and millions of route prefixes, then there
is a good chance you will hit some issue with filter scaling before the theoretical limit.
It’s always a good idea to monitor system load, and to be on the lookout for error
messages in the logs that warn of impending resource exhaustion, when pushing any
router to high scales.

Each Trio PFE has a large pool of External Data Memory (EDMEM) for storing next-
hop FIB entries, filter structures, Layer 2 rewrite data, and so on. While portions of this
memory are reserved for each function, the memory system is flexible and allows areas
with heavy use to expand into unused memory. As a result, it’s not uncommon to check
some resource usage and find it seems alarming high, say 98 percent utilized, only to
find you can keep pushing that scale dimension and later find the pool has been resized
dynamically.

The command shown in the following is used to display the current allocations of
EDMEM on a Trio MPC, which in this example is demonstrated on a system that is
scaled to 3,000 EBGP/OSPF/RIP VRF peers, with each of the 2,000 VRF IFLs using an
input filter for COS classification and policing.

Here, we look at the first PFE on FPC 5 (MPC 5). Note how the request pfe execute
command is used to avoid having to drop to a shell and/or VTY to the desired PFE
component. pretty cool:

{master}
regress@halfpint> request pfe execute target fpc5 command "show jnh 0 pool usage"
SENT: Ukern command: show jnh 0 pool usage
GOT:
GOT: EDMEM overall usage:
GOT: [NH///////////////|FW///|CNTR////////|HASH/////|ENCAPS////|---------------]
GOT: 0 7.0 9.0 14.0 21.8 25.9 32.0M
GOT:
GOT: Next Hop
GOT: [***|--] 7.0M (98% | 2%)
GOT:
GOT: Firewall
GOT: [|--------------------] 2.0M (1% | 99%)
GOT:
GOT: Counters
GOT: [|--] 5.0M (1% | 99%)
GOT:
GOT: HASH

Firewall Filter and Policer Overview | 163

www.it-ebooks.info

http://www.it-ebooks.info/

GOT: [***] 7.8M (100% | 0%)
GOT:
GOT: ENCAPS
GOT: [***] 4.1M (100% | 0%)
GOT:
LOCAL: End of file

This display is based on the allocation of Mega Double Words (MDW), with each word
being 32 bits/4 bytes in length--thus a DMW is 64 bits. In this display, 1 M equates to
1 MDW or 1 M * 8 B, which equals 8 MB (or 64 Mb). Here we can see that the portion
of EDMEM allocated to filter structures is relatively small, at 2 MDW, when compared
to the 7 MDW allocated for next hops. As noted previously, this setup has 2K (interface-
specific) filters and policers in effect, along with a heavy BGP/VRF/route load, and
clearly there is still room to grow with additional filter or policer structures. The current
Trio PFE can allocate up to 88 MB per PFE to hold filter and policer structures.

You can display overall PFE memory usage with the summary option:

{master}
regress@halfpint> request pfe execute target fpc5 command "show jnh 0 pool summary"
SENT: Ukern command: show jnh 0 pool summary
GOT:
GOT: Name Size Allocated % Utilization
GOT: EDMEM 33554432 19734369 58%
GOT: IDMEM 323584 201465 62%
GOT: OMEM 33554432 33079304 98%
GOT: Shared LMEM 512 64 12%
LOCAL: End of file

The current scaling limits for Trio-based MPCs are shown in Table 3-4. In some cases,
scale testing is still being conducted so preliminary numbers are listed in the interim.
It’s expected that Trio-based PFEs will outperform I-Chip systems in all dimensions.

Table 3-4. MX Trio versus I-Chip Filter Scale.

Parameters Per Trio/MPC/Chassis Per I-Chip 3.0/DPC/Chassis

Maximum number of interface policers 39 K (per chassis) 39 K (per chassis)

Maximum number of interface filters 16 K 16 K

Maximum 1-tuple terms 256 K 64 K

Maximum 1-tuple terms in a single filter 256 K 250 K

Trio platforms running Junos v11.4 can support up to 128 K policers
per chassis when the policers are called from a firewall filter, as opposed
to being directly applied to the IFL, where the current limit is up to 39
K policers per chassis.

164 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Filter Optimization Tips

There is no free lunch, and this maxim holds true even for Junos and the Trio chipset.
Forwarding performance can be impacted when high-speed interfaces have the majority
of their packets evaluated by the majority of terms in a large filter, something that can
occur when a filter is not laid out in an optimal fashion. Each term evaluated has a
computation cost and a corresponding delay, so ideally a filter will be constructed such
that the majority of packets meet a terminating action (accept or discard) early in the
term processing. This is one reason why extensive use of the next term action modifier
can impact filter throughput, because it forces the same packets to be evaluated by at
least two terms.

Junos cannot optimize the ordering of terms in a filter, as this is a function of the traffic
that is allowed versus disallowed, and a function of the specific traffic encounter in
each network. As an extreme example, consider a case where ICMP echo traffic is to
be accepted. Having the accept ICMP term at the end of a 1,000 term filter, in a network
that experiences a lot of ping traffic, will likely show a performance impact given that
each ICMP packet must be evaluated by the preceding 999 terms before it’s finally
accepted. In this case, moving the accept ICMP term to the beginning of the filter will
dramatically improve performance, especially when under a heavy ICMP traffic load.

In addition to next term, heavy use of noncontiguous match conditions should be
minimized, as such expressions are sometimes compiled into multiple terms for actual
filter execution, which can negatively impact performance because a single term with
a noncontiguous match effectively results in a longer filter with more terms to evaluate.
Whenever possible, it’s always best to use a more specific match value or to specify a
contiguous set of matching criteria. For example, this is a poorly written port range
match criteria that is likely to result in multiple terms given the non-contiguous range
of numeric match conditions:

term 1 {
 from {
 port [1-10 20-60 13];
 }
}

Where possible, consider separate terms for each noncontiguous value, or better yet,
specify a contiguous set of matching values:

term 1 {
 from {
 port [1-60];
 }
}

Avoiding heavy use of next term and discontiguous numeric range match criteria, and
designing filter terms so that most traffic is accepted or discarded early in the process,
are ways to help ensure that forwarding performance remaining near wire-rate, even
when complex filter are in use.

Firewall Filter and Policer Overview | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering Differences for MPC versus DPC
Readers familiar with the older ADPC-style line cards should keep the differences
shown in Table 3-5 in mind when deploying filters on Trio based MX routers.

Table 3-5. MPC versus DPC Filter Processing.

Trio MPC I-chip DPC

Egress filters apply to all traffic on Trio—L3 multicast and L2 BUM included. Egress filters apply to L3 known
Unicast only

Unknown unicast as an input interface filter match condition is not supported. On Trio, a
MAC lookup is required to determine if a packet is an unknown unicast packet. Therefore,
to support unknown unicast match, a BUM filter must be configured in the VPLS or bridge
instance as applicable.

Unknown Unicast is supported

Simple filters are not supported on Trio. Simple filters supported

Egress filters will use the protocol of the packet after lookup, not the incoming interface
protocol.

Egress filters use ingress interface
protocol

Can reset/set DSCP at ingress using filter with dscp [0 | value] action modifier. DSCP can be reset/set using CoS re-
write on egress interface

Most of the differences are straightforward. The point about egress filters acting on the
egress versus ingress protocol type for Trio versus I-chip is significant and warrants
additional clarification. Imagine an MPLS transport-based VPLS scenario where the
egress PE is a Trio-based MX router. The VPLS traffic received from remote PEs ingress
from the core as type MPLS, and after MAC lookup in the LU chip, egress to the at-
tached CE as protocol vpls; in an L3VPN, the traffic egresses as type inet or inet6.

If the goal is to apply a filter to PE-CE egress traffic, then on a Trio-based MX you will
apply a filter of the vpls family. In contrast, on an I-Chip PFE, an egress filter using the
vpls family (or inet/inet6 in the case of a L3VPN) does not apply as the traffic is still
seen as belonging to the mpls family. Because of this, you need to use a vt (tunnel)
interface or vrf-table-label on the egress PE, both of which result in the packet being
looped back around for a second lookup, to facilitate IP-level filtering at the egress of
a VPN.

Enhanced Filter Mode
Enhanced filters are a Trio-only feature that is dependent on the chassis running in
enhanced network services mode, which in v11.4 means you must include the
enhanced-ip statement at the [edit chassis network-services] hierarchy. Enhanced
filters are designed to save memory when an MX router is used for Subscriber access
where you may need to support filtering for up to 250,000 customers.

166 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Setting enhanced-ip mode will result in the powering off of any DPCs
that are installed in the system. Only Trio-based MPCs can come online
in this mode in v11.4.

Normally, a stateless filter is generated in both term-based mode for use on the ASICs
and in a compiled format used by the kernel. The compiled version of the filter evaluates
traffic flowing to or from the RE via the kernel. Enhanced mode filters save kernel
memory as they are only used in the term-based ASIC format with no copies compiled
for use in the kernel. For more information on enhanced mode filters in v11.4, refer to
the following link: http://www.juniper.net/techpubs/en_US/junos11.4/topics/reference/
configuration-statement/enhanced-mode-edit-firewall.html.

Note that any filter applied to the loopback or management interfaces has to be com-
piled into both formats, which means the enhanced setting is ignored for such filters.
If you designate a filter as enhanced a commit warning is generated if the requisite
chassis mode is not set:

[edit]
jnpr@R1-RE0# set firewall family inet filter accept-web enhanced-mode

[edit]
jnpr@R1-RE0# commit
re0:
[edit firewall family inet]
 'filter accept-web'
 warning: enhanced-mode defined for filter (accept-web) is inconsistent with the
 running configuration of the chassis network services (NORMAL (All FPC))
configuration check succeeds
re1:
commit complete
re0:
commit complete

Filter Operation
This section takes a deep dive into the operation and capabilities of firewall filters on
MX routers. Ready, set, go.

Stateless Filter Processing
A firewall filter consists of one or more terms, with each term typically having both a
set of match criteria and a set of actions to be performed on matching traffic. Traffic is
evaluated against each term in the order listed until a match is found with a terminating
action. Figure 3-1 illustrates these filter processing rules.

Filter Operation | 167

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/topics/reference/configuration-statement/enhanced-mode-edit-firewall.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/reference/configuration-statement/enhanced-mode-edit-firewall.html
http://www.it-ebooks.info/

Figure 3-1. Filter Processing.

The traffic being evaluated begins at term 1, on the left, and makes its way toward the
right through each successive term until a match is found, at which point the associated
actions are carried out. Terminating actions are shown on the bottom of each filter term
while nonterminating (action modifiers) are shown at the top. As was noted previously,
traffic that does not match any of the configured terms is subjected to an implicit deny-
all term that, as it name might imply, matches on all remaining traffic and directs it to
a discard action.

While the block diagram is useful, there is nothing like dealing with actual filter syntax
to help drive these processing points home. Consider the multiterm firewall filter called
EF_limit_G=768K:

filter EF_limit_G=768K {
 term EF {
 from {
 forwarding-class EF;
 }
 then policer POL_EF_G=768K;
 }
 term default {
 then accept;
 }
}

Here, the first term has been called EF, in keeping with its function to match on traffic
that has been classified into the Expedited Forwarding (EF) class. Because all EF traffic
matches this term, it is subjected to a policer named POL_EF_G=768K. While not shown,
you can assume that the policer is set to discard traffic that is in excess of its configured
bandwidth settings; the policer discard action is most certainly terminating for the
traffic that is deemed to be in excess. In contrast, in-profile traffic is handed back to
the EF term, where it’s implicitly accepted in the example given. The concept of implicit
termination is important and is described in detail in the following.

Given that only EF traffic can match the first term, all non-EF traffic falls on through
to the next term, which in this example is called default. This term’s name is selected
in accordance with its function as an explicit catch-all term for any traffic not previously
matched and subjected to a termination action. Because this term has no match criteria
specified, it matches on all traffic and thereby avoids any possibility of traffic inadver-
tently falling through to the implicit deny-all function present at the end of all Junos
filters.

168 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Filter Actions

When a packet matches a filter term, the associated action can be classified as termi-
nating, nonterminating, or as flow-control. As the name implies, terminating actions
cease filter processing at the point they are encountered with any remaining filter terms
ignored and unprocessed. This means you must be extremely careful in the way that
you order your filters and their terms; a given packet can only meet one terminating
action, and it’s going to be the action specified by the first term the packet matches. As
an extreme example, consider the case of a 1,000-term filter named foo that begins with
the following term:

filter foo {
 term explicit-deny {
 then {
 discard;
 }
 }
 term allow_ssh {
 from {
 protocol tcp;

Given that the first term to be evaluated matches all traffic with a terminating condition,
it should be obvious why none of the other 999 terms are ever evaluated, and why you
have so many angry customers calling you . . .

This is a classic use case for the insert feature of the Junos CLI. Rather
than having to delete and redefine an entire filter (or policy) when you
need to reorder terms, you can simply tell Junos to insert an existing
term before or after any other term in the filter (or policy).

accept
Accepts the packet for route lookup and subsequent forwarding to the selected
next hop, which can be an external destination or the local host itself depending
on where the filter is applied.

discard
Silently discards the packet, which is to say that no ICMP error messages are gen-
erated to the source of the offending packet. This is the preferred option when you
expect to discard traffic at scale, given that no PFE resources are taxed during a
silent discard.

reject
Discard the packet and generate an ICMP error message back to its source; while
the specific type of ICMP error message sent depends on the specific configuration,
the default message type is administratively prohibited. These error messages are
generated within the PFE itself, and so do not consume RE compute cycles or any

Terminating Actions.

Filter Operation | 169

www.it-ebooks.info

http://www.it-ebooks.info/

of the bandwidth reserved for PFE to RE communications. In addition, the error
messages are rate limited by the Junos microkernel (within the PFE), to guard
against excessive resource consumption, but even so it’s generally best practice to
use the discard action to completely eliminate a potential DDoS vector that can be
triggered remotely by flooding a network with large volumes of bogus traffic. It
should be noted that source address spoofing is the norm in this kind of attack,
such that any error messages you do bother to generate actually flow to the innocent
(and legitimate) owner of the spoofed address blocks. If such error messages are
being generated in large volumes, the error messages themselves can serve as a
DDoS vector, but now with the nodes in your network seen as the attacker!

Nonterminating actions (also known as action modifiers) are
functions that by themselves do not terminate filter processing, but instead evoke some
additional action such as incrementing a counter or creating a syslog entry. Action
modifiers are pretty straightforward with one exception; just like a term that has no
then action, specifying only action modifiers in a term results in an implicit accept
action. When you wish to use an action modifier without also accepting the matching
traffic, you must specify an explicit terminating action of discard or reject, or use a flow
control action to allow the packet to be processed by subsequent terms.

count
Increments the named counter for each matching packet of the specified protocol
family. You view the counter results with a CLI show firewall filter command.
Counters can consume PFE resources, so it’s best not to use them “just because,”
especially so if used in a catch-all term that accepts large volumes of permitted
traffic, where a high packet count does not tell you a lot anyway. In a production
network, it’s best to use counters for discard terms that are expected to have a
relatively low volume of hits as an aid in troubleshooting any connectivity issues
that may arise from packet discard. Counters are often added during initial filter
deployment to help confirm expected filter matching and facilitate troubleshooting
when unexpected results are found. Such counters are typically deactivated or re-
moved from the configuration when the filter is confirmed to work properly and
is placed into production.

log
Log the packet header information in a ring buffer within the PFE. You can view
the log hits by issuing the CLI show firewall log command. This action modifier
is supported for the inet and inet6 families only. Note that the log cache cannot
be cleared and can hold about 400 entries before it wraps around to begin over-
writing older entries. The log’s contents are retained in the PFE until requested by
the cli, so this modifier does not consume much in the way of RE bandwidth or
compute cycles.

syslog
This modifier is similar to the previous one, except now each hit is sent from the
PFE to the RE, where it is kept in the local (or remote) syslog for future analysis.

Nonterminating Actions.

170 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

In order for filter hits to be logged, you must specify a local or
remote syslog file, and you must include the firewall facility for that
log. The local syslog example shown places all filter hits with info
level or above into the /var/log/filter_hits log file. You can also
write filter hits to the main syslog messages file by including the
firewall facility, but placing this information into individual logs
tends make analysis easier. This configuration will also result in the
creation of 4 filter_hits log files, each with a size of 10m before
filling up and overwriting the oldest entries:

file filter_hits {
 firewall info;
 archive size 10m files 4;
}

policer
Use this modifier to direct matching traffic to a policer for rate limiting. Junos
policers are covered in detail later, but for now it’s worth noting that a Junos policer
automatically creates a counter to tally its packet discards. You can view the policer
counter along with any other filter counters with a CLI show firewall filter
<name> command.

dscp
This modifier allows you to rewrite DSCP bits in matching inet (IPv4) packets.

Support for this modifier is hardware and platform dependant, so
it’s best to check that your FPC/MPCs are supported, else expect
silent fail.

forwarding-class
This modifier is used to set matching traffic’s forwarding class (FC), which in turn
is used to bind the packet to an egress queue and scheduler for CoS processing.
Note that using a filter to set a FC is considered Multi-Field (MF) classification,
given that the filer can match on various fields besides those strictly designated for
ToS markings, and that an ingress MF classifier overwrites the FC that may have
been set by a Behavior Aggregate (BA) classifier.

On Trio PFEs, you can use an egress filter to alter a packet’s FC,
thereby affecting its egress queuing and rewrite operations.

loss-priority
This modifier can set a packet’s loss priority, which is used later in the face of
congestion to make WRED-related discard decisions. You need to include the tri-

Filter Operation | 171

www.it-ebooks.info

http://www.it-ebooks.info/

color statement at the [edit class-of-service] hierarchy if you want to set more
than two levels of loss priority, otherwise only high and low are available.

next-hop-group
This modifier is used to associate matching traffic with an interface group and is
supported for the inet family only. Groups are used on the MX for port mirroring,
where matching traffic can be sent out one or more of the interfaces bound to the
specified group.

port-mirror
This modifier tags matching traffic of the specified family for port mirroring. You
must also configure the port mirroring interfaces for this to work.

prefix-action
This modifier evokes the per-prefix policing and counting feature that’s designed
to make deploying large numbers of policers and counters, on a per-prefix level,
as might be used to limit a college dorm’s Internet activities, easy to deploy.

sample
This modifier marks matching traffic as eligible for sampling to support flow col-
lection and analysis using Jflow; Jflow is the Junos feature that exports cflowd
formatted records (which is the same functionality as the widely known Netflow
application and its v5 record export on other vendor’s equipment). For this to
work, you also need to configure sampling, which includes the statistical proba-
bility that such a marked packet will actually be sampled; 1:1 sampling is rarely
done in production networks as port mirroring is better suited to sampling all
traffic. Currently, sampling is supported for the inet, inet6, and mpls families only.

three-color-policer
Similar to the policer modifier, except used to direct traffic to a single-rate two
color (srTCM) or a two-rate three color policer (trTCM).

traffic-class
This modifier allows you to rewrite the Traffic Class bits in matching inet6 (IPv6)
packets, similar to the dcsp modifier’s functionality for IPv4.

Support for this modifier is hardware and platform dependant, so
it’s best to check that your FPC/MPCs are supported, else expect
silent fail.

Flow control actions, as their name would imply, are used to alter
the normal flow of filter processing logic.

next-term
This modifier causes matching traffic to immediately pass through to the next term
in the current filter. At first glance, this function may seem redundant, but it’s not.
Use this modifier to avoid any implicit-accept functions associated with use of an
action-modifier, while still allowing the packet to be processed by additional filter

Flow Control Actions.

172 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

terms (when present). For example, assume you wish to match some traffic in a
given term and evoke a count function. By default, matching traffic will be implic-
itly accepted unless you specify an explicit action. Here, the next-term action pre-
vents implicit acceptance by the counting term, thus allowing the same traffic to
be processed by additional terms.

Heavy use of next-term should be avoided as it has a computational
load associated with it and can affect performance with high-scaled
firewall configurations.

Policing
As mentioned in the chapter overview, a stateless filter can evoke a traffic policer action
to rate limit traffic according to user-specified bandwidth and burst size settings. Rate
limiting is a critical component of a CoS architecture and a primary mechanism for
ensuring that a broad range of Service Level Agreements (SLAs) can be honored in a
modern, multiservice internetwork. In such networks, it’s critical that you meter and
limit ingress traffic flows to protect the shared resources in the network’s core to ensure
that each subscriber does not consume excessive bandwidth, leading to poor perfor-
mance for users that honor their contracts.

Rate Limiting: Shaping or Policing?
The basic idea of rate limiting is rather straightforward. The goal is to limit the amount
of traffic that can be sent by a given device in a given unit of time. Simple enough from
20,000 feet, but there are several ways to achieve rate limiting, namely shaping versus
policing. While both provide similar effects at the macro level, they have distinct op-
erational differences that can be seen at the micro level when looking at the way packets
are placed onto the wire. Most pronounced is shaping introduced delay in an attempt
to control loss, making them better suited for use with TCP-based applications, while
a policer does the opposite, trading loss for delay, making it better suited to real-time
applications.

Shaping

Traffic shaping attempts to reduce the potential for network congestion by smoothing
out packet flows and regulating the rate and volume of traffic admitted to the network.
In effect, a shaper endeavors to turn valleys and hills into a level road by buffering the
peaks and using that excess traffic to fill up the valleys. There are two primary ways to
facilitate traffic shaping:

The leaky bucket algorithm provides traffic smoothing by pre-
senting a steady stream of traffic to the network. Its operation is shown in Figure 3-2.
The Leaky Bucket Algorithm.

Policing | 173

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-2. Leaky Bucket Shaping Algorithm.

The figure shows how the leaky bucket shaper turns a bursty stream of packets into a
consistent stream consisting of equally spaced packets. In operation, the unregulated
stream of ingress packets are placed into a queue that’s controlled by a queue regulator.
Bursts are controlled through immediate discard when the flow presents more packets
than the queue can store. Packets at the head of the queue are forwarded at a constant
rate determined by the configuration of the queue regulator’s “drain rate.” When
properly configured, the packets should not be forwarded into the network at a rate
greater than the network can, or is willing to, absorb. The length (or depth) of the
packet queue bounds the amount of delay that a packet can incur at this traffic shaper.
However, the end-to-end delay can be much longer if the packet should incur additional
shapers, or develops queuing delays at downstream hops due to network congestion,
given that shaping is typically performed only at ingress to the network.

The token bucket algorithm is a type of long-term average
traffic rate shaping tool that permits bursts of a predetermined size, with its output
being a burst-regulated stream of traffic that is presented to the network. The token
bucket rate limiting algorithm enforces a long-term average transmission rate while
permitting bounded bursts. With this style of shaper, a token bucket is used to manage
the queue regulator, which in turn controls the rate of packet flow into the network,
as shown in Figure 3-3.

The Token Bucket Algorithm.

174 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-3. Token Bucket Shaping Algorithm.

The figure shows how a token generator is used to produce tokens at a constant rate
of R tokens per second, with the resulting tokens placed into a token bucket with a
depth of D tokens. Generally, each token grants the ability to transmit a fixed number
of bytes, so a greater bucket depth equates to a larger permitted burst size; when the
token bucket fills, any newly generated tokens are discarded. This means that unused
bandwidth from a previous cycle does not carry forward to grant increased usage credit
in the current cycle. A classic case of use it or lose it!

The figure shows an unregulated stream of packets arriving at a packet queue with a
maximum length of L, which is a function of the bucket size. As was the case with the
simple leaky bucket algorithm, if the flow delivers more packets than the queue can
store, the excess packets are discarded, a process that limits maximum burst rate as a
function of queue depth. However, unlike the simple leaky bucket case, the token
bucket’s queue regulator has to consider a number of factors when deciding whether
a packet of size P tokens can be forwarded into the network:

• When the token bucket is full, the packet is forwarded into the network and P
tokens are removed from the bucket.

• When the token bucket is empty, the packet waits at the head of the queue until
P tokens accumulate in the bucket. When P tokens eventually accrue, the packet
is sent into the network and P tokens are removed from the bucket.

• When the token bucket is partially full and contains T tokens, the packet size must
be factored. If P is less than or equal to T, P tokens are removed from the bucket

Policing | 175

www.it-ebooks.info

http://www.it-ebooks.info/

and the packet is sent. If P is greater than T, the packet must wait for the remaining
P minus T tokens before it can be sent.

In this algorithm, the rate of the token generator defines the long-term average traffic
rate while the depth of the token bucket defines the maximum burst size. As always,
the length of the packet queue bounds the amount of delay that a packet can incur at
the traffic shaper.

The token bucket and leaky bucket algorithms are both considered methods of shaping
traffic because they regulate the long-term average transmission rate of a source. In
contrast, the token bucket mechanism also supports the concept of a committed burst
size. Burst support is important because most traffic is bursty by nature, and sending
data in a burst will get it to its destination faster, assuming of course that downstream
nodes are not chronically congested and can therefore handle the occasional traffic
spikes. A leaky bucket shaper, with its constant traffic rate and lack of a burst, is more
suited to networks that cannot tolerate any burst because they are always in a congested
state, living at the very cusp of their buffer’s capacity.

Policing

Traffic policing and shaping are often confused, perhaps because both can be based on
a token bucket mechanism. Recall that a shaper either discards or delays traffic while
waiting for sufficient token credit, and packets that leave a shaper are not marked. In
contrast, a policer can perform discard actions as well, but it can also mark excess
traffic. The policer marking can be used both in the local or downstream nodes to
influence discard decisions during periods of congestion (sometimes called coloring or
soft policing).

The policing function can be based on the token bucket algorithm, but now the packet
queue is replaced with a metering section that accepts compliant traffic and either
discards or marks excess traffic. The decision to drop a packet as opposed to marking
it determines wither the policer is operating in a hard or soft model. Figure 3-4 illustrates
a soft policer function.

Figure 3-4. Soft Policing Through Packet Marking.

As already noted, the decision to mark rather than to drop nonconformant traffic is the
hallmark of a soft policer; in contrast, a hard policer immediately discards excess traffic.

176 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

A soft policer’s traffic marking is used to influence drop behavior at each hop along the
path to the packet’s destination, where congestion management mechanisms like
WRED are deployed to aggressively drop packets based on their color markings to help
ensure that compliant traffic is never affected by excess traffic, and that excess traffic
is the first to feel the pain during periods of congestion. Intelligent drop behavior is a
critical component of maintaining separation between traffic forwarding classes, as
demanded by the Differentiated Service CoS model.

When policing traffic, it’s important to ensure that packet ordering is
maintained within a flow. Simply marking a packet by increasing its
drop precedence only raises the probability that a core router will drop
the packet during periods of network congestion. Not receiving a packet
is quite different than receiving packet number five before receiving
packets one through four. Sequencing errors are particularly disastrous
to real-time services like voice and video, which tend to perform better
with simple loss as opposed to reordering.

In general, you avoid packet reordering by ensuring that all packets as-
sociated with a given flow are assigned to the same queue at each hop
across the network. You should avoid using a policer to place out-of-
profile traffic into a different forwarding class (or queue) because sep-
arating a single flow across multiple queues is a surefire recipe for a
banquet of sequencing errors that will give all but the most robust of
applications a bad case of heartburn.

Junos policers are just that: policers, not shapers. This is because policing takes a more
flexible approach than traffic shaping; it provides the ability to burst, which both re-
duces delays and allows the network to deliver excess traffic when it has the capacity,
in keeping with the principles of statistical multiplexing. It’s important to note that a
policer effectively functions like a shaper (at least at the macro view) when configured
to operate in drop (hard) mode.

In the IETF’s DiffServ parlance, policers and shapers perform the func-
tion of a “traffic conditioner.” RFC 2475 “An Architecture for Differ-
entiated Services” states that a traffic conditioner performs functions
such as meters, markers, droppers, and shapers, and it may remark a
traffic stream or may discard or shape packets to alter the temporal
characteristics of the stream and bring it into compliance with a traffic
profile. Given this definition, it’s clear that a Junos policer can be clas-
sified as a DiffServ Traffic Conditioner, but as we are among friends
we’ll stick to the term policer.

Policing | 177

www.it-ebooks.info

http://www.it-ebooks.info/

Junos Policer Operation
Junos supports a single-rate two-color (srTC), single-rate three-color (srTCM), two-
rate three-color (trTCM), and hierarchical policers. In addition, there are a number of
different ways you can attach any given policer, the choice of which is a major factor
in determining what traffic the policer sees. The details for the various policer types
follow, but all policers share some common properties such as the use of a token bucket
algorithm that limits traffic based on a bandwidth and burst size setting.

It’s important to note that with all policer types, in-profile (conformant) traffic is always
handed back to the calling term unmodified; the fate of excess or out-of-profile traffic
is a function of the policer’s configuration. For a traffic flow that conforms to the con-
figured limits (categorized as green traffic), packets are marked with a packet loss pri-
ority (PLP) level of low and are typically allowed to pass through the interface unre-
stricted through the calling term’s implicit accept action.

When a traffic flow exceeds the configured limits (classified as yellow or red traffic),
the nonconforming packets are handled according to the actions configured for the
policer. The action might be to discard the packet (hard policing), or the action might
be to remark the packet (soft model), perhaps altering its forwarding class, or setting
a specified PLP (also known as a color), or both, before the policer passes the traffic
back to the calling term.

In the v11.4 Junos release, the Trio chipset on MX MPCs does not support explicit
configuration of policer overhead. This feature is normally used in conjunction with
interfaces that are rate limited using the shaping-rate statement configured under
[edit class-of-service traffic-control-profiles]. When you define such a, added
overhead for things like MPLS labels or VLAN tags can be factored into the shaped
bandwidth using the overhead-accounting statement, which essentially allows you to
add overhead bytes to the shaping rate so as to only shape user payload, when desired.
If such an interface is also subjected to a policer, it’s a good idea to add the same number
of overhead bytes to match it to the shaper; stated differently, if you shape based on
the payload, you should also police at the payload level whenever possible. Policer
overhead for rate shaping is supported on I-Chip-based Dense Port Concentrators
(DPCs) at this time.

Policer Parameters

The key parameters of Junos policers are the bandwidth-limit and burst-size-limit
settings, as these combine to determine the average and peak bandwidth for conformant
traffic.

Bandwidth
You set a policer bandwidth using the bandwidth-limit keyword. This parameter
determines the rate at which tokens are added to the bucket, and therefore repre-
sents the highest average transmit (or receive) rate in bits per second (bps). When

178 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.2/topics/concept/policer-types.html#jd0e114
http://www.it-ebooks.info/

the traffic arrival rate exceeds the token replenishment rate, the traffic flow is no
longer conforming to the bandwidth limit and the specified policer action is exe-
cuted.

You specify the bandwidth limit as either an absolute number in bps or as a per-
centage value from 1 through 100. If a percentage value is specified, the effective
bandwidth limit is calculated as a percentage of either the physical interface media
rate or the logical interface’s configured shaping rate.

When specifying bandwidth in absolute terms, the supported range is from 8,000 to
50,000,000,000 bps. The CLI supports human-friendly suffixes like k, m, or g, for kilo,
megabits, or gigabits.

Burst Size
The maximum burst size is set with the burst-size-limit keyword. This parameter
sets depth of the bucket, in bytes, and therefore the maximum amount of token
credit that can accrue. Because tokens are needed to send traffic, this in turn limits
the largest contiguous burst (in bytes) that is possible before nonconformance is
declared.

A properly dimensioned burst size is critical for proper operation.
Setting the burst limit too low can cripple an application’s perfor-
mance. For example, consider that non-jumbo Ethernet frames
have a MTU of 1,500, which means they can carry up to 1,500 bytes
of upper layer protocol payload. During a file transfer, you might
expect many such full-sized frames, which means that the absolute
minimum acceptable burst size for this application is 1,500 bytes,
assuming the policing is at Layer 3; for a Layer 2-based service, the
additional 14 bytes (assuming no VLAN tagging or MPLS encap-
sulation) of frame overhead would have to be factored into the
burst. In actuality, you will likely want to set the burst size several
times higher than the absolute minimum, or else the policer will
not be TCP-friendly and actual user throughput will likely be far
below the policer bandwidth limit.

As noted previously, setting too low a burst size can be disastrous
to application throughput. On the other hand, setting the burst allowance too high can
lead to a general lack of policing, perhaps causing havoc in other parts of the network
when all that excess traffic results in congestion. Thus, the $64,000-dollar question is
born: “What should I configure for a burst limit in my policers?”

The rule of thumb is that the burst size should never be lower than 10 times the inter-
face’s MTU, with the recommended setting for high-speed interfaces (i.e., Fast Ethernet
and above) being equal to the amount of traffic that can be sent over the interface in
five milliseconds. As an example, consider a 10 G Ethernet interface with a default
1,500 byte MTU. Given its bit rate, the interface can send 1.25 G Bytes per second,
which means that in a given millisecond the interface can send 10 M bits; as a function

A Suggested Burst Size.

Policing | 179

www.it-ebooks.info

http://www.it-ebooks.info/

of bytes, this equates to 1.25 MB per millisecond. Based on the previous guidelines, the
minimum burst size for this interface is 15 KB/120 Kb (10 * 1500), while the recom-
mended value, based on a 5 millisecond burst duration, comes out to be 6.25 MB/50
Mbps. Note the large delta between the minimum and recommended burst size
settings. Given that MTU tends to be fixed, this ratio between minimum and recom-
mended burst size grows with increasing interface speed. While a UDP or traffic gen-
erator stream may see similar results with each over some period of time, a TCP-based
application will likely perform quite poorly with the lower setting. This is because TCP
interprets loss to mean congestion, so each policer discard leads the sender to reduce
its congestion window and to initiate slow start procedures, with the result being that
actual user throughput can fall well below the policer bandwidth limit.

Policer Actions

Once the policer limits have been configured, the action taken if a packet exceeds the
policer must be chosen. There are two types of policing available: “soft” policing and
“hard” policing. Hard policing specifies that the packet will be dropped if it exceeds
the policer’s traffic profile. Soft policing simply marks and/or reclassifies the packet,
both of which are actions intended to increase the probability of the packet being
dropped during times of congestion. In this context, marking refers to modifying a
packet’s packet loss priority (PLP), which is an internal construct used to influence the
local node’s discard and outgoing header rewrite actions, with the latter used to convey
loss priority to a downstream node. This process is also known as coloring, especially
when the router supports more than two loss priorities. These concepts are further
examined in the Class of Service chapter.

Basic Policer Example
In Junos, the most basic style of policer is technically referred to as a single-rate two-
color (srTC) policer. You configure this type of policer at the [edit firewall
policer] hierarchy. This policer classifies traffic into two groups using only the
bandwidth-limit and burst-size-limit parameters. Assuming a soft model, the traffic
that conforms to the bandwidth limit or the peak burst size is marked green (low PLP)
while traffic in excess of both the bandwidth limit and the peak burst size is marked
red (high PLP) and possibly assigned to a differrent FC/queue.

In some cases, a discard action for excess traffic may be desired. Hard policing is often
seen for ingress traffic contract enforcement or with traffic that is associated with a
strict-high (SH) scheduling priority. This is because without the use of rate-limit to
cap bandwidth consumption, an SH scheduler is not subjected to a transmit rate and
would otherwise only be limited by interface bandwidth (or the shaping rate when in
effect) and as such excess SH traffic can easily starve other traffic classes that are within
their bandwidth limits. Chapter 5 provides details on Junos schedulers and relative
priorities.

180 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

A sample srTC policer is shown:

policer simple {
 if-exceeding {
 bandwidth-limit 50m;
 burst-size-limit 15k;
 }
 then discard;
}

Given the previous discussion, there is not much to say here, except perhaps that the
discard action makes this a hard policer example, and that the burst size, at 15 KB,
appears to be set based on the minimum recommendation of 10 times the default
Ethernet MTU of 1,500 bytes. To be useful, such a policer must be applied in the packet
forwarding path. This can be done via a firewall filter or through direct application to
an interface, as described in the following.

The basic single-rate two-color policer is most useful for metering traffic at a port (IFD)
level. However, you can also apply this style policer at the logical interface (ifl) level or
as part of a MF classifier. There are two main modes of operating for this style of policer.

Bandwidth Policer

A bandwidth policer is simply a single-rate two-color policer that is defined using a
bandwidth limit specified as a percentage value rather than as an absolute number of
bits per second. When you apply the policer (as an interface policer or as a firewall filter
policer) to a logical interface at the protocol family level, the actual bit rate is computed
based on the physical device speed and the specified bandwidth percentage.

Logical Bandwidth Policer

A logical bandwidth policer is when the effective bandwidth limit is calculated based
on the logical interface configured shaping rate. You can apply as a firewall filter policer
only, and the firewall filter must be configured as an interface-specific filter. You create
this style of policer by including the logical-bandwidth-policer statement. The result-
ing bit rate is computed based on any shaping rate applied to the interface, rather than
its actual media speed. Shaping is covered in detail in Chapter 5.

Cascaded Policers
With Junos, you can use filter-evoked policing along with the next-term flow-control
operator to achieve cascaded policing. A cascaded policer allows you to police the same
stream more than once: first at some aggregate rate, and then again at a lesser rate for
some specific subset of the traffic. This concept is shown in Figure 3-5.

Policing | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Some refer to this approach as hierarchical or nested policers. The term
“cascaded” is used here to differentiate this concept from a Hierarchical
Policer, as described in the following, and from firewall nesting, where
you call a filter from another filter.

Figure 3-5. Cascaded Policers, A Poor man’s Hierarchical Policer.

For the sake of brevity, the policers in this example are shown with a bandwidth limit
only. A match-all filter term is used to direct all traffic to the first stage policer (P1) on
the left, where it is limited to 10 Mbps. The term used to evoke the policer must use
the next-term flow controller modifier to avoid implicit acceptance of in-profile aggre-
gate traffic.

The cascading comes to play when a subset of P1’s output is then subjected to a second
level of policing at P2. A second filter, or filter term, is used to match the subset of the
aggregate flow that is to receive additional policing, which in this example limits that
traffic to 500 Kbps. The key here is that P1 > P2, and as such P1 limits the maximum
stream rate to 10 Mbps or less. This 10 Mbps could be only P1 traffic, such as would
occur when none of the traffic is subjected to the second policer, or it could be com-
prised of as much as 9.5 Mbps of P1 + 500 K of P2 in the event that 500 K of P2 traffic
is matched. In contrast, if only P2 traffic is present then the maximum output rate is
the 500 K associated with P2.

A sample Junos configuration for a cascaded policer is shown; the example includes
the mandatory burst parameters that were omitted from the figure:

user@R1# show firewall
policer P1 {
 if-exceeding {
 bandwidth-limit 10m;

182 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

 burst-size-limit 50k;
 }
 then discard;
}
policer P2 {
 if-exceeding {
 bandwidth-limit 500k;
 burst-size-limit 50k;
 }
 then discard;
}

A corresponding filter is defined to call the policers for matching traffic:

firewall {
 family inet {
 filter cascaded_policing_example {
 interface-specific;
 term limit_aggregate_P1 {
 then policer P1;
 then next-term;
 }
 term limit_icmp_P2 {
 from {
 protocol icmp;
 }
 then policer P2;
 }
 term catch-all {
 then accept;
 }
 }
 }
}

The example filter named cascaded_policing_example consists of three terms. The first
and last match all traffic given their lack of a from match condition. The effect of the
limit_aggregate_P1 term is to direct all traffic to the P1 policer, which limits the aggre-
gate to 10 Mbps. Note that the outright acceptance of in-profile traffic is prevented here
through use of the next-term action modifier. The next-term action is a key component
in this filter-based nested policer example; without it, no traffic can ever make it to the
limit_icmp_P2 term, a condition that clearly defeats the cascaded policing plan. The
second term only matches on ICMP traffic, with matching traffic directed to the P2
policer, where it’s rate limited to the lesser value of 500 Kbps.

At this stage, the reader should know the purpose of the final catch-all term. Recall
that without this explicit accept-all term only ICMP traffic (limited to 500 Kbps) can
be sent, as all other traffic would be subjected to the implicit deny-all function.

Policing | 183

www.it-ebooks.info

http://www.it-ebooks.info/

Single and Two-Rate Three-Color Policers
MX routers also support single-rate three-color narker (srTCM) and two-rate three-
color marker (trTCM) style policers, as described in RFCs 2697 and 2698, respectively.
These policers enhance the basic single-rate two-color marking type previously dis-
cussed by adding a third packet coloring (yellow) and increased control over bursting.

The main difference between a single-rate and a two-rate policer is that the single-rate
policer allows bursts of traffic for short periods, while the two-rate policer allows more
sustained bursts of traffic. Single-rate policing is implemented using a dual token bucket
model that links the buckets so that overflow from the first is used to fill the second,
so that periods of relatively low traffic must occur between traffic bursts to allow both
buckets to refill. Two-rate policing is implemented using a dual token-bucket model
where both buckets are filled independently, as described subsequently.

Another way of looking at their differences is to consider that operationally, a srTCM
provides moderate allowances for short periods of traffic that exceed the committed
burst size, whereas a trTCM accommodates sustained periods of traffic that exceeds
the committed bandwidth limit or burst size.

The drawback to a single-rate policer is that network operators tend to provision
smaller CIRs (or fewer customers) to ensure they can meet simultaneous CIR rates by
all customers, which is a rare event and usually results in bandwidth underutilization
during the far more common periods of low activity. This shortcoming resulted in the
concept of a dual-rate traffic contract, where control is provided over two sending rates,
with only the lesser one guaranteed. A two-rate contract first became popular in Frame
Relay networks; as an example, consider the extremely popular case of a 0 CIR service
with excess burst rate (Be) set to the port speed (access rate). Here, the network guar-
antees nothing, and so can sell services to as many customers as they like without
technically ever overbooking their capacity. But, users can still burst to ports speed
with the only drawback being all their traffic is marked as Discard Eligible (DE). Given
the high capacity of modern networks, and the statistically bursty nature of IP appli-
cations, most customers find this type of service to be both reliable and cost-effective,
often choosing it over a higher CIR guarantee that also comes with higher rates and
DLCI limits based on port speed, as a function of the aggregate CIR not being allowed
to exceed port speed.

TCM Traffic Parameters

Recall that a single-rate two-color marker-style policer incorporated two traffic
parameters to determine if policed traffic is in or out of the policer profiler; namely, the
bandwidth and burst-size limits. TCM-style policers must support additional traffic
parameters to perform their job. While there are some new names, always remember
that in a Junos policer bandwidth is always measured in bits and burst is always meas-
ured in bytes.

184 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

A srTCM policer is defined by three traffic parameters: the
CIR, CBS, and EBS.

Committed Information Rate
The committed information rate (CIR) parameter defines the long-term or average
guaranteed bandwidth of a service as measured in bps by controlling the rate at
which tokens are added to the CBS bucket. A traffic flow at or below the CIR is
marked green. When traffic is below the CIR, the unused bandwidth capacity ac-
cumulates in the first token bucket, up to the maximum defined by the CBS pa-
rameter. Any additional unused tokens can then overflow into the second bucket
that controls excess bursting.

Committed Burst Size
The committed burst size (CBS) defines the maximum number of bytes that can
be accumulated in the first token bucket, and therefore the maximum size (in bytes)
of a committed burst. A burst of traffic can temporarily exceed the CIR and still be
categorized as green, provided that sufficient bandwidth capacity has been allowed
to build in the first bucket due to a previous period in which traffic was below the
CIR.

Excess Burst Size
The srTCM policer configuration includes a second burst parameter called the
excess burst size (EBS). This parameter defines the maximum number of token
credits that can overflow from the CBS bucket to accumulate in the EBS bucket.
The depth of this bucket determines how many credits you build up for unused
committed burst in previous intervals, which can now be applied to traffic that’s
beyond the CBS in the current interval. Larger values allow the user to reclaim more
unused intervals for application against excess traffic in a current interval, and so
allow for a longer burst.

Figure 3-6 shows how the srTCM policer uses these parameters to meter traffic.

Single-Rate Traffic Parameters.

Policing | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-6. The srTCM Policer.

Initially, both the committed and excess buckets are filled to their capacity. Their depth
is a function of the configured CBS and EBS parameters, respectively. Token credits
are added to the CBS bucket based on the configured CIR. If the CBS bucket fills,
overflow tokens begin to fill the EBS bucket until it too is full, in which case no addi-
tional tokens accumulate. Their combined token capacity sets a hard limit on how
much traffic can be sent in a contiguous burst before the discard action associated with
red traffic is initiated.

Packets are sent at the Access Rate (AR) of the interface, also known as port speed,
which normally far exceeds the CIR. Thus, it’s the length of a burst, not its arrival rate
(in bps), that determines if traffic exceeds one or both buckets. When a packet of size
X arrives, the srTCM algorithm first tries to send it as CBS by comparing X to the
number of token credits in the CBS bucket. If X is smaller, the CBS bucket is decre-
mented by X, to a minimum of 0, and the traffic is marked green.

If insufficient token credit is found in the CBS bucket, the traffic is next compared to
the credit in the EBS bucket. Recall that EBS provides credit for excess traffic in the
current interval as a function of having sent less than you could have in a previous time
period. If X is less than or equal to the credits in the EBS bucket, the packet is marked
yellow and the EBS token reserve is decremented by X. If X is larger than the credit
found in both buckets, the packet is marked red; no changes are made to the token

186 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

credits in either bucket, thereby allowing them to continue accumulating credits based
on the CIR.

In effect, the EBS improves “fairness” to compensate for cases where a link has been
idle for some period of time just before a large burst of traffic arrives. Without tolerance
for some amount of excess traffic in such a case, the user is limited to his or her CBS
despite the previous idle period. By allowing the customer to accumulate up to EBS
extra bytes, the customer is compensated for idle times by being able to send CBS +
EBS traffic. It’s important to note that the result is that the long-term average rate still
remains equal to CIR. Thus, a srTCM is said to be best suited to the support of traffic
that exhibits only occasional bursting.

A two-rate traffic contract is defined by four parameters,
namely, the CIR, CBS, PIR, and PBS.

Committed Information Rate
The trTCM’s CIR parameter functions the same as in the srTCM case described
previously in the srTCM case.

Committed Burst Size
The trTCM’s CBS parameter functions the same as in the srTCM case described
previously for the srTCM.

Peak Information Rate
A trTCM policer uses a second rate limit parameter called the Peak Information
Rate (PIR). Like the CIR, this parameter defines the maximum average sending rate
over a one-second period. Traffic bursts that exceed CIR but remain under PIR are
allowed in the network, but are marked yellow to signal their increased drop
probability.

Peak Burst Size
A trTCM policer uses a second burst size parameter called the Peak Burst Size
(PBS). This parameter defines the maximum number of bytes of unused peak
bandwidth capacity that the second token bucket can accumulate. During periods
of relatively little peak traffic (the average traffic rate does not exceed the PIR),
unused peak bandwidth capacity accumulates in the second token bucket, but only
up to the maximum number of bytes specified by the PBS. This parameter places
a limit on the maximum length of a burst before the PIR is violated, and the traffic
is marked red and can be subjected to immediate discard when so configured.

The use of two independent buckets combined with the additional parameters needed
for control of PIR independently of CIR facilitates support of sustained bursting when
compared to a srTCM. Figure 3-7 details the operation of a trTCM.

As before, both buckets are initially filled to their capacity, and each bucket’s depth is
a function of the configured CBS and PBR, respectively. However, in this case token
credits are added to both buckets independently based on the configured CIR and PIR;
there is no overflow from the first to fill the second as was the case with the srTCM. In

Two-Rate Traffic Parameters.

Policing | 187

www.it-ebooks.info

http://www.it-ebooks.info/

fact, when both buckets are full no additional tokens can accumulate anywhere, mean-
ing there is less fairness in the face of bursty traffic with regards to unused capacity and
the current intervals committed burst.

When a packet of size X arrives, the trTCM algorithm first determines if it exceeds the
PIR by comparing its size to the token reserve in the PBS bucket. If X exceeds the current
T_pbstoken capacity, the traffic is marked red; no token counters are decremented for
red traffic as it was never sent.

Figure 3-7. The trTCM Policer.

When a packet does not exceed the T_pbsreserve, the next step is to determine green
or yellow status by comparing size X to the T_cbs reserve in the CBS bucket. If X is
larger than the current CBS capacity, the traffic is marked yellow and the corresponding
number of PBS tokens are deleted from the PBS bucket. If the current packet size does
not exceed the CBS bucket’s token reserve, the traffic is marked green and the corre-
sponding number of tokens is deleted from both the CBS and PBS buckets. The result
is that yellow traffic counts only against the peak burst while green traffic counts against
both committed and peak burst.

With a trTCM there is no ability to store unused capacity, which is to say that unused
tokens simply overflow from one or both buckets. As such, there is no “fairness” mech-
anism in trTCM with regard to gaining extra capacity based on unused capacity in a

188 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

previous interval. Instead, every incoming packet is compared to the current token
capacity of both the CBS and PBS buckets to compare the current traffic flow to the
two defined rates. This makes the trTCM better suited for traffic that is chronically
bursty, as the long-term average rate is limited by the PIR, rather than by whether all
capacity was used in the last measurement period. Recall that with the srTCM, bursting
is really only possible as a function of not sending at the CIR in a previous interval. In
contrast, the use of two independent buckets in trTCM means the user can send PIR
in each and every interval. That said, only the CIR traffic is guaranteed, as traffic above
the CIR may be discarded during periods of congestion due to its yellow marking.

Color Modes for Three-Color Policers

Both single-rate and two-rate three-color policers can operate in either a color-blind or
color-aware mode.

Color-Blind Mode
In color-blind mode, the three-color policer assumes that all packets examined
have not been previously marked or metered. If you configure a three-color policer
to be color-blind, the policer ignores preexisting color markings that might have
been determined via a BA classifier or set for a packet by another traffic policer
(i.e., an ingress policer or as part of a nested policer design).

Color-Aware Mode
In color-aware mode, the three-color policer assumes that all packets examined
have been previously marked or metered and any preexisting color markings are
used in determining the appropriate policing action for the packet.

It should be noted that the three-color policer can only increase the packet loss
priority (PLP) of a packet (i.e., make it more likely to be discarded). For example,
if a color-aware three-color policer meters a packet with a medium PLP marking,
it can raise the PLP level to high but cannot reduce the PLP level to low. This ensures
that a packet’s CoS is never increased by being subjected to additional levels of
policing.

If a previous two-rate policer has marked a packet as yellow (loss priority medium-
low), the color-aware policer takes this yellow marking into account when deter-
mining the appropriate policing action. In color-aware policing, the yellow packet
would never receive the action associated with either the green packets or red
packets. As a result, tokens for violating packets are never taken from the metering
buckets for compliant traffic, or stated differently, tokens of a given color are always
used for traffic of the same color. Therefore, the total volume of green traffic should
never be lower than the configured CIR/CBS permits.

Configure Single-Rate Three-Color Policers

You configure a srTCM at the [edit firewall three-color-policer] hierarchy. You
must also include the single-rate (color-aware | color-blind) statement, in addition

Policing | 189

www.it-ebooks.info

http://www.it-ebooks.info/

to specifying the committed-information-rate, committed-burst-size, and excess-
burst-size parameters. In addition, to evoke such a policer from a filter you must do
so with a then three-color-policer action, which requires that you also specify the
related single-rate policer by its name.

A srTCM policer takes the following form:

{master}[edit firewall three-color-policer test_sr_tcm]
jnpr@R1-RE0# show
action {
 loss-priority high then discard;
}
single-rate {
 committed-information-rate 1m;
 committed-burst-size 64k;
 excess-burst-size 128k;
}

An srTCM is evoked either through direct application to an interface, or via a filter call.
To call from a filter, include the three-color-policer and single-rate statements as
shown:

filter limit_ftp {
 term 1 {
 from {
 protocol tcp;
 port [ftp ftp-data];
 }
 then {
 three-color-policer {
 single-rate test_sr_tcm;
 }
 }
 }
 term 2 {
 then accept;
 }
}

An srTCM policer marks traffic yellow when its average rate ex-
ceeds the CIR (and therefore the available bandwidth capacity accumulated in the first
bucket) when there is sufficient unused bandwidth capacity available in the second
token bucket. Packets in a yellow flow are implicitly marked with medium-high PLP
and then passed through the interface.

A traffic flow is categorized red when the average rate exceeds the CIR and the available
bandwidth capacity accumulated in the second bucket. Packets in a red flow are the
first to be discarded in times of congestion, and based on configuration can be discarded
immediately, independent of congestion state.

srTCM Nonconformance.

190 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.2/topics/reference/configuration-statement/three-color-policer-edit-firewall-family-filter-term-then.html
http://www.it-ebooks.info/

Configure Two-Rate Three-Color Policers

A trTCM policer is also defined at the [edit firewall three-color-policer] hierarchy.
However, you now include the two-rate (color-aware | color-blind) statement, in
addition to specifying the committed-information-rate, committed-burst-size, peak-
information-rate, and peak-burst-size parameters. In addition, when you evoke such
a policer from a filter, you must do so with a then three-color-policer action, which
requires that you also specify the related two-rate policer by its name.

A typical trTCM policer takes the following form, and like the srTCM, is normally
evoked via filter:

{master}[edit firewall]
jnpr@R1-RE0# show
three-color-policer test_tr_tcm {
 action {
 loss-priority high then discard;
 }
 two-rate {
 committed-information-rate 1m;
 committed-burst-size 64k;
 peak-information-rate 2m;
 peak-burst-size 128k;
 }
}
filter limit_ftp {
 term 1 {
 from {
 protocol tcp;
 port [ftp ftp-data];
 }
 then {
 three-color-policer {
 two-rate test_tr_tcm;
 }
 }
 }
 term 2 {
 then accept;
 }
}

Note that the filter makes use of the three-color-policer, as did the srTCM, but is now
combined with a two-rate keyword to call for the instantiation of a trTCM-style policer.

Two-rate policing is implemented using a dual token-bucket model, which allows
bursts of traffic for longer periods. The trTCM is useful for ingress policing of a service,
where a peak rate needs to be enforced separately from a committed rate. As stated
previously, a trTCM policer provides moderate allowances for sustained periods of
traffic that exceed the committed bandwidth limit and burst size parameters.

A trTCM marks a packet yellow when it exceeds the CIR (based
on the committed bandwidth capacity held in the first token bucket) while still con-
trTCM Nonconformance.

Policing | 191

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.2/topics/reference/configuration-statement/three-color-policer-edit-firewall-family-filter-term-then.html
http://www.it-ebooks.info/

forming to the PIR. Packets in a yellow flow are implicitly marked with medium-high
PLP and then passed through the interface. A packet is colored red when it exceeds the
PIR and the available peak bandwidth capacity of the second token bucket (as defined
by the PBS parameter). Packets in a red flow are not discarded automatically unless you
configure a discard action in the policer.

Hierarchical Policers
Junos supports the notion of a hierarchical policer on certain platforms. This type of
policer functions by applying different policing actions based on traffic classification
as either EF/premium or other/aggregate. Support for hierarchical policing in Trio-
based MX platforms began in release v11.4R1. This style of policer is well suited to a
Service Provider edge application that needs to support a large number of users on a
single IFD, when the goal is to perform aggregate policing for the all the traffic as well
as separate policing for the premium traffic from all users on the subscriber-facing
interface.

You use a hierarchical policer to rate limit ingress traffic at Layer 2 either at the logical
interface (IFL) level or at the interface (IFD) level. When applied to an IFL (with at least
one protocol family), a hierarchical policer rate limits ingress Layer 2 traffic for all
protocol families configured on that IFL. In contrast, the hierarchical policer affects all
protocols on all IFLs when applied at the interface (IFD) level. You cannot apply a
hierarchical policer to egress traffic. Furthermore, it only applies to Layer 3 traffic, or
on a specific protocol family basis when multiple families share the interface, or logical
unit, for IFD- versus IFL-level applications, respectively.

Trio-based MX platforms currently support hierarchical policers at the
IFL level under family inet, inet6, or mpls only. Application at the IFL
requires that at least one protocol family be configured.

For hierarchical policers to work, ingress traffic must be correctly classified into pre-
mium and nonpremium buckets. Therefore, it’s assumed that a Behavior Aggregate
(BA)- or Multi-Field (MF)-based classification is performed prior to any hierarchical
policing.

You specify two policer rates when you configure a hierarchical policer: a premium rate
for EF traffic and an aggregate policer rate for all non-EF. The policers then function
in a hierarchical manner.

Premium Policer
You configure the premium policer with a guaranteed bandwidth and a corre-
sponding burst size for high-priority EF traffic only. EF traffic is categorized as
nonconforming when its average arrival rate exceeds the guaranteed bandwidth
and the average burst size exceeds the premium burst size limit. A premium policer

192 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

must discard all nonconfirming traffic. This is in keeping with EF normally being
scheduled with Strict High (SH) priority, which in turn necessitates a rate limit
utilizing hard policing at ingress to prevent starvation of other forwarding classes
(FCs).

Aggregate Policer
The aggregate policer is configured with an aggregate bandwidth that is sized to
accommodate both high-priority EF traffic, up to its guaranteed bandwidth, and
normal-priority non-EF traffic. In addition, you also set a supported burst size for
the non-EF aggregate traffic only.

Non-EF traffic is categorized as nonconforming when its average arrival rate ex-
ceeds the amount of aggregate bandwidth not currently consumed by EF traffic
and its average burst size exceeds the burst size limit defined in the aggregate po-
licer. The configurable actions for nonconforming traffic in an aggregate policer
are discard, assign a forwarding class, or assign a PLP level; currently, you cannot
combine multiple actions for nonconformant traffic.

In operation, EF traffic is guaranteed the bandwidth specified as the premium
bandwidth limit, while non-EF traffic is rate limited to the amount of aggregate
bandwidth not currently consumed by the EF traffic. Non-EF traffic is rate limited
to the entire aggregate bandwidth only when no EF traffic is present.

You must configure the bandwidth limit of the premium policer at or
below the bandwidth limit of the aggregate policer. If both the premium
and aggregate rates are equal, non-EF traffic passes through the interface
unrestricted only while no EF traffic arrives at the interface.

Hierarchical Policer Example

You configure a hierarchical policer at the [edit firewall hierarchical-policer] hi-
erarchy. In addition to the policer itself, you may need to modify your CoS configuration
at [edit class-of-service] hierarchy; some CoS configuration is needed because this
style of policer must be able to recognize premium/EF from other traffic classes.

A sample hierarchal policer is shown:

{master}[edit]
jnpr@R1-RE0# show firewall
hierarchical-policer test_hierarchical-policer {
 aggregate {
 if-exceeding {
 bandwidth-limit 10m;
 burst-size-limit 100k;
 }
 then {
 loss-priority high;
 }
 }
 premium {

Policing | 193

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.2/topics/reference/configuration-statement/firewall-edit.html
http://www.juniper.net/techpubs/en_US/junos11.2/topics/reference/configuration-statement/hierarchical-policer-edit-firewall-aggregate-or-premium.html
http://www.it-ebooks.info/

 if-exceeding {
 bandwidth-limit 2m;
 burst-size-limit 50k;
 }
 then {
 discard;
 }
 }
}

In this example, the policer for premium has its bandwidth limit set to 2 Mbps and its
burst size limit set to 50 k bytes; the nonconforming action is set to discard packets,
which is the only option allowed for the premium policer. The aggregate policer has
its bandwidth limit set to 10 Mbps, which is higher than the premium policer band-
width limit, as required for proper operation. The burst size limit for aggregate traffic
is set to 100 k bytes, and in this example, the nonconforming action set to mark high
PLP. Note again that the aggregate policer can discard the packet, change the loss
priority, or change the forwarding class; currently, multiple action modifiers for out of
profile aggregate traffic are not supported, but this capability is supported by the un-
derlying chipset.

The hierarchical policer must be applied to an interface to take effect. As R1 is an MX
router with a Trio-based PFE, you must apply the hierarchical policer at the IFL level,
under either the inet or inet6 family. Despite its application under the inet family in
this example, once applied it will police all families that share the same ifl.

jnpr@R1-RE0# show interfaces xe-2/1/1
unit 0 {
 family inet {
 input-hierarchical-policer test_hierarchical-policer;
 address 192.168.0.2/30;
 }
}

As noted previously, you must also define CoS forwarding classes to include the des-
ignation of which FC is considered premium (By default this is the FC associated with
EF traffic).

{master}[edit]
jnpr@R1-RE0# show class-of-service forwarding-classes
class fc0 queue-num 0 priority low policing-priority normal;
class fc1 queue-num 1 priority low policing-priority normal;
class fc2 queue-num 2 priority high policing-priority premium;
class fc3 queue-num 3 priority low policing-priority normal;

And, don’t forget that you must also apply a BA classifier, as in this example, or an MF
classifier via a firewall filter, to the interface to ensure that traffic is properly classified
before it’s subjected to the hierarchical policer. By defaultn an IPv4-enabled interface
will have the ipprec-compatibility classifier in effect and that classifier only supports
2 FCs, FC0n and FC3. Here a DSCP-based BA is applied using the default DSCP code
point mappings:

194 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE0# show class-of-service interfaces
xe-2/1/1 {
 unit 0 {
 classifiers {
 dscp default;
 }
 }
}

The effect of this configuration is that EF traffic is guaranteed a bandwidth of 2 Mbps.
Bursts of EF traffic that arrive at rates above 2 Mbps can also pass through the interface,
provided sufficient tokens are available in the 50 k byte burst bucket. When no tokens
are available, EF traffic is rate limited using the discard action associated with the pre-
mium policer.

Non-EF traffic is metered to a bandwidth limit that ranges between 8 Mbps and 10
Mbps, depending on the average arrival rate of the EF traffic. Bursts of non-EF are
allowed through the interface, provided sufficient tokens are available in the 100 K
bandwidth bucket. Aggregate traffic in excess of the currently allowed bandwidth or
burst size are rate limited using the action specified for the aggregate policer, which in
this example is to set a high PLP.

You can apply a hierarchal policer as a physical interface policer by in-
cluding the physical-interface-policer statement and then applying
the hierarchical policer to the interface under a supported protocol fam-
ily, as described in the section about applying policers.

Applying Filters and Policers
Once your firewall filters and policers are defined, you must apply them so they can
take effect. Generally speaking, a filter is applied at the IFL level for a given family or
at the IFL itself when using any family. In contrast, a policer can be applied to an IFL
either directly or indirectly via a filter that calls the policer function. You can also apply
a policer to the entire IFD in what is referred to as a physical interface policer.

This section details options for applying filters and policers on an MX router.

Filter Application Points
Firewall filters can be applied in a number of different locations along a packet’s pro-
cessing path through the router; it’s critical to understand these options and their im-
plications when you deploy a filter to ensure expected behavior.

The reader will recall that Chapter 1 provides a detailed description of packet flow
through a Trio-based MX router. Figure 3-8 details filter and policer application points
for a Trio-based MX router.

Applying Filters and Policers | 195

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-8. Trio PFE Filter Application Points.

Loopback Filters and RE Protection

The top of the figure shows how an lo0 filter is applied to filter traffic moving to or
from the RE. An lo0 filter does not affect transit traffic directly. You typically apply an
lo0 filter in the input direction to filter incoming remote access and routing protocol
traffic that is received on the OOB or via a PFE network interface.

While less common, you can apply in the output direction to filter traffic originated by
the local RE. But output lo0 filters are rarely used for security—after all, you normally
trust your own internal devices to send nonmalicious traffic. Instead, output lo0 filters
are typically used to alter the default CoS marking and queuing behavior for locally
generated traffic. This topic is explored in detail later in Chapter 5.

At the time of the writing of this book, you cannot apply filters for Layer 2 families to
the lo0 interface, but you can apply a family any filter to the IFL level, and family
inet4 or inet6 filters at the respective IFF levels.

196 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

VRF instances with an lo0.x interface that has an input filter applied
perform only the actions specified in the instance filter chain. If no lo0
unit is provisioned in the instance (and therefore there is no instance-
specific input lo0 filter), all host-bound traffic from the instance is sub-
jected to the main instance input lo0 filter (assuming one is defined)
before being processed by the RE.

Input Interface Filters

The middle-left portion of Figure 3-8 shows ingress filter application points. Input
filters can be applied in a number of different locations, starting with the ingress inter-
face level (IFD), and moving up to the IFL and ultimately the IFF levels. Selecting where
to apply a filter is a function of the overall goal and the protocols being filtered. For
example, use a family any filter at the logical unit (IFL) level when the goal is to filter
various protocol families using generic criteria such as packet size or forwarding class.
In contrast, apply a filter at the protocol family (IFF) level when you wish to filter on
the specific fields of a given protocol. The figure shows a physical interface filter as
operating at the physical interface (IFD) level. While the IFD-level operation shown in
the figure is accurate, it should be noted that you cannot directly attach a physical
interface filter (or policer) to an IFD. Physical interface filters/policers are detailed in a
later section to make their configuration and use clear.

When a packet is accepted by an input filter, it’s directed to the route lookup function
in the PFE. The packet is then queued for transmission to any receivers local to the
current PFE and over the switch fabric to reach any remote receivers attached to other
PFEs, even when those other PFEs might be housed on the same MPC.

Output Interface Filters

Egress traffic is shown in the lower left-hand portion of Figure 3-8, with traffic from
remote PFEs being received via the switch fabric interface. The egress PFE performs its
own packet lookups to determine if the traffic should be sent to any output filters.
Output filters can be applied at the IFD-, IFL-, or IFF-level application points, just like
their input filter counterparts. When accepted by an output filter, the packet is allowed
to be pulled from shared memory and transmitted out the egress interface.

You can apply the same or different filters, in both the input and output directions,
simultaneously.

Applying Filters and Policers | 197

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike lo0 filters that affect local host traffic only, a filter that is applied
to a transient network interface (i.e., one housed in the PFE) can affect
both transit and RE-bound traffic.

Junos filters follow a “prudent” security model, which is to say that by
default they end in an implicit deny-all rule that drops all traffic that is
not otherwise explicitly permitted by a previous filter term. It’s a good
idea to make use of commit confirmed when activating a new filter ap-
plication, especially so if you are remote to the router being modified.
This way if you lose access to the router, or something really bad hap-
pens, the change will be automatically rolled back (and committed) to
take you back where you were before the last commit.

Aggregate or Interface Specific

The same filter can be applied to multiple interfaces at the same time. By default on
MX routers, these filters will sum (or aggregate) their counters and policing actions
when those interfaces share a PFE. You can override this behavior and make each
counter or policer function specific to each interface application by including the inter
face-specific keyword in the filter. If you apply such a filter to multiple interfaces, any
counter or policer actions act on the traffic stream by entering or exiting each individual
interface, regardless of the sum of traffic on the multiple interfaces.

When you define an interface-specific filter, you must limit the filter
name to 52 bytes or less. This is because firewall filter names are re-
stricted to 64 bytes in length and interface-specific filters have the spe-
cific interface name appended to them to differentiate their counters and
policer actions. If the automatically generated filter instance name ex-
ceeds this maximum length, the system may reject the filter’s instance
name.

Filter Chaining

You can apply as many as 16 separate filters to a single logical interface as a filter list.
Similar to applying a policy chain via the assignment of multiple routing policies to a
particular protocol, the ordering of the filters is significant, as each packet is filtered
through the list from left to right until it meets a terminating action. Figure 3-9 details
the processing of a filter list.

Figure 3-9. Filter List Processing.

198 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

The figure looks similar to Figure 3-1, which detailed term processing within a given
filter, except now each block represents a complete filter as opposed to a specific term
within a single filter. Each of the individual filters shown may consist of many individual
terms. As with a single filter, there is still an implicit deny-all at the end of the filter list.
While a single large filter can also perform the same functionality, many operators find
it easier to manage several smaller filters that act in a modular fashion so they can be
stacked together as needed in Lego fashion.

Filter Nesting

You can nest one filter into another using the filter keyword. A term that calls a nested
filter cannot perform any matching or any other actions. Which is to say that if a firewall
filter term includes the filter statement, it cannot include either a from or then con-
dition. Nested filters are supported with standard stateless firewall filters only. You
cannot use service filters or simple filters in a nested firewall filter configuration.

The total number of filters referenced from within a filter cannot exceed 256, and Junos
currently supports a single level of filter nesting, which means you cannot do recursive
filter nesting. For example, if filter_1 references filter_2, then you cannot configure
a filter_3 that references filter_1, as this would require two levels of recursion. In
like fashion, filter_2 cannot reference filter_1, forming a loop.

Forwarding Table Filters

Figure 3-9 also shows filter application to the forwarding table, a function you configure
at the [edit forwarding-options] hierarchy. Forwarding table filters are defined the
same as other firewall filters, but you apply them differently. Instead of applying the
filters to an interface, you apply them to a specific protocol families’ Forwarding Table
(FT) in either the input or output direction. An FT filter can act upon Broadcast, Un-
known unicast, and Multicast (BUM) traffic, as a result of the FT lookup returning a
flood-style next-hop, a function that’s simply not possible with a filter or policer applied
at the interface level.

FT filters are applied on a per-family basis, with most families supporting the input
direction only; at this time, only the inet and inet6 families support output direction
FT filters as used to match on Destination Class Usage (DCU) information. The com-
mon use case in Layer 2-focused environments is to control the flow of BUM traffic for
the vpls and bridge families, either through direct filtering action or by directing traffic
to a policer for rate limiting.

In addition to matching on traffic types that require route/MAC lookup, for example
to determine if a Unicast address has been learned or not, an FT filter can simplify filter
administration by providing a single consolidated point for the control of traffic within
a VLAN/bridge domain; because all traffic that is forwarded through a given instance
consults that instance’s FT, applying a single FT filter can be far more efficient then
applying a given filter multiple times, once for each interface in the instance.

Applying Filters and Policers | 199

www.it-ebooks.info

http://www.it-ebooks.info/

Keep these restrictions in mind when deploying bridge domain forwarding table filters:

• The filter cannot be interface specific.

• You can apply one filter and one flood filter only; filter lists are not supported.

• You cannot apply the same filter to both an interface and a bridge domain.

Though not the focus of this chapter, Figure 3-9 also shows the relationship of an FT
filter applied under the [edit forwarding-options] hierarchy and the ones applied un-
der the [edit routing-options forwarding-table] hierarchy, as the two filter types
perform distinctly different roles that are often confused. The routing-options filter is
used to control how the routing process installs routes into the FIB and can be applied
as export only. The typical use case is per flow load balancing and/or fast recovery from
forwarding path disruptions when using protection mechanisms like RSVP fast reroute.
In both cases, you apply a per-packet load balancing policy to instruct the FIB to install
(and possibly use) all next-hops for a given destination as opposed to just the currently
selected one. Unlike simple load balancing, in the case of traffic protection the result
is to install both the primary and backup next-hops into the FIB while only using the
backup next-hop when the primary is unreachable.

General Filter Restrictions

Although you can use the same filter multiple times, you can apply only one input filter
or one input filter list to an interface. The same is true for output filters and output
filter lists.

Input and output filter lists are supported for the ccc and mpls protocol families except
on management interfaces and internal Ethernet interfaces (fxp0 or em0), loopback in-
terfaces (lo0), and USB modem interfaces (umd).

On MX Series routers only, you cannot apply a Layer 2 CCC stateless firewall filter (a
firewall filter configured at the [edit firewall filter family ccc] hierarchy level), as
an output filter. On MX Series routers, firewall filters configured for the family ccc
statement can be applied only as input filters.

Stateless filters configured at the [edit firewall family any] hierarchy, also known
as protocol independent filters, are not supported on the router loopback interface
(lo0).

Applying Policers
Policers can be applied directly to an interface or called via a filter to affect only match-
ing traffic. In most cases, a policing function can be evoked at ingress, egress, or both.
This means the same traffic can be subjected to several layers of policing, as shown in
Figure 3-10.

200 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-10. Policer Processing.

The figure shows how an interface policer is executed before any input filters and that
the input filter can in turn call its own policer for matching traffic. The same is true for
egress traffic, where it can be policed via a firewall-evoked policer before being sub-
jected to the interface-level policer. In addition, for some families you can apply a po-
licer via filter to the forwarding table, as needed to control BUM traffic in a Layer 2
switched environment.

Generally speaking, two-color and three-color policers can be applied in one of the
following ways:

• As part of a filter in conjunction with MF classification at interface family level
http://www.juniper.net/techpubs/en_US/junos11.2/topics/concept/policer-types
.html#jd0e197

• Directly at interface family level as a logical interface policer

• Directly at interface logical unit level as a Layer 2 policerhttp://www.juniper.net/
techpubs/en_US/junos11.2/topics/concept/policer-types.html#jd0e192

• Directly at interface family level as a physical interface policer

The characteristics and operation of all but the first policer application are detailed in
the following. The topic of a firewall filter with a match condition with a policing action
has been discussed.

Logical Interface Policers

A logical interface policer (also called an aggregate policer) is a policer that can police
the traffic from multiple protocol families without requiring a separate instantiation of
a policer for each such family on the IFL. You define a logical interface policer by
including the logical-interface-policer statement when defining the policer.

There are two modes of operation for a logical interface policer; these are the protocol
family and Layer 2 modes. The mode is determined on how you apply the policer to
an interface.

In protocol family mode, you apply the logical interface policer under one or more
protocol families that share a logical unit. While the policer will only affect the protocol
families to which it has been applied, you can apply the same policer to different families
on different IFL, with the result being a single instance of the policer that is shared by
all associated protocol families under a given IFL. Stated differently, there is one policer
instance for each IFL, regardless of how many families may live on that IFL.

Applying Filters and Policers | 201

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.2/topics/concept/policer-types.html#jd0e197
http://www.juniper.net/techpubs/en_US/junos11.2/topics/concept/policer-types.html#jd0e197
http://www.juniper.net/techpubs/en_US/junos11.2/topics/concept/policer-types.html#jd0e192
http://www.juniper.net/techpubs/en_US/junos11.2/topics/concept/policer-types.html#jd0e192
http://www.it-ebooks.info/

The policer acts according to the layer associated with the family for which it’s applied.
For inet, that will be Layer 3 (i.e., the IP layer), whereas for the bridge family the policer
functions at Layer 2, such that the policer includes frame overhead in its determination
of in-profile traffic.

Currently, only two-color-style policers are supported in the protocol family mode.

A protocol family-based logical interface policer is shown:

regress@R1-RE0# show firewall policer family_police_mode
logical-interface-policer;
if-exceeding {
 bandwidth-limit 20k;
 burst-size-limit 2k;
}
then discard;
{master}[edit]
regress@R1-RE0# show interfaces ae0
flexible-vlan-tagging;
aggregated-ether-options {
 lacp {
 active;
 system-priority 100;
 }
}
unit 0 {
 family bridge {
 policer {
 input family_police_mode;
 }
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}
unit 1 {
 vlan-id 1000;
 family inet {
 policer {
 input family_police_mode;
 }
 address 10.8.0.0/31;
 }
 family iso;
 family inet6 {
 policer {
 input family_police_mode;
 }
 address 2001::1/64;
 }
}

The example shows an AE interface with two IFLs, with IFL 1 having two Layer 3
protocol families while IFL 0 has a single Layer 2 family. Note how the same two-color
policer is applied at the family level for both units, which means twice for IFL 1 given

202 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

the two families. The net result is that three protocol families are policed while only
two instances of the policer are required, one for each logical interface/IFL:

{master}[edit]
regress@R1-RE0# run show policer
Policers:
Name Bytes Packets
__default_arp_policer__ 0 0
family_police_mode-ae0.1-log_int-i 18588 39
family_police_mode -ae0.0-log_int-i 0 0

In Layer 2 mode, you apply the logical interface policer directly to a logical unit using
the layer2-policer keyword. The policer now functions at Layer 2 for all families con-
figured on that IFL. This differs from logical interface policer in protocol family mode,
which is applied at a protocol family level such that its actions take effect at the layer
associated with the family (i.e. at Layer 3 for inet). Further, you only have to apply this
style policer once per unit, as opposed to the family mode where it’s applied once per
family when multiple families share a logical unit.

A Layer 2 policer counts at Layer 2, including Link Level encapsulation
overhead and any CRC. In the case of untagged Ethernet there are 18
bytes of overhead per frame. Add four additional bytes for each
VLAN tag.

Layer 2 mode logical interface policers support both single-rate two-color policer and
three-color policer styles (either single-rate or two-rate). You must specify color-
blind mode for a three-color policer when it operates as an input Layer 2 policer because
input colors cannot be recognized at Layer 2. You can use color-aware for output Layer
2 policers, assuming a previous processing stage (such as a color-blind ingress Layer 2
policer) has colored the traffic.

As before, you need the logical-interface-policer statement in the policer definition,
as this is still an example of a logical interface policer. Layer 2 mode is evoked based
on the assignment of the policer at the logical unit rather than at the family level using
the layer2-policer statement. You also configure the policer directionality and use of
a two-color versus three-color policer type using the input-policer, input-three-
color, output-policer, or output-three-color keywords.

Once applied, the Layer 2 policer operates at Layer 2, in the direction specified, for all
protocol families that share the IFL. Note that you cannot apply a Layer 2 mode logical
interface filter as a stateless firewall filter action. This differs from a protocol family-
based logical interface policer, which can be applied directly at the family level or can
be called as a result of filter action for the related family.

Applying Filters and Policers | 203

www.it-ebooks.info

http://www.it-ebooks.info/

Currently, both two-color and three-color policers are supported in
Layer 2 mode, while only two-color policers are supported in protocol
family mode unless a filter is used to evoke the logical interface policer.

A typical Layer 2 policer application is shown, in this case applied to the AE0 interface
between R1 and R2:

{master}[edit firewall]
regress@R1-RE0# show
three-color-policer L2_mode_tcm {
 logical-interface-policer;
 action {
 loss-priority high then discard;
 }
 two-rate {
 color-blind;
 committed-information-rate 70k;
 committed-burst-size 1500;
 peak-information-rate 75k;
 peak-burst-size 2k;
 }
}

{master}[edit]
jnpr@R1-RE0# show interfaces ae0
flexible-vlan-tagging;
aggregated-ether-options {
 lacp {
 active;
 system-priority 100;
 }
}

unit 0 {
 layer2-policer {
 input-three-color L2_mode_tcm;
 }
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}

unit 1 {
 vlan-id 1000;
 layer2-policer {
 input-three-color L2_mode_tcm;
 }
 family inet {
 address 10.8.0.0/31;
 }
 family iso;
 family inet6 {

204 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

 address 2001::1/64;
 }
}

And once again, confirmation of a single policer instance (now at Layer 2) for each IFL
is obtained with the CLI:

{master}[edit firewall]
regress@R1-RE0# run show interfaces policers ae0
Interface Admin Link Proto Input Policer Output Policer
ae0 up up
ae0.0 up up L2_mode_tcm-ae0.0-ifl-i
 bridge
Interface Admin Link Proto Input Policer Output Policer
ae0.1 up up L2_mode_tcm-ae0.1-ifl-i
 inet
 iso
 inet6
 multiservice __default_arp_policer__
Interface Admin Link Proto Input Policer Output Policer
ae0.32767 up up
 multiservice __default_arp_policer__

As additional confirmation, ping traffic is generated at R2 to test that the L2 policer is
working for both the inet and inet6 families:

{master}[edit]
jnpr@R2-RE0# run ping 2001::1 rapid count 100
PING6(56=40+8+8 bytes) 2001::2 --> 2001::1
!!!!!!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!!!!!!
--- 2001::1 ping6 statistics ---
100 packets transmitted, 96 packets received, 4% packet loss
round-trip min/avg/max/std-dev = 0.435/0.636/4.947/0.644 ms

{master}[edit]
jnpr@R2-RE0# run ping 10.8.0.0 rapid count 50
PING 10.8.0.0 (10.8.0.0): 56 data bytes
!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!.!!!!!!!!!!!!!!!.!!
--- 10.8.0.0 ping statistics ---
50 packets transmitted, 47 packets received, 6% packet loss
round-trip min/avg/max/stddev = 0.512/0.908/4.884/0.908 ms

{master}[edit]
jnpr@R2-RE0#

The ping loss for both families is a good sign that the policer is working. It is easy
enough to verify with a show interfaces command for the logical interface in question
at R1; note that Layer 2 policers are not shown in the output of the CLI’s show
policers command.

{master}[edit]
jnpr@R1-RE0# run show interfaces ae0.1 detail
 Logical interface ae0.1 (Index 324) (SNMP ifIndex 5534) (Generation 182)
 Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1000] Encapsulation: ENET2
 Layer 2 input policer : L2_mode_tcm-ae0.1-ifl-i
 Loss Priority Bytes Pkts Rate

Applying Filters and Policers | 205

www.it-ebooks.info

http://www.it-ebooks.info/

 Low : 9740 112 0 bps
 Medium-High : 2910 33 0 bps
 High : 630 7 0 bps
 Dropped : 630 7 0 bps
. . .

The output shows seven Layer 2 policer drops on R1’s ae0.1 interface, which correlates
exactly with the four lost IPv6 and the three lost IPv4 pings, confirming that the three-
color policer marked a mix of inet and inet6 packets as red with a corresponding drop
action.

In both the protocol family and Layer 2 modes, a single policer can police traffic from
multiple families on a per-IFL basis, hence the terms aggregate policer and logical in-
terface policer are used interchangeably to describe its functionality.

Normally, you apply a logical interface policer directly
to an interface, either at the logical unit or family level, depending on the mode desired,
without referencing the policer through a filter. Starting with release v11.4, you can
apply a logical interface policer on a Trio-based MX as an action in a firewall filter term,
but you must also include the interface-specific statement in the calling filter in ad-
dition specifying to the logical-interface-policer statement in the related policer.
Using a filter to evoke a logical interface filter has the added benefits of increased match
flexibility as well as support for two-color policer styles, which can only be attached at
the family level through a filter action.

Because the filter is applied at the family level, you cannot evoke a Layer 2 policer using
the filter method. In addition, for each family you wish to be policed by the aggregate
policer, you must apply a (family-specific) filter that evokes the common logical inter-
face policer.

By default, policers are term specific, which is to say that a separate
policer instance is created when the same policer is referenced in mul-
tiple terms of a filter. Use the filter-specific keyword in the policer def-
inition to later this behavior.

Physical Interface Policers

A physical interface policer is a two-color, three-color, or hierarchical policer that uses
a single policer instance to rate limit all logical interfaces and protocol families config-
ured on a physical interface, even if the logical interfaces belong to different routing
instances or have mutually exclusive families such as bridge and inet. This feature
enables you to use a single policer instance to perform aggregate policing for different
protocol families and different logical interfaces on the same physical interface. Despite
the name and function, you cannot apply a physical interface policer directly to a phys-
ical interface. Instead, you must evoke the common policer through multiple filter
statements that are in turn attached to each protocol family on the various IFLs that
share the physical interface.

Filter-Evoked Logical Interface Policers.

206 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

You create a physical interface policer by including the physical-interface-policer
statement in the policer definition. You must call this policer from a physical interface
policer filter, which, as you may have guessed, is so designated when you add the
physical-interface-filter statement to its definition. Again, note that you must create
multiple such filter statements, because a separate (and uniquely named) family-
specific filter is needed for each protocol family on the interface.

Please note the restriction and caveats that apply to a filter that references a physical
interface policer:

• You must configure a specific firewall filter for each supported protocol family on
the interface, which at this time are inet, inet6, mpls, vpls, or circuit cross-connect
(ccc). You cannot define a physical interface filter under family any.

• You can not apply a physical interface policer directly to the interface (IFD) or
logical units (IFL). You must call it at the protocol family level with a filter.

• You must designate the calling filter as a physical interface filter by including the
physical-interface-filter statement within the filter configuration. You must
also designate the policer by including the physical-interface-policer statement
within the policer configuration.

• A firewall filter that is designated as a physical interface filter can only reference a
policer that is also designated as a physical interface policer.

• A firewall filter that is defined as a physical interface filter cannot reference a policer
configured with the interface-specific statement.

• You cannot configure a firewall filter as both a physical and logical interface filter.

• The single policer instance operates at Layer 2 if the first policer activated is for a
Layer 2 family; otherwise, it’s instantiated as a Layer 3 policer. This means Layer
3 traffic can be policed at Layer 2, or that Layer 2 traffic can be policed at Layer 3
depending on how the configuration is activated.

You apply a physical interface policer to an interface that has a mix of
Layer 2 and Layer 3 families. In such a case, the policer Layer 2 or Layer
3 mode is determined by the first family used to create the common
policer. The result is that you may find you are policing Layer 2 traffic
at Layer 3, or vice versa, both of which can lead to inaccuracies when
compared to a pure Layer 2 or Layer 3 policer working on its respective
protocol layers. To work around this behavior, you can commit the
Layer 2 application first, and then apply to Layer 3 families, or use two
different logical interface policers, one for all Layer 2 families and an-
other for Layer 3.

A sample physical interface policer configuration is shown:

{master}[edit]
jnpr@R1-RE0# show firewall

Applying Filters and Policers | 207

www.it-ebooks.info

http://www.it-ebooks.info/

family inet6 {
 filter inet6_phys_filter {
 physical-interface-filter;
 term 1 {
 then policer phys_policer;
 }
 }
}
family bridge {
 filter bridge_phys_filter {
 physical-interface-filter;
 term 1 {
 then policer phys_policer;
 }
 }
}
policer phys_policer {
 physical-interface-policer;
 if-exceeding {
 bandwidth-limit 50k;
 burst-size-limit 2k;
 }
 then discard;
}
filter inet_phys_filter {
 physical-interface-filter;
 term 1 {
 then policer phys_policer;
 }
}

{master}[edit]
jnpr@R1-RE0# show interfaces ae0
flexible-vlan-tagging;
aggregated-ether-options {
 lacp {
 active;
 system-priority 100;
 }
}
unit 0 {
 family bridge {
 filter {
 input bridge_phys_filter;
 }
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}
unit 1 {
 vlan-id 1000;
 family inet {
 filter {
 input inet_phys_filter;
 }

208 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

 address 10.8.0.0/31;
 }
 family iso;
 family inet6 {
 filter {
 input inet6_phys_filter;
 }
 address 2001::1/64;
 }
}

In this example, a single policer named phys_policer will police the bridge, inet, and
inet6 families on the ae0 interface. In this case, three filter statements are needed, one
for each supported family, and each must be designated a physical interface filter. Also,
the shared policer must include the physical-interface-policer statement. In this ex-
ample, the goal is to match all traffic for aggregate policing; therefore, the filters use a
single match all term and more complex filtering statements are possible.

Why No Filter/Policer for the iso Family?
The iso family is for support of IP routing using the IS-IS routing protocol. This family
does not support filtering, nor should you attempt to subject it to a policer. It would
be unusual to police your own network control plane as that could easily affect recon-
vergence when lots of protocol activity is expected. In addition, because IS-IS routing
is transported directly in link-level frames, remote IS-IS exploits are very unlikely, which
is not the case with OSPF and its IP level transport, especially given its domainwide
flooding of external LSAs.

Policing remote access protocols is a different story. There are cases where you may
want to police traffic that is allowed to flow to the control plane/routing engine, which
is entirely different than simply filtering traffic that is not allowed to begin with. Routing
engine protection from unwanted traffic, as well as from issues that stem from receiving
too much of an allowed traffic type, is covered in the section on protecting the RE.

The filter application is confirmed:

{master}[edit]
jnpr@R1-RE0# run show interfaces filters ae0
Interface Admin Link Proto Input Filter Output Filter
ae0 up up
ae0.0 up up bridge bridge_phys_filter-ae0-i
ae0.1 up up inet inet_phys_filter-ae0-i
 iso
 inet6 inet6_phys_filter-ae0-i
 multiservice
ae0.32767 up up multiservice

As expected, all three protocol families show their respective filters are applied. Extra
tech credibility points for the reader that notes how here, unlike the previous logical
interface policer example, the filter names are no longer associated with a unit. This is

Applying Filters and Policers | 209

www.it-ebooks.info

http://www.it-ebooks.info/

the result of the physical-interface-policer statement doing its job. Because the phys-
ical interface policer is called from a filter, it’s not listed in the output of a show inter
faces ae0 policers command (and so not shown, as there is therefore nothing interesting
to see). Recall in the previous example on logical interface policers that there was no
filter evocation, and it was confirmed that each of the two IFLs had a policer instance.
Here, there is a single policer defined, and it’s shared by all IFLs and supported families,
as confirmed by looking at the policer itself on FPC 2, which houses the AE0 link
members:

{master}[edit]
jnpr@R1-RE0# run request pfe execute target fpc2 command "show filter shared-pol"
SENT: Ukern command: show filter shared-pol
GOT:
GOT: Policers
GOT: --------
GOT: Name Location RefCount Size
GOT: phys_policer-filter-ae0-i 0 3 0
GOT:
GOT: Tricolor Policers
GOT: -----------------
GOT: Name Location RefCount Size
LOCAL: End of file

If desired, you can display the filter and its related policer properties. Here, it is con-
firmed to be an IFD-level policer by virtue of the fact that while three filters exist only
one policer instance is found:

{master}[edit]
jnpr@R1-RE0# run request pfe execute target fpc2 command "show filter"
SENT: Ukern command: show filter
GOT:
GOT: Program Filters:
GOT: ---------------
GOT: Index Dir Cnt Text Bss Name
GOT: -------- ------ ------ ------ ------ --------
GOT:
GOT: Term Filters:
GOT: ------------
GOT: Index Semantic Name
GOT: -------- ---------- ------
GOT: 2 Classic __default_bpdu_filter__
GOT: 5 Classic inet_phys_filter-ae0-i
GOT: 6 Classic inet6_phys_filter-ae0-i
GOT: 7 Classic bridge_phys_filter-ae0-i
GOT: 17000 Classic __default_arp_policer__
. . .
LOCAL: End of file

{master}[edit]
jnpr@R1-RE0# run request pfe execute target fpc2 command "show filter index 5 policers"
SENT: Ukern command: show filter index 5 policers
GOT:
GOT: Instance name Bw limit-bits/sec Burst-bytes Scope
GOT: ------------- ----------------- ----------- -----

210 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

GOT: phys_policer-filter 50000 2000 ifd
LOCAL: End of file

And to test that all is indeed working traffic is generated from R2:

{master}[edit]
jnpr@R2-RE0# run ping 2001::1 rapid count 10 size 1000
PING6(1048=40+8+1000 bytes) 2001::2 --> 2001::1
!.!.!.!.!.
--- 2001::1 ping6 statistics ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max/std-dev = 0.819/5.495/23.137/8.827 ms
{master}[edit]

jnpr@R2-RE0# run ping 10.8.0.0 rapid count 10 size 1000
PING 10.8.0.0 (10.8.0.0): 1000 data bytes
!.!.!.!.!.
--- 10.8.0.0 ping statistics ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max/stddev = 0.796/1.553/4.531/1.489 ms

The policer count is displayed to confirm equal actions are reported against all three
families, again evidence of a single policer instantiation:

{master}[edit]
jnpr@R1-RE0# run show firewall

Filter: __default_bpdu_filter__

Filter: inet_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 10380 10

Filter: inet6_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 10380 10

Filter: bridge_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 10380 10

It’s worth noting again that the combination of Layer 2 and Layer 3 families in this
example results in a shared policer that must operate at either Layer 2 or Layer 3 for all
families, with the policer type a function of which family instantiates it first. In this
example, it was found that family bridge created the policer, so it operates at Layer 2
for all families. This is confirmed by clearing the counters and generating traffic with
a single IPv4 ping using 100 bytes of payload:

{master}
jnpr@R2-RE0> ping 10.8.0.0 rapid count 50 size 100
PING 10.8.0.0 (10.8.0.0): 100 data bytes
!!!!!!!!!!!!!.!!!!!!!!!!!!!.!!!!!!!!!!!!!!.!!!!!!!

Applying Filters and Policers | 211

www.it-ebooks.info

http://www.it-ebooks.info/

--- 10.8.0.0 ping statistics ---
50 packets transmitted, 47 packets received, 6% packet loss
round-trip min/avg/max/stddev = 0.519/1.661/27.622/4.176 ms

With 100 bytes of payload and 20 + 8 bytes of IP/ICMP header, respectively, a Layer
3 policer should have counted 128 bytes per Layer 3 datagram. Looking at packet versus
byte counters on R1’s policer, it is evident that each packet was in fact 22 bytes longer,
showing 150 bytes per policed packet:

. . .
Filter: bridge_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 450 3

The extra 22 bytes seen in the output are the Ethernet MAC addressing, type code, and
4-byte FCS. Though not shown, the author removed the family bridge filter application
on ae0.0 and reactivated the filter configuration with only Layer 3 families present to
ensure a Layer 3 policer is created. The family bridge filter is then added back and a L3
policer is confirmed:

{master}[edit]
jnpr@R1-RE0# run show firewall

Filter: inet_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 384 3

Filter: __default_bpdu_filter__

Filter: inet6_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 384 3

Filter: bridge_phys_filter-ae0-i
Policers:
Name Bytes Packets
phys_policer-filter-ae0-i 384 3

Now, the same IP traffic results in three discards for a total of 384 octets, which yields
the expected 128 bytes per packet, and thereby confirms Layer 3 policer operation.

Policer Application Restrictions
The following general guidelines should be kept in mind when deploying Junos
policers:

212 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

• Only one type of policer can be applied to the input or output of the same physical
or logical interface. For example, you are not allowed to apply a basic two-color
policer and a hierarchical policer in the same direction at the same logical interface.

• You cannot chain policers, which is to say that applying policers to both a port and
to a logical interface of that port is not allowed.

Bridge Filtering Case Study
Up to this point, we have been discussing general MX platform filtering and policing
capabilities. This section focuses on a practical filtering and policing deployment, along
with the operational mode commands used to validate and confirm filter and policer
operation in Junos.

Filter Processing in Bridged and Routed Environments
Before jumping into the case study, a brief review of packet flow and filter processing
for MX routers that support simultaneous Layer 2 bridging and Layer 3 routing is in
order. This is not only a common use case for the MX, but is also the basics for the
upcoming case study, so be sure to follow along.

MX routers use an Integrated Routing Bridging (IRB) interface to interconnect a Bridge
Domain (BD) with its Layer 3 routing functionality. On the MX, when traffic arrives
at an L2 interface, it’s first inspected to determine whether it needs bridging, routing,
or both.

Routed
If the packet’s L2 destination MAC address matches the router’s IRB MAC address,
the traffic is routed. In this case, the traffic is mapped to the BD’s IRB, and all filters
(or route table lookup) are driven by the IRB configuration. It’s important to note
that any bridge family filters applied to the related Layer 2 IFLs, or to the FT in the
BD itself, are not evaluated or processed for routed traffic, even though that traffic
may ingress on a Layer 2 interface where a Layer 2 input filter is applied.

Bridged
When a packet’s destination MAC address (DMAC) is unicast but does not
match the IRB MAC address, that traffic is bridged. Bridged traffic is mapped to
the L2 IFLs, and any input or output Layer 2 bridge filters are evaluated. In addi-
tion, if the DMAC is also unknown (making this unknown unicast), any BD-level
BUM filters are also evaluated.

Brouted (bridged and routed)
Given that it’s necessary for a switching and routing book to combine the terms
bridged and routed into brouted, at least once, we can say that obligation has been
met and move on to bigger things.

Bridge Filtering Case Study | 213

www.it-ebooks.info

http://www.it-ebooks.info/

When a packet’s DA is broadcast or multicast, the traffic type is IPv4, IPv6, or ARP,
and the BD has an IRB configured, then the packet is copied. The original packet
is given the bridge treatment while the copy is afforded the IRB/L3 treatment. In
such cases, the packets can be flooded in the BD while also being routed, as is
common in the case of multicast IGMP queries, for example.

In such cases, it should be noted that Layer 3 filters (applied at an IRB) cannot
match based on L2 MAC address or the EtherType because these fields are stripped
once the decision is made to route the packet rather than to bridge. However, a
Layer 2 filter that is applied to bridged traffic is able to match on any of the sup-
ported Layer 2, Layer 3, or Layer 4 fields, given no information is stripped from
bridged traffic.

An interesting side effect of this is that you have to place an output filter on a bridge
domain’s IRB when you wish to match on or filter locally generated Layer 3 traffic (such
as a telnet session from the RE) that is injected into a Layer 2 bridge domain.

Monitor and Troubleshoot Filters and Policers
There are a several commands and techniques that are useful when verifying filter and
policer operation, or when attempting to diagnose the lack thereof. Most have already
been shown in the preceding discussion, but here the focus is on operational verification
and troubleshooting of Junos filters and policers.

The most common operational mode commands for filters include the show fire
wall, clear firewall, and show interface filters commands. For interface policers,
you have the show policer and show interface policers commands. As for useful
techniques, the list includes monitoring the syslog log for any errors at time of commit,
or adding log or count terms to a filter to make debugging the matching of various types
of traffic easier.

Note that currently there is no clear policer command. To clear an in-
terface policer count (for a policer applied directly to an interface and
not via a firewall), use the clear firewall all command. This com-
mand clears all filter and policer counts—there is no way to specify just
the interface policer you wish to clear, but deactivating the policer ap-
plication and then restoring should be a workaround when you do not
wish to clear all counters.

To help illustrate how each command is used, consider this simple RE filter application:

{master}[edit]
jnpr@R1-RE0# show firewall filter re_filter
interface-specific;
term 1 {
 from {
 protocol icmp;

214 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 then {
 policer icmp_police;
 count icmp_counter;
 }
}
term 2 {
 then {
 count other;
 accept;
 }
}
{master}[edit]
jnpr@R1-RE0# show firewall policer icmp_police
if-exceeding {
 bandwidth-limit 20k;
 burst-size-limit 2k;
}
then forwarding-class fc0;
{master}[edit]
jnpr@R1-RE0# show interfaces lo0
unit 0 {
 family inet {
 filter {
 input re_filter;
 }
 address 10.3.255.1/32;
 }
 family iso {
 address 49.0001.0100.0325.5001.00;
 }
}

It’s noted that in the current test bed, R1 has no protocols configured and the CLI is
accessed via the console port so as to not generate any fxp0/lo0 traffic. You therefore
expect the RE’s lo0 interface to be quiet unless stimulated with some ICMP test traffic.

Things start with confirmation that the filter exists and is applied to the lo0 interface
in the input direction:

{master}[edit]
jnpr@R1-RE0# run show interfaces filters lo0
Interface Admin Link Proto Input Filter Output Filter
lo0 up up
lo0.0 up up inet re_filter-lo0.0-i
 iso
lo0.16384 up up inet
lo0.16385 up up inet

Satisfied the filter is well and truly applied, issue a show firewall command, which is,
of course, one of the primary methods used to monitor filter operation. With no argu-
ments added, the output lists all filters and their filter-evoked policers, along with any
counter values associated with the count action modifier in those filters. You can specify

Bridge Filtering Case Study | 215

www.it-ebooks.info

http://www.it-ebooks.info/

a filter name to view just that individual filter’s statistics, and when the filter has many
terms with counters, you can also add the counter name to reduce clutter.

{master}[edit]
jnpr@R1-RE0# run show firewall

Filter: __default_bpdu_filter__

Filter: re_filter-lo0.0-i
Counters:
Name Bytes Packets
icmp_counter-lo0.0-i 0 0
other-lo0.0-i 0 0
Policers:
Name Bytes Packets
icmp_police-1-lo0.0-i 0 0

The output confirms a filter named re_filter is defined, and that the filter has two
counters, one named icmp_counter and the other, which here is given the rather un-
creative name of other. The display confirms that the filter is bound to a policer named
icmp_police, and that neither counter is cranking, which is in keeping with the belief
that the system’s lo0 interface is quiescent. The policer count of 0 confirms that no out-
of-profile ICMP traffic has been detected, which is expected, given the icmp_counter-
lo0.0-i term counter indicates there is no ICMP traffic.

Note that the filter and counter names have been appended with information indicating
the applied interface, lo0, and the directionality of the filter, which in this case uses i
for input. Recall that the system-generated name of an interface-specific firewall filter
counter consists of the name of the configured counter followed by a hyphen (‘-’), the
full interface name, and either ‘-i’ for an input filter instance or ‘-o’ for an output filter
instance. These name extensions are automatically added when a filter is made interface
specific as each application of that same filter requires a unique set of counters.

The display also confirms an automatically created filter called __default_bpdu_fil
ter__. This filter is placed into effect for VPLS routing instances to perform
multifield classification on STP BPDUS (by matching on the well-known STP multicast
destination MAC address of 01:80:C2:00:00:00), so they can be classified as Network
Control and placed into queue 3. You can override the default BPDU filter with one of
your own design by applying yours as a forwarding table filter in the desired VPLS
instance.

The command is modified to display only the counter associated with the policer
named icmp_policer:

jnpr@R1-RE0# run show firewall filter re_filter-lo0.0-i counter icmp_police-1-lo0.0-i
Filter: re_filter-lo0.0-i
Policers:
Name Bytes Packets
icmp_police-1-lo0.0-i 0 0

216 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://en.wikipedia.org/wiki/Multicast_address
http://en.wikipedia.org/wiki/Multicast_address
http://www.it-ebooks.info/

Things look as expected thus far, so ICMP traffic is generated from R2; note that while
there are no routing protocols running, there is a direct link with a shared subnet that
allows the ping to be routed.

{master}
jnpr@R2-RE0> ping 10.8.0.0 count 4
PING 10.8.0.0 (10.8.0.0): 56 data bytes
64 bytes from 10.8.0.0: icmp_seq=0 ttl=64 time=0.691 ms
64 bytes from 10.8.0.0: icmp_seq=1 ttl=64 time=0.683 ms
64 bytes from 10.8.0.0: icmp_seq=2 ttl=64 time=0.520 ms
64 bytes from 10.8.0.0: icmp_seq=3 ttl=64 time=0.661 ms

--- 10.8.0.0 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.520/0.639/0.691/0.069 ms

The pings succeed, which is a most auspicious sign; confirm the count function in the
icmp_counter-lo0 term:

{master}[edit]
jnpr@R1-RE0# run show firewall counter icmp_counter-lo0.0-i filter re_filter-lo0.0-i
Filter: re_filter-lo0.0-i
Counters:
Name Bytes Packets
icmp_counter-lo0.0-i 336 4

The counter reflects the four ping packets sent and correctly tallies their cumulative
byte count at the IP layer, which makes sense as this is an inet family policer and it
therefore never sees any Layer 2. Here four IP packets were sent, each with a payload
of 64 bytes, of which 8 are the ICMP header. Each packet has a 20 byte IP header,
making the total 4 * (64 + 20), which comes out nicely to 336 bytes.

The ICMP policer is again displayed to verify that none of the (paltry) pings exceeded
the policer’s bandwidth or burst settings, as indicated by the ongoing 0 count.

{master}[edit]
jnpr@R1-RE0# run show firewall filter re_filter-lo0.0-i counter icmp_police-1-lo0.0-i

Filter: re_filter-lo0.0-i
Policers:
Name Bytes Packets
icmp_police-1-lo0.0-i 0 0

Recall that in this example the policer action is set to alter the traffic’s forwarding class
so you cannot expect ping failures for each case of out-of-profile ICMP traffic. For the
ping to actually fail the packet, now in Best-Effort fc0, it would have to meet with
congestion and suffer a WRED discard. For now, you can assume there is no link
congestion in the MX lab so no loss is expected for out-of-profile traffic.

The firewall filter and related policer counts are cleared at R1 for a fresh start:

{master}[edit]
jnpr@R1-RE0# run clear firewall all

Bridge Filtering Case Study | 217

www.it-ebooks.info

http://www.it-ebooks.info/

Back at r2, increase the rate of ping generated while also increasing the packet size to
1,000 bytes. The goal is to generate four large pings in a very short period of time:

{master}
jnpr@R2-RE0> ping 10.8.0.0 count 4 rapid size 1000
PING 10.8.0.0 (10.8.0.0): 1000 data bytes
!!!!
--- 10.8.0.0 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.712/19.354/41.876/18.011 ms

The filter statistics are again displayed:

{master}[edit]
jnpr@R1-RE0# run show firewall filter re_filter-lo0.0-i

Filter: re_filter-lo0.0-i
Counters:
Name Bytes Packets
icmp_counter-lo0.0-i 4112 4
other-lo0.0-i 76 1
Policers:
Name Bytes Packets
icmp_police-1-lo0.0-i 6168 6

The output confirms two things; first, the rapid pings at R2 exceeded the ICMP policer’s
profile, as evidenced by its non-zero packet and byte count, and secondly, that the lo0
interface is not as quiet as you imagined, given the other term now shows a non-zero
count.

The discrepancy between the ICMP and policer counters was noted,
and PR 719192 was raised to track the issue.

Hmm, what can that be? Getting a quick answer is a classic use case of the log (or
syslog) action modifiers. Here, the former is used as no syslog changes are needed, and
a permanent record of the traffic is not yet desired. In this case, you just want a quick
and easy answer as to what traffic is flowing to the RE via lo0, in the absence of your
pings. The filter is modified to include the log action modifier in term 2:

{master}[edit]
jnpr@R1-RE0# edit firewall filter re_filter

{master}[edit firewall filter re_filter]
jnpr@R1-RE0# set term 2 then log

{master}[edit firewall filter re_filter]
jnpr@R1-RE0# commit
. . .

After a few moments, display the filter log with a show firewall log command.

218 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit firewall filter re_filter]
jnpr@R1-RE0# run show firewall log
Log :
Time Filter Action Interface Protocol Src Addr Dest Addr
17:34:41 re_filter-lo0.0-i A fxp0.0 UDP 172.19.91.43 172.19.91.255
17:34:39 re_filter-lo0.0-i A fxp0.0 UDP 172.17.27.46 172.19.90.172
17:34:38 re_filter-lo0.0-i A fxp0.0 IGMP 172.19.91.95 224.0.0.1
16:06:19 pfe A unknown VRRP 192.0.2.67 224.0.0.18
. . .

The output is a relative gold mine of information. Following the action is a bit easier if
you note that R1’s current fxp0 address is 172.19.90.172/23.

The basic display lists the timestamp, protocol, filter name, filter action, interface on
which the packet arrived (or exited for an output filter), and both the source and des-
tination IP addresses. Starting at the last entry, note that the VRRP traffic does not
display a filter name—instead, it simply lists pfe in the filter column. This is expected,
because the PFE is a data plane entity and does not store the user-assigned names of
filters. This tells you that the VRRP traffic encountered a copy of the re_filter-lo0.0-
I filter in the PFE. Stated differently, all the logged traffic arrived on the fxp0 interface
and encountered the RE copy of the filter (and the RE knows the filter name), with the
exception of the VRRP traffic.

The next entry is multicast-related IGMP that is sent to the all multicast host’s well-
known group address 224.0.0.1. Its presence tells you something is running multicast
on the OoB management network, and that R1 considers itself a multicast host (though
this does not imply it is running a multicast routing protocol, like PIM) in that its NIC
has been told to accept traffic sent to the associated multicast MAC address; only traffic
sent to the NIC’s unicast address or one of its multicast groups will be accepted for
further process, and thus make it far enough to hit the filter.

The next entry indicates that a UDP packet was sent by 172.17.27.43 to R1’s fxp0
address, where it was received, naturally enough, on the fxp0 interface. Exactly what
was in that UDP datagram is anyone’s guess given no ports are shown in the basic
display. Growing concerned? You may be the victim of some nefarious individual who’s
attempting to disrupt the router’s operation; you add the detail switch to view the
related protocol ports (when applicable):

jnpr@R1-RE0# run show firewall log detail
. . .
Name of protocol: UDP, Packet Length: 0, Source address: 172.19.91.46:138,
 Destination address: 172.19.90.172:138
Time of Log: 2011-12-06 17:34:39 PST, Filter: re_filter-lo0.0-i,
 Filter action: accept, Name of interface: fxp0.0

The detailed output shows the UDP packet was sent from and to port 138, the assigned
port for the NetBIOS datagram service. From this, you conclude there are some Win-
dows machines (or at least SMB servers) present on the OoB management network.
Given that NetBIOS is a “chatty” protocol that likes to do name and service discover,
it can be assumed this is the cost of having Windows services on the management

Bridge Filtering Case Study | 219

www.it-ebooks.info

http://www.it-ebooks.info/

network; the mere presence of this packet simply means it was sent to R1. It does not
in itself confirm that R1 is actually listening to that port, nor that it’s running any kind
of Windows-based file or print services (and it’s not).

The last entry is also some type of UDP packet, this time sent to destination IP address
172.19.91.255. At first, this may seem surprising, given that is not the address assigned
to r1’s fxp0. Looking back at its IP address, you realize this is the directed subnet
broadcast address for the fxp0 interface’s 172.19.90/23 subnet. The use of broadcast
again explains why R1 has chosen to receive the traffic, and again does not imply it
actually cares. All hosts receive directed IP subnet broadcast, but as they process the
message may silently discard the traffic if there is no listing process, which is again the
case here.

Satisfied the filter is working as expected, the log action is removed to reduce filter
resource usage. Removing any counters or log action modifiers that are no longer
needed is a best practice for Junos firewall filters.

Monitor System Log for Errors

Junos supports rich system logging; in many cases, error messages reporting incom-
patible hardware or general misconfigurations that are simply not reported to the op-
erator at the time of commit can be found in the syslog. Many hours of otherwise
unproductive troubleshooting can be saved with one error message. For example, when
developing this material, a trTCM policer was applied at Layer 2 to an aggregated
Ethernet interface. The policer was configured with a low CIR of 20 Kbps to ensure
that it would catch ping traffic; the new policer and its application to an AE interface
appeared to commit with no problems. However, no policer was found; a quick look
at the messages file around the time of the commit did much to demystify the situation:

Dec 7 16:25:28 R1-RE0 dcd[1534]: ae2 : aggregated-ether-options link-speed set to
 kernel value of 10000000000
Dec 7 16:25:28 R1-RE0 dfwd[1538]: UI_CONFIGURATION_ERROR: Process: dfwd, path:
 [edit interfaces ae0 unit 0], statement: layer2-policer, Failure to add
 Layer 2 three-color policer
Dec 7 16:25:28 R1-RE0 dfwd[1538]: Configured bandwidth 20000 for layer2-policer
 L2_mode_tcm is less than minimum supported bandwidth 65536
Dec 7 16:25:28 R1-RE0 dfwd[1538]: UI_CONFIGURATION_ERROR: Process: dfwd, path:
 [edit interfaces ae0 unit 1], statement: layer2-policer, Failure to add
 Layer 2 three-color policer
Dec 7 16:25:28 R1-RE0 dfwd[1538]: Configured bandwidth 20000 for layer2-policer
 L2_mode_tcm is less than minimum supported bandwidth 65536

Adjusting the bandwidth to the minimum specific resolved the issue, and the policer
was correctly created.

220 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Bridge Family Filter and Policing Case Study
In this section, you deploy stateless filters and policing for the bridge family and confirm
all operating requirement are met using CLI operational mode commands. Refer to
Figure 3-11 for the topology details.

Figure 3-11. Bridge Filtering Topology.

The Layer 2/Layer 3 hybrid topology is based on the standard topology discussed in
the Preface. The main areas to note are the two VLANs, vlan_100 and vlan_200, along
with their assigned logical IP subnets (LIS). The AE link between R1 and R2 has two
IFLs: one is provisioned for Layer 2 via the bridge family and the other for Layer 3 via
the inet and inet6 families. IS-IS is running on the Layer 3 units between R1 and R2
to advertise lo0 routes. In addition, note that two VRRP groups are configured on the
IRB interfaces at R1 and R2, with R1 the VIP master for vlan_100 and vice versa. Two
vlan interfaces are defined on each EX switch with an IP address in both VLANs to
facilitate test traffic generation. VTSP is provided such that R1 is the root of vlan_100
while R2 heads up vlan_200.

To complete the case study, you must alter the configuration of the network to meet
the following requirements:

Ensure that VLAN 100 flooding cannot exceed:
Broadcast 1 Mbps/2 msec burst
Unknown Unicast 250 kbps/2 msec burst

Bridge Filtering Case Study | 221

www.it-ebooks.info

http://www.it-ebooks.info/

Multicast 4 Mbps/4 msec burst
Prevent (and count) outgoing IPv4 HTTP connection requests from leaving
VLAN 100

Given the criteria, it’s clear you need to use a filter to match on and block HTTP con-
nection requests while also directing BUM traffic to a suitable set of policers. Though
not stated, the need to police intra-VLAN communications forces you to apply your
changes to both R1 and R2 to cover the case of R2 being the active root bridge for VLAN
100 should R1 suffer some misfortune.

There is no need for three-color marking, and the specified sustained and allowed bursts
rates can be accommodated with a classical two-color policer. Note that a logical in-
terface policer does not work here as it would catch all the Layer 2 traffic, not just BUM,
and besides, interface policers (direct or filter-evoked) can only be used for unicast
traffic anyway. Yet, the need to selectively police BUM traffic in a Layer 2 domain
necessitates the use of one or more family bridge filters to accomplish your task. Thus,
the question becomes “Where should you apply these filters?”

The answer is twofold, and it may help to refer back to Figure 3-8 on filter and policer
application points before considering your answer final.

Tackling the BUM issue first, you need to apply the filter to the FT using the forwarding-
options hierarchy to filter and/or police BUM traffic. As stated previously, the deter-
mination of traffic as being type BUM is only possible after the MAC address has been
looked up in the FT, hence an interface input filter does not work. Given that Unknown
Unicast type match is not supported for output filters in Trio, the use of output filters
on the egress interfaces is also off the table.

The second requirement needs to be examined closely. If the goal was to block HTTP
request within VLAN 100, then you could opt for a FT filter (preferred), or if work is
your bag you can apply a family bridge filter as input (or perhaps output if you do not
mind doing a MAC lookup only to then discard) to all interfaces associated with trunk-
ing VLAN 100. Here, the goal is to prevent HTTP requests from leaving the VLAN,
making this is an inter-VLAN filtering application; therefore, interface-level filters
within VLAN 100 do not meet the requirements. Thinking back on inter-VLAN rout-
ing, you recall that the IRB interface functions as the default gateway for inter-VLAN
communications (routing). Therefore, applying the filter to the IRB interfaces in VLAN
100 should accomplish the stated objective.

Policer Definition

With a plan in place, things begin with definition of the three policers to be used col-
lectivity to limit BUM traffic with VLAN 100. Note the discard action, as needed to
ensure traffic cannot exceed the specified limits, whether or not congestion is present
within the network:

policer vlan100_broadcast {
 if-exceeding {

222 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

 bandwidth-limit 1m;
 burst-size-limit 50k;
 }
 then discard;
}

policer vlan100_unknown_unicast {
 if-exceeding {
 bandwidth-limit 250k;
 burst-size-limit 50k;
 }
 then discard;
}

policer vlan100_multicast {
 if-exceeding {
 bandwidth-limit 4m;
 burst-size-limit 100k;
 }
 then discard;
}

The policer burst rates are in bytes and based on each aggregated Ethernet interface in
the lab having two 100 Mbps members. Not worrying about the interframe gap, such
an AE interface sends some 200 Kbps each millisecond, which divided by 8 yields 25K
bytes per millisecond. The 25 Kbps value was then used for the two specified burst
tolerances, yielding the 50 Kbps and 100 Kbps values for the 2 and 4 millisecond criteria,
respectively.

HTTP Filter Definition

The HTTP filter is now defined. Note the that the filter is defined under the family
inet, given it will be applied to a Layer 3 interface (the IRB), and how the match criteria
begin at Layer 4 by specifying a TCP protocol match along with a destination port
match of either 80 or 443; though not specifically stated, both the HTTP and secure
HTTP ports are specified to block both plain text and encrypted HTTP connection
requests from being sent to servers on these well-known ports.

{master}[edit]
jnpr@R1-RE0# show firewall filter discard-vlan100-http-initial
term 1 {
 from {
 protocol tcp;
 destination-port [http https];
 tcp-initial;
 }
 then count discard_vlan100_http_initial;
}
term 2 {
 then accept;
}

Bridge Filtering Case Study | 223

www.it-ebooks.info

http://www.it-ebooks.info/

Because only initial connection requests are to be matched, the filter must also look for
the specific TCP flag settings that indicate the first segment sent as part of TCP con-
nection establishment. These initial segments have a set SYN bit and a reset (or cleared)
ACK bit. For inet and inet6 family filters, this common TCP flag combination has been
assigned an easy to interpret text synonym of tcp-initial, as used in the sample filter.
The same effects are possible with the tcp-flags keyword along with text alias or hex-
adecimal-based specification of flag values. When manually specifying TCP flag values
you use a not character (!) to indicate a reset (O) condition, or the flag is assumed to be
set for a match to occur.

TCP Flag Matching for Family Bridge
It’s pretty impressive that a Trio PFE can function in Layer 2 mode and yet still be
capable of performing pattern matching against Layer 4 transport protocols. The
inet filter example shown in this section uses the tcp-initial keyword. Unlike the Layer
3 families, the bridge family currently requires the use of the tcp-flags keyword along
with either a text alias or hexadecimal-based entry for the desired flag settings. For a
family bridge filter, you can match the effects of tcp-initial using the tcp-flags key-
word, as shown in the following. Note how the filters specify the same ending match
point, but here begins at Layer 2 with an EtherType match for the IPv4 protocol:

{master}[edit firewall]
jnpr@R1-RE0# show family bridge
filter discard-vlan100-http-initial {
 term 1 {
 from {
 vlan-ether-type ipv4;
 ip-protocol tcp;
 destination-port [http https];
 tcp-flags "(syn & !ack)";
 }
 then count discard_vlan100_http_initial;
 }
 term 2 {
 then accept;
 }
}

In similar fashion, specifying tcp-flags "(ack | rst)" mimics the functionality of an
inet filter’s tcp-established keyword, which is used to match on all TCP segments
except the initial one.

As noted in the planning phase, the filter is applied to the IRB interface serving VLAN
100, at both R1 and R2, under the inet family; however, only the changes made at R1
are shown for brevity. A similar inet6 filter could be applied if blocking IPv6-based
HTTP was also a requirement. Applying the filter in the input direction is a critical part
of achieving the desired behavior of blocking outgoing, rather than incoming requests.
While using input filter to block traffic from going out of the VLAN may not seem
intuitive, it makes sense, perhaps more so after looking at Figure 3-12.

224 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-12. Inter-VLAN communications and IRB Filter Directionality.

The figure shows the flow of inter-VLAN communications through the two IRB inter-
faces for traffic between hosts in separate VLANs. It’s clear that traffic leaving a VLAN
flows into the VLAN’s IRB, and then on to the next-hop destination based on a routing
table lookup. Having arrived from a VLAN, the now routed traffic could very well egress
on a core-facing 10 GE interface, which of course has precious little to do with any
output filter you might have applied to the VLAN’s IRB. Though a bit counterintuitive,
applying a filter in the output direction of a VLAN IRB affects traffic that might arrive
from a core interface and then be routed into the VLAN, which means the traffic does
in fact exit on the IRB, and is thus affected by an output filter. As the goal is to block
traffic arriving from VLAN 100 as it exits the VLAN, an input filter is required in this
case:

{master}[edit]
jnpr@R1-RE0# show interfaces irb.100
family inet {
 filter {
 input discard_vlan100_http_initial;
 }
 address 192.0.2.2/26 {
 vrrp-group 0 {
 virtual-address 192.0.2.1;
 priority 101;
 preempt;
 accept-data;
 }
 }
}

Bridge Filtering Case Study | 225

www.it-ebooks.info

http://www.it-ebooks.info/

Flood Filter

The flood filter is now created and applied. Note this filter is defined under family
bridge, which is required given its future use for a Layer 2 application to a bridging
domain.

{master}[edit]
jnpr@R1-RE0# show firewall family bridge
filter vlan_100_BUM_flood {
 term police_unicast_flood {
 from {
 traffic-type unknown-unicast;
 }
 then {
 policer vlan100_unknown_unicast;
 count vlan100_unicast_flood_allowed;
 }
 }
 term broadcast_flood {
 from {
 traffic-type broadcast;
 }
 then {
 policer vlan100_broadcast;
 count vlan100_bcast_flood_allowed;
 }
 }
 term mcast_flood {
 from {
 traffic-type multicast;
 }
 then {
 policer vlan100_multicast;
 count vlan100_mcast_flood_allowed;
 }
 }
}

The filter terms, one each for Broadcast, Unknown Unicast, and Multicast (BUM), all
match on their respective traffic type and direct matching traffic to both a policer and
a count action. As per the counter names, the goal is to count how much of each traffic
type was flooded, as well as being able to use the policer counters to determine how
much was blocked due to being out of profile in the event that adjustments are needed
to support valid flooding levels.

Given the traffic type-based match condition, the flood filter cannot be applied at the
interface level given that unknown unicast is not supported as an input match condition
and broadcast is not supported as an output match condition. Even if such match types
were supported, as the goal is to affect all of VLAN 100’s flood traffic, applying such a
filter to a large number of trunk or access interfaces would quickly prove a burden. By
applying as a flood filter to a bridge domain’s forwarding table, you affect all traffic
within that domain, which fits the bill nicely here.

226 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE0# show bridge-domains VLAN100
vlan-id 100;
routing-interface irb.100;
forwarding-options {
 flood {
 input vlan_100_BUM_flood;
 }
}

While not shown, you can also apply a family bridge filter to a bridge domain using
the filter keyword. This is where you would apply a bridge family filter to block HTTP
within the VLAN, for example. Note that currently only input filters and flood filters
are supported for bridge domains.

Verify Proper Operation

Verification begins with confirmation that the filter and policers have been created.

{master}[edit]
jnpr@R1-RE0# run show firewall

Filter: vlan_100_BUM_flood
Counters:
Name Bytes Packets
vlan100_bcast_flood_allowed 0 0
vlan100_mcast_flood_allowed 0 0
vlan100_unicast_flood_allowed 0 0
Policers:
Name Bytes Packets
vlan100_broadcast-broadcast_flood 0 0
vlan100_multicast-mcast_flood 0 0
vlan100_unknown_unicast-police_unicast_flood 0 0

Filter: __default_bpdu_filter__

Filter: discard_vlan100_http_initial
Counters:
Name Bytes Packets
discard_vlan100_http_initial 0 0

The output confirms the presence of both the Layer 2 and Layer 3 filters. In the case of
the vlan_100_BUM_flood filter, all three policers are also shown, and all with the expected
0 counts, given there is full control over traffic sources in the test lab, and at present
no user traffic is being generated.

It’s time to fix that, so the Router Tester (RT) port attached to S1 is configured to
generate 10,000 unicast IP packets to (unassigned) destination IP address 192.0.2.62,
using an unassigned destination MAC address to ensure unicast flooding, as this MAC
address cannot be learned until it appears as a source MAC address. The traffic gen-
erator is set to send 128 byte frames, in a single burst of 10,000 frames, with an average
load of 10% and a burst load of 40%.

Bridge Filtering Case Study | 227

www.it-ebooks.info

http://www.it-ebooks.info/

After sending the traffic the vlan_100_BUM_flood filter is again displayed:

{master}[edit firewall]
jnpr@R1-RE0# run show firewall filter vlan_100_BUM_flood

Filter: vlan_100_BUM_flood
Counters:
Name Bytes Packets
vlan100_bcast_flood_allowed 64 1
vlan100_mcast_flood_allowed 180 2
vlan100_unicast_flood_allowed 16000 125
Policers:
Name Bytes Packets
vlan100_broadcast-broadcast_flood 0 0
vlan100_multicast-mcast_flood 0 0
vlan100_unknown_unicast-police_unicast_flood 1303500 9875

The output confirms that policing of unknown unicast has occurred, with a total of
9,875 test frames subjected to the cruel and swift strike of the policer’s mighty sword.
On a more positive note, the balance of traffic, handed back to the calling term, happens
to tally 125 in this run, a value that correlates nicely with the discarded traffic as it
exactly matches the 10,000 test frames sent. The two remaining policers are confirmed
in the same manner by altering the test traffic to multicast and broadcast, but results
are omitted for brevity.

The operation of the HTTP filter is confirmed next. After clearing all filter counters, a
Telnet session to port 80 is initiated from S1 to the VIP for VLAN 100, which is assigned
IP address 192.0.2.1 in this example. As this traffic is not leaving the VLAN, instead
targeting an IP address within the related LIS, you expect no filtering action. Given
HTTP services are not enabled at R1, the current master of the VIP for VLAN 100, you
do not expect the connection to succeed, either.

First, the expected connectivity to the VIP is confirmed:

{master:0}[edit]
jnpr@S1-RE0# run traceroute 192.0.2.1 no-resolve
traceroute to 192.0.2.1 (192.0.2.1), 30 hops max, 40 byte packets
 1 * 192.0.2.1 1.109 ms 4.133 ms

{master:0}[edit]
jnpr@S1-RE0#

Then the Telnet session is initiated:

{master:0}[edit]
jnpr@S1-RE0# run telnet 192.0.2.1 port 80
Trying 192.0.2.1...
telnet: connect to address 192.0.2.1: Connection refused
telnet: Unable to connect to remote host

The connection fails, as expected. The counter confirms there were no filter hits for
intra-VLAN traffic:

228 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE0# run show firewall filter discard_vlan100_tcp_initial

Filter: discard_vlan100_http_initial
Counters:
Name Bytes Packets
discard_vlan100_http_initial 0 0

{master}[edit]
jnpr@R1-RE0#

To test inter-VLAN communications, the configuration of S1 is altered to remove its
VLAN 200 definition and to add a static default IPv4 route that points to the VLAN
100 VIP address. With these changes, S1 acts like an IP host assigned to VLAN 100
would, using the VLAN’s VIP as its default gateway:

{master:0}[edit]
jnpr@S1-RE0# run show route 192.0.2.65

inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 00:00:09
 > to 192.0.2.1 via vlan.100

The target of the Telnet request is now changed to the VIP for the LIS in VLAN 200,
the first available IP in the 192.0.2.64 subnet, which is 192.0.2.65. As before, a trace-
route is first performed to confirm expected inter-VLAN routing through R1’s IRB:

{master:0}[edit]
jnpr@S1-RE0# run traceroute 192.0.2.65
traceroute to 192.0.2.65 (192.0.2.65), 30 hops max, 40 byte packets
 1 * 192.0.2.2 (192.0.2.2) 1.089 ms 0.826 ms
 2 192.0.2.65 (192.0.2.65) 4.004 ms 3.137 ms 1.081 ms

And now the simulated HTTP connection request, which should be blocked at R1’s
IRB interface via its input filter:

{master:0}[edit]
jnpr@S1-RE0# run telnet 192.0.2.65 port 80
Trying 192.0.2.65...
telnet: connect to address 192.0.2.65: Connection refused
telnet: Unable to connect to remote host

{master:0}[edi

Drumroll please . . .

{master}[edit interfaces irb]
jnpr@R1-RE0# run show firewall filter discard_vlan100_tcp_initial

Filter: discard_vlan100_http_initial
Counters:
Name Bytes Packets
discard_vlan100_http_initial 64 1

Bridge Filtering Case Study | 229

www.it-ebooks.info

http://www.it-ebooks.info/

The single packet count for the discard_vlan100_http_initial filter confirms the initial
TCP SYN segment has met its demise, at least when targeted to the destination port
associated with the HTTP service. As a final verification, you telnet over VLAN 100 to
the lo0 address of R2, again using inter-VLAN routing; the goal is to confirm that only
inter-VLAN HTTP connection requests are caught by the IRB filter:

{master:0}[edit]
jnpr@S1-RE0# run telnet 10.3.255.2
Trying 10.3.255.2...
Connected to 10.3.255.2.
Escape character is '^]'.
===
Hostname: r2-MX240
Routing Engine: RE0
===
ANNOUNCEMENT
===
. . . .

As expected, outgoing Telnet sessions are permitted by the filter, which completes
verification of the case study.

Summary
The Junos OS combined with Trio-based PFEs offers a rich set of stateless firewall
filtering and policing options, and some really cool built-in DDoS capabilities. All are
performed in hardware so you can enable them in a scaled production environment
without appreciable impact to forwarding rates.

Filters, along with counters and policers, can be used to track customer usage or to
enforce SLA contracts that in turn support CoS, all common needs at the edges of a
network. Even if you deploy your MX in the core, where these functions are less likely,
you still need stateless filters, policers, and/or DDoS protection to protect your router’s
control plane from unsupported services and to guard against excessive traffic, whether
good or bad, to ensure the router remains secure and continues to operate as intended.

This chapter provided current best practice templates from strong RE protection filters
for both IPv4 and IPv6 control plane. All readers should compare their current RE
protection filters to the examples provided to decide if any modifications are needed
to maintain current best practice in this complex, but all too important subject.

230 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter Review Questions
1. Which is true when you omit the interface-specific keyword and apply a filter

with a counter to multiple interfaces on a single Trio PFE?

a. Each filter independently counts the traffic on their respective interfaces

b. This is not supported; interface-specific is required to apply the same filter
more than once

c. A single counter will sum the traffic from all interfaces

d. Both individual filter counters and a single aggregate counter is provided

2. How do you apply a physical interface policer?

a. With a policer that is marked as a physical-interface-policer

b. Directly to the IFD using the physcial-interface-policer statement

c. By evoking the policer through one or more filters that use the physical-inter
face-filter statement, applied to their respective IFFs on each IFL that is
configured on the IFD

d. Both A and B

e. Both A and C

3. Which is true regarding a Layer 2 policer?

a. You cannot evoke via a firewall filter

b. The policer counts frame overhead, to include the FCS

c. You can apply at IFL level only, not under a protocol family, using a layer2-
policer statement, and the policer affects all traffic for all families on that IFL

d. The policer can be color aware only when applied at egress

e. All of the above

4. A filter is applied to the main instance lo0.0 and a VRF is defined without its own
lo0.n IFL. Which is true?

a. Traffic from the instance to the local control plane is filtered by the lo0.0 filter

b. Traffic from the instance to remote VRF destinations is filtered by the lo0.0
filter

c. Traffic from the instance to the local control plane is not filtered

d. None of the above. VRFs require an lo0.n for their routing protocols to operate

5. What Junos feature facilitates simplified filter management when using address-
based match criteria to permit only explicitly defined BGP peers?

a. Dynamic filter lists

b. Prefix-lists and the apply-path statement

c. The ability to specify a 0/0 as a match-all in an address based match condition

d. All of the above

Chapter Review Questions | 231

www.it-ebooks.info

http://www.it-ebooks.info/

6. What filter construct permits cascaded policing using single-rate two-color (clas-
sical) policers?

a. Then next-filter flow control action

b. Then next-term flow control action

c. By using separate filters as part of a filter list

d. This is not possible; you must use a hierarchical policer

7. What is needed to control BUM traffic?

a. An ingress physical interface filter

b. An egress physical interface filter

c. A conventional filter or filter/policer combination applied to a Layer 2 in-
stance’s Forwarding Table

d. A sr-TCM policer applied at the unit level for all Layer 2 families using the
layer2-policer statement

8. The goal is to filter Layer 3 traffic from being sent into a bridge-domain on an MX
router. Which is the best option?

a. A Forwarding Table filter in the bridge domain

b. An input filter on the bridge domain’s IRB interface

c. An output filter on the bridge domain’s IRB interface

d. Output filters on all trunk interfaces that support the bridge domain

9. What is the effect of inducing the logical-interface-policer statement in a policer
definition?

a. Allows the policer to be used as a Layer 2 policer

b. Creates what is called an aggregate policer that acts on all families that share
a logical unit

c. Allows the policer to be used on virtual interfaces like the bridge domain’s IRB

d. Both A and B

10. Which is true regarding three-color policers?

a. The trTCM uses a single token bucket and best suited to sustained bursts

b. The srTCM uses a single token bucket and is best suited to sustained bursts

c. The trTCM uses two token buckets with overflow and supports sustained
bursts

d. The trTCM uses two independent token buckets and supports sustained
bursts

e. The srTCM uses two token buckets with overflow and supports sustained
bursts

232 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter Review Answers
1. Answer: C. By default, filter and policer stats are aggregated on a per PFE basis,

unless you use the interface-specific statement. When the interface-specific key-
word is used a separate filter (and if used, policer) instance is created for each
application.

2. Answer: E, both A and C. A physical interface policer needs the physical-inter
face-policer statement, and you apply via one or more filters that include the
physical-interface-filter statement, under each family on all the IFLs that share
the interface device. The result is a single policer that polices all families on all IFLs.

3. Answer: E. All are true regarding a Layer 2 policer, which is also a form of logical
interface policer in that it acts on all families that share an IFL.

4. Answer: A. When a routing instance has filter applied to an lo0 unit in that in-
stance, that filter is used; otherwise, control plane traffic from the instance to the
RE is filtered by the main instance lo0.0 filter.

5. Answer: B. You use prefix lists and the apply-path feature to build a dynamic list
of prefixes that are defined somewhere else on the router; for example, those as-
signed to interfaces or used in BGP peer definitions, and then use the dynamic list
as a match condition in a filter to simplify filter management in the face of new
interface or peer definitions.

6. Answer: B. Only with next-term can you can have traffic that has been accepted
by one policer, which is then returned to the calling term where it’s normally im-
plicitly accepted, be forced to fall through to the next term, or filter where it can
be subjected to another level of policing. There is no next-filter statement, and
simply adding another filter behind the current one does not override the implicit
accept that occurs when you use an action modifier like count or police.

7. Answer: C. BUM traffic filtering and policing is only possible with a Forwarding
Table filter or filter/policer combination. Unknown traffic types cannot be known
at ingress, and broadcast cannot be used in an egress interface filter or filter/policer
combination.

8. Answer: C. Refer to Figure 3-12. Despite the goal of filtering traffic into the bridge
domain, the filter goes in the output direction of the IRB interface that serves the
VLAN. Traffic from other VLANs or the main instances comes from the Forward-
ing Table and leaves the IRB to flow into the VLAN. A Forwarding Table filter
would impact intra-VLAN communications which is not the requirement.

9. Answer: D, both A and B. You create an aggregate policer that operates on all
families of a given IFL by using the logical-interface-policer statement. A Layer
2 policer is a form of logical interface policer and so also requires this statement.

10. Answer: D. Both the single- and two-rate TCM style policers use two buckets. But
only in the two-rate version are the buckets independent with no overflow, and the

Chapter Review Answers | 233

www.it-ebooks.info

http://www.it-ebooks.info/

trTCM is best suited to sustained bursting due to its separate control over com-
mitted and peak information rates.

234 | Chapter 3: Stateless Filters, Hierarchical Policing, and Tri-Color Marking

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Routing Engine Protection and
DDoS Prevention

This chapter builds upon the last by providing a concrete example of stateless firewall
filter and policer usage in the context of a routing engine protection filter, and also
demonstrates the new Trio-specific DDoS prevention feature that hardens the already
robust Junos control plane with no explicit configuration required.

The RE protection topics discussed include:

• IPv4 and IPv6 control plane protection filter case study

• DDoS feature overview

• DDoS protection case study

• Mitigating DDoS with BGP flow-specification

• BGP flow-specification case study

RE Protection Case Study
This case study presents a current best practice example of a stateless filter to protect
an MX router’s IPv4 and IPv6 control plane. In addition, the recent DDoS detection
feature, available on Trio-based MX routers starting with release v11.2, are examined
and then combined with RE filtering to harden the router against unauthorized access
and resource depletion.

As networks become more critical, security and high availability become ever more
crucial. The need for secure access to network infrastructure, both in terms of user-
level authentication and authorization and all the way to the configuration and use of
secure access protocols like SSH, is a given. So much so, that These topics have been
covered in many recent books. So as to not rehash the same information, readers in-
terested in these topics are directed to Junos Enterprise Routing, Second Edition, by
O’Reilly Media.

235

www.it-ebooks.info

http://www.it-ebooks.info/

The goal of this section is to provide an up-to-date example of a strong RE protection
filter for both IPv4 and IPv6, and to address the topic of why basic filters may not guard
against resource depletion, which, if allowed to go unchecked, can halt a router’s op-
eration just as effectively as any “hacker” who gains unauthorized access to the system
with nefarious intent.

The topic of router security is complex and widespread. So much so that informational
RFC 6192 was produced to outline IPv4 and IPv6 filtering best practices, along with
example filters for both IOS- and Junos OS-based products. There is much overlap
between the examples in this section and the RFC’s suggestions, which is a good sign,
as you can never have too many smart people thinking about security. and It’s good to
see different approaches and techniques as well as a confirmation that many complex
problems have common solutions that have been well tested.

IPv4 RE Protection Filter
This section provides the reader with a current best practice example of an RE protec-
tion filter for IPv4 traffic. Protection filters are applied in the input direction to filter
traffic arriving on PFE or management ports before it’s processed by the RE. Output
filters are generally used for CoS marking of locally generated control plane traffic, as
opposed to security-related reason as you generally trust your own routers and the
traffic they originate. Figure 4-1 provides the topology details that surround this case
study.

Figure 4-1. DDoS Protection Lab Topology.

236 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

The example, used with permission from Juniper Networks Books, is taken from Day
One: Securing the Routing Engine by Douglas Hanks, also the coauthor of this book.

Note: Router security is no small matter. The reader is encouraged to
examine the filter carefully before adapting it for use in his or her own
network.

The principles behind the filter’s operation and the specific rationale behind its design
framework are explained in the Day One book, and so are not repeated here in the
interest of brevity. The filter is included here as a case study example for several reasons:

• RE protection is important and needed, and this is a really good filter. There’s no
point in recreating an already perfectly round wheel, and the Day One book is freely
available as a PDF.

• The example makes great use of some important Junos features that are not nec-
essarily MX-specific, and so have not been covered in this chapter, including filter
nesting (a filter calling another filter), apply-path, and prefix-list. All are pow-
erful tools that can make managing and understanding a complex filter much sim-
pler. The examples also make use of the apply-flags omit statement. This flag
results in the related configuration block not being displayed in a show configura
tion command, unless you pipe the results to display omit. Again, while not a filter-
specific feature, this is another cool Junos capability that can be utilized to make
living with long filters that much easier.

• It’s a good test of this chapter and the reader’s comprehension of the same. This
is a real-world example of a complex filter that solves a real issue. While specific
protocol nuances, such as the specific multicast addresses used by OSPF, may not
be known, having arrived here, the reader should be able to follow the filter’s op-
eration and use of policing with little guidance.

• The example is comprehensive, providing support for virtually all known legiti-
mate routing protocols and services; be sure to remove support for any protocols
or services that are not currently used, either by deleting the filter in question or
by simply not including that filter in the list of filters that you ultimately apply to
the lo0 interface. For example, as IS-IS is used in the current lab, there is currently
no need for any OSPF-specific filter. Also, be sure to confirm that the prefix lists
contain all addresses that should be able to reach the related service or protocol.

When first applying the filter list, you should replace the final discard-all term with
one that matches all with an accept and log action. This is done as a safeguard to prevent
service disruption in the event that a valid service or protocol has not been accommo-
dated by a previous term. After applying the filter, pay special attention to any log hits
indicating traffic has made it to the final catch-all term, as this may indicate you have
more filter work to do.

RE Protection Case Study | 237

www.it-ebooks.info

http://www.it-ebooks.info/

Before applying any RE filter, you should carefully evaluate both the
filters/terms and their application order to confirm that all valid services
and remote access methods are allowed. In addition, you must also edit
the sample prefix list to ensure they accurately reflect all internal and
external addresses from where the related services should be reachable.
Whenever making this type of change, console access should be avail-
able in the event that recovery is needed, and you should strongly con-
sider the use of commit confirmed command.

When your filter is correctly matched to the particulars of your network, the only traffic
that should fall through to the final term should be that which is unsupported and
therefore unneeded, and safe to drop. Once it is so confirmed, you should make the
discard-all filter the last in the chain—its ongoing count and logging actions simplify
future troubleshooting when a new service is added and no one can figure out why it’s
not working. Yes, true security is a pain, but far less so in the long run then the lack of,
or worse yet, a false sense of security!

Let’s begin with the policy-related configuration where prefix lists are defined in such
a way that they automatically populate with addresses assigned to the system itself, as
well as well-known addresses associated with common protocols. This small bit of
upfront work makes later address-based matches a snap and makes ongoing address
and peer definition changes painless, as the filter automatically keeps up. Note that the
sample expressions catch all addresses assigned, including those on the management
network and GRE tunnels, etc. The sample presumes some use of logical systems (a
feature previously known as logical routers). Where not applicable you can safely omit
the related prefix list.

{master}[edit]
regress@R1-RE0# show policy-options | no-more
prefix-list router-ipv4 {
 apply-path "interfaces <*> unit <*> family inet address <*>";
}
prefix-list bgp-neighbors {
 apply-path "protocols bgp group <*> neighbor <*>";
}
prefix-list ospf {
 224.0.0.5/32;
 224.0.0.6/32;
}
prefix-list rfc1918 {
 10.0.0.0/8;
 172.16.0.0/12;
 192.168.0.0/16;
}
prefix-list rip {
 224.0.0.9/32;
}
prefix-list vrrp {
 224.0.0.18/32;
}

238 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

prefix-list multicast-all-routers {
 224.0.0.2/32;
}
prefix-list router-ipv4-logical-systms {
 apply-path "logical-systems <*> interfaces <*> unit <*> family inet address <*>";
}
prefix-list bgp-neighbors-logical-systems {
 apply-path "logical-systems <*> protocols bgp group <*> neighbor <*>";
}
prefix-list radius-servers {
 apply-path "system radius-server <*>";
}
prefix-list tacas-servers {
 apply-path "system tacplus-server <*>";
}
prefix-list ntp-server {
 apply-path "system ntp server <*>";
}
prefix-list snmp-client-lists {
 apply-path "snmp client-list <*> <*>";
}
prefix-list snmp-community-clients {
 apply-path "snmp community <*> clients <*>";
}
prefix-list localhost {
 127.0.0.1/32;
}
prefix-list ntp-server-peers {
 apply-path "system ntp peer <*>";
}
prefix-list dns-servers {
 apply-path "system name-server <*>";
}

You can confirm your apply-path and prefix lists are doing what you expect by showing
the list and piping the output to display inheritance. Again, it’s critical that your prefix
lists contain all expected addresses from where a service should be reachable, so spend-
ing some time here to confirm the regular expressions work as expected is time well
spent. Here, the results of the router-ipv4 apply-path regular expression are examined.

{master}[edit]
jnpr@R1-RE0# show policy-options prefix-list router-ipv4
apply-path "interfaces <*> unit <*> family inet address <*>";

{master}[edit]
jnpr@R1-RE0# show policy-options prefix-list router-ipv4 | display inheritance
##
apply-path was expanded to:
192.168.0.0/30;
10.8.0.0/31;
192.0.2.0/26;
192.0.2.64/26;
10.3.255.1/32;
172.19.90.0/23;

RE Protection Case Study | 239

www.it-ebooks.info

http://www.it-ebooks.info/

##
apply-path "interfaces <*> unit <*> family inet address <*>";

If you do not see one or more commented prefixes, as in this example, then either the
related configuration does not exist or there is a problem in your path statement. As
additional confirmation, consider the sample BGP stanza added to R1, consisting of
three BGP peer groups: two IPv6 and one IPv4:

{master}[edit]
jnpr@R1-RE0# show protocols bgp
group int_v4 {
 type internal;
 local-address 10.3.255.1;
 neighbor 10.3.255.2;
}
group ebgp_v6 {
 type external;
 peer-as 65010;
 neighbor fd1e:63ba:e9dc:1::1;
}
group int_v6 {
 type internal;
 local-address 2001:db8:1::ff:1;
 neighbor 2001:db8:1::ff:2;
}

Once again, the related prefix lists are confirmed to contain all expected entries:

{master}[edit]
jnpr@R1-RE0# show policy-options prefix-list bgp-neighbors_v4 | display inheritance
##
apply-path was expanded to:
10.3.255.2/32;
##
apply-path "protocols bgp group <*_v4> neighbor <*>";

{master}[edit]
jnpr@R1-RE0# show policy-options prefix-list bgp-neighbors_v6 | display inheritance
##
apply-path was expanded to:
fd1e:63ba:e9dc:1::1/128;
2001:db8:1::ff:2/128;
##
apply-path "protocols bgp group <*_v6> neighbor <*>";

And now, the actual filter. It’s a long one, but security is never easy and is more an
ongoing process than a one-point solution anyway. At least the comprehensive nature
of the filter means it’s easy to grow into new services or protocols as you simply have
to apply the related filters when the new service is turned up:

{master}[edit]
jnpr@R1-RE0# show firewall family inet | no-more
prefix-action management-police-set { /* OMITTED */ };
prefix-action management-high-police-set { /* OMITTED */ };
filter accept-bgp { /* OMITTED */ };

240 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

filter accept-ospf { /* OMITTED */ };
filter accept-rip { /* OMITTED */ };
filter accept-vrrp { /* OMITTED */ };
filter accept-ssh { /* OMITTED */ };
filter accept-snmp { /* OMITTED */ };
filter accept-ntp { /* OMITTED */ };
filter accept-web { /* OMITTED */ };
filter discard-all { /* OMITTED */ };
filter accept-traceroute { /* OMITTED */ };
filter accept-igp { /* OMITTED */ };
filter accept-common-services { /* OMITTED */ };
filter accept-sh-bfd { /* OMITTED */ };
filter accept-ldp { /* OMITTED */ };
filter accept-ftp { /* OMITTED */ };
filter accept-rsvp { /* OMITTED */ };
filter accept-radius { /* OMITTED */ };
filter accept-tacas { /* OMITTED */ };
filter accept-remote-auth { /* OMITTED */ };
filter accept-telnet { /* OMITTED */ };
filter accept-dns { /* OMITTED */ };
filter accept-ldp-rsvp { /* OMITTED */ };
filter accept-established { /* OMITTED */ };
filter accept-all { /* OMITTED */ };
filter accept-icmp { /* OMITTED */ };
filter discard-frags { /* OMITTED */ };

Not much to see, given the omit flag is in play. Easy enough to fix:

{master}[edit]
jnpr@R1-RE0# show firewall family inet | no-more | display omit
prefix-action management-police-set {
 apply-flags omit;
 policer management-1m;
 count;
 filter-specific;
 subnet-prefix-length 24;
 destination-prefix-length 32;
}
prefix-action management-high-police-set {
 apply-flags omit;
 policer management-5m;
 count;
 filter-specific;
 subnet-prefix-length 24;
 destination-prefix-length 32;
}
filter accept-bgp {
 apply-flags omit;
 term accept-bgp {
 from {
 source-prefix-list {
 bgp-neighbors_v4;
 bgp-neighbors-logical-systems_v4;
 }
 protocol tcp;
 port bgp;

RE Protection Case Study | 241

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 then {
 count accept-bgp;
 accept;
 }
 }
}
filter accept-ospf {
 apply-flags omit;
 term accept-ospf {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 ospf;
 router-ipv4-logical-systms;
 }
 protocol ospf;
 }
 then {
 count accept-ospf;
 accept;
 }
 }
}
filter accept-rip {
 apply-flags omit;
 term accept-rip {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 rip;
 }
 protocol udp;
 destination-port rip;
 }
 then {
 count accept-rip;
 accept;
 }
 }
 term accept-rip-igmp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 rip;

242 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 protocol igmp;
 }
 then {
 count accept-rip-igmp;
 accept;
 }
 }
}
filter accept-vrrp {
 apply-flags omit;
 term accept-vrrp {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 vrrp;
 }
 protocol [vrrp ah];
 }
 then {
 count accept-vrrp;
 accept;
 }
 }
}
filter accept-ssh {
 apply-flags omit;
 term accept-ssh {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port ssh;
 }
 then {
 policer management-5m;
 count accept-ssh;
 accept;
 }
 }
}
filter accept-snmp {
 apply-flags omit;
 term accept-snmp {
 from {
 source-prefix-list {
 snmp-client-lists;

RE Protection Case Study | 243

www.it-ebooks.info

http://www.it-ebooks.info/

 snmp-community-clients;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port snmp;
 }
 then {
 policer management-5m;
 count accept-snmp;
 accept;
 }
 }
}
filter accept-ntp {
 apply-flags omit;
 term accept-ntp {
 from {
 source-prefix-list {
 ntp-server;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp;
 accept;
 }
 }
 term accept-ntp-peer {
 from {
 source-prefix-list {
 ntp-server-peers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp-peer;
 accept;
 }
 }
 term accept-ntp-server {

244 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ntp;
 }
 then {
 policer management-1m;
 count accept-ntp-server;
 accept;
 }
 }
}
filter accept-web {
 apply-flags omit;
 term accept-web {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port [http https];
 }
 then {
 policer management-5m;
 count accept-web;
 accept;
 }
 }
}
filter discard-all {
 apply-flags omit;
 term discard-ip-options {
 from {
 ip-options any;
 }
 then {
 count discard-ip-options;
 log;
 syslog;
 discard;
 }
 }
 term discard-TTL_1-unknown {
 from {
 ttl 1;

RE Protection Case Study | 245

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 then {
 count discard-all-TTL_1-unknown;
 log;
 syslog;
 discard;
 }
 }
 term discard-tcp {
 from {
 protocol tcp;
 }
 then {
 count discard-tcp;
 log;
 syslog;
 discard;
 }
 }
 term discard-netbios {
 from {
 protocol udp;
 destination-port 137;
 }
 then {
 count discard-netbios;
 log;
 syslog;
 discard;
 }
 }
 term discard-udp {
 from {
 protocol udp;
 }
 then {
 count discard-udp;
 log;
 syslog;
 discard;
 }
 }
 term discard-icmp {
 from {
 protocol icmp;
 }
 then {
 count discard-icmp;
 log;
 syslog;
 discard;
 }
 }
 term discard-unknown {
 then {

246 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 count discard-unknown;
 log;
 syslog;
 discard;
 }
 }
}
filter accept-traceroute {
 apply-flags omit;
 term accept-traceroute-udp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 ttl 1;
 destination-port 33435-33450;
 }
 then {
 policer management-1m;
 count accept-traceroute-udp;
 accept;
 }
 }
 term accept-traceroute-icmp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol icmp;
 ttl 1;
 icmp-type [echo-request timestamp time-exceeded];
 }
 then {
 policer management-1m;
 count accept-traceroute-icmp;
 accept;
 }
 }
 term accept-traceroute-tcp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 ttl 1;
 }
 then {
 policer management-1m;
 count accept-traceroute-tcp;
 accept;
 }

RE Protection Case Study | 247

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}
filter accept-igp {
 apply-flags omit;
 term accept-ospf {
 filter accept-ospf;
 }
 term accept-rip {
 filter accept-rip;
 }
}
filter accept-common-services {
 apply-flags omit;
 term accept-icmp {
 filter accept-icmp;
 }
 term accept-traceroute {
 filter accept-traceroute;
 }
 term accept-ssh {
 filter accept-ssh;
 }
 term accept-snmp {
 filter accept-snmp;
 }
 term accept-ntp {
 filter accept-ntp;
 }
 term accept-web {
 filter accept-web;
 }
 term accept-dns {
 filter accept-dns;
 }
}
filter accept-sh-bfd {
 apply-flags omit;
 term accept-sh-bfd {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port 49152-65535;
 destination-port 3784-3785;
 }
 then {
 count accept-sh-bfd;
 accept;
 }

248 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}
filter accept-ldp {
 apply-flags omit;
 term accept-ldp-discover {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 multicast-all-routers;
 }
 protocol udp;
 destination-port ldp;
 }
 then {
 count accept-ldp-discover;
 accept;
 }
 }
 term accept-ldp-unicast {
 from {
 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port ldp;
 }
 then {
 count accept-ldp-unicast;
 accept;
 }
 }
 term accept-tldp-discover {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port ldp;
 }
 then {
 count accept-tldp-discover;
 accept;
 }
 }
 term accept-ldp-igmp {
 from {

RE Protection Case Study | 249

www.it-ebooks.info

http://www.it-ebooks.info/

 source-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 destination-prefix-list {
 multicast-all-routers;
 }
 protocol igmp;
 }
 then {
 count accept-ldp-igmp;
 accept;
 }
 }
}
filter accept-ftp {
 apply-flags omit;
 term accept-ftp {
 from {
 source-prefix-list {
 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 port [ftp ftp-data];
 }
 then {
 policer management-5m;
 count accept-ftp;
 accept;
 }
 }
}
filter accept-rsvp {
 apply-flags omit;
 term accept-rsvp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol rsvp;
 }
 then {
 count accept-rsvp;
 accept;
 }
 }
}
filter accept-radius {
 apply-flags omit;
 term accept-radius {

250 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 from {
 source-prefix-list {
 radius-servers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 source-port [radacct radius];
 tcp-established;
 }
 then {
 policer management-1m;
 count accept-radius;
 accept;
 }
 }
}
filter accept-tacas {
 apply-flags omit;
 term accept-tacas {
 from {
 source-prefix-list {
 tacas-servers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol [tcp udp];
 source-port [tacacs tacacs-ds];
 tcp-established;
 }
 then {
 policer management-1m;
 count accept-tacas;
 accept;
 }
 }
}
filter accept-remote-auth {
 apply-flags omit;
 term accept-radius {
 filter accept-radius;
 }
 term accept-tacas {
 filter accept-tacas;
 }
}
filter accept-telnet {
 apply-flags omit;
 term accept-telnet {
 from {
 source-prefix-list {

RE Protection Case Study | 251

www.it-ebooks.info

http://www.it-ebooks.info/

 rfc1918;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol tcp;
 destination-port telnet;
 }
 then {
 policer management-1m;
 count accept-telnet;
 accept;
 }
 }
}
filter accept-dns {
 apply-flags omit;
 term accept-dns {
 from {
 source-prefix-list {
 dns-servers;
 }
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol [udp tcp];
 source-port 53;
 }
 then {
 policer management-1m;
 count accept-dns;
 accept;
 }
 }
}
filter accept-ldp-rsvp {
 apply-flags omit;
 term accept-ldp {
 filter accept-ldp;
 }
 term accept-rsvp {
 filter accept-rsvp;
 }
}
filter accept-established {
 apply-flags omit;
 term accept-established-tcp-ssh {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ssh;

252 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ssh;
 accept;
 }
 }
 term accept-established-tcp-ftp {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp;
 accept;
 }
 }
 term accept-established-tcp-ftp-data-syn {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp-data;
 tcp-initial;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp-data-syn;
 accept;
 }
 }
 term accept-established-tcp-ftp-data {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port ftp-data;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-ftp-data;
 accept;
 }
 }
 term accept-established-tcp-telnet {
 from {

RE Protection Case Study | 253

www.it-ebooks.info

http://www.it-ebooks.info/

 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port telnet;
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-telnet;
 accept;
 }
 }
 term accept-established-tcp-fetch {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 source-port [http https];
 tcp-established;
 }
 then {
 policer management-5m;
 count accept-established-tcp-fetch;
 accept;
 }
 }
 term accept-established-udp-ephemeral {
 from {
 destination-prefix-list {
 router-ipv4;
 router-ipv4-logical-systms;
 }
 protocol udp;
 destination-port 49152-65535;
 }
 then {
 policer management-5m;
 count accept-established-udp-ephemeral;
 accept;
 }
 }
}
filter accept-all {
 apply-flags omit;
 term accept-all-tcp {
 from {
 protocol tcp;
 }
 then {
 count accept-all-tcp;
 log;
 syslog;
 accept;

254 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 term accept-all-udp {
 from {
 protocol udp;
 }
 then {
 count accept-all-udp;
 log;
 syslog;
 accept;
 }
 }
 term accept-all-igmp {
 from {
 protocol igmp;
 }
 then {
 count accept-all-igmp;
 log;
 syslog;
 accept;
 }
 }
 term accept-icmp {
 from {
 protocol icmp;
 }
 then {
 count accept-all-icmp;
 log;
 syslog;
 accept;
 }
 }
 term accept-all-unknown {
 then {
 count accept-all-unknown;
 log;
 syslog;
 accept;
 }
 }
}
filter accept-icmp {
 apply-flags omit;
 term no-icmp-fragments {
 from {
 is-fragment;
 protocol icmp;
 }
 then {
 count no-icmp-fragments;
 log;
 discard;

RE Protection Case Study | 255

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 term accept-icmp {
 from {
 protocol icmp;
 ttl-except 1;
 icmp-type [echo-reply echo-request time-exceeded unreachable source-quench
router-advertisement parameter-problem];
 }
 then {
 policer management-5m;
 count accept-icmp;
 accept;
 }
 }
}
filter discard-frags {
 term 1 {
 from {
 first-fragment;
 }
 then {
 count deny-first-frags;
 discard;
 }
 }
 term 2 {
 from {
 is-fragment;
 }
 then {
 count deny-other-frags;
 discard;
 }
 }
}

After all that work, don’t forget to actually apply all applicable filters as an input-
list under family inet on the lo0 interface. Before making any changes, please carefully
consider the following suggestions, however:

Before actually activating the lo0 application of the IPv4 protection filter, you should:

a. Confirm that all prefix lists are accurate for your networks and that they encompass
the necessary address ranges.

b. Confirm that all valid services and remote access protocols are accepted in a filter,
and that the filter is included in the input list; for example, in Day One: Securing
The Routing Engine, the accept-telnet filter is not actually applied because Telnet
is a nonsecure protocol, and frankly should never be used in a production network.
While Telnet is used to access the testbed needed to develop this material, making
the absence of the accept-telnet filter pretty obvious at time of commit . . . don’t
ask me how I know this.

256 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

c. Make sure the filter initially ends in a match-all term with accept and log actions
to make sure no valid services are denied.

d. Consider using commit confirmed for this type of change. Again, don’t ask me how
I know, but there is a hint in the preceding paragraphs.

The final RE protection filters used in this case study were modified from the example
used in the Day One book in the following ways:

• The accept-telnet filter is applied in the list; as a lab, Telnet is deemed acceptable.
The OSPF and RIP filters are omitted as not in use or planned in the near future.

• The accept-icmp filter is modified to no longer match on fragments; this function
is replaced with a global deny fragments filter that’s applied at the front of the filter
list. See the related sidebar.

The list of filters applied to the lo0 interface of R1 for this example is shown; note that
the list now begins with the discard-frags filter, the inclusion of the accept-telnet
filter, and that the final discard-all filter is in effect. Again, for initial application in a
production network, consider using a final match-all filter with accept and log actions
to first confirm that no valid services are falling through to the final term before
switching over to a final discard action.

Filters and Fragments
Stateless filters with upper-layer protocol match criteria have problems with fragments.
And there is no real solution if you insist on a stateless filter. You must choose the lesser
of two evils: either deny all fragments up front or do the opposite and accept them all,
again, right up front. The former only works when your network’s MTUs are properly
architected, such that fragmentation of internal traffic simply does not happen.

To see the issue, consider a filter designed to match on ICMP messages with type echo
request along with an accept function. Now, imagine that a user generates large ICMP
messages with some form of evil payload, and that each message is fragmented into
four smaller packets. The issue is that only the first fragment will contain the ICMP
header along with its message type code. The remaining three fragments have a copy
of the original IP header, with adjusted fragmentation fields, and a payload that simply
picks up where the previous fragment left off. This means that only the first fragment
is able to be reliably matched against an ICMP message type. The filter code will attempt
to match the presumed ICMP header in the remaining three fragments, but recall there
is no header present, and this can lead to unpredictable results. In the common case,
the fragment will not match the filter and be discarded, which makes the first fragment
useless and a waste of host buffer space, as its reassembly timer runs in earnest for
fragments that have long since met their demise. In the less likely case, some fragment’s
payload may match a valid ICMP message type and be accepted in a case where the
first fragment, with a valid ICMP header, was discarded.

The Junos OS supports bit field and text alias matching on fragmentation fields for
IPv4 and on the fragmentation extension header for IPv6. For example, the
is-fragment keyword specifies all but the first fragment of an IP packet and is equal to

RE Protection Case Study | 257

www.it-ebooks.info

http://www.it-ebooks.info/

a bit-field match against IPv4 with the condition being fragment-offset 0 except,
which indicates a trailing fragment of a fragmented packet. You use the first-frag
ment keyword to nix the beginning of the chain, and both are typically used together to
either deny or accept all fragments in the first filter term.

The filter does not include the allow-ospf or allow-rip filters as the current test bed is
using IS-IS, which cannot be affected by an inet family filter anyway. It’s worth noting
that the accept-sh-bfd filter is so named as the port range specified allows single-hop
BFD sessions only. According to draft-ietf-bfd-multihop-09.txt (now RFC 5883),
multihop BFD sessions must use UDP destination port 4784.

{master}[edit]
regress@R1-RE0# show interfaces lo0
unit 0 {
 family inet {
 filter {
 input-list [discard-frags accept-common-services accept-sh-bfd accept-bgp
 accept-ldp accept-rsvp accept-telnet discard-all];
 }
 address 10.3.255.1/32;
 }
 family iso {
 address 49.0001.0100.0325.5001.00;
 }
 family inet6 {
 address 2001:db8:1::ff:1/128;
 }
}

A syslog is added to catch and consolidate any filter-related syslog actions for easy
debug later. Remember, the log action writes to kernel cache that is overwritten and
lost in a reboot, while syslog can support file archiving and remote logging. Here, the
local syslog is configured:

jnpr@R1-RE0# show system syslog
file re_filter {
 firewall any;
 archive size 10m;
}

After committing the filter, and breathing a sigh of relief as you confirm that remote
access is still working (this time), let’s quickly look for any issues. To begin with, filter
application is confirmed:

{master}[edit]
jnpr@R1-RE0# run show interfaces filters lo0
Interface Admin Link Proto Input Filter Output Filter
lo0 up up
lo0.0 up up inet lo0.0-i
 iso
 inet6
lo0.16384 up up inet
lo0.16385 up up inet

258 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

Next, examine the syslog to see what traffic is falling through unmatched to be
discarded:

{master}[edit]
jnpr@R1-RE0# run show log re_filter
Dec 12 12:58:09 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (1 packets)
Dec 12 12:58:15 R1-RE0 last message repeated 7 times
Dec 12 12:58:16 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (2 packets)
Dec 12 12:58:17 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (1 packets)
Dec 12 12:58:21 R1-RE0 last message repeated 4 times
Dec 12 12:58:22 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (2 packets)
Dec 12 12:58:23 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (1 packets)
Dec 12 12:58:26 R1-RE0 last message repeated 3 times
Dec 12 12:58:27 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (2 packets)
Dec 12 12:58:28 R1-RE0 fpc2 PFE_FW_SYSLOG_IP: FW: irb.200
 D vrrp 192.0.2.67 224.0.0.18 0 0 (1 packets)

Do’h! What was that warning about confirming the applied filter has support for all
supported services, and about using an accept-all in the final term until proper oper-
ating is confirmed, again? The syslog action in the final discard-all filter has quickly
shown that VRRP is being denied by the filter, which readily explains why VRRP is
down, and the phones are starting to ring. The applied filter list is modified by adding
the accept-vrrp filter; note the use of the insert function to ensure the correct ordering
of filters by making sure that the discard-all filter remains at the end of the list:

{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0# set filter input-list accept-vrrp

{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0# show
filter {
 input-list [discard-frags accept-common-services accept-sh-bfd accept-bgp
 accept-ldp accept-rsvp accept-telnet discard-all accept-vrrp];
}
address 10.3.255.1/32;

{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0# insert filter input-list accept-vrrp before discard-all

{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0# show
filter {
 input-list [discard-frags accept-common-services accept-ospf accept-rip
 accept-sh-bfd accept-bgp accept-ldp accept-rsvp accept-telnet accept-vrrp
 discard-all];
}
address 10.3.255.1/32;

RE Protection Case Study | 259

www.it-ebooks.info

http://www.it-ebooks.info/

After the change the log file is cleared, and after a few moments redisplayed:

{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0# run clear log re_filter

. . .
{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0# run show log re_filter
Dec 12 13:09:59 R1-RE0 clear-log[21857]: logfile cleared

{master}[edit interfaces lo0 unit 0 family inet]
jnpr@R1-RE0#

Perfect—the lack of syslog entry and continued operation of existing services confirms
proper operation of the IPv4 RE protection filter.

IPv6 RE Protection Filter
While we have IPv4 running, many networks are only now beginning to deploy IPv6.
Given the lack of ubiquity, IPv6 control planes have not been the target of many attacks;
many operators have not felt the need to deploy IPv6 RE protection, leading to a general
lack of experience in IPv6 filtering best practices.

Next-Header Nesting, the Bane of Stateless Filters

A significant issue with any IPv6 filtering scheme is IPv6’s use of next-header nesting,
which makes some stateless filtering tasks tricky, if not downright impossible. IPv6, as
defined in RFC 2460, states: “In IPv6, optional internet-layer information is encoded
in separate headers that may be placed between the IPv6 header and the upper-layer
header in a packet. . . . an IPv6 packet may carry zero, one, or more extension headers,
each identified by the Next Header field of the preceding header.”

The net result is that there can be multiple extension headers placed between the IPv6
header and the upper layer protocol that you might want to match on (TCP, UDP,
OSPF3, ICMP6, etc.). Stateless filters are designed to extract keys for matching packet
fields using bit positions within a packet that are assumed to be found in the same
location. Stateless IPv6 filters on Trio are able to match on the first protocol (next
header) that is identified in the IPv6 packet's next-header field, and/or on bits within
the actual payload, i.e., the transport protocol (TCP or UDP) ports. There is no flittering
capability based on the actual contents of any extension header, and that in the 11.4
release you cannot match on the payload, for example to match a TCP port, when any
extension header is present. The ability to match both the first extension header and a
payload port is expected in a future release.

260 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

However, regardless of how many extension headers are present, Trio
ASICs have the ability to extract the first 32 bits following the last ex-
tension header to facilitate Layer 4 (TCP or UDP) port-based matches,
even when one or more extension headers are present. On a supported
release, the ability to match on a payload protocol when extension
headers are present is enabled by specifying the payload-protocol key-
word in your match criteria.

The presence of extension headers leads to unpredictable filter operation when using
a next-header match condition. For example, consider a user who wants to filter out
Multicast Listener Discovery messages (MLD does for IPv6 what IGMP does for IPv4:
it allows multicast hosts to express interest in listening to a multicast group). The user
knows that that MLD is an extension of ICMP6, and happily proceeds to create (and
commit) the filter shown, only to find MLD messages are not matched, and therefore
still allowed to pass through the filter:

{master}[edit firewall family inet6]
jnpr@R1-RE0# show
filter count_mld {
 term 1 {
 from {
 next-header icmp;
 icmp-type [membership-query membership-report membership-termination];
 }
 then {
 count mld_traffic;
 discard;
 }
 }
 term 2 {
 then accept;
 }
}

In this case, a quick look at RFC for MLD (RFC 3810) and the previous restriction on
being able to match on a single next-header makes the reason for the filter’s failure
clear. MLD requires the inclusion of the hop-by-hop extension header, which must
precede the ICMP6 header that the filter seeks to match. This means if you want to
filter MLD using a stateless filter you must, in fact, set the filter to match on the presence
of the hop-by-hop header rather the header you really wanted. The obvious issue here
is that other protocols, like RSVP, can also make use of a hop-by-hop header (though
Junos does not currently support IPv6-based MPLS signaling), so wholesale filtering
based on hop-by-hop (or other extension) headers can lead to unexpected filtering
actions.

MLD and the Hop-by-Hop Header
The hop-by-hop header is required for MLD in order to convey the Router Alert (RA)
option. The RA function is used to force a router to process the following message even

RE Protection Case Study | 261

www.it-ebooks.info

http://www.it-ebooks.info/

though the packet is not addressed to the router and would otherwise be of no interest.
Here, the router may not be an interested listener in the multicast group that is being
joined (or left), and therefore might not process the MLD message if not for the RA
function.

The Sample IPv6 Filter

As with the IPv4 filter example, it’s assumed that the reader is familiar with Junos
firewall filter syntax and operation, as well basic IPv6 protocol operation, header fields,
and option extension headers. As always, when it comes to filters, no one size fits all,
and the reader is encouraged to carefully consider the effects of the sample filter along
with careful testing of its operation against the specific IPv6 protocols supported in
their networks so that any necessary adjustments can be made before being placed into
use on a production network.

Additional details on IPv6 protocol filtering specific to the broad range of possible
ICMPv6 message types can be found in RFC 4890, “Recommendations for Filtering
ICMPv6 Messages in Firewalls.”

To begin, the IPv6 prefix list definitions are displayed; the previous lists used for IPv4
remain in place, with the exception noted in the following:

jnpr@R1-RE0# show policy-options
prefix-list router-ipv4 {
. . .
prefix-list bgp-neighbors_v4 {
 apply-path "protocols bgp group <*_v4> neighbor <*>";
}
prefix-list router-ipv6 {
 apply-path "interfaces <*> unit <*> family inet6 address <*>";
}
prefix-list bgp-neighbors_v6 {
 apply-path "protocols bgp group <*_v6> neighbor <*>";
}
prefix-list link_local {
 fe80::/64;
}
prefix-list rfc3849 {
 2001:db8::/32;
}

The IPv6-based prefix list performs the same function as their V4 counterparts. IPv6’s
use of Link Local addressing for many routing protocols means you need to include
support for them, as well as your global IPv6 interface routes. Note that the previous
bgp-neighbors prefix list, as originally used for IPv4, has been renamed and the apply-
path regular expression modified, so as to not conflict with the same function in IPv6.
This approach assumes that you place IPv4 and IPv6 peers in separate groups with a
group name that ends in either _v4 or _v6. The IPv6 RE protection filters are displayed:

262 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit firewall family inet6]
jnpr@R1-RE0#
filter discard-extension-headers {
 apply-flags omit;
 term discard-extension-headers {
 from {
 # Beware - VRRPv3 with authentication or OSPFv3 with Authentication
 enabled may use AH/ESP!
 next-header [ah dstopts egp esp fragment gre icmp igmp ipip ipv6
 no-next-header routing rsvp sctp];
 }
 then {
 count discard-ipv6-extension-headers;
 log;
 syslog;
 discard;
 }
 }
}
filter deny-icmp6-undefined {
 apply-flags omit;
 term icmp6-unassigned-discard {
 from {
 next-header icmpv6;
 icmp-type [102-106 155-199 202-254];
 }
 then discard;
 }
 term rfc4443-discard {
 from {
 next-header icmpv6;
 icmp-type [100-101 200-201];
 }
 then discard;
 }
}
filter accept-icmp6-misc {
 apply-flags omit;
 term neigbor-discovery-accept {
 from {
 next-header icmpv6;
 icmp-type 133-136;
 }
 then accept;
 }
 term inverse-neigbor-discovery-accept {
 from {
 next-header icmpv6;
 icmp-type 141-142;
 }
 then accept;
 }
 term icmp6-echo-request {
 from {
 next-header icmpv6;

RE Protection Case Study | 263

www.it-ebooks.info

http://www.it-ebooks.info/

 icmp-type echo-request;
 }
 then accept;
 }
 term icmp6-echo-reply {
 from {
 next-header icmpv6;
 icmp-type echo-reply;
 }
 then accept;
 }
 term icmp6-dest-unreachable-accept {
 from {
 next-header icmpv6;
 icmp-type destination-unreachable;
 }
 then accept;
 }
 term icmp6-packet-too-big-accept {
 from {
 next-header icmpv6;
 icmp-type packet-too-big;
 }
 then accept;
 }
 term icmp6-time-exceeded-accept {
 from {
 next-header icmpv6;
 icmp-type time-exceeded;
 icmp-code 0;
 }
 then accept;
 }
 term icmp6-parameter-problem-accept {
 from {
 next-header icmpv6;
 icmp-type parameter-problem;
 icmp-code [1 2];
 }
 then accept;
 }
}
filter accept-shsh-bfd-v6 {
 apply-flags omit;
 term accept-sh-bfd-v6 {
 from {
 source-prefix-list {
 router-ipv6;
 }
 destination-prefix-list {
 router-ipv6;
 }
 source-port 49152-65535;
 destination-port 3784-3785;
 }

264 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 then accept;
 }
}
filter accept-MLD-hop-by-hop_v6 {
 apply-flags omit;
 term bgp_v6 {
 from {
 next-header hop-by-hop;
 }
 then {
 count hop-by-hop-extension-packets;
 accept;
 }
 }
}
filter accept-bgp-v6 {
 apply-flags omit;
 term bgp_v6 {
 from {
 prefix-list {
 rfc3849;
 bgp-neighbors_v6;
 }
 next-header tcp;
 destination-port bgp;
 }
 then accept;
 }
}
filter accept-ospf3 {
 apply-flags omit;
 term ospfv3 {
 from {
 source-prefix-list {
 link_local;
 }
 next-header ospf;
 }
 then accept;
 }
}
filter accept-dns-v6 {
 apply-flags omit;
 term dnsv6 {
 from {
 source-prefix-list {
 rfc3849;
 }
 next-header [udp tcp];
 port domain;
 }
 then accept;
 }
}
filter accept-ntp-v6 {

RE Protection Case Study | 265

www.it-ebooks.info

http://www.it-ebooks.info/

 apply-flags omit;
 term ntpv6 {
 from {
 source-prefix-list {
 rfc3849;
 }
 next-header udp;
 destination-port ntp;
 }
 then accept;
 }
}
filter accept-ssh-v6 {
 apply-flags omit;
 term sshv6 {
 from {
 source-prefix-list {
 rfc3849;
 }
 next-header tcp;
 destination-port ssh;
 }
 then {
 policer management-5m;
 count accept-ssh;
 accept;
 }
 }
}
filter accept-snmp-v6 {
 apply-flags omit;
 term snmpv6 {
 from {
 source-prefix-list {
 rfc3849;
 }
 next-header udp;
 destination-port snmp;
 }
 then accept;
 }
}
filter accept-radius-v6 {
 apply-flags omit;
 term radiusv6 {
 from {
 source-prefix-list {
 rfc3849;
 }
 next-header udp;
 port [1812 1813];
 }
 then accept;
 }
}

266 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

filter accept-telnet-v6 {
 apply-flags omit;
 term telnetv6 {
 from {
 source-prefix-list {
 rfc3849;
 }
 next-header tcp;
 port telnet;
 }
 then {
 policer management-5m;
 count accept-ssh;
 accept;
 }
 }
}
filter accept-common-services-v6 {
 apply-flags omit;
 term accept-icmp6 {
 filter accept-icmp6-misc;
 }
 term accept-traceroute-v6 {
 filter accept-traceroute-v6;
 }
 term accept-ssh-v6 {
 filter accept-ssh-v6;
 }
 term accept-snmp-v6 {
 filter accept-snmp-v6;
 }
 term accept-ntp-v6 {
 filter accept-ntp-v6;
 }
 term accept-dns-v6 {
 filter accept-dns-v6;
 }
}
filter accept-traceroute-v6 {
 apply-flags omit;
 term accept-traceroute-udp {
 from {
 destination-prefix-list {
 router-ipv6;
 }
 next-header udp;
 destination-port 33435-33450;
 hop-limit 1;
 }
 then {
 policer management-1m;
 count accept-traceroute-udp-v6;
 accept;
 }
 }

RE Protection Case Study | 267

www.it-ebooks.info

http://www.it-ebooks.info/

 term accept-traceroute-icmp6 {
 from {
 destination-prefix-list {
 router-ipv6;
 }
 next-header icmp;
 icmp-type [echo-request time-exceeded];
 hop-limit 1;
 }
 then {
 policer management-1m;
 count accept-traceroute-icmp6;
 accept;
 }
 }
 term accept-traceroute-tcp-v6 {
 from {
 destination-prefix-list {
 router-ipv6;
 }
 next-header tcp;
 hop-limit 1;
 }
 then {
 policer management-1m;
 count accept-traceroute-tcp-v6;
 accept;
 }
 }
}
filter discard-all-v6 {
 apply-flags omit;
 term discard-HOPLIMIT_1-unknown {
 from {
 hop-limit 1;
 }
 then {
 count discard-all-HOPLIMIT_1-unknown;
 log;
 syslog;
 discard;
 }
 }
 term discard-tcp-v6 {
 from {
 next-header tcp;
 }
 then {
 count discard-tcp-v6;
 log;
 syslog;
 discard;
 }
 }
 term discard-netbios-v6 {

268 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 from {
 next-header udp;
 destination-port 137;
 }
 then {
 count discard-netbios-v6;
 log;
 syslog;
 discard;
 }
 }
 term discard-udp {
 from {
 next-header udp;
 }
 then {
 count discard-udp-v6;
 log;
 syslog;
 discard;
 }
 }
 term discard-icmp6 {
 from {
 next-header icmp;
 }
 then {
 count discard-icmp;
 log;
 syslog;
 discard;
 }
 }
 term discard-unknown {
 then {
 count discard-unknown;
 log;
 syslog;
 discard;
 }
 }
}

The IPv6 filters makes use of the same policers defined previously for IPv4, and follows
the same general modular approach, albeit with less counting actions in terms that
accept traffic, their use already being demonstrated for IPv4. In this case, the discard-
extension-headers filter discards all unused extension headers, including the fragmen-
tation header, which ensures fragments are not subjected to any additional term
processing where unpredictable results could occur given a fragment’s lack of a trans-
port header. As per the filter’s comment, the discard action includes traffic with either
the AH and/or EH authentications headers, which can be used for legitimate traffic like
OSPF3. As always, you need to carefully gauge the needs of each network against any
sample filter and make adjustments accordingly.

RE Protection Case Study | 269

www.it-ebooks.info

http://www.it-ebooks.info/

As before, the relevant list of IPv6 filters are again applied as an input list to the lo0
interface. Now under family inet6:

{master}[edit]
jnpr@R1-RE0# show interfaces lo0 unit 0
family inet {
 filter {
 input-list [discard-frags accept-common-services accept-sh-bfd accept-bgp
 accept-ldp accept-rsvp accept-telnet accept-vrrp discard-all];
 }
 address 10.3.255.1/32;
}
family iso {
 address 49.0001.0100.0325.5001.00;
}
family inet6 {
 filter {
 input-list [discard-extension-headers accept-MLD-hop-by-hop_v6
 deny-icmp6-undefined accept-common-services-v6 accept-sh-bfd-v6 accept-bgp-v6
 accept-telnet-v6 accept-ospf3 accept-radius-v6 discard-all-v6];
 }
 address 2001:db8:1::ff:1/128;
}

After applying the IPv6 filter, the syslog is cleared; after a few moments, it’s possible
to display any new matches. Recall that at this stage only unauthorized traffic should
be reaching the final discard-all action for both the IPv4 and IPv6 filter lists:

{master}[edit]
jnpr@R1-RE0# run show log re_filter
Dec 13 10:26:51 R1-RE0 clear-log[27090]: logfile cleared
Dec 13 10:26:52 R1-RE0 /kernel: FW: fxp0.0 D tcp 172.17.13.146 172.19.90.172
 34788 21
Dec 13 10:26:55 R1-RE0 /kernel: FW: fxp0.0 D tcp 172.17.13.146 172.19.90.172
 34788 21
Dec 13 10:26:55 R1-RE0 /kernel: FW: fxp0.0 D igmp 172.19.91.95 224.0.0.1 0 0
Dec 13 10:27:01 R1-RE0 /kernel: FW: fxp0.0 D tcp 172.17.13.146 172.19.90.172
 34788 21
Dec 13 10:27:55 R1-RE0 /kernel: FW: fxp0.0 D igmp 172.19.91.95 224.0.0.1 0 0
. . .
Dec 13 10:34:41 R1-RE0 /kernel: FW: fxp0.0 D udp 172.19.91.43 172.19.91.255
 138 138
Dec 13 10:34:55 R1-RE0 /kernel: FW: fxp0.0 D igmp 172.19.91.95 224.0.0.1 0 0
Dec 13 10:35:55 R1-RE0 /kernel: FW: fxp0.0 D igmp 172.19.91.95 224.0.0.1 0 0
Dec 13 10:36:55 R1-RE0 /kernel: FW: fxp0.0 D igmp 172.19.91.95 224.0.0.1 0 0

The result shown here is good. The only traffic not being accepted by other terms is
coming from unauthorized hosts at 172.17.13.0/24, an address not included in the
official lab topology, which shows the filter is having the desired effect. All the discarded
traffic arrives on the shared OoB management network via fxp0, and appears to be a
mix of IGMP, FTP, and NetBIOS. As a final confirmation, you confirm BGP and BFD
session status at R1:

{master}[edit]
jnpr@R1-RE0# run show bgp summary

270 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

Groups: 3 Peers: 3 Down peers: 1
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 0 0 0 0 0 0
inet6.0 0 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
 #Active/Received/Accepted/Damped...
10.3.255.2 65000 2010 2009 0 0 15:09:23 0/0/0/0
2001:db8:1::ff:2 65000 298 296 0 2 2:13:16 Establ
 inet6.0: 0/0/0/0
fd1e:63ba:e9dc:1::1 65010 0 0 0 0 17:52:23 Active

At this point, the EBGP session to the external BGP P1 device is expected to be down,
but both the IPv6 and IPv4 IBGP sessions are established, as is the BFD session between
R1 and R2. This BFD session is IPv4-based and runs over the ae0.1 interface to provide
the IS-IS protocol with rapid fault detection capabilities:

{master}[edit]
jnpr@R1-RE0# show protocols isis
reference-bandwidth 100g;
level 1 disable;
interface ae0.1 {
 point-to-point;
 bfd-liveness-detection {
 minimum-interval 1000;
 multiplier 3;
 }
}
interface lo0.0 {
 passive;
}

{master}[edit]
jnpr@R1-RE0# run show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 3.000 1.000 3

1 sessions, 1 clients
Cumulative transmit rate 1.0 pps, cumulative receive rate 1.0 pps

The continued operation of permitted services coupled with the lack of unexpected log
entries from the discard-all action of both RE protection filters confirms they are work-
ing as designed and concludes the RE protection case study.

DDoS Protection Case Study
The MX Trio platforms began offering built-in DDoS protection starting with release
v11.2. This feature makes use of the extensive host-bound traffic classification capa-
bilities of the Trio chipset along with corresponding policers, implemented at various
hierarchies within the system, to ensure the RE remains responsive in the event of
excessive control plane exception traffic, such as can occur as the result of misconfi-

DDoS Protection Case Study | 271

www.it-ebooks.info

http://www.it-ebooks.info/

gurations, excess scaling, or intentional DDoS types of attacks targeting a router’s con-
trol plane.

The new low-level DDoS protection provides great benefit right out of the box, so to
speak, but does not in itself mitigate the need for a RE protection filter to deny traffic
that is not allowed or needed. When the new DDoS protection is combined with a
strong RE filter, you can eliminate the need for policing functions in the filter, or for
added protection you can continue to use RE filter-based policing as an added measure
of safeguard, but in these cases you should ensure the RE filter-based policers have
higher bandwidth values then the corresponding PFE and RE DDoS policers, or the
policers in the RE will never have a chance to activate as the DDoS policers will see all
the discard action. This is because a policer called from an input filter on the loopback
interface is downloaded to the Trio PFE where it is executed before any DDoS policer
functionality.

The Issue of Control Plane Depletion
As routers scale to provide service to more and more users with ever increasing numbers
of services, it’s not uncommon to find them operating near their capacity, especially in
periods of heavy load such as route flap caused by network failures. With each new
service comes additional load, but also the potential for unexpected resource usage
either due to intent or in many cases because of buggy software or configuration errors
that lead to unexpected operation.

Resource exhaustion can occur in a number of different places, each having their own
set of operational issues. Run short on RIB/FIB and you may blackhole destinations or
start using default routes with possibly undesirable paths. Low memory can lead to
crashes, or slow reconvergence, as processes start swapping to disk. Run low on CPU,
or on the internal communications paths needed to send and receive sessions to keep
alive messages, and here comes even more trouble as BFD, BGP, and OSPF sessions
begin flapping, which in turn only add more churn to an already too busy system.

In this section, the focus is on protecting the processing path, and therefore the control
plane resources. Those control plane resources are needed to process remote access,
routing protocols, and network management traffic as they make their way from a
network interface through the PFE and onto the RE during periods of unexpected con-
trol plane traffic. The goal is to allow supported services, at reasonable levels, without
allowing any one service or protocol to overrun all resources, a condition that can easily
lead to denial of service for other protocols and users. Such a service outage can easily
extend into the remote access needed to access a router in order to troubleshoot and
correct the issue. There is little else in life as frustrating as knowing how to fix a problem,
only to realize that because of the problem, you’re unable to access the device to take
corrective actions.

272 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

DDoS Operational Overview
The Juniper DDoS protection feature is based on two main components: the classifi-
cation of host-bound control plane traffic and a hierarchical set of individual- and ag-
gregate-level policers that cap the volume of control plane traffic that each protocol
type is able to send to the RE for processing.

These policers are organized to match the hierarchical flow of protocol control traffic.
Control traffic arriving from all ports of a line card converges at the card’s Packet For-
warding Engine. Traffic from all PFEs converges into the line card/FPC. And lastly,
control traffic from all line cards on the router converges on the routing engine. Simi-
larly, the DDoS policers are placed hierarchically along the control paths so that excess
packets are dropped as early as possible on the path. This design preserves system
resources by removing excess malicious traffic so that the routing engine receives only
the amount of traffic that it can actually process. In total, there can be as many as five
levels of policing between ingress at the Trio PFE and processing at RE, and that’s not
counting any additional lo0-based filtering (with related policing) that can also be in
effect.

In operation, control traffic is dropped when it violates a policer’s rate limit. Each
violation generates a notification in the syslog to alert the operator about a possible
attack. Each violation is counted and its start time is noted, and the system also main-
tains a pointer to the last observed violation start and end times. When the traffic rate
drops below the bandwidth violation threshold, a recovery timer determines when the
traffic flow is considered to have returned to normal. If no further violation occurs
before the timer expires, the violation state is cleared and a notification is again gen-
erated to report clearing of the DDoS event.

Once notified, it’s the operator’s responsibility to analyze the nature of the event to
make a determination if the traffic type and volume that triggered the DDoS event was
expected or abnormal. There is no easy answer here, as each network is scaled to dif-
ferent values with a differing mix of protocols and rate of churn. If the analysis con-
cludes the volume of traffic was normal, then the related policers should be increased
to avoid false alarms and potential service disruptions in the future. In contrast, pro-
tocols that are not used, or which are known to generate low message volume, can have
their policers decreased.

The default policer settings are intentionally set high to ensure there are
no unwanted side effects to preexisting installations as they are upgra-
ded to newer code with DDoS protection support, which is enabled by
default. In most cases, operators will want to characterize their net-
work’s expected control plane load and then decrease the default policer
values to ensure they gain robust DDoS protection from the feature.

DDoS Protection Case Study | 273

www.it-ebooks.info

http://www.it-ebooks.info/

Policer states and statistics from each line card are relayed to the routing engine and
aggregated. The policer states are maintained during a switchover. Note that during a
GRES/NSR event, line card statistics and violation counts are preserved but RE policer
statistics are not.

At this time, DDoS protection is a Trio-only feature. You can configure
and commit it on a system that has older, DPC-style line cards but there
will be no DDoS protection on those line cards. A chain is only as strong
as the worst link; a system with a single line card that does not support
DDoS is still vulnerable to an attack.

Host-Bound Traffic Classification

A modern multiservice router has to support a myriad of protocols, and multiprotocol
support inherently assumes a method of recognizing each protocol so it can be directed
to the correct processing daemon. The DDoS protection feature latches on to the Trio
chipset’s rich protocol classification capability to correctly recognize and bin a large
number of subscriber access, routing, network management, and remote access pro-
tocols. The current list is already large and expected to grow:

{master}[edit system ddos-protection global]
jnpr@R1-RE0# run show ddos-protection version
DDOS protection, Version 1.0
 Total protocol groups = 84
 Total tracked packet types = 155

The display shows that in v1.0, there are 84 protocol groups with a total of 155 unique
packets types that can be individually policed. The CLI’s ? feature is used to display
the current list:

{master}[edit system ddos-protection]
jnpr@R1-RE0# set protocols ?
Possible completions:
> ancp Configure ANCP traffic
> ancpv6 Configure ANCPv6 traffic
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> arp Configure ARP traffic
> atm Configure ATM traffic
> bfd Configure BFD traffic
> bfdv6 Configure BFDv6 traffic
> bgp Configure BGP traffic
> bgpv6 Configure BGPv6 traffic
> demux-autosense Configure demux autosense traffic
> dhcpv4 Configure DHCPv4 traffic
> dhcpv6 Configure DHCPv6 traffic
> diameter Configure Diameter/Gx+ traffic
> dns Configure DNS traffic
> dtcp Configure dtcp traffic
> dynamic-vlan Configure dynamic vlan exceptions
> egpv6 Configure EGPv6 traffic
> eoam Configure EOAM traffic

274 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

> esmc Configure ESMC traffic
> firewall-host Configure packets via firewall 'send-to-host' action
> ftp Configure FTP traffic
> ftpv6 Configure FTPv6 traffic
> gre Configure GRE traffic
> icmp Configure ICMP traffic
> igmp Configure IGMP traffic
> igmp-snoop Configure snooped igmp traffic
> igmpv4v6 Configure IGMPv4-v6 traffic
> igmpv6 Configure IGMPv6 traffic
> ip-fragments Configure IP-Fragments
> ip-options Configure ip options traffic
> ipv4-unclassified Configure unclassified host-bound IPv4 traffic
> ipv6-unclassified Configure unclassified host-bound IPv6 traffic
> isis Configure ISIS traffic
> jfm Configure JFM traffic
> l2tp Configure l2tp traffic
> lacp Configure LACP traffic
> ldp Configure LDP traffic
> ldpv6 Configure LDPv6 traffic
> lldp Configure LLDP traffic
> lmp Configure LMP traffic
> lmpv6 Configure LMPv6 traffic
> mac-host Configure L2-MAC configured 'send-to-host'
> mlp Configure MLP traffic
> msdp Configure MSDP traffic
> msdpv6 Configure MSDPv6 traffic
> multicast-copy Configure host copy due to multicast routing
> mvrp Configure MVRP traffic
> ntp Configure NTP traffic
> oam-lfm Configure OAM-LFM traffic
> ospf Configure OSPF traffic
> ospfv3v6 Configure OSPFv3v6 traffic
> pfe-alive Configure pfe alive traffic
> pim Configure PIM traffic
> pimv6 Configure PIMv6 traffic
> pmvrp Configure PMVRP traffic
> pos Configure POS traffic
> ppp Configure PPP control traffic
> pppoe Configure PPPoE control traffic
> ptp Configure PTP traffic
> pvstp Configure PVSTP traffic
> radius Configure Radius traffic
> redirect Configure packets to trigger ICMP redirect
> reject Configure packets via 'reject' action
> rip Configure RIP traffic
> ripv6 Configure RIPv6 traffic
> rsvp Configure RSVP traffic
> rsvpv6 Configure RSVPv6 traffic
> services Configure services
> snmp Configure SNMP traffic
> snmpv6 Configure SNMPv6 traffic
> ssh Configure SSH traffic
> sshv6 Configure SSHv6 traffic
> stp Configure STP traffic

DDoS Protection Case Study | 275

www.it-ebooks.info

http://www.it-ebooks.info/

> tacacs Configure TACACS traffic
> tcp-flags Configure packets with tcp flags
> telnet Configure telnet traffic
> telnetv6 Configure telnet-v6 traffic
> ttl Configure ttl traffic
> tunnel-fragment Configure tunnel fragment
> virtual-chassis Configure virtual chassis traffic
> vrrp Configure VRRP traffic
> vrrpv6 Configure VRRPv6 traffic

As extensive as the current protocol list is, it’s just the outer surface of the MX router’s
protocol recognition capabilities; all of the protocol groups listed support aggregate-
level policing and many also offer per-packet type policers that are based on the indi-
vidual message types within that protocol. For example, the PPP over Ethernet (PPPoE)
protocol group contains an aggregate policer in addition to numerous individual packet
type policers:

{master}[edit system ddos-protection]
jnpr@R1-RE0# set protocols pppoe ?

Possible completions:
> aggregate Configure aggregate for all PPPoE control traffic
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> padi Configure PPPoE PADI
> padm Configure PPPoE PADM
> padn Configure PPPoE PADN
> pado Configure PPPoE PADO
> padr Configure PPPoE PADR
> pads Configure PPPoE PADS
> padt Configure PPPoE PADT
{master}[edit system ddos-protection]

In contrast, ICMP is currently supported at the aggregate level only:

{master}[edit system ddos-protection protocols]
jnpr@R1-RE0# set icmp ?
Possible completions:
> aggregate Configure aggregate for all ICMP traffic
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
{master}[edit system ddos-protection protocols]
jnpr@R1-RE0# set icmp

Being able to recognize this rich variety of traffic at ingress means it can be directed to
an equally rich set of policing functions to ensure the control plane load remains within
acceptable limits. Given that many protocol groups support both individual packet
type policers as well as aggregate-level policing at multiple locations in the host-bound
processing path, the DDoS protection feature provides both effective and fine-grained
control over host processing path resource protection.

276 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

A Gauntlet of Policers

Hierarchical policing is the DDoS prevention muscle behind the host-bound classifi-
cation brains. This style of hierarchical policing is more akin to cascaded policers and
should not be confused with the hierarchical policer discussed previously. The goal is
to take action to limit excessive traffic as close to the source as possible, with each lower
policer component feeding into a higher level policer, until a final policed aggregate for
that protocol type is delivered to the RE for processing.

Figure 4-2 details the various DDoS policing hierarchies in the context of the PPPoE
protocol group.

Figure 4-2. DDoS policing Points for the PPPoE Family.

DDoS Protection Case Study | 277

www.it-ebooks.info

http://www.it-ebooks.info/

The first level of policing is performed at ingress to the Trio chipset, shown in step 1,
where each protocol group is subjected to a single policing stage that is either aggregate
or individual packet type based.

Currently, DHCP uses only an aggregate-level policer at the PFE stage,
as is also the case at all stages for protocols that don’t support individual
packet type policing. At the PFE and RE hierarchies, DHCP for IPv4 and
IPv6 is handled by two-stage policing based on individual message
types, in addition to an aggregate rate for the group.

The next level of policing occurs in the line card (FPC) level, as the aggregate stream
from all PFEs housed on the FPC contend for their place in the host processing queue.
In most cases, including DHCP, the second line of policing consists of two stages: the
first for individual message types and the second for the protocols group aggregate,
which is shown at steps 2 and 3. Only those messages accepted at the first step are seen
at stage 2, and any packet accepted at steps 1 and 2 is still very much subject to discard
by the aggregate-level policer at step 3 when there’s too much activity in its group.

Strict queuing is performed within individual message policers for a given protocol
group to manage contention for the group’s aggregate policer, based on a configured
priority of high, medium, or low. The strict priority handling is shown at the top of the
figure, where PADT traffic consumes all 1,000 PPS of the group’s aggregate allowance
even though other PPPoE message types are waiting. Here, PPPoE Active Discovery
Termination (PADT) is considered more important than PPPoE Active Discovery Ini-
tiation (PADI), as it allows the release of PPPoE resources, which in turn facilitates the
acceptance of new connections. Given the strict priority, all PADI will be dropped if
PADT packets use up all the tokens of the PPPoE aggregate policer.

Because high-priority traffic can starve lower priority traffic within its
group, you should thoroughly consider modifying the priority for a
given message type as the defaults have been carefully designed for op-
timal performance in a widest range of use cases.

The final level of policing hierarchy occurs within the RE itself, with another round of
protocol group-based two-stage policing, shown in steps 4 and 5 within Figure 4-2.
The output of this final stage consists of all the packets types for that group that were
accepted by all policing stages in the path, which is then handed off to the associated
daemon for message processing, assuming there are no lo0 filters or policers also in the
host processing path.

The net result is a minimum of three policing stages for protocols that don’t have in-
dividual packet type policers and five for those that do. Aggregate-only groups currently
include ANCP, dynamic VLAN, FTP, and IGMP traffic. Groups that support both
stages of policing currently include DHCPv4, MLP, PPP, PPPoE, and virtual chassis

278 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

traffic. As the feature matures, groups that are currently aggregate level-only can be
enhanced to support individual message type policing as the need arises.

By default, all three stages of policing (Trio chipset, line card, and routing engine) have
the same bandwidth and burst limits for a given packet type. This design enables all
the control traffic from a chipset and line card to reach the RE, as long as there is no
competing traffic of the same type from other chipsets or line cards. When competing
traffic is present, excess packets are dropped at the convergence points, which are the
line card for all competing chipsets and the RE for all competing line cards. You can
use a scaling factor to reduce the first two stages below the default values (100% of that
used in the RE) to fine tune performance.

Note that there is no priority mechanism at the aggregate policer merge points, as
shown in Figure 4-2. While there is no explicit prioritization, the bandwidth is allocated
in a statistically fair manner, which is to say, higher rate traffic streams get proportion-
ally more bandwidth than lower rate streams, and by the same token, during congestion
higher rate streams will also see more discards.

At the time of this chapter’s writing, the CLI incorrectly offered priority
as an option for aggregate policers. PR 722873 was raised to correct the
issue.

The default policer values are intentionally set high to ensure valid services are not
disrupted, given the DDoS feature is enabled by default, and each network varies with
regard to what is considered a normal control plane load. Also, there is no one default
size for all protocol groups because some message types are processed locally in the
line card, and so can have a higher value, and the processing load can vary significantly
for those that are sent to the RE. To gain maximum DDoS prevention, rather than after-
the-fact notification, it’s expected that each network operator will reduce policer values
from their generous defaults after analyzing actual load in their network.

Any time you lower a policer from its default, pay special attention to
any alerts that may indicate it’s too low for your network. Such a con-
dition can lead to an unintentional local DDoS attack when the more
aggressive policer begins discarding valid protocol traffic.

Configuration and Operational Verification
The DDoS prevention feature is configured at the [edit system ddos-protection] hi-
erarchy. While there, you can alter the default policer and priority values for a long list
of protocols, configure tracing, or modify global operating characteristics such as dis-
abling RE or FPC level DDOS policers and event logging.

{master}[edit system ddos-protection]
jnpr@R1-RE0# set ?

DDoS Protection Case Study | 279

www.it-ebooks.info

http://www.it-ebooks.info/

Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> global DDOS global configurations
> protocols DDOS protocol parameters
> traceoptions DDOS trace options
{master}[edit system ddos-protection]

Disabling and Tracing

You can disable policing at the FPC level (but not at the Trio PFE level) by including
the disable-fpc statement. Likewise, you can use the disable-routing-engine state-
ment to do the same for the RE’s policers.

{master}[edit system ddos-protection global]
jnpr@R1-RE0# show
disable-routing-engine;
disable-fpc;

The two combined disable the last two levels of policing hierarchy, the FPC and RE
levels; currently, the ingress Trio PFE-level policers cannot be disabled. Note that even
when disabled the related daemon continues to run, and control plane policing remains
in effect at the Trio PFE level. That last part no doubt sounds confusing, and so bears
some clarification. Currently, you cannot disable the PFE level of policing, but the
default values assigned to the policers are generally higher than that supported by the
FPC-RE path, and so even though they remained enabled they are effectively transpar-
ent for traffic that needs to makes its way to the host.

In the Junos v11.4 release, the CLI always shows the RE and FPC levels
of policing as enabled, even when they have been globally disabled. PR
722873 was raised to track this issue.

If desired, you can completely disable the DDoS daemon, called jddosd, which collects
policer statistics and generates logging of events, with a system processes
ddos-protection disable configuration statement. If unexpected behavior is observed,
and nothing else seems to help, consider restarting the process with a
restart ddos-protection operational mode command.

280 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

In the initial release, the default DDoS policer values are equal to the
same “higher than host path can support” rates as are used when the
feature is disabled. This means the only real effect to disabling the fea-
ture when defaults are in place is whether or not you receive alerts when
a policer is violated. This also means that if you do not model your
network’s control plane loads and reduce the default policer values ac-
cordingly, you are not gaining nearly as much protection from the DDoS
feature as you could.

The decision to use default values that are higher than the host-bound
path can actually support is based on the feature being enabled by de-
fault and the desire to be extra cautious about changing behavior when
a customer upgrades to a newer version with DDoS support.

You can enable tracing to get additional information about DDoS operation and events
by including trace flags—tracing is disabled by default. If desired, you can specify a log
name and archive settings, rather than settle for the default /var/log/ddosd syslog,
which by default is allowed to be 128 Kbytes before it’s saved as one of three rolling
archive files named ddosd.0 through ddosd.2. The currently supported trace flags are
displayed:

{master}[edit system ddos-protection]
jnpr@R1-RE0# set traceoptions flag ?
Possible completions:
 all Trace all areas of code
 config Trace configuration code
 events Trace event code
 gres Trace GRES code
 init Trace initialization code
 memory Trace memory management code
 protocol Trace DDOS protocol processing code
 rtsock Trace routing socket code
 signal Trace signal handling code
 state Trace state handling code
 timer Trace timer code
 ui Trace user interface code
{master}[edit system ddos-protection]
jnpr@R1-RE0# set traceoptions flag

A typical trace configuration is shown, in this case creating a syslog called ddos_trace
with a file size of 10 Mbytes, tracking events and protocol-level operations. DDoS log-
ging occurs at the notice severity level, so if you specify something less severe (like
info) you will not see any trace logs:

{master}[edit system ddos-protection]
jnpr@R1-RE0# show traceoptions
file ddos_trace size 10m;
level notice;
flag protocol;
flag events;

DDoS Protection Case Study | 281

www.it-ebooks.info

http://www.it-ebooks.info/

Granted, there is not much to see on a system that’s not currently under some type of
attack:

{master}[edit system ddos-protection]
jnpr@R1-RE0# run show log ddos_trace

{master}[edit system ddos-protection]
jnpr@R1-RE0#

Configure Protocol Group Properties

You can configure aggregate (and individual packet type) policing parameters when
supported by the protocol group at the [edit system ddos-protection protocols] hi-
erarchy. In most cases, a given group’s aggregate policer has a larger bandwidth and
burst setting, which is calculated on a per packet basis, than any individual packet type
policer in the group; however, the sum of individual policers can exceed the group’s
aggregate rate. By default, the FPC- and Trio- PFE-level policers inherit bandwidth and
burst size percentages values that are based on 100% of the aggregate or individual
packet policer rate used at the RE level. From here, you can reduce or scale down the
FPC percentages to limit them to a value below the RE policer rates, when desired.
Again, the default setting of matching FPC to RE rate ensures that when no excess
traffic is present, all messages accepted by the Trio policers are also accepted by the
FPC-level policers, which in turn are also accepted by the RE-level policers.

In addition to policer parameters, you can also configure whether an individual policer
type should bypass that group’s aggregate policer (while still having its individual
packet type statistics tracked), whether exceptions should be logged, the scheduling
priority for individual packet type policers, and the recovery time. You can also disable
RE or FPC level policing on a per protocol group/message type basis.

This example shows aggregate and individual packet type policer settings for the ip-
options group:

protocols {
 ip-options {
 aggregate {
 bandwidth 10000;
 burst 500;
 }

 unclassified {
 priority medium;
 }

 router-alert {
 bandwidth 5000;
 recover-time 150;
 priority high;
 }
 }
}

282 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

The bandwidth and burst settings are measured in units of packets per second. The
example shown explicitly sets the bandwidth and burst values for the ICMP aggregate
policer and router alert individual message policers, and modifies the unclassified ICMP
packet type to medium priority from its default of low. The router alert packet type has
high priority by default; this example explicitly sets the default value. When burst size
is not explicitly configured for an individual packet type, it inherits a value based on
the aggregate’s default using a proprietary mechanism that varies the burst size ac-
cording to the assigned priority, where high-priority gets a higher burst size.

In this case, the aggregate rate has been reduced from 20K PPS to 10K PPS with a 500
packet burst size. The router alert individual message type has its bandwidth set to one-
half that of the aggregate at 5K PPS; has been assigned a 150-second recovery time,
which determines how long the traffic has to be below the threshold before the DDoS
event is cleared; and has been assigned a high priority (which was the default for this
message type). The only change made to the unclassified packet type is to assign it a
medium priority. This change does not really buy anything for this specific protocol
group example, because the ip-option group only has two members contending for the
aggregate. After all, a medium priority setting only matters when there is another mem-
ber using low, given the strict priority that’s in effect when an individual packet type
policer contends with other individual packet policers for access to the aggregate po-
licer’s bandwidth. The high priority router alert messages can starve the unclassified
group just as easily, regardless of whether it uses a medium or low priority. Note that
in this example starvation is not possible because the group’s aggregate packet rate
exceeds the individual rate allowed for IP optioned packets. Starvation will become an
issue if the group’s aggregate had been set to only 5K, so pay attention to priority
settings in relation to the aggregate rate for a given protocol type.

Verify DDoS Operation

You now confirm the configured settings and expected operation using various forms
of the show ddos-protection operational mode command:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection ?
Possible completions:
 protocols Show protocol information
 statistics Show overall statistics
 version Show version
{master}[edit]
jnpr@R1-RE0# run show ddos-protection

Most of the meat is obtained with the protocols switch, as demonstrated in the fol-
lowing. The version option displays info on DDoS version along with the numbers of
classified protocols:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection version
DDOS protection, Version 1.0

DDoS Protection Case Study | 283

www.it-ebooks.info

http://www.it-ebooks.info/

 Total protocol groups = 84
 Total tracked packet types = 155

The statistics option provides a quick summary of current DDoS state:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection statistics
DDOS protection global statistics:
 Currently violated packet types: 0
 Packet types have seen violations: 0
 Total violation counts: 0

In this example, let’s focus on the ip-options group and begin with the default param-
eters for this group:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection protocols ip-options parameters brief
Number of policers modified: 0
Protocol Packet Bandwidth Burst Priority Recover Policer Bypass FPC
group type (pps) (pkts) time(sec) enabled aggr. mod
ip-opt aggregate 20000 20000 high 300 Yes -- No
ip-opt unclass.. 10000 10000 low 300 Yes No No
ip-opt rt-alert 20000 20000 high 300 Yes No No

The output confirms the group consists of an aggregate and two individual message
types. The default values for bandwidth and burst are assigned, as are the individual
priorities. You also see that neither individual message is allowed to bypass the aggre-
gate and that the policers are enabled. The configuration is modified as per the previous
example, and the changes are confirmed:

{master}[edit]
jnpr@R1-RE0# show | compare
[edit system]
+ ddos-protection {
+ traceoptions {
+ file ddos_trace size 10m;
+ level info;
+ flag protocol;
+ flag events;
+ }
+ protocols {
+ ip-options {
+ aggregate {
+ bandwidth 10000;
+ burst 500;
+ }
+ unclassified {
+ priority medium;
+ }
+ router-alert {
+ bandwidth 5000;
+ recover-time 150;
+ priority high;
+ }
+ }
+ }

284 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

+ }

{master}[edit]
jnpr@R1-RE0# run show ddos-protection protocols ip-options parameters brief
Number of policers modified: 3
Protocol Packet Bandwidth Burst Priority Recover Policer Bypass FPC
group type (pps) (pkts) time(sec) enabled aggr. mod
ip-opt aggregate 10000* 500* high 300 Yes -- No
ip-opt unclass.. 10000 10000 medium* 300 Yes No No
ip-opt rt-alert 5000* 20000 high 150* Yes No No

The output confirms the changes have taken effect; any nondefault value is called out
with an “*.” Note the default burst values have been calculated in relation to the relative
priority factored against the burst aggregate’s burst size, as was described previously.
Use the show ddos-protection protocols command to display current violation state,
traffic statistics, and details on the aggregate and individual packet type policer infor-
mation for all or a selected protocol group:

{master}[edit system ddos-protection]
jnpr@R1-RE0# run show ddos-protection protocols ip-options ?
Possible completions:
 <[Enter]> Execute this command
 | Pipe through a command
 parameters Show IP-Options protocol parameters
 statistics Show IP-Options statistics and states
 violations Show IP-Options traffic violations
 aggregate Show aggregate for all ip options traffic information
 unclassified Show unclassified ip options traffic information
 router-alert Show Router alert options traffic information
{master}[edit system ddos-protection]
jnpr@R1-RE0# run show ddos-protection protocols ip-options

The system baseline is now examined to confirm no current violations and that there
has been very little ICMP activity since this system was booted:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection protocols ip-options violations
Number of packet types that are being violated: 0

{master}[edit]
jnpr@R1-RE0# run show ddos-protection protocols ip-options statistics brief
Protocol Packet Received Dropped Rate Violation State
group type (packets) (packets) (pps) counts
ip-opt aggregate 1 0 0 0 Ok
ip-opt unclass.. 0 0 0 0 Ok
ip-opt rt-alert 1 0 0 0 Ok

Not only are the current traffic rate counters at 0, but the cumulative counter is also
very low, with a single router alert IP optioned packet having been detected thus far.
To see details, omit the brief switch:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection protocols ip-options router-alert
Protocol Group: IP-Options

DDoS Protection Case Study | 285

www.it-ebooks.info

http://www.it-ebooks.info/

 Packet type: router-alert (Router alert options traffic)
 Individual policer configuration:
 Bandwidth: 5000 pps
 Burst: 20000 packets
 Priority: high
 Recover time: 150 seconds
 Enabled: Yes
 Bypass aggregate: No
 System-wide information:
 Bandwidth is never violated
 Received: 1 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Routing Engine information:
 Policer is never violated
 Received: 1 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0
 FPC slot 1 information:
 Bandwidth: 100% (5000 pps), Burst: 100% (20000 packets), enabled
 Policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0
 FPC slot 2 information:
 Bandwidth: 100% (5000 pps), Burst: 100% (20000 packets), enabled
 Policer is never violated
 Received: 1 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0

The output for the router alert individual packet policer confirms systemwide settings,
as well as traffic and policer statistics for both the RE and FPC hierarchies. Note that
the first-stage Trio PFE-level stats are not displayed in the CLI, but violations are re-
ported via the FPC housing that Trio PFE. With the information provided, you can
quickly discern if there is currently excess router alert traffic, whether excess traffic has
been detected in the past, and if so, the last violation start and end time. The per FPC
displays include any alerts or violation that have been detected at either the Trio chipset
or the FPC policing levels, information that allows you to quickly determine the ingress
points for anomalous control plane traffic.

You cannot clear violation history except with a system reboot. You can clear a specific
group’s statistics or clear a current violation state using the clear ddos-protection
protocols command:

{master}[edit]
jnpr@R1-RE0# run clear ddos-protection protocols ip-options ?
Possible completions:
 statistics Clear IP-Options statistics
 states Reset IP-Options states
 aggregate Clear aggregate for all ip options traffic information
 unclassified Clear unclassified ip options traffic information
 router-alert Clear Router alert options traffic information

286 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

Late Breaking DDoS Updates
As noted previously, the DDoS feature is new. Like most new things, it continues to
evolve based on customer and field engineer feedback. The DDoS coverage in this
section was based on the v11.4R1.9 Junos release. As it happens, the v11.4R2 release
contained updates that enhance the feature, and this seemed a good place to capture
them. As always, you should consult the latest Junos feature documentation for your
release to ensure you stay abreast of feature evolution. User visible changes to DDoS
in 11.4R2 include:

• It’s now possible to include the disable-fpc statement at the [edit system ddos-
protection protocols protocol-group (aggregate | packet-type)] hierarchy level
to disable policers on all line cards for a particular packet type or aggregate within
a protocol group. The ability to configure this statement globally or for a particular
line card remains unchanged.

• The show ddos-protection protocols command now displays Partial in the En-
abled field to indicate when some of the instances of the policer are disabled, and
displays disabled when all policers are disabled.

• The routing engine information section of the show ddos-protection protocols
command output now includes fields for bandwidth, burst, and state.

• The show ddos-protection protocols parameters command and the show ddos-
protection protocols statistics command now include a terse option to display
information only for active protocol groups—that is, groups that show traffic in
the Received (packets) column. The show ddos-protection protocols parameters
command also displays partial for policers that have some disabled instances.

DDoS Case Study
This case study is designed to show the DDoS prevention feature in action. It begins
with the modified configuration for the ip-options group discussed in the previous
section. So far, no DDoS alerts or trace activity have been detected on R1, as evidenced
by the lack of alerts in the system log files:

{master}

{master}
jnpr@R1-RE0> show log messages | match ddos

{master}
jnpr@R1-RE0> show log ddos_trace

{master}
jnpr@R1-RE0>

No real surprise, given the system’s lab setting and the lack of hostile intent in those
who, having had the pleasure of using it, have developed somewhat affectionate feelings

DDoS Case Study | 287

www.it-ebooks.info

http://www.it-ebooks.info/

for the little chassis. At any extent, in the interest of moving things along, the author
has agreed to use a router tester to target R1 with the proverbial boatload of IP optioned
packets. After all, DDoS protection is in place so no routers should be harmed in the
experiment. In this case, all the packets are coded with the infamous router alert—
recall this option forces RE-level processing and thereby serves as a potential attack
vector among the more shady characters that share our civilization.

Figure 4-3 shows the topology details for the DDoS protection lab.

Figure 4-3. DDoS Protection Lab Topology.

The plan is to generate two identical streams of these black-hat- wearing packets, one
via the xe-0/0/6 Layer 2 access interface at S1 and the other over the xe-2/1/1 Layer 3
interface connecting R1 to P1. Both packet streams are sent from IP address 192.0.2.20
and destined to the 192.0.2.3 address assigned to r2’s VLAN 100 IRB interface. Recall
that the presence of the router-alert option forces R1 to examine this transit traffic
even though it’s not addressed to one of its local IP addresses. The Ethernet frame’s
destination MAC address is set to all 1’s broadcast, a setting that ensures copies of the
same stream will be accepted for processing/routing on R1’s Layer 3 interface while
also flooded in the VLAN 100 Layer 2 domain by S1. The packets are 128 bytes long
at Layer 2 and are generated at 50,000 packets per second, for a combined load of
100K PPS.

288 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

That is a fair amount of traffic for an RE to process, each and every second. This could
be dangerous, if not for DDoS protection!

The Attack Has Begun!
The stage is set, and the DDoS daemon is standing by, ready to take the best of whatever
shot you can throw, so traffic generation is initiated.

Oh, the humanity . . . But wait, the router is still responsive, there is no meltdown. In
fact, the only real indication that anything is amiss is the syslog entry from jddosd
reporting the violation:

jnpr@R1-RE0> show log messages | match ddos
Dec 19 18:16:56 R1-RE0 jddosd[1541]: DDOS_PROTOCOL_VIOLATION_SET: Protocol
 IP-Options:router-alert is violated at fpc 2 for 1 times, started at
 2011-12-19 18:16:56 PST, last seen at 2011-12-19 18:16:56 PST

The syslog information flags you as to the nature of the attack traffic, as well as the
affected FPC, in this case FPC 2. The same information is also found to be written to
the DDoS trace file, which can be handy if someone has disabled DDoS logging globally,
as the global disable logging statement only controls logging to the main syslog mes-
sages file, not to a DDoS-specific trace file:

{master}[edit]
jnpr@R1-RE0# run show log ddos_trace

Dec 19 18:16:56 Protocol IP-Options:router-alert is violated at fpc 2 for 1 times,
 started at 2011-12-19 18:16:56 PST, last seen at 2011-12-19 18:16:56 PST

Analyze the Nature of the DDoS Threat

Once you are alerted that abnormal levels of control plane traffic has been detected,
you can quickly narrow down the nature and scope of the anomaly using the following
process.

First, confirm violation state with a show ddos-protection statistics command:

{master}
jnpr@R1-RE0> show ddos-protection statistics
DDOS protection global statistics:
 Currently violated packet types: 1
 Packet types have seen violations: 1
 Total violation counts: 1

To display the scope of protocols currently involved, add the violations keyword:

{master}
jnpr@R1-RE0> show ddos-protection protocols violations
Number of packet types that are being violated: 1
Protocol Packet Bandwidth Arrival Peak Policer bandwidth
group type (pps) rate(pps) rate(pps) violation detected at
ip-opt rt-alert 5000 100004 100054 2011-12-19 18:16:56 PST
 Detected on: FPC-2

DDoS Case Study | 289

www.it-ebooks.info

http://www.it-ebooks.info/

With no other protocols in a violation state, and knowing it’s not just IP options but
specifically router alerts that make up the attack, move on to display the details for that
traffic type:

{master}
jnpr@R1-RE0> show ddos-protection protocols ip-options router-alert
Protocol Group: IP-Options

 Packet type: router-alert (Router alert options traffic)
 Individual policer configuration:
 Bandwidth: 5000 pps
 Burst: 20000 packets
 Priority: high
 Recover time: 150 seconds
 Enabled: Yes
 Bypass aggregate: No
 System-wide information:
 Bandwidth is being violated!
 No. of FPCs currently receiving excess traffic: 1
 No. of FPCs that have received excess traffic: 1
 Violation first detected at: 2011-12-19 18:16:56 PST
 Violation last seen at: 2011-12-19 18:19:33 PST
 Duration of violation: 00:02:37 Number of violations: 1
 Received: 15927672 Arrival rate: 100024 pps
 Dropped: 10402161 Max arrival rate: 100054 pps
 Routing Engine information:
 Policer is never violated
 Received: 374395 Arrival rate: 2331 pps
 Dropped: 0 Max arrival rate: 2388 pps
 Dropped by aggregate policer: 0
 FPC slot 1 information:
 Bandwidth: 100% (5000 pps), Burst: 100% (20000 packets), enabled
 Policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0
 FPC slot 2 information:
 Bandwidth: 100% (5000 pps), Burst: 100% (20000 packets), enabled
 Policer is currently being violated!
 Violation first detected at: 2011-12-19 18:16:56 PST
 Violation last seen at: 2011-12-19 18:19:33 PST
 Duration of violation: 00:02:37 Number of violations: 1
 Received: 15927672 Arrival rate: 100024 pps
 Dropped: 10402161 Max arrival rate: 100054 pps
 Dropped by this policer: 10402161
 Dropped by aggregate policer: 0

The very fact that this output is obtained proves that R1 has remained responsive
throughout the event, and thereby the effectiveness of the new Trio DDoS protection.
Note how the stats for policing at the RE level show a peak load of only 2,388 PPS,
while the FPC 2 statistics confirm an arrival rate of 100,000 PPS. And large numbers
of drops are confirmed, which accounts for the difference in Trio/FPC policing load
versus the volume of traffic that is actually making it to the RE.

290 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

The display also confirms that all of the bad traffic ingresses on FPC2. Just knowing
that can help you apply filters or other methods to begin tracking back to the point at
which the bad traffic ingresses your network, so you can either disable the peering
interface or apply a filter to block the traffic before it endangers your network.

It’s often helpful to display protocol group-level information, which also includes any
individual packet policers, even when you know a specific violation is caught with an
individual packet policer, such as the case with the router alert example being dis-
cussed. The group-level displays combined information from all five policing points,
albeit in what can be a rather long display, which helps you identify Trio-level PFE
policing actions from those in the FPC or RE. To best illustrate how the DDoS hier-
archical policers work, the statistics and state from the last experiment are cleared:

{master}
jnpr@R1-RE0> clear ddos-protection protocols statistics
jnpr@R1-RE0> clear ddos-protection protocols state

And the traffic generator is altered to send one million router alert packets, at a 100K
PPS rate, over a single interface. The round numbers should help make later analysis
that much easier. After the traffic is sent, the protocol group-level DDoS policer infor-
mation is displayed:

{master}
jnpr@R1-RE0> show ddos-protection protocols ip-options
Protocol Group: IP-Options

 Packet type: aggregate (Aggregate for all options traffic)
 Aggregate policer configuration:
 Bandwidth: 10000 pps
 Burst: 500 packets
 Priority: high
 Recover time: 300 seconds
 Enabled: Yes
 System-wide information:
 Aggregate bandwidth is never violated
 Received: 71751 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 6894 pps
 Routing Engine information:
 Aggregate policer is never violated
 Received: 40248 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 4262 pps
 Dropped by individual policers: 0
 FPC slot 1 information:
 Bandwidth: 100% (10000 pps), Burst: 100% (500 packets), enabled
 Aggregate policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by individual policers: 0
 FPC slot 2 information:
 Bandwidth: 100% (10000 pps), Burst: 100% (500 packets), enabled
 Aggregate policer is never violated
 Received: 71751 Arrival rate: 0 pps
 Dropped: 31743 Max arrival rate: 6894 pps

DDoS Case Study | 291

www.it-ebooks.info

http://www.it-ebooks.info/

 Dropped by individual policers: 31743

 Packet type: unclassified (Unclassified options traffic)
 Individual policer configuration:
 Bandwidth: 10000 pps
 Burst: 10000 packets
 Priority: medium
 Recover time: 300 seconds
 Enabled: Yes
 Bypass aggregate: No
 System-wide information:
 Bandwidth is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Routing Engine information:
 Policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0
 FPC slot 1 information:
 Bandwidth: 100% (10000 pps), Burst: 100% (10000 packets), enabled
 Policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0
 FPC slot 2 information:
 Bandwidth: 100% (10000 pps), Burst: 100% (10000 packets), enabled
 Policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0

 Packet type: router-alert (Router alert options traffic)
 Individual policer configuration:
 Bandwidth: 5000 pps
 Burst: 20000 packets
 Priority: high
 Recover time: 150 seconds
 Enabled: Yes
 Bypass aggregate: No
 System-wide information:
 Bandwidth is being violated!
 No. of FPCs currently receiving excess traffic: 1
 No. of FPCs that have received excess traffic: 1
 Violation first detected at: 2011-12-19 19:00:43 PST
 Violation last seen at: 2011-12-19 19:00:53 PST
 Duration of violation: 00:00:10 Number of violations: 2
 Received: 1000000 Arrival rate: 0 pps
 Dropped: 819878 Max arrival rate: 100039 pps
 Routing Engine information:
 Policer is never violated
 Received: 40248 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 4262 pps
 Dropped by aggregate policer: 0
 FPC slot 1 information:

292 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 Bandwidth: 100% (5000 pps), Burst: 100% (20000 packets), enabled
 Policer is never violated
 Received: 0 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 0 pps
 Dropped by aggregate policer: 0
 FPC slot 2 information:
 Bandwidth: 100% (5000 pps), Burst: 100% (20000 packets), enabled
 Policer is currently being violated!
 Violation first detected at: 2011-12-19 19:00:43 PST
 Violation last seen at: 2011-12-19 19:00:53 PST
 Duration of violation: 00:00:10 Number of violations: 2
 Received: 1000000 Arrival rate: 0 pps
 Dropped: 819878 Max arrival rate: 100039 pps
 Dropped by this policer: 819878
 Dropped by aggregate policer: 0

There is a lot of information here; refer back to Figure 4-2 for a reminder on the five
levels of DDoS policing that are possible, and let’s take it one step at a time.

The first stage of DDoS policing occurs at the Trio FPC level. The ingress Trio statistics
are at the bottom of the display, under the Packet type: router-alert (Router alert
options traffic) heading. The maximum arrival rate of 1,000,039 PPS corresponds
nicely with the traffic’s burst length and rate parameters, as does the received count of
1,000,000 packets. The display confirms that this policer is currently violated, and,
importantly, shows that 819,878 packets have been dropped.

Recall that the goal of Junos DDoS protection is to first recognize when there is excessive
control plane traffic and then to cut it off as close to the source and as far away from
the RE as possible. The numbers confirm that over 80% of the excess traffic was dis-
carded, and this in the first of as many as five policing stages. Clearly, DDoS has acted
to preserve control plane resources farther up the line. With the drops shown at this
stage, there should be some 180,122 options packets still making their way up north
to the land of the RE.

The next step is the FPC policer, which for this group is a two-stage policer with indi-
vidual- and aggregate-level policing. Its details are in the FPC slot 2 information under
the aggregate (Aggregate for all options traffic) heading. Here is where you have
to do some detective work. The display confirms that the FPC-level aggregate policer
was never violated, but at the same time it shows 31,743 drops, which therefore had
to come from its individual packet policer stage. The display also shows the FPC po-
licing stage received only 71,751 packets, which is well short of the 180,122 that made
it through the Trio PFE-level policer.

When asked about the discrepancy between DDoS stages, a software engineer con-
firmed the presence of “legacy policing functions that may also drop excess traffic on
the host path.” For example, the built-in ICMP rate limiting function that is viewed
with a show system statistics icmp command. The defaults can be altered via the set
system internet-options configuration statement:

DDoS Case Study | 293

www.it-ebooks.info

http://www.it-ebooks.info/

[edit]
jnpr@R4# set system internet-options icmpv?
Possible completions:
> icmpv4-rate-limit Rate-limiting parameters for ICMPv4 messages
> icmpv6-rate-limit Rate-limiting parameters for ICMPv6 messages

Here, the V4 options are shown:

[edit]
jnpr@R4# set system internet-options icmpv4-rate-limit ?
Possible completions:
 bucket-size ICMP rate-limiting maximum bucket size (seconds)
 packet-rate ICMP rate-limiting packets earned per second
[edit]
jnpr@R4# set system internet-options icmpv4-rate-limit

The moral of the story is you should not expect 100% correlation of the counters shown
at the various policing stages, as this data only reflects actions associated with DDoS
processing and not those of other host protection mechanisms that may continue to
coexist. Recall the goal of the feature is to protect the RE while providing the operator
with the information needed to ascertain the scope and nature of an attack, not to
provide statistics suitable for usage-based billing.

The fact that the FPC’s aggregate policer was never violated is a testament to the ef-
fectiveness of the actions at the first stage. With the FPC showing receipt of 71,757
packets, and factoring the 31,743 discards, there should be about 40,014 packets left
to make their way through the final policing stage in the RE itself.

The RE’s policer stats are shown in a few places. Looking at the one under the group
aggregate, it’s possible to see it has received a total of 40,248 packets. The display also
confirms no discards in the RE policer at either the individual or aggregate levels. The
number is slightly higher than the 40,014 that were assumed to have left the FPC,
perhaps due to some other legacy system function, but the numbers still mesh relatively
well with the known nature of this attack. In the end, the fact that 1M of these puppies
were sent while the RE only had to deal with 40K of them, all due to a hardware-based
feature that has no forwarding performance impact, should really drive home the ben-
efits of this Trio-only feature.

Mitigate DDoS Attacks
Once you have analyzed the nature of a DDoS violation, you will know what type of
traffic is involved and on which PFEs and line cards/FPCs the traffic is arriving. Armed
with this information, you can manually begin deployment of stateless filters on the
upstream nodes until you reach the border of your network where you can disable the
offending peer or apply a filter to discard or rate limit the offending traffic as close to
its source as possible. Once the fire is out, so to speak, you can contact the adminis-
trators of the peering network to obtain their assistance in tracing the attack to the
actual sources of the attack, where corrective actions can be taken.

294 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

BGP Flow-Specification to the Rescue
The Junos BGP flow-specification (flow-spec or flow route) feature uses MP-BGP to
rapidly deploy filter and policing functionality among BGP speaking nodes on both an
intra- and inter-Autonomous System basis. This feature that is well suited to mitigating
the effects of a DDoS attack, both locally and potentially over the global Internet, once
the nature of the threat is understood. A flow specification is an n-tuple filter definition
consisting of various IPv4 match criteria and a set of related actions that is distributed
via MP-BGP so that remote BGP speakers can dynamically install stateless filtering and
policing or offload traffic to another device for further handling. A given IP packet is
said to match the defined flow if it matches all the specified criteria. Flow routes are an
aggregation of match conditions and resulting actions for matching traffic that include
filtering, rate limiting, sampling, and community attribute modification. Using flow-
spec, you can define a filter once, and then distribute that filter throughout local and
remote networks–just the medicine needed to nip a DDoS attack as close to the bud as
possible.

Unlike BGP-based Remote Triggered Black Holes (RTBH), flow-spec gives you the
ability to match on a wide range of match criteria, rather than policy-based matches
that are destination IP address–based. And again, with flow-spec you can define match
and filtering conditions in a central local and then use BGP to push that information
out to both internal and external BGP speakers.

BGP flow-specification network-layer reachability information (NLRI) and its related
operation are defined in RFC 5575 “Dissemination of Flow Specification Rules.” Note
that Juniper publications still refer to the previous Internet draft “draft-ietf-idr-flow-
spec-09,” which relates to the same functionality. In operation, a flow-spec’s filter
match criteria are encoded within the flow-spec NLRI, whereas the related actions are
encoded in extended communities. Different NLRI are specified for IPv4 versus Layer
3 VPN IPv4 to accommodate the added route-distinguisher and route targets. Once
again, the venerable warhorse that is BGP shows its adaptability. A new service is en-
abled through opaque extensions to BGP, which allows operators to leverage a well-
understood and proven protocol to provide new services or enhanced security and
network robustness, as is the case with flow-spec. Flow-spec information is said to be
opaque to BGP because its not BGP’s job to parse or interpret the flow-spec payload.
Instead, the flow-spec information is passed through the flow-spec validation module,
and when accepted, is handed to the firewall daemon (dfwd) for installation into the
PFEs as a stateless filter and/or policer.

In v11.4, Junos supports flow-spec NLRI for both main instance IPv4 unicast and Layer
3 VPN IPv4 unicast traffic. To enable flow-specification NLRI for main instance MP-
BGP, you include the flow statement for the inet address family at the [edit protocols
bgp group group-name family inet] hierarchy. To enable flow-specification NLRI for
the inet-vpn address family, include the flow statement at the [edit protocols bgp
group group-name family inet-vpn] hierarchy level. Note that the flow family is valid

Mitigate DDoS Attacks | 295

www.it-ebooks.info

http://www.it-ebooks.info/

only for main instance MP-BGP sessions; you cannot use this family for BGP session
within a VRF.

Local and received flow routes that pass validation are installed into the flow routing
table instance-name.inetflow.0, where matching packets are then subjected to the re-
lated flow-spec’s actions. Flow routes that do not pass validation are hidden in the
related table null preference. Any change in validation status results in immediate up-
date to the flow route. Received Layer 3 VPN flow routes are stored in the
bgp.invpnflow.0 routing table and still contain their Route Distinguishers (RD). Sec-
ondary routes are imported to one or more specific VRF tables according to vrf-import
policies. Unlike the inet flow NLRI, inet-vpn flow routes are not automatically vali-
dated against a specific VRF’s unicast routing information; this is because such an
operation must be performed within a specific VRF context, and based on route-target
the same flow NLRI can be imported into multiple VRFs.

Configure Local Flow-Spec Routes

You configure a local flow-specification for injection into BGP at the routing-options
hierarchy, either in the main instance or under a supported instance type (VRF or VR).
While some form of IDS may be used to provide alerts as to the need for flow-spec, in
many cases operators will use SNMP alarms, RE protection filters, or the new DDoS
feature to provide notification of abnormal traffic volumes. Using the details provided
by these features allows the operator to craft one or more flow-specs to match on the
attack vector and either filter outright or rate limit as deemed appropriate.

Flow-spec syntax is very much like a stateless filter; the primary difference is lack of a
term function, as flow-specs consist of a single term. Otherwise, just like a filter, the
flow-spec consists of a set of match criteria and related actions. As before, a match is
only declared when all criteria in the from statement are true, else processing moves to
the next flow-specification. The options for flow definition are displayed:

{master}[edit routing-options flow]
jnpr@R1-RE0# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> route Flow route
 term-order Term evaluation order for flow routes
> validation Flow route validation options
{master}[edit routing-options flow]
jnpr@R1-RE0# set

The term-order keyword is used to select between version 6 and later versions of the
flow-spec specification, as described in the next section. Validation of flow routes, a
process intended to prevent unwanted disruption from a feature that is intended to
minimize disruption, is an important concept. It too is detailed in a following section.
Currently, the validation keyword at the [edit routing-options flow] hierarchy is
used to configure tracing for the validation process.

296 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

Supported match criteria include:

{master}[edit routing-options flow]
jnpr@R1-RE0# set route test ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> match Flow definition
> then Actions to take for this flow
 | Pipe through a command
{master}[edit routing-options flow]
jnpr@R1-RE0# set route test match ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 destination Destination prefix for this traffic flow
+ destination-port Destination TCP/UDP port
+ dscp Differentiated Services (DiffServ) code point (DSCP)
+ fragment
+ icmp-code ICMP message code
+ icmp-type ICMP message type
+ packet-length Packet length
+ port Source or destination TCP/UDP port
+ protocol IP protocol value
 source Source prefix for this traffic flow
+ source-port Source TCP/UDP port
+ tcp-flags TCP flags
{master}[edit routing-options flow]
jnpr@R1-RE0# set route test match

And the supported actions:

{master}[edit routing-options flow]
jnpr@R1-RE0# set route test then ?
Possible completions:
 accept Allow traffic through
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 community Name of BGP community
 discard Discard all traffic for this flow
 next-term Continue the filter evaluation after matching this flow
 rate-limit Rate at which to limit traffic for this flow (9600..1000000000000)
 routing-instance Redirect to instance identified via Route Target community
 sample Sample traffic that matches this flow
{master}[edit routing-options flow]
jnpr@R1-RE0# set route test then

A sample flow-specification is shown:

{master}[edit routing-options flow]
jnpr@R1-RE0# show
route flow_http_bad_source {
 match {
 source 10.0.69.0/25;
 protocol tcp;
 port http;

Mitigate DDoS Attacks | 297

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 then {
 rate-limit 10k;
 sample;
 }
}

After the filter chapter, the purpose of the flow_http_bad_source flow-specification
should be clear. Once sent to a remote peer, you can expect matching HTTP traffic to
be rate limited and sampled (according to its sampling parameters, which are not
shown here).

With BGP flow-spec, it’s possible that more than one rule may
match a particular traffic flow. In these cases, it’s necessary to define the order at which
rules get matched and applied to a particular traffic flow in such a way that the final
ordering must not depend on the arrival order of the flow-specification’s rules and must
be constant in the network to ensure predictable operation among all nodes.

Junos defaults to the term-ordering algorithm defined in version 6 of the BGP flow-
specification draft. In Junos OS Release v10.0 and later, you can configure the router
to comply with the term-ordering algorithm first defined in version 7 of the BGP flow
specification and supported through RFC 5575, “Dissemination of Flow Specification
Routes.” The current best practice is to configure the version 7 term-ordering algo-
rithm. In addition, it’s recommended that the same term-ordering version be used on
all routing instances configured on a given router.

In the default term ordering algorithm (draft Version 6), a term with less specific
matching conditions is always evaluated before a term with more specific matching
conditions. This causes the term with more specific matching conditions to never be
evaluated. Draft version 7 made a revision to the algorithm so that the more specific
matching conditions are evaluated before the less specific matching conditions. For
backward compatibility, the default behavior is not altered in Junos, even though the
newer algorithm is considered better. To use the newer algorithm, include the term-
order standard statement in the configuration.

Validating Flow Routes

Junos installs flow routes into the flow routing table only if they have been validated
using the validation procedure described in the draft-ietf-idr-flow-spec-09.txt, Dissem-
ination of Flow Specification Rules. The validation process ensures the related flow-spec
NLRI is valid and goes on to prevent inadvertent DDoS filtering actions by ensuring
that a flow-specification for a given route is only accepted when it is sourced from the
same speaker that is the current selected active next-hop for that route. Specifically, a
flow-specification NLRI is considered feasible if and only if:

• The originator of the flow-specification matches the originator of the best-match
unicast route for the destination prefix embedded in the flow-specification.

Flow-Spec Algorithm Version.

298 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

• There are no more specific unicast routes, when compared with the flow destina-
tion prefix, that have been received from a different neighboring AS than the best-
match unicast route, which has been determined in the first step.

The underlying concept is that the neighboring AS that advertises the best unicast route
for a destination is allowed to advertise flow-spec information for that destination pre-
fix. Stated differently, dynamic filtering information is validated against unicast routing
information, such that a flow-spec filter is accepted if, and only if, it has been advertised
by the unicast next-hop that is advertising the destination prefix and there are no unicast
routes more specific than the flow destination, with a different next-hop AS number.
Ensuring that another neighboring AS has not advertised a more specific unicast route
before validating a received flow-specification ensures that a filtering rule affects traffic
that is only flowing to the source of the flow-spec and prevents inadvertent filtering
actions that could otherwise occur. The concept is that, if a given routing peer is the
unicast next-hop for a prefix, then the system can safely accept from the same peer a
more specific filtering rule that belongs to that aggregate.

You can bypass the validation process and use your own import policy to decide what
flow-spec routes to accept using the no-validate switch:

[protocols bgp group <name>]
family inet {
 flow {
 no-validate <policy-name>;
 }
}

Bypassing the normal validation steps can be useful in the case where there is one system
in the AS in charge of advertising filtering rules that are derived locally, perhaps via an
Intrusion Detection System (IDS). In this case, the user can configure a policy that, for
example, accepts BGP routes with an empty as-path to bypass the normal validation
steps.

In addition, you can control the import and export of flow routes through import and
export policy statements, respectively, which are applied to the related BGP peering
sessions in conventional fashion. These policies can match on various criteria to include
route-filter statements to match against the destination address of a flow route and
the ability to use a from rib inetflow.0 statement to ensure that only flow-spec routes
can be matched. You can apply Forwarding Table export policy to restrict flow route
export to the PFE. The default policy is to advertise all locally defined flow-routes and
to accept for validation all received flow-routes.

You can confirm the validation status of a flow route with a show route detail com-
mand. In this, a Layer 3 VPN flow route is shown:

Mitigate DDoS Attacks | 299

www.it-ebooks.info

http://www.it-ebooks.info/

. . .
vrf-a.inetflow.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
10.0.1/24,*,proto=6,port=80/88 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 2
 State: <Active Ext>
 Peer AS: 65002
 Age: 3:13:32
 Task: BGP_65002.192.168.224.221+1401
 Announcement bits (1): 1-BGP.0.0.0.0+179
 AS path: 65002 I
 Communities: traffic-rate:0:0
 Validation state: Accept, Originator: 192.168.224.221
 Via: 10.0.0.0/16, Active
 Localpref: 100
 Router ID: 201.0.0.6

In the output, the Validation state field confirms the flow route was validated (as
opposed to rejected) and confirms the originator or the flow route as IP address
192.168.224.221. The via: field indicates which unicast route validated the flow-spec
route, which in this case was 10.0/16. Use the show route flow validation command
to display information about unicast routes that are used to validate flow specification
routes.

You can trace the flow-spec validation process by adding the validation flag at the
[edit routing-options flow] hierarchy:

{master}[edit routing-options flow]
jnpr@R1-RE0# show
validation {
 traceoptions {
 file flow_trace size 10m;
 flag all detail;
 }
}

Flow-spec routes are essentially firewall filters, and like any
filter there is some resource consumption and processing burden that can vary as a
function of the filter’s complexity. However, unlike a conventional filter that requires
local definition, once flow-spec is enabled on a BGP session, the remote peer is effec-
tively able to cause local filter instantiation, potentially up until the point of local re-
source exhaustion, which can lead to bad things. To help guard against excessive
resource usage in the event of misconfigurations or malicious intent, Junos allows you
to limit the number of flow routes that can be in effect.

Use the maximum-prefixes statement to place a limit on the number of flow routes that
can be installed in the inetflow.0 RIB:

set routing-options rib inetflow.0 maximum-prefixes <number>
set routing-options rib inetflow.0 maximum-prefixes threshold <percent>

To limit the number of flow-spec routes permitted from a given BGP peer, use the
prefix-limit statement for the flow family:

Limit Flow-Spec Resource Usage.

300 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

set protocols bgp group x neighbor <address> family inet flow prefix-limit
 maximum <number>
set protocols bgp group x neighbor <address> family inet flow prefix-limit
 teardown <%>

Summary
The Junos BGP flow-specification feature is a powerful tool against DDoS attacks that
works well alongside your routing engine protection filters and the Trio DDoS preven-
tion feature. Even a hardened control plane can be overrun with excessive traffic that
is directed to a valid service such as SSH. Once alerted to the anomalous traffic, you
can use flow-spec to rapidly deploy filters to all BGP speakers to eliminate the attack
traffic as close to the source as possible, all the while being able to maintain connectivity
to the router to perform such mitigation actions, thanks to your having the foresight
to deploy best practice RE protection filters along with built-in DDoS protections via
Trio FPCs.

BGP Flow-Specification Case Study
This section provides a sample use case for the BGP flow-spec feature. The network
topology is shown in Figure 4-4.

BGP Flow-Specification Case Study | 301

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-4. BGP Flow-Spec Topology.

Routers R1 and R2 have the best practice IPv4 RE protection filter previously discussed
in effect on their loopback interfaces. The DDoS protection feature is enabled with the
only change from the default being scaled FPC bandwidth for the ICMP aggregate.
They peer with each other using loopback-based MP-IBGP, and to External peers P1
and T1 using EBGP. The P1 network is the source of routes from the 130.130/16 block,
whereas T1 is the source of 120.120/16 routes. IS-IS Level 2 is used as the IGP. It runs
passively on the external links to ensure the EBGP next-hops can be resolved. It is also
used to distribute the loopback addresses used to support the IBGP peering. The pro-
tocols stanza on R1 is shown here:

{master}[edit]
jnpr@R1-RE0# show protocols
bgp {
 log-updown;

302 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 group t1_v4 {
 type external;
 export bgp_export;
 peer-as 65050;
 neighbor 192.168.1.1;
 }
 group int_v4 {
 type internal;
 local-address 10.3.255.2;
 family inet {
 unicast;
 flow;
 }
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 neighbor 10.3.255.1;
 }
}
isis {
 reference-bandwidth 100g;
 level 1 disable;
 interface xe-2/1/1.0 {
 passive;
 }
 interface ae0.1 {
 point-to-point;
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 interface lo0.0 {
 passive;
 }
}
lacp {
 traceoptions {
 file lacp_trace size 10m;
 flag process;
 flag startup;
 }
}
lldp {
 interface all;
}
layer2-control {
 nonstop-bridging;
}
vstp {
 interface xe-0/0/6;
 interface ae0;
 interface ae1;
 interface ae2;

BGP Flow-Specification Case Study | 303

www.it-ebooks.info

http://www.it-ebooks.info/

 vlan 100 {
 bridge-priority 4k;
 interface xe-0/0/6;
 interface ae0;
 interface ae1;
 interface ae2;
 }
 vlan 200 {
 bridge-priority 8k;
 interface ae0;
 interface ae1;
 interface ae2;
 }
}

Note that flow NLRI has been enabled for the inet family on the internal peering ses-
sion. Note again that BGP flow-spec is also supported for EBGP peers, which means it
can operate across AS boundaries when both networks have bilaterally agreed to sup-
port the functionality. The DDoS stanza is displayed here:

{master}[edit]
jnpr@R2-RE0# show system ddos-protection
protocols {
 icmp {
 aggregate {
 fpc 2 {
 bandwidth-scale 30;
 burst-scale 30;
 }
 }
 }
}

The DDoS settings alter FPC slot 2 to permit 30% of the system aggregate for ICMP.
Recall from the previous DDoS section that by default all FPCs inherit 100% of the
system aggregate, which means any one FPC can send at the full maximum load with
no drops, but also means a DDoS attack on any one FPC can cause contention at
aggregation points for other FPCs with normal loads. Here, FPC 2 is expected to permit
some 6,000 PPS before it begins enforcing DDoS actions at 30% of the system aggregate,
which by default is 20,000 PPS in this release.

You next verify the filter chain application to the lo0 interface. While only R1 is shown,
R2 also has the best practice IPv4 RE protection filters in place; the operation of the
RE protection filter was described previously in the RE protection case study.

{master}[edit]
jnpr@R1-RE0# show interfaces lo0
unit 0 {
 family inet {
 filter {
 input-list [discard-frags accept-common-services accept-sh-bfd accept-bgp
accept-ldp accept-rsvp accept-telnet accept-vrrp discard-all];
 }
 address 10.3.255.1/32;

304 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 family iso {
 address 49.0001.0100.0325.5001.00;
 }
 family inet6 {
 filter {
 input-list [discard-extension-headers accept-MLD-hop-by-hop_v6 deny-icmp6-
undefined accept-common-services-v6 accept-sh-bfd-v6 accept-bgp-v6 accept-telnet-v6
accept-ospf3 accept-radius-v6 discard-all-v6];
 }
 address 2001:db8:1::ff:1/128;
 }
}

The IBGP and EBGP session status is confirmed. Though not shown, R2 also has both
its neighbors in an established state:

{master}[edit]
jnpr@R1-RE0# run show bgp summary
Groups: 2 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 200 200 0 0 0 0
inetflow.0 0 0 0 0 0 0
inet6.0 0 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
#Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 12 12 0 0 3:14 Establ
 inet.0: 100/100/100/0
 inetflow.0: 0/0/0/0
192.168.0.1 65222 7 16 0 0 3:18 Establ
 inet.0: 100/100/100/

As is successful negotiation of the flow NLRI during BGP, capabilities exchange is
confirmed by displaying the IBGP neighbor to confirm that the inet-flow NLRI is in
effect:

{master}[edit]
jnpr@R1-RE0# run show bgp neighbor 10.3.255.2 | match nlri
 NLRI for restart configured on peer: inet-unicast inet-flow
 NLRI advertised by peer: inet-unicast inet-flow
 NLRI for this session: inet-unicast inet-flow
 NLRI that restart is negotiated for: inet-unicast inet-flow
 NLRI of received end-of-rib markers: inet-unicast inet-flow
 NLRI of all end-of-rib markers sent: inet-unicast inet-flow

And lastly, a quick confirmation of routing to both loopback and EBGP prefixes, from
the perspective of R2:

{master}[edit]
jnpr@R2-RE0# run show route 10.3.255.1

inet.0: 219 destinations, 219 routes (219 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.255.1/32 *[IS-IS/18] 00:11:21, metric 5
 > to 10.8.0.0 via ae0.1

BGP Flow-Specification Case Study | 305

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R2-RE0# run show route 130.130.1.0/24

inet.0: 219 destinations, 219 routes (219 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

130.130.1.0/24 *[BGP/170] 00:01:22, localpref 100, from 10.3.255.1
 AS path: 65222 ?
 > to 10.8.0.0 via ae0.1

The output confirms that IS-IS is supporting the IBGP session by providing a route to
the remote router’s loopback address, and that R2 is learning the 130.130/16 prefixes
from R1, which in turn learned them via its EBGP peering to P1.

Let the Attack Begin!
With the stage set, things begin with a DDoS log alert at R2:

{master}[edit]
jnpr@R2-RE0# run show log messages | match ddos
Mar 18 17:43:47 R2-RE0 jddosd[75147]: DDOS_PROTOCOL_VIOLATION_SET: Protocol
ICMP:aggregate is violated at fpc 2 for 4 times, started at 2012-03-18 17:43:47 PDT,
last seen at 2012-03-18 17:43:47 PDT

Meanwhile, back at R1, no violations are reported, making it clear that R2 is the sole
victim of the current DDoS bombardment:

{master}[edit]
jnpr@R1-RE0# run show ddos-protection protocols violations
Number of packet types that are being violated: 0

The syslog entry warns of excessive ICMP traffic at FPC 2. Details on the current vio-
lation are obtained with a show ddos protocols command:

jnpr@R2-RE0# run show ddos-protection protocols violations
Number of packet types that are being violated: 1
Protocol Packet Bandwidth Arrival Peak Policer bandwidth
group type (pps) rate(pps) rate(pps) violation detected at
icmp aggregate 20000 13587 13610 2012-03-18 17:43:47 PDT
 Detected on: FPC-2

{master}[edit]
jnpr@R2-RE0# run show ddos-protection protocols icmp
Protocol Group: ICMP

 Packet type: aggregate (Aggregate for all ICMP traffic)
 Aggregate policer configuration:
 Bandwidth: 20000 pps
 Burst: 20000 packets
 Priority: high
 Recover time: 300 seconds
 Enabled: Yes
 System-wide information:
 Aggregate bandwidth is being violated!

306 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 No. of FPCs currently receiving excess traffic: 1
 No. of FPCs that have received excess traffic: 1
 Violation first detected at: 2012-03-18 17:43:47 PDT
 Violation last seen at: 2012-03-18 17:58:26 PDT
 Duration of violation: 00:14:39 Number of violations: 4
 Received: 22079830 Arrival rate: 13607 pps
 Dropped: 566100 Max arrival rate: 13610 pps
 Routing Engine information:
 Aggregate policer is never violated
 Received: 10260083 Arrival rate: 6001 pps
 Dropped: 0 Max arrival rate: 6683 pps
 Dropped by individual policers: 0
 FPC slot 2 information:
 Bandwidth: 30% (6000 pps), Burst: 30% (6000 packets), enabled
 Aggregate policer is currently being violated!
 Violation first detected at: 2012-03-18 17:43:47 PDT
 Violation last seen at: 2012-03-18 17:58:26 PDT
 Duration of violation: 00:14:39 Number of violations: 4
 Received: 22079830 Arrival rate: 13607 pps
 Dropped: 566100 Max arrival rate: 13610 pps
 Dropped by individual policers: 0
 Dropped by aggregate policer: 566100

The output confirms ICMP aggregate-level discards at the FPC level, with a peak load
of 13,600 PPS, well in excess of the currently permitted 6,000 PPS. In addition, and
much to your satisfaction, R2 remains responsive showing that the DDoS first line of
defense is doing its job. However, aside from knowing there is a lot of ICMP arriving
at FPC 2 for this router, there is not much to go on yet as far as tracking the attack back
toward its source, flow-spec style or otherwise. You know this ICMP traffic must be
destined for R2, either due to unicast or broadcast, because only host-bound traffic is
subjected to DDoS policing.

The loopback filter counters and policer statistics are displayed at R2:

{master}[edit]
jnpr@R2-RE0# run show firewall filter lo0.0-i

Filter: lo0.0-i
Counters:
Name Bytes Packets
accept-bfd-lo0.0-i 25948 499
accept-bgp-lo0.0-i 1744 29
accept-dns-lo0.0-i 0 0
accept-icmp-lo0.0-i 42252794 918539
accept-ldp-discover-lo0.0-i 0 0
accept-ldp-igmp-lo0.0-i 0 0
accept-ldp-unicast-lo0.0-i 0 0
accept-ntp-lo0.0-i 0 0
accept-ntp-server-lo0.0-i 0 0
accept-rsvp-lo0.0-i 0 0
accept-ssh-lo0.0-i 0 0
accept-telnet-lo0.0-i 7474 180
accept-tldp-discover-lo0.0-i 0 0
accept-traceroute-icmp-lo0.0-i 0 0

BGP Flow-Specification Case Study | 307

www.it-ebooks.info

http://www.it-ebooks.info/

accept-traceroute-tcp-lo0.0-i 0 0
accept-traceroute-udp-lo0.0-i 0 0
accept-vrrp-lo0.0-i 3120 78
accept-web-lo0.0-i 0 0
discard-all-TTL_1-unknown-lo0.0-i 0 0
discard-icmp-lo0.0-i 0 0
discard-ip-options-lo0.0-i 32 1
discard-netbios-lo0.0-i 0 0
discard-tcp-lo0.0-i 0 0
discard-udp-lo0.0-i 0 0
discard-unknown-lo0.0-i 0 0
no-icmp-fragments-lo0.0-i 0 0
Policers:
Name Bytes Packets
management-1m-accept-dns-lo0.0-i 0 0
management-1m-accept-ntp-lo0.0-i 0 0
management-1m-accept-ntp-server-lo0.0-i 0 0
management-1m-accept-telnet-lo0.0-i 0 0
management-1m-accept-traceroute-icmp-lo0.0-i 0 0
management-1m-accept-traceroute-tcp-lo0.0-i 0 0
management-1m-accept-traceroute-udp-lo0.0-i 0 0
management-5m-accept-icmp-lo0.0-i 21870200808 475439148
management-5m-accept-ssh-lo0.0-i 0 0
management-5m-accept-web-lo0.0-i 0 0

The counters for the management-5m-accept-icmp-lo0.0-I prefix-specific counter and
policers make it clear that a large amount of ICMP traffic is hitting the loopback filter
and being policed by the related 5 M policer. Given that the loopback policer is executed
before the DDoS processing, right as host-bound traffic arrives at the Trio PFE, it’s clear
that the 5 Mbps of ICMP that is permitted by the policer amounts to more than the
6,000 PPS; otherwise, there would be no current DDoS alert or DDoS discard actions
in the FPC.

Knowing that a policer evoked through a loopback filter is executed before any DDoS
processing should help in dimensioning your DDoS and loopback policers so they work
well together. Given that a filter-evoked policer measures bandwidth in bits per second
while the DDoS policers function on a packet-per-second basis should make it clear
that trying to match them is difficult at best and really isn’t necessary anyway.

Because a loopback policer represents a system-level aggregate, there is some sense to
setting the policer higher than that in any individual FPC. If the full expected aggregate
arrives on a single FPC, then the lowered DDoS settings in the FPC will kick in to ensure
that no one FPC can consume the system’s aggregate bandwidth, thereby ensuring
plenty of capacity of other FPCs that have normal traffic loads. The downside to such
a setting is that you can now expect FPC drops even when only one FPC is active and
below the aggregate system load.

308 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

Determine Attack Details and Define Flow Route

Obtaining the detail needed to describe the attack flow is where sampling or filter-based
logging often come into play. In fact, the current RE protection filter has a provision
for logging:

{master}[edit]
jnpr@R2-RE0# show firewall family inet filter accept-icmp
apply-flags omit;
term no-icmp-fragments {
 from {
 is-fragment;
 protocol icmp;
 }
 then {
 count no-icmp-fragments;
 log;
 discard;
 }
}
term accept-icmp {
 from {
 protocol icmp;
 ttl-except 1;
 icmp-type [echo-reply echo-request time-exceeded unreachable source-quench
router-advertisement parameter-problem];
 }
 then {
 policer management-5m;
 count accept-icmp;
 log;
 accept;
 }
}

The presence of the log and syslog action modifiers in the accept-icmp filter means you
simply need to display the firewall cache or syslog to obtain the details needed to char-
acterize the attack flow:

jnpr@R2-RE0# run show firewall log
Log :
Time Filter Action Interface Protocol Src Addr Dest Addr
18:47:47 pfe A ae0.1 ICMP 130.130.33.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.60.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.48.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.31.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.57.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.51.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.50.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.3.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.88.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.94.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.22.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.13.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.74.1 10.3.255.2

BGP Flow-Specification Case Study | 309

www.it-ebooks.info

http://www.it-ebooks.info/

18:47:47 pfe A ae0.1 ICMP 130.130.77.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.46.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.94.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.38.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.36.1 10.3.255.2
18:47:47 pfe A ae0.1 ICMP 130.130.47.1 10.3.255.2
. . .

The contents of the firewall log make it clear the attack is ICMP based (as already
known), but in addition you can now confirm the destination address matches R2’s
loopback, and that the source appears to be from a range of 130.130.x/24 subnets from
within P1’s 130.130/16 block. Armed with this information, you can contact the ad-
ministrator of the P1 network to ask them to address the issue, but that can wait until
you have this traffic filtered at ingress to your network, rather than after it has had the
chance to consume resources in your network and at R2, specifically.

A flow route is defined on R2:

{master}[edit]
jnpr@R2-RE0# show routing-options flow
route block_icmp_p1 {
 match {
 destination 10.3.255.2/32;
 source 130.130.0.0/16;
 protocol icmp;
 }
 then discard;
}

The flow matches all ICMP traffic sent to R2’s loopback address from any source in
the 130.130/16 space with a discard action. Once locally defined, the flow-spec is
placed into effect (there is no validation for a local flow-spec, much like there is no need
to validate a locally defined firewall filter), as confirmed by the current DDoS statistics,
which now report a 0 PPs arrival rate:

{master}[edit]
jnpr@R2-RE0# run show ddos-protection protocols icmp
Protocol Group: ICMP

 Packet type: aggregate (Aggregate for all ICMP traffic)
 Aggregate policer configuration:
 Bandwidth: 20000 pps
 Burst: 20000 packets
 Priority: high
 Recover time: 300 seconds
 Enabled: Yes
 System-wide information:
 Aggregate bandwidth is no longer being violated
 No. of FPCs that have received excess traffic: 1
 Last violation started at: 2012-03-18 18:47:28 PDT
 Last violation ended at: 2012-03-18 18:52:59 PDT
 Duration of last violation: 00:05:31 Number of violations: 5
 Received: 58236794 Arrival rate: 0 pps
 Dropped: 2300036 Max arrival rate: 13620 pps

310 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 Routing Engine information:
 Aggregate policer is never violated
 Received: 26237723 Arrival rate: 0 pps
 Dropped: 0 Max arrival rate: 6683 pps
 Dropped by individual policers: 0
 FPC slot 2 information:
 Bandwidth: 30% (6000 pps), Burst: 30% (6000 packets), enabled
 Aggregate policer is no longer being violated
 Last violation started at: 2012-03-18 18:47:28 PDT
 Last violation ended at: 2012-03-18 18:52:59 PDT
 Duration of last violation: 00:05:31 Number of violations: 5
 Received: 58236794 Arrival rate: 0 pps
 Dropped: 2300036 Max arrival rate: 13620 pps
 Dropped by individual policers: 0
 Dropped by aggregate policer: 2300036

The presence of a flow-spec filter is confirmed with a show firewall command:

{master}[edit]
jnpr@R2-RE0# run show firewall | find flow

Filter: __flowspec_default_inet__
Counters:
Name Bytes Packets
10.3.255.2,130.130/16,proto=1 127072020948 2762435238

The presence of the flow-spec filter is good, but the non-zero counters confirm that it’s
still matching a boatload of traffic to 10.3.255.2, from 130.130/16 sources, for protocol
1 (ICMP), as per its definition. Odd, as in theory R1 should now also be filtering this
traffic, which clearly is not the case; more on that later.

It’s also possible to display the inetflow.0 table directly to see both local and remote
entries; the table on R2 currently has only its one locally defined flow-spec:

{master}[edit]
jnpr@R2-RE0# run show route table inetflow.0 detail

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
10.3.255.2,130.130/16,proto=1/term:1 (1 entry, 1 announced)
 *Flow Preference: 5
 Next hop type: Fictitious
 Address: 0x8df4664
 Next-hop reference count: 1
 State: <Active>
 Local AS: 4259905000
 Age: 8:34
 Task: RT Flow
 Announcement bits (2): 0-Flow 1-BGP_RT_Background
 AS path: I
 Communities: traffic-rate:0:0

Don’t be alarmed about the fictitious next-hop bit. It’s an artifact from the use of BGP,
which has a propensity for next-hops, versus a flow-spec, which has no such need. Note
also how the discard action is conveyed via a community that encodes an action of rate
limiting the matching traffic to 0 bps.

BGP Flow-Specification Case Study | 311

www.it-ebooks.info

http://www.it-ebooks.info/

With R2 looking good, let’s move on to determine why R1 is apparently not yet filtering
this flow. Things begin with a confirmation that the flow route is advertised to R1:

{master}[edit]
jnpr@R2-RE0# run show route advertising-protocol bgp 10.3.255.1 table inetflow.0

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 10.3.255.2,130.130/16,proto=1/term:1
* Self 100 I

As expected, the output confirms that R2 is sending the flow-spec to R1, so you expect
to find a matching entry in its inetflow.0 table, along with a dynamically created filter
that should be discarding the attack traffic at ingress from P1 as it arrives on the xe-2/1/1
interface. But, thinking back, it was noted that R2’s local flow route is showing a high
packet count and discard rate, which clearly indicates that R1 is still letting this traffic
through.

Your curiosity piqued, you move to R1 and find the flow route is hidden:

{master}[edit]
jnpr@R1-RE0# run show route table inetflow.0 hidden detail

inetflow.0: 1 destinations, 1 routes (0 active, 0 holddown, 1 hidden)
10.3.255.2,130.130/16,proto=1/term:N/A (1 entry, 0 announced)
 BGP /-101
 Next hop type: Fictitious
 Address: 0x8df4664
 Next-hop reference count: 1
 State: <Hidden Int Ext>
 Local AS: 65000.65000 Peer AS: 65000.65000
 Age: 16:19
 Task: BGP_65000.65000.10.3.255.2+179
 AS path: I
 Communities: traffic-rate:0:0
 Accepted
 Validation state: Reject, Originator: 10.3.255.2
 Via: 10.3.255.2/32, Active
 Localpref: 100
 Router ID: 10.3.255.2

Given the flow route is hidden, no filter has been created at R1:

{master}[edit]
jnpr@R1-RE0# run show firewall | find flow

Pattern not found
{master}[edit]

And as a result, the attack data is confirmed to be leaving R1’s ae0 interface on its way
to R2:

Interface: ae0, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 20000mbps
Traffic statistics: Current delta
 Input bytes: 158387545 (6624 bps) [0]

312 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

 Output bytes: 4967292549831 (2519104392 bps) [0]
 Input packets: 2335568 (12 pps) [0]
 Output packets: 52813462522 (6845389 pps) [0]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Carrier transitions: 0 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]

Thinking a bit about the hidden flow-spec and its rejected state, the answer arrives:
this is a validation failure. Recall that, by default, only the current best source of a route
is allowed to generate a flow-spec that could serve to filter the related traffic. Here, R2
is not the BGP source of the 130.130/16 route that the related flow-spec seeks to filter.
In effect, this is a third-party flow-spec, and as such, it does not pass the default vali-
dation procedure. You can work around this issue by using the no-validate option
along with a policy at R1 that tells it to accept the route. First, the policy:

{master}[edit]
jnpr@R1-RE0# show policy-options policy-statement accept_icmp_flow_route
term 1 {
 from {
 route-filter 10.3.255.2/32 exact;
 }
 then accept;
}

The policy is applied under the flow family using the no-validate keyword:

{master}[edit]
jnpr@R1-RE0# show protocols bgp group int
type internal;
local-address 10.3.255.1;
family inet {
 unicast;
 flow {
 no-validate accept_icmp_flow_route;
 }
}
bfd-liveness-detection {
 minimum-interval 2500;
 multiplier 3;
}
neighbor 10.3.255.2

After the change is committed, the flow route is confirmed at R1:

{master}[edit]
jnpr@R1-RE0# run show firewall | find flow

Filter: __flowspec_default_inet__
Counters:
Name Bytes Packets
10.3.255.2,130.130/16,proto=1 9066309970 197093695

BGP Flow-Specification Case Study | 313

www.it-ebooks.info

http://www.it-ebooks.info/

The 10.3.255.2,130.130/16,proto=1 flow-spec filter has been activated at R1, a good
indication the flow-spec route is no longer hidden due to validation failure. The net
result that you have worked so hard for is that now, the attack data is no longer being
transported over your network just to be discarded at R2.

{master}[edit]
jnpr@R1-RE0# run monitor interface ae0

Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'
R1-RE0 Seconds: 0 Time: 19:18:22
 Delay: 16/16/16
Interface: ae0, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 20000mbps
Traffic statistics: Current delta
 Input bytes: 158643821 (6480 bps) [0]
 Output bytes: 5052133735948 (5496 bps) [0]
 Input packets: 2339427 (12 pps) [0]
 Output packets: 54657835299 (10 pps) [0]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Carrier transitions: 0 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]

This completes the DDoS mitigation case study.

Summary
The Junos OS combined with Trio-based PFEs offers a rich set of stateless firewall
filtering, a rich set of policing options, and some really cool built-in DDoS capabilities.
All are performed in hardware so you can enable them in a scaled production environ-
ment without appreciable impact to forwarding rates.

Even if you deploy your MX in the core, where edge-related traffic conditions and
contract enforcement is typically not required, you still need stateless filters, policers,
and/or DDoS protection to protect your router’s control plane from unsupported serv-
ices and to guard against excessive traffic, whether good or bad, to ensure the router
remains secure and continues to operate as intended even during periods of abnormal
volume of control plane traffic, be it intentional or attack based.

This chapter provided current best practice templates from strong RE protection filters
for both IPv4 and IPv6 control plane. All readers should compare their current RE
protection filters to the examples provided to decide if any modifications are needed
to maintain current best practice in this complex, but all too important, subject. The
new DDoS feature, supported on Trio line cards only, works symbiotically with RE
protection filters, or can function standalone, and acts as a robust primary, secondary,
and tertiary line of defense to protect the control plane from resource exhaustion,
stemming from excessive traffic that could otherwise impact service, or worse, render

314 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

the device inoperable and effectively unreachable during the very times you need access
the most!

Chapter Review Questions
1. Which is true regarding the DDoS prevention feature?

a. The feature is off by default

b. The feature is on by default with aggressive policers

c. The feature is on by default but requires policer configuration before any alerts
or policing can occur

d. The feature is on by default with high policer rates that in most cases exceed
system control plane capacity to ensure no disruption to existing functionality

2. Which is true about DDoS policers and RE protection policers evoked though a
filter?

a. The lo0 policer is disabled when DDoS is in effect

b. The DDoS policers run first with the lo0 policer executed last

c. The lo0 policer is executed before and after the DDoS policers, once at ingress
and again in the RE

d. Combining lo0 and DDoS policers is not permitted and a commit error is
retuned

3. A strong RE protection filter should end with which of the following?

a. An accept all to ensure no disruption

b. A reject all, to send error messages to sources of traffic that is not permitted

c. A discard all to silently discard traffic that is not permitted

d. A log action to help debug filtering of valid/permitted services

e. Both C and D

4. A filter is applied to the main instance lo0.0 and a VRF is defined without its own
lo0.n ifl. Which is true?

a. Traffic from the instance to the local control plane is filtered by the lo0.0 filter

b. Traffic from the instance to remote VRF destinations is filtered by the lo0.0
filter

c. Traffic from the instance to the local control plane is not filtered

d. None of the above. VRFs require a lo0.n for their routing protocols to operate

5. What Junos feature facilitates simplified filter management when using address-
based match criteria to permit only explicitly defined BGP peers?

a. Dynamic filter lists

b. Prefix lists and the apply-path statement

Chapter Review Questions | 315

www.it-ebooks.info

http://www.it-ebooks.info/

c. The ability to specify a 0/0 as a match-all in an address-based match condition

d. All of the above

e. A sr-TCM policer applied at the unit level for all Layer 2 families using the
layer2-policer statement

6. What is the typical use case for an RE filter applied in the output direction?

a. To ensure your router is not generating attack traffic

b. To track the traffic sent from the router for billing purposes

c. A trick question; output filters are not supported

d. To alter CoS/ToS marking and queuing for locally generated control plane
traffic

Chapter Review Answers
1. Answer: D. Because DDoS is on by default, the policers are set to the same high

values as when the feature is disabled, effectively meaning the host-bound traffic
from a single PFE is limited by the processing path capabilities and not DDoS
protection. You must reduce the defaults to suit the needs of your network to gain
additional DDoS protection outside of alerting and policing at aggregation points
for attacks on multiple PFEs.

2. Answer: C. When an lo0 policer is present, it is executed first, as traffic arrives at
the line card, before any DDoS (even Trio PFE-level) are executed. In addition, a
copy of the RE policer is also stored in the kernel where its acts on the aggregate
load going to the RE, after the DDoS policer stage.

3. Answer: E. A strong security filter always uses a discard-all as a final term. Using
rejects can lead to resource usage in the form of error messages, a bad idea when
under an attack. Adding the log action to the final term is a good idea, as it allows
you to quickly confirm what traffic is hitting the final discard term. Unless you are
being attacked, very little traffic should be hitting the final term, so the log action
does not represent much burden. The firewall cache is kept in kernel, and only
displayed when the operator requests the information, unlike a syslog filter action,
which involves PFE-to-RE traffic on an ongoing basis for traffic matching the final
discard term.

4. Answer: A. When a routing instance has filter applied to an lo0 unit in that in-
stance, that filter is used; otherwise, control plane traffic from the instance to the
RE is filtered by the main instance lo0.0 filter.

5. Answer: B. Use prefix-lists and the apply-path feature to build a dynamic list
of prefixes that are defined somewhere else on the router (e.g., those assigned to
interfaces or used in BGP peer definitions), and then use the dynamic list as a match
condition in a filter to simplify filter management in the face of new interface or
peer definitions.

316 | Chapter 4: Routing Engine Protection and DDoS Prevention

www.it-ebooks.info

http://www.it-ebooks.info/

6. Answer: D. Output filters are most often used to alter the default CoS/ToS marking
for locally generated traffic.

Chapter Review Answers | 317

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Trio Class of Service

This chapter explores the vast and wonderful world of Class of Service (CoS) on Trio-
based PFEs. A significant portion of the chapter is devoted to its highly scalable hier-
archical CoS (H-CoS) capabilities.

Readers that are new to general IP CoS processing in Junos or who desire a review of
IP Differentiated Services (DiffServ) concepts should consult the Juniper Enterprise
Routing book. CoS is a complicated subject, and the intent is to cover new, Trio-specific
CoS capabilities without dedicating invaluable space to material that is available
elsewhere.

The CoS topics in this chapter include:

• MX router CoS capabilities

• Trio CoS flow

• Hierarchical CoS

• Trio scheduling, priority handling, and load balancing

• MX CoS defaults

• Predicting queue throughput

• Per-unit Scheduling CoS lab

• Hierarchical CoS lab

MX CoS Capabilities
This section provides an overview of Trio-based MX router CoS capabilities and op-
eration, which includes a packet walkthrough that illustrates how CoS is provided to
transit traffic in the Trio architecture.

The Trio chipset offers several CoS differentiators that should be kept in mind when
designing your network’s CoS architecture.

319

www.it-ebooks.info

http://www.it-ebooks.info/

Intelligent Class Aware Hierarchical Rate Limiters
This feature lets Trio PFEs honor user configured rate limit (shaping) policies for
multiple classes of traffic, while at the same time protecting conforming high-
priority traffic from low-priority traffic bursts. This is accomplished though sup-
port of up to four levels of scheduling and queuing (Ports/IFL sets/IFLs/Queues),
with support for a shaping rate (PIR), a guaranteed rate (CIR), and excess rate
control at all levels.

Additionally, you have great flexibility as to the attachment points for hierarchical
scheduling and shaping, to include IFDs (ports), IFLs (logical interfaces), and in-
terface sets (which are collections of IFLs or VLANs, and the key enabler of H-CoS).

Priority-Based Shaping
This feature allows you to shape traffic at an aggregate level based on its priority
level, either at the port or IFL-set levels. Priority-based shaping is well suited to
broadband aggregation where large numbers of individual flows are combined into
larger class-based aggregates, which can now be shaped at a macro level.

Dynamic Priority Protection
Priority inheritance combined with the ability to demote or promote the priority
of a traffic class protects bandwidth of high-priority traffic even in the presence of
bursty low-priority traffic.

Highly Scalable CoS
Trio PFEs offer scalable CoS that ensures your hardware investment can grow to
meet current and future CoS need. Key statistics include up to 512k queues per
MPC slot, up to 64k VLANs with eight queues attached per MPC slot, and up to
16k VLAN groups per MPC slot.

Dynamic CoS Profiles
Dynamic CoS allows MX platforms to provide a customized CoS profile for
PPPOE/DHCP/L2TP, etc. Subscriber access where RADIUS authentication exten-
sion can include CoS parameters that, for example, might add an EF queue to a
triple play subscriber for the duration of some special event.

Port versus Hierarchical Queuing MPCs
In general, MX routers carry forward preexisting Junos CoS capabilities while adding
numerous unique capabilities. Readers looking for a basic background in Junos CoS
capability and configuration are encouraged to consult the Juniper Enterprise Routing
book. From a CoS perspective, Trio-based MX platforms support two categories of line
cards, namely, those that do only port-level CoS and those that can provide hierarchical
CoS (H-CoS). The latter types provide fine-grained queuing and additional levels of
scheduling hierarchy, as detailed later, and are intended to meet the needs of broadband
subscriber access where CoS handling is needed for literally thousands of users.

Port-based queuing MPCs support eight queues (per port) and also provide port-level
shaping, per-VLAN (IFL) classification, rewrites, and policing.

320 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Port-based MPC types include:

MX-MPC3E-3D
MPC-3D-16XGE-SFPP
MPC-3D-16XGE-SFPP-R-B
MX-MPC1-3D
MX-MPC1-3D-R-B
MX-MPC2-3D
MX-MPC2-3D-R-B

Hierarchical queuing MPCs support all port-level CoS functionality in addition to
H-CoS, which adds a fourth level of hierarchy via the addition of an IFL set construct.
Only H-CoS capable MPCs have the dense queuing block, which is currently facilitated
by the QXASIC. H-CoS-capable MPCs include:

MX-MPC1-Q-3D
MX-MPC1-3D-Q-R-B
MX-MPC2-Q-3D
MX-MPC2-3D-Q-R-B
MX-MPC2-EQ-3D
MX-MPC2-3D-EQ-R-B

This chapter demonstrates use of shell commands to illustrate operation
and debugging steps. These commands are not officially supported and
should only be used under guidance of JTAC. Incorrect usage of these
commands can be service impacting.

A show chassis hardware command can be used to confirm of a MPC supports H-CoS;
such MPCs are designated with a “Q”:

{master}[edit]
jnpr@R1-RE0# run show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis JN111992BAFC MX240
Midplane REV 07 760-021404 TR5026 MX240 Backplane
FPM Board REV 03 760-021392 KE2411 Front Panel Display
PEM 0 Rev 02 740-017343 QCS0748A002 DC Power Entry Module
Routing Engine 0 REV 07 740-013063 1000745244 RE-S-2000
Routing Engine 1 REV 07 740-013063 9009005669 RE-S-2000
CB 0 REV 03 710-021523 KH6172 MX SCB
CB 1 REV 10 710-021523 ABBM2781 MX SCB
FPC 2 REV 15 750-031088 YR7184 MPC Type 2 3D Q
. . .

If there is ever any doubt, or if you are not sure how many QX chips your Trio MPC
supports, you can access the MPC via VTY and display the dense queuing block’s driver.
If driver details are returned, the card should be H-CoS capable. In the v11.4R1 release,
the show qxchip driver <n> command is used, where n refers to the buffer manager

MX CoS Capabilities | 321

www.it-ebooks.info

http://www.it-ebooks.info/

number, which currently is either 0 or 1 as some MPC types support two buffer man-
agement blocks:

{master}[edit]
jnpr@R1-RE0# run start shell pfe network fpc2

NPC platform (1067Mhz MPC 8548 processor, 2048MB memory, 512KB flash)

NPC2(R1-RE0 vty)# NPC2(R1-RE0 vty)# show qxchip 0 driver
QX-chip : 0
 Debug flags : 0x0
 hw initialized : TRUE
 hw present : TRUE
 q-drain-workaround : Disabled
 periodics enabled : TRUE

 rldram_size : 603979776
 qdr_size : 37748736

 Scheduler 0 Scheduler 1
 Allocated Maximum Allocated Maximum
 ------------------- -------------------
L1 3 63 3 63
L2 5 4095 3 4095
L3 8 8191 3 8191
Q 64 65532 24 65532

Q Forced drain workaround Counter : 0
Q Forced drain workaround time: 0 us
Q BP drain workaround Counter : 4
Q stats msb notification count: 0
ISSU HW sync times: 0 ms
 sched block: 0 ms
 drop block: 0 ms
Drain-L1 node: 0 (sched0) 64 (sched1)
Drain-L2 node: 0 (sched0) 4096 (sched1)
Drain-L3 node: 0 (sched0) 16384 (sched1)
Drain-base-Q : 0 (sched0) 131072 (sched1)

To provide contrast, this output is from a nonqueuing MPC:

--- JUNOS 12.1R1.9 built 2012-03-24 12:52:33 UTC
jnpr@R3>show chassis hardware
Hardware inventory:
. . .
FPC 2 REV 14 750-031089 YF1316 MPC Type 2 3D
. . .

NPC2(R3 vty)# show qxchip 0 driver
QXCHIP 0 does not exist

322 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

H-CoS and the MX80

The MX5, 10, 40, and 80 platforms each contain a built-in routing engine and one
Packet Forwarding Engine (PFE). The PFE has two “pseudo” Flexible PIC Concentra-
tors (FPC 0 and FPC1). H-CoS is supported on these platforms, but currently only for
the modular MIC slots labeled MIC0 and MIC1, which are both housed in FPC1. H-
CoS is not supported on the four fixed 10xGE ports (which are usable on the MX40
and MX80 platforms), which are housed in FPC0.

H-CoS is not supported on the MX80-48T fixed chassis.

CoS versus QoS?
Many sources use the terms CoS and QoS interchangeably. To try and bring order to
the cosmos, here CoS is used for the net effect, whereas QoS is reserved for describing
individual parameters, such as end-to-end delay variation (jitter). The cumulative ef-
fects of the QoS parameters assigned to a user combine to form the class of service
definition. Taking air travel as an example, first class is a class of service and can be
characterized by a set of QoS parameters that include a big comfy seat, metal tableware,
real food, etc. Different air carriers can assign different values to these parameters (e.g.,
better wines, more seat incline, etc.) to help differentiate their service levels from other
airlines that also offer a first class service to try and gain a competitive advantage.

CoS Capabilities and Scale
Table 5-1 highlights key CoS capabilities for various MPC types.

Table 5-1. MPC CoS Feature Comparison.

Feature
MPC1, MPC2,
16x10G MPC MPC1-Q MPC2-Q MPC2-EQ

Queuing Eight queues per port Eight queues per port
and eight queues per
VLAN

Eight queues per port
and eight queues per
VLAN

Eight queues per port
and eight queues per
VLAN

Port Shaping Yes Yes Yes Yes

Egress Queues 8 queues per port 128 k (64 k Ingress/64 k
Egress)

256 k (128 k Ingress/
128 k Egress)

512 K

Interface-sets (L2
scheduling nodes)

NA 8 K 8 K 16 K

Queue Shaping,
Guaranteed Rate,
and LLQ

CIR/PIR/LLQ CIR/PIR/LLQ CIR/PIR/LLQ CIR/PIR/LLQ

VLAN shaping (per-
unit scheduler)

NA CIR/PIR CIR/PIR CIR/PIR

MX CoS Capabilities | 323

www.it-ebooks.info

http://www.it-ebooks.info/

Feature
MPC1, MPC2,
16x10G MPC MPC1-Q MPC2-Q MPC2-EQ

Interface Set Level
Shaping

NA CIR/PIR CIR/PIR CIR/PIR

WRED Four profiles, uses Tail
RED

Four profiles, uses Tail
RED

Four profiles, uses Tail
RED

Four profiles, uses Tail
RED

Rewrite MPLS EXP, IP Prec/
DSCP (egress or in-
gress), 802.1p inner/
outer

MPLS EXP, IP Prec/DSCP
(egress or ingress),
802.1p inner/outer

MPLS EXP, IP Prec/DSCP
(egress or ingress),
802.1p inner/outer

MPLS EXP, IP Prec/
DSCP (egress or in-
gress), 802.1p inner/
outer

Classifier (per
VLAN/IFL)

MPLS EXP, IP Prec/
DSCP, 802.1p (inner
and outer tag), Multi-
Field

MPLS EXP, IP Prec/
DSCP, 802.1p (inner
and outer tag), Multi-
Field

MPLS EXP, IP Prec/
DSCP, 802.1p (inner
and outer tag), Multi-
Field

MPLS EXP, IP Prec/
DSCP, 802.1p (inner
and outer tag), Multi-
Field

Policer per VLAN/
IFL

Single rate two-color,
srTCM, trTCM, hier-
archical

Single rate two-color,
srTCM, trTCM, hierarch-
ical

Single rate two-color,
srTCM, trTCM, hierarch-
ical

Single rate two-color,
srTCM, trTCM, hier-
archical

Queue and Scheduler Scaling

Table 5-2 lists supported queue and subscriber limits for Trio MPCs. Note that the
supported IFL numbers are per PIC. On PICs with multiple ports, the IFL counts should
be dived among all ports for optimal scaling.

Table 5-2. MPC Queue and Subscriber Scaling.

MPC Type
Dedicated
Queues

Subscribers/
IFLs IFLs: Four Queues IFLs: Eight Queues

30-Gigabit Ethernet Queuing

MPC (MPC1-3D-Q)

64 k 16 Kk 16 k (8 k per PIC) 8 k (4 k per PIC)

60-Gigabit Ethernet Queuing

MPC (MPC2-3D-Q)

128 k 32 k 32 k (8 k per PIC) 16 k (4 k per PIC)

60-Gigabit Ethernet Enhanced Queuing

MPC (MPC2-3D-EQ)

512 k 64 k 64 k (16 k per PIC) 64 k (16 k per PIC)

Table 5-3 summarizes the currently supported scale for H-CoS on fine-grained queuing
MPCs as of the v11.4R1 Junos release.

Capabilities constantly evolve, so always check the release notes and
documentation for your hardware and Junos release to ensure you have
the latest performance capabilities.

324 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-3. Queue and Scheduler Node Scaling.

Feature MPC1-Q MPC2-Q MPC2-EQ

Queues (Level 4) 128 k (split between ingress/
egress

256 k (split between ingress/
egress)

512 k

IFLs (Level 3) Four queues: 16 k/8 k per PIC

Eight queues: 8 K/4 k per PIC

Four queues: 32 k/8 k per PIC

Eight queues: 16 K/4 k per PIC

Four or eight queues:
64 k/16 k per PIC

IFL-Set nodes (Level 2) 8 k 16 k 16 k

Port nodes (Level 1) 128 256 256

Though currently only egress queuing is supported, future Junos releases may support
ingress queuing in an evolution path similar to the previous IQ2E cards, which also
provided H-CoS. Note how the Q-type MPCs divide the pool of queues with half dedi-
cated to ingress and egress pools, respectively. In contrast, the EQ MPC can use all 512
k queues for egress, or it can split the pool for ingress and egress use. Note again that
in the v11.4R1 release, ingress queuing is not supported for Trio MPCs.

Knowing how many queues are supported per MPC and MIC
is one thing. But, given that many MICs support more than one port, the next question
becomes, “How many queues do I get per port?” The answer is a function of the number
of Trio PFEs that are present on a given MPC.

For example, 30-gigabit Ethernet MPC modules have one PFE, whereas the 60-gigabit
Ethernet MPC modules have two. Each PFE in turn has two scheduler blocks that share
the management of the queues. On the MPC1-3D-Q line cards, each scheduler block
maps to one-half of a MIC; in CLI configuration statements, that one-half of a MIC
corresponds to one of the four possible PICs, numbered 0 to 3. MIC ports are parti-
tioned equally across the PICs. A two-port MIC has one port per PIC. A four-port MIC
has two ports per PIC.

Figure 5-1 shows the queue distribution on a 30-gigabit Ethernet queuing MPC module
when both MPCs are populated to support all four PICs.

How Many Queues per Port?

MX CoS Capabilities | 325

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-1. Queue Distribution on MPC1-3D-Q: Four PICs.

Figure 5-2. Queue Distribution on MPC1-3D-Q: Two PICs.

When all four PICs are installed, each scheduler maps to two PICs, each of which is
housed on a different MIC. For example, scheduler 0 maps to PIC 0 on MIC 0 and to

326 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

PIC 2 on MIC 1, while scheduler 1 maps to PIC 1 on MIC 0 and to PIC 3 on MPC 1.
One-half of the 64,000 egress queues are managed by each scheduler.

In this arrangement, one-half of the scheduler’s total queue complement (16 k) is avail-
able to a given PIC. If you allocate four queues per IFL (subscriber), this arrangement
yields 4 k IFLs per PIC; if desired, all PIC queues can be allocated to a single PIC port
or spread over IFLs assigned to multiple PIC ports, but you cannot exceed 16 k queues
per PIC. A maximum of 2 k IFLs can be supported per PIC when using eight queues
per IFL.

Figure 5-2 shows another possible PIC arrangement for this MPC; in this case, one MIC
is left empty to double the number of queues available on the remaining MIC.

Figure 5-3. Queue Distribution on the 60-Gigabit Ethernet Queuing MPC Module.

By leaving one MIC slot empty, all 32 k queues are made available to the single PIC
that is attached to each scheduler block. This arrangement does not alter the total MPC
scale, which is still 16 k IFLs using four queues per subscriber; however, now you divide
the pool of queues among half as many PICs/ports, which yields twice the number of
subscribers per port, bringing the total to 8 k IFLs per PIC when in four-queue mode
and 4 k in eight-queue mode.

On 60-gigabit Ethernet queuing and enhanced queuing Ethernet MPC modules, each
scheduler maps to only one-half of a single MIC: PIC 0 or PIC 1 for the MIC in slot 0
and PIC 2 or PIC 3 for the MIC in slot 1. Figure 5-3 shows how queues are distributed
on a 60-gigabit ethernet enhanced queuing MPC module.

Of the 512,000 egress queues possible on the module, one-half (256,000) are available
for each of the two Packet Forwarding Engines. On each PFE, half of these queues
(128,000) are managed by each scheduler. The complete scheduler complement

MX CoS Capabilities | 327

www.it-ebooks.info

http://www.it-ebooks.info/

(128,000) is available to each PIC in the MIC. If you allocate all the queues from a
scheduler to a single port, then the maximum number of queues per port is 128,000.
If you dedicate four queues per subscriber, you can accommodate a maximum of 32,000
subscribers on a single MPC port. As before, half that if you provision eight queues per
subscribers, bringing the maximum to 16,000 subscribers per MPC port.

The number of MICs installed and the number of ports per MIC does not affect the
maximum number of queues available on a given port for this MPC type. This module
supports a maximum of 64,000 subscribers regardless of whether you allocate four or
eight queues per PIC. The MPC supports a maximum of 128,000 queues per port. If
you have two two-port MICs installed, each PIC has one port and you can have 128,000
queues on each port. You can have fewer, of course, but you cannot allocate more to
any port. If you have two four-port MICs installed, you can have 128,000 queues in
each PIC, but only on one port in each PIC. Or you can split the queues available for
the PIC across the two ports in each PIC.

Given that all Trio MPCs support eight queues, you
may ask yourself, “how do I control how many queues are allocated to a given IFL?”
Simply defining four or fewer forwarding classes (FCs) is not enough to avoid allocating
eight queues, albeit with only four in use. When a four FC configuration is in effect,
the output of a show interfaces queue command displays Queues supported: 8, Queues
in use: 4, but it’s important to note that the scheduler node still allocates eight queues
from the available pool. To force allocation of only four queues per IFL, you must
configure the maximum queues for that PIC as four at the [edit chassis] hierarchy:

jnpr@R1-RE0# show chassis
redundancy {
 graceful-switchover;
}
. . .
fpc 2 {
 pic 0 {
 max-queues-per-interface 4;

Changing the number of queues results in an MPC reset.

An SNMP trap is generated to notify you when the number of avail-
able dedicated queues on a MPC drops below 10%. When the maximum number of
dedicated queues is reached, a system log message, COSD_OUT_OF_DEDICATED_QUEUES, is
generated. When the queue limit is reached, the system does not provide subsequent
subscriber interfaces with a dedicated set of queues.

If the queue maximum is reached in a per unit scheduling configuration, new users get
no queues as there are simply none left to assign. In contrast, with a hierarchical sched-
uling configuration, you can define remaining traffic profiles that can be used when the

Configure Four- or Eight-Queue Mode.

Low Queue Warnings.

328 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

maximum number of dedicated queues is reached on the module. Traffic from all af-
fected IFLs is then sent over a shared set of queues according to the traffic parameters
that define the remaining profile.

Why Restricted Queues Aren’t Needed on Trio
Defining restricted queues at the [edit class-of-service restricted-queues] hierar-
chy is never necessary on Trio MPCs. The restricted queue feature is intended to sup-
port a CoS configuration that references more than four FCs/queues on hardware that
supports only four queues. The feature is not needed on Trio as all interfaces support
eight queues.

Trio versus I-Chip/ADPC CoS Differences

Table 5-4 highlights key CoS processing differences between the older IQ2-based
ADPC-based line cards and the newer Trio-based MPCs.

Table 5-4. ADPC (IQ2) and MPC CoS Compare and Contrast.

Feature DPC-non-Q DPCE-Q MPC

Packet Granularity 64 B 512 B 128 B

Default Buffer 100 ms 500 ms 100 ms port based

500 ms for Q/EQ

Buffer Configured Minimum Maximum Maximum

WRED Head, with Tail assist Tail Drop Tail Drop

Port Level Shaping NA Supported Supported

Queue Level Shaping Single Rate NA Dual Rate per Queue

Egress mcast filtering NA NA Supported

Egress Filter Match on ingress protocol Match on ingress protocol Match on egress protocol

Overhead Accounting Layer 2 Layer 2 Layer 1

Some key CoS differences between Trio-based Ethernet MPC and the I-chip-based
DPCs include the following:

A buffer configured on a 3D MPC queue is treated as the maximum. However, it
is treated as the minimum on an I-chip DPC. On port-queuing I-chip DPCs, 64
byte-per-unit dynamic buffers are available per queue. If a queue is using more than
its allocated bandwidth share due to excess bandwidth left over from other queues,
its buffers are dynamically increased. This is feasible because the I-chip DPCs pri-
marily perform WRED drops at the head of the queue, as opposed to “tail-assisted”
drops, which are performed only when a temporal buffer is configured or when
the queue becomes full. When a temporal buffer is not configured, the allocated

MX CoS Capabilities | 329

www.it-ebooks.info

http://www.it-ebooks.info/

buffer is treated as the minimum for that queue and can expand if other queues
are not using their share.
The Junos Trio chipset (3D MPC) maintains packets in 128-byte chunks for pro-
cessing operations such as queuing, dequeuing, and other memory operations. J-
Cell size over the fabric remains at 64 B.
Port shaping is supported on all MPCs.
Queues can have unique shaping and guaranteed rate configuration.
On MPCs with the Junos Trio chipset, WRED drops are performed at the tail of
the queue. The packet buffer is organized into 128-byte units. Before a packet is
queued, buffer and WRED checks are performed, and the decision to drop is made
at this time. Once a packet is queued, it is not dropped. As a result, dynamic buffer
allocation is not supported. Once the allocated buffer becomes full, subsequent
packets are dropped until space is available, even if other queues are idle.
To provide larger buffers on Junos Trio chipset Packet Forwarding Engines, the
delay buffer can be increased from the default 100 ms to 200 ms of the port speed
and can also be oversubscribed using the delay-buffer-rate configuration on a per
port. ADPC line cards base their shaping and queue statistics on Layer 2, which
for untagged Ethernet equates to an additional 18 bytes of overhead per packet
(MAC addresses, Type code, and FCS). In contrast, Trio chip sets compute queue
statistics on Layer 1, which for Ethernet equates to an additional 20 bytes in the
form of the 8 byte preamble and the 12 byte inter-packet gap. Note that Trio RED
drop statistics are based on Layer 2 as the Layer 1 overhead is not part of the frame
and is therefore not stored in any buffer.

Trio CoS Flow
Note that general packet processing was detailed in Chapter 1. In this section, the focus
is on the specific CoS processing steps as transit traffic makes its way through a MX
router’s PFE complex. Figure 5-4 shows the major CoS processing blocks that might
be present in a Trio PFE.

330 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-4. Trio PFE CoS Processing Points.

The flexibility of the Trio chipset means that not all MPCs have all pro-
cessing stages shown (most MPCs do not use the Interface Block/IX
stage, for example, and in many cases a given function such as preclas-
sification or shaping can be performed in more than one location).
While the details of the figure may not hold true in all present or future
cases Trio PFE cases, it does represent the how the Trio design was laid
out with regards to CoS processing. Future versions of the Trio PFE may
delegate functions differently and may use different ASIC names, etc.
The names were exposed here to provide concrete examples based on
currently shipping Trio chipsets.

Starting with ingress traffic at the upper left, the first processing stage is preclassifica-
tion, a function that can be performed by the interface block (IX) when present or by
the Buffering Block (MQ) on line cards that don’t use the IX.

Intelligent Oversubscription
The goal of preclassification is to prioritize network control traffic that is received over
WAN ports (i.e., network ports, as opposed to switch fabric ports) into one of two

Trio CoS Flow | 331

www.it-ebooks.info

http://www.it-ebooks.info/

traffic classes: network control and best effort. This classification is independent of any
additional CoS processing that may be configured; here, the classification is based on
a combination of the traffic’s MAC address and deep packet inspection, which on Trio
can go more than 256 bytes into the packet’s payload. The independence of preclassi-
fication and conventional CoS classification can be clarified with the case of VoIP bearer
traffic. Given that a bearer channel has only the media content and no signaling payload,
such a packet is preclassified as best-effort at ingress from a WAN port. Given the need
to prioritize voice for delay reasons, this same traffic will later be classified as EF (using
either a BA or MF classifier), and then be assigned to a high-priority scheduler, perhaps
with high switch fabric priority as well.

Traffic received from switch fabric ports does not undergo preclassifi-
cation, as that function should have been performed at ingress to the
remote PFE. Switch fabric traffic includes traffic generated by the local
host itself, which is therefore not preclassified.

Preclassification is performed on all recognized control protocols, whether the packet
is destined for the local RE or for a remote host. The result is that control protocols are
marked as high priority while noncontrol gets best effort or low-priority. Trio’s fabric
CoS then kicks in to ensure vital control traffic is delivered, even during times of PFE
oversubscription, hence the term intelligent oversubscription.

The list of network control traffic that is recognized as part of preclassification in the
11.4R1 release can be found at http://www.juniper.net/techpubs/en_US/junos11.4/top
ics/concept/trio-mpc-mic-intelligent-oversub-overview-cos-config-guide.html.

The preclassification feature is not user-configurable. As of v11.4, the list of protocols
includes the following:

Layer 2:
ARPs: Ethertype 0x0806 for ARP and 0x8035 for dynamic RARP

IEEE 802.3ad Link Aggregation Control Protocol (LACP): Ethertype 0x8809 and
0x01 or 0x02 (subtype) in first data byte

IEEE 802.1ah: Ethertype 0x8809 and subtype 0x03

IEEE 802.1g: Destination MAC address 0x01–80–C2–00–00–02 with Logical Link
Control (LLC) 0xAAAA03 and Ethertype 0x08902

PVST: Destination MAC address 0x01–00–0C–CC–CC–CD with LLC 0xAAAA03
and Ethertype 0x010B 382

xSTP: Destination MAC address 0x01–80–C2–00–00–00 with LLC 0x424203

GVRP: Destination MAC address 0x01–80–C2–00–00–21 with LLC 0x424203

GMRP: Destination MAC address 0x01–80–C2–00–00–20 with LLC 0x424203

IEEE 802.1x: Destination MAC address 0x01–80–C2–00–00–03 with
LLC0x424203

332 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/trio-mpc-mic-intelligent-oversub-overview-cos-config-guide.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/trio-mpc-mic-intelligent-oversub-overview-cos-config-guide.html
http://www.it-ebooks.info/

Any per-port my-MAC destination MAC address

Any configured global Integrated Bridging and Routing (IRB) my-MAC destination
MAC address

Any PPP encapsulation (Ethertype 0x8863 [PPPoE Discovery] or 0x8864 [PPPoE
Session Control]) is assigned to the network control traffic class (queue 3).

Layer 3 and Layer 4:
IGMP query and report: Ethertype 0x0800 and carrying an IPv4 protocol or
IPv6next header field set to 2 (IGMP)

IGMP DVRMP: IGMP field version = 1 and type = 3

IPv4 ICMP: Ethertype 0x0800 and IPv4 protocol = 1 (ICMP)

IPv6 ICMP: Ethertype 0x86DD and IPv6 next header field = 0x3A (ICMP)

IPv4 or IPv6 OSPF: Ethertype 0x0800 and IPv4 protocol field or IPv6 next head-
erfield = 89 (OSPF)

IPv4 or IPv6 VRRP: IPv4 Ethertype 0x0800 or IPv6 Ethertype 0x86DD and
IPv4protocol field or IPv6 next header field = 112 (VRRP)

IPv4 or IPv6 RSVP: IPv4 Ethertype 0x0800 or IPv6 Ethertype 0x86DD and IPv4pro-
tocol field or IPv6 next header field = 46 or 134

IPv4 or IPv6 PIM: IPv4 Ethertype 0x0800 or IPv6 Ethertype 0x86DD and IPv4pro-
tocol field or IPv6 next header field = 103

IPv4 or IPv6 IS-IS: IPv4 Ethertype 0x0800 or IPv6 Ethertype 0x86DD and IPv4
protocol field or IPv6 next header field = 124

IPv4 router alert: IPv4 Ethertype 0x0800 and IPv4 option field = 0x94 (the RA
option itself is coded as a decimal 20, but other bits such as length and the class/
copy flags are also present)

IPv4 and IPv6 BGP: IPv4 Ethertype 0x0800 or IPv6 Ethertype 0x86DD, TCP port
= 179, and carrying an IPv4 protocol or IPv6 next header field set to 6 (TCP)

IPv4 and IPv6 LDP: IPv4 Ethertype 0x0800 or IPv6 Ethertype 0x86DD, TCP orUDP
port = 646, and carrying an IPv4 protocol or IPv6 next header field set to6 (TCP)
or 17 (UDP)

IPv4 UDP/L2TP control frames: IPv4 Ethertype 0x0800, UDP port = 1701, and-
carrying an IPv4 protocol field set to 17 (UDP)

DHCP: Ethertype 0x0800, IPv4 protocol field set to 17 (UDP), and UDP destina-
tionport = 67 (DHCP service) or 68 (DHCP host)

IPv4 or IPv6 UDP/BFD: Ethertype 0x0800, UDP port = 3784, and IPv4 protocol-
field or IPv6 next header field set to 17 (UDP)

Trio CoS Flow | 333

www.it-ebooks.info

http://www.it-ebooks.info/

The Remaining CoS Packet Flow
The packet is then spread into shared memory by the Buffer Block (MQ) stage, while
the notification cell is directed to the route lookup function, a function provided by the
Lookup Block (LU). This stage also performs classification (BA or filter-based multi-
field), as well as any policing and packet header rewrite functions. The memory man-
ager handles the queuing of traffic for transmission over the switch fabric to a remote
PFE, and can provide port-based shaping services when the process is not offloaded to
the QX ASIC, or when the QX ASIC is not present, thereby making the line card capable
of port-based queuing only.

The queue management ASIC (QX) is only present on MPCs that offer fine-grained
queuing and H-CoS, as noted by their Q or EQ designation. When present, the queue
management stage handles scheduling and queuing at the port, IFL, IFL-Set, and queue
levels, for a total of four levels of scheduling and queuing hierarchy in the current H-
CoS offering.

CoS Processing: Port- and Queue-Based MPCs
With general Trio CoS processing covered, things move to Figure 5-5, which shows the
CoS touch points for packets flowing though a queuing MPC.

334 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-5. Port and Queuing MPC CoS Flow.

Here, the flow is shown in a more conventional left-to-right manner with the switch
fabric between the ingress PFE on the top and the egress PFE on the bottom. It’s worth
noting how some chips appear more than once in the flow, stepping in to perform a
different CoS function at various points in the processing chain.

In Figure 5-5, things begin at the upper left, where traffic ingresses into the PFE on a
WAN facing port, which is to say a MIC interface of some kind, which is somewhat
ironic given it’s likely to be Ethernet-based, which is of course a LAN technology. The
term WAN is chosen to contrast with traffic that can ingress into the PFE from the
switch fabric. Besides, you can buy SONET-based MICs that provide channelized serv-
ices with Frame Relay and PPP support, in which case the stream truly does arrive from
a WAN port.

Trio CoS Flow | 335

www.it-ebooks.info

http://www.it-ebooks.info/

Switch Fabric Priority

As noted previously, traffic arriving from WAN ports is subjected to a preclassification
function, which can be performed at a variety of locations depending on hardware
specifics of a given MPC or MIC type. Currently, preclassification supports only two
classes: best effort and control. Transit traffic is an example of best effort, whereas
control traffic such as ARP or OSPF that is either destined to the local or a remote host,
is marked with the higher priority.

The preclassification function causes a congested PFE to drop low-priority packets first
to help keep the control plane stable during periods of congestion that stem from PFE
oversubscription. Oversubscription can occur when many flows that ingress on mul-
tiple PFEs converging to egress on a single egress PFE. The preclassification function
provides Trio MPCs with an intelligent oversubscription capability that requires no
manual intervention or configuration.

In addition to pre-classification, you can map traffic to one of two switch fabric prior-
ities, high or low, and if desired even link to one or more WRED drop profiles to help
tailor drop behavior, as described in a later section.

Classification and Policing

The next step has the Lookup Processing chip (LU) performing Behavior Aggregate
(BA) classification to assign the packet to a forwarding class (FC) and a loss priority.
The type of BA that is performed is a function of port mode and configuration. Layer
2 ports typically classify on Ethernet level 802.1p or MPLS EXP/TC bits, while Layer
3 ports can use DSCP, IP precedence, or 802.1p. Fixed classification, where all traffic
received on a given IFL is mapped to a fixed FC and loss priority, is also supported.

At the next stage, the LU chip executes any ingress filters, which can match upon
multiple fields in Layer 2 or Layer 3 traffic and perform actions such as changing the
FC, loss priority, or evocation of a policer to rate limit the traffic. As shown in Fig-
ure 5-5, MF classifier occurs after BA classification, and as such it can overwrite the
packet’s FC and loss priority settings.

Traffic then enters the Buffer Manger chip (MQ), assuming of course that no discard
action was encountered in the previous input filter processing stage. The route lookup
processing that is also performed in the previous stage will have identified one or more
egress FPCs (the latter being the case for broadcast/multicast traffic) to which the traffic
must be sent. The MQ chip uses a request grant arbitration scheme to access the switch
fabric in order to send J-cells over the fabric to the destination FPC. As noted previously,
the Trio switch fabric supports a priority mechanism to ensure critical traffic is sent
during periods of congestions, as described in the following.

Integrated Bridging and Routing (IRB) interfaces
are used to tie together Layer 2 switched and Layer 3 routed domains on MX routers.
MX routers support classifiers and rewrite rules on IRB interface at the [edit class-

Classification and Rewrite on IRB Interfaces.

336 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

of-service interfaces irb unit logical-unit-number] level of the hierarchy. All types
of classifiers and rewrite rules are allowed, including IEEE 802.1p.

The IRB classifiers and rewrite rules are used only for “routed” packets;
in other words, it’s for traffic that originated in the Layer 2 domain and
is then routed through the IRB into the Layer 3 domain, or vice versa.
Only IEEE classifiers and IEEE rewrite rules are allowed for pure Layer
2 interfaces within a bridge domain.

Egress Processing

Egress traffic is received over the fabric ports at the destination PFE. The first stage has
the packet chunks being received over the fabric using the request grant mechanism,
where the 64-byte J-cells are again stored in shared memory, only now on the egress
line card. The notification cell is then subjected to any output filters and policers, a
function that is performed by the Lookup and Processing (LU) ASIC, again now on the
egress PFE.

The majority of CoS processing steps and capabilities
are unchanged between regular and queuing MPCs. The final step in egress CoS pro-
cessing involves the actual queuing and scheduling of user traffic. Dense queuing MPCs
offer the benefits of per unit or H-CoS scheduling, as described in a later section. Both
of these modes allow you to provide a set of queues to individual IFLs (logical interfaces,
or VLANs/subscribers). H-CoS extends this principal to allow high levels of queue and
scheduler node scaling over large numbers of subscribers.

Port-based MPCs currently support port-level shaping and scheduling over a set of
shared queues only. Port mode scheduling is performed by the Buffer Block (MQ) ASIC
on nonqueuing MPCs. On queuing MPCs, the dense queuing block handles port, per
unit, and hierarchical scheduling modes.

As of the v11.4R1 release, ingress queuing is not supported. Future re-
leases may offer the ability to perform H-CoS at ingress, in which case
the functionality describe here for egress queuing is expected to be
available at ingress. Ingress queuing can be useful in certain situations
where ingress to egress traffic is so unbalanced that congestion occurs
on the egress FPC. Ingress queuing moves that congestion closer to the
source, specifically to the ingress PFE, where WRED discards can relieve
switch fabric burden for traffic that was likely to be discarded on the
egress FPC anyway.

The final egress processing stage also performs WRED congestion management ac-
cording to configured drop profiles to help prevent congestion before it becomes so
severe that uncontrolled tail drops must be performed once the notification queue fills
to capacity.

Egress Queuing: Port or Dense Capable?

Trio CoS Flow | 337

www.it-ebooks.info

http://www.it-ebooks.info/

WRED is used to detect and prevent congestion by discarding packets based on
queue fill levels, with the expectation that the senders are TCP-based and sense loss as
an indication of congestion, at which point the TCP window is reduced to affect flow
control on the endpoints. The primary goal of a WRED algorithm is to affect implicit
flow control when impending congestion is sensed to try and avoid a phenomena
known as global TCP synchronization. Global synchronization occurs when TCP sour-
ces ramp up their transmit rates in unison until buffers are exhausted, forcing uncon-
trolled trail drops, which in turn causes all senders to back down, again in unison,
resulting in inefficient bandwidth utilization.

WRED does not work well for non-TCP sources, which are typical transport choices
for real-time applications and often based on UDP; a protocol does not support con-
gestion windows or retransmissions. Figure 5-6 shows a WRED drop profile, as well
as a graphic showing the concept of TCP global synchronization.

Figure 5-6. A WRED Profile and the Issue of TCP Global Synchronization

WRED.

338 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

The figure shows a sample WRED profile that is set with a minimum and maximum
queue fill level, along with a corresponding drop probability. Based on the configura-
tion, no WRED drops occur until the queue reaches an average 25% fill, at which point
drop probability increases as a function of fill until you hit 100% at the max fill level,
which in this case is 90%.

In Trio, WRED drop actions occur before a notification cell is enqueued, which is to
say that Trio WRED performs drops at the tail of the queue. A WRED-based drop at
the tail of a queue is not the same thing as a tail drop, as the latter signifies uncontrolled
drop behavior due to a buffer being at capacity. In Trio, a given packet is subject to
WRED drops based on the configured drop profile as compared to average queue
depth, as well as to tail drops that are based on instantaneous queue depth. The benefit
here is that even if a buffer is at capacity, you still get WRED-based intelligent drop
behavior given that WRED is being performed at the tail, prior to the packet needing
any buffer, as it has not been queued yet.

Given that tail drops can be seen as a bad thing, a bit more on the Trio tail drop-based
WRED algorithm is warranted here. When there is no buffer to enqueue a packet, it
will be tail dropped initially. However, if the traffic rate is steady, the drops transition
from tail to WRED drops. Given that WRED works on average queue lengths, under
chronic congestion the average will catch up with the instant queue depth, at which
point the drops become WRED-based.

Once a packet is queued, it is not dropped. As a result, dynamic buffer allocation is not
supported on Trio. The buffer that is allocated to each queue (based on configuration)
is considered the maximum for that queue. Once the allocated buffer becomes full,
subsequent packets are dropped until space is available, even if other queues are idle.

Enhanced queuing (EQ) Trio MPC/MIC interfaces support up to 255 drop profiles, up
to 128 tail-drop priorities for guaranteed low (GL) priorities, and 64 each for guaranteed
high and medium priorities. You can have up to four WRED profiles in effect per queue.

Currently, Trio does not support protocol-based WRED profiles. That is, you must use
protocol any as opposed to protocol tcp, with the latter returning a commit error. This
means cannot link to different WRED profiles based on protocol such as TCP versus
non-TCP.

Trio Hashing and Load Balancing
Hashing is a function by which various fields in a packet are used to match on a flow,
which is a sequence of packets between the same source and destination addresses and
ports, and then map that flow to one of several equal cost links. Junos supports Equal
Cost Multi-Path (ECMP) load balancing over as many as 16 paths and offers the default
per prefix as well as the (poorly named) per-packet option, which really means per
flow. In addition to ECMP, Junos also supports hashing to balance traffic over member

Trio CoS Flow | 339

www.it-ebooks.info

http://www.it-ebooks.info/

links that are part of an AE bundle. In v11.4, an AE bundle can contain as many as 16
member links.

Hashing and load balancing is one of those areas where it’s almost impossible to please
everyone all the time. The hash that yields near perfect balance in one network may
result in unbalanced traffic on another due to the simple fact that different traffic en-
capsulations, combined with differing hash capabilities, hashing defaults, and config-
uration specifics, add up to yield so many permutations.

Trio-based PFEs had the advantage of being developed years after the original M and
even T-series platforms were rolled into production networks. Juniper engineering lis-
tened to customer feedback and started Trio with a clean hashing slate in order to break
from previous limitations and shortcomings. The result is that Trio offers some unique
hash and load balancing capabilities when compared to other Junos devices.

In fact, Trio LB is such a departure from historic Junos platforms that a whole new area
of configuration hierarchy was created just to support it.

In the v11.4 release testing, it was found that Trio platforms don’t
always ignore legacy hash configuration found at the [edit forwarding-
options hash-key] hierarchy, which can lead to unpredictable opera-
tion. Be sure to leave the legacy hash-key stanza empty on a Trio-based
MX router.

Trio hashing functionality is configured using the enhanced-hash-key keyword under
forwarding-options:

{master}[edit]
jnpr@R1-RE0# set forwarding-options enhanced-hash-key ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> family Protocol family
> services-loadbalancing Select key to load balance across service PICs
{master}[edit]
jnpr@R1-RE0# set forwarding-options enhanced-hash-key

The services-load balancing load balancing statement, as its name implies, controls
how traffic that needs services applied is balanced when a system has multiple service
engines (i.e., MS-DPCs). It distributes traffic across the services PICs based on source
IP address when a route pointing to more than one services PICs is installed. This option
is mandatory to provide stateful services such as Carrier Grade NAT. In fact, by using
source IP only based load balancing, all sessions coming from the same source will be
load balanced to the same NPU for session state tracking. As of v11.4, the options for
services load balancing include incoming interface and source IP address:

{master}[edit]
jnpr@R1-RE0# set forwarding-options enhanced-hash-key services-loadbalancing family
 inet layer-3-services ?
Possible completions:

340 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 incoming-interface-index Include incoming interface index in the hash key
 source-address Include IP source address in the hash key

The options for transit traffic load balancing vary by protocol family. For IPv4, the CLI
offers the following options:

{master}[edit]
jnpr@R1-RE0# set forwarding-options enhanced-hash-key family inet ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 incoming-interface-index Include incoming interface index in the hash key
 no-destination-port Omit IP destination port in the hash key
 no-source-port Omit IP source port in the hash key
 type-of-service Include TOS byte in the hash key

Table 5-5 shows all IPv4 fields that are factored by the enhanced hash key, if they are
configurable, and whether they are present in a default configuration.

Table 5-5. IPv4 Enhanced Hash Fields.

IPv4 Field Configurable Default

Incoming interface Yes No

Destination IP No Yes

Source IP No Yes

Protocol ID No Yes

Source/Destination Ports Yes Yes

DSCP Yes No

Table 5-6 does the same, but now for IPv6:

Table 5-6. IPv6 Enhanced Hash Fields.

IPv6 Field Configurable Default

Incoming interface Yes No

Destination IP No Yes

Source IP No Yes

Protocol ID No Yes

Source/Dest Ports Yes Yes

Traffic Class Yes No

And now, for the multiservice family, which includes bridged, CCC, and VPLS proto-
cols in Table 5-7.

Trio CoS Flow | 341

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-7. Multiservice Enhanced Hash Fields.

Multiservice (L2) field Configurable Default

Incoming interface Yes No

Destination MAC No Yes

Source MAC No Yes

Outer 802.1p Yes No

Ethertype/Payload Yes Yes

Payload IPv4/IPv6 See IPv4/V6 above See IPv4/V6 above

And last, but not least, the MPLS family in Table 5-8.

Table 5-8. MPLS Enhanced Hash Fields.

MPLS Field Configurable Default

Incoming interface Yes No

Top 5 labels No Yes

Outermost Label EXP (TC) Yes No

Payload* Yes Yes

As shown in Table 5-8, the enhanced hash key for MPLS can factor the payload. An
interesting feat, given that MPLS lacks an explicit protocol type field so such informa-
tion is not explicitly available at the MPLS layer. Once again, the Trio PFE’s ability to
peer deep into a packet’s payload is leveraged to try and do the right thing, using the
following sequence:

First, IPv4 is assumed if the first nibble following the bottom label is 0x4. If found,
the fields in the table on IPv4 are used to load-balance the payload.
Else, IPv6 is assumed if the first nibble following the bottom label is 0x6. If found,
the fields in the table on IPv6 are used to load-balance the payload.
Else, Ethernet is assumed and the chipset attempts to parse the remaining bytes as
an Ethernet header using the information in the table for Multiservice. As part of
this process, the EtherType in the presumed Ethernet header is examined, and if
found to be IP, the identified Layer 3 payload (IPv4 or IPv6) is then factored into
the load-balancing hash.

As an indication of Trio flexibility, MPLS enhanced hash supports the identification of
an IP layer even if the MPLS payload contains an Ethernet frame with two VLAN tags!
Indeed, that’s pretty impressive at 100G Ethernet speeds!

ISO CNLP/CNLS Hashing and Load Balancing
Though apparently not well documented, Trio-based platforms offer support for ISO’s
Connectionless Network Layer Service (CNLS), which is based on routing the Con-

342 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

nectionless Network Layer Protocol (CNLP), which in turn makes use of the IS-IS and
ES-IS routing protocols. For CNLP traffic, the input hash parameters are the source
and destination NSAP addresses to provide symmetrical load balancing.

You can view the current load balancing settings using the following VTY command
on the desired FPC. The following represents the defaults:

NPC3(router vty)# show jnh lb
Unilist Seed Configured 0x0145db91 System Mac address 00:24:dc:77:90:00
Hash Key Configuration: 0x0000000000e00000 0xffffffffffffffff
 IIF-V4: No
 SPORT-V4: Yes
 DPORT-V4: Yes
 TOS: No

 IIF-V6: No
 SPORT-V6: Yes
 DPORT-V6: Yes
 TRAFFIC_CLASS: No

 IIF-MPLS: No
 MPLS_PAYLOAD: Yes
 MPLS_EXP: No

 IIF-BRIDGED: No
 MAC ADDRESSES: Yes
 ETHER_PAYLOAD: Yes
 802.1P OUTER: No

Services Hash Key Configuration:
 SADDR-V4: No
 IIF-V4: No

A Forwarding Table Per-Packet Policy Is Needed

In all cases, for load balancing to take effect you must apply a per-packet load-balancing
policy to the forwarding table; by default, Junos does per-prefix load balancing. This
policy allows the PFE to install multiple forwarding next hops for a given prefix. Despite
the name, this is actual per flow, hashed according to the previous descriptions based
on protocol type. A typical per packet load-balancing policy is shown:

{master}[edit]
jnpr@R1-RE0# show routing-options forwarding-table
export lb-per-flow;

{master}[edit]
jnpr@R1-RE0# show policy-options policy-statement lb-per-flow
term 1 {
 then {
 load-balance per-packet;
 accept;

Trio CoS Flow | 343

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

Load Balancing and Symmetry

By default on nonaggregated interfaces, the Trio hashing function is designed to result
in symmetric flows. This is to say that if MX router A hashes a flow to a given link, than
its (Trio-based MX) neighbor will in turn hash the matching return traffic to that same
link. You can tune hashing parameters to force asymmetry when desired.

Aggregate Ethernet interfaces try to randomize their hashes to add a perturbance factor
so that the same hash decision is not made a set of cascaded nodes all using AE inter-
faces. Without the randomization, a polarization can occur, which is when all nodes
hash the same flow to the same AE link member throughout the entire chain.

The randomization solves the polarization issue, but this comes at the cost of breaking
the default symmetry of Trio load balancing. You can use the following options to work
around this when symmetric AE load balancing is more important than randomizing
the hash at each node. Note that you need the same link index hash specified at both
ends of the link, and that the symmetric option is currently hidden in the v11.4R1
release. While supported, the use of any hidden option should only be used in a pro-
duction network after consultation with Juniper TAC:

{master}[edit]
jnpr@R1-RE0# set forwarding-options enhanced-hash-key symmetric

You must be sure to set the same link index for all child IFLs in the AE bundle as well:

{master}[edit]
jnpr@R1-RE0# set interfaces xe-2/0/0 gigether-options 802.3ad link-index ?
Possible completions:
<link-index>Desired child link index within the Aggregated Interface (0..15)
{master}[edit]

Key Aspects of the Trio CoS Model
Trio PFEs handle CoS differently than previous IQ2 or IQ2E cards. Some key points
to note about the Trio queuing and scheduling model include the following.

Independent Guaranteed Bandwidth and Weight

The model separates the guaranteed bandwidth concept from the weight of an interface
node. Although often used interchangeably, guaranteed bandwidth is the bandwidth
a node can use when it wants to, independently of what is happening at the other nodes
of the scheduling hierarchy. On the other hand, the weight of a node is a quantity that
determines how any excess bandwidth is shared.

The weight is important when the siblings of a node (that is, other nodes at the same
level) use less than the sum of their guaranteed bandwidths. In some applications, such
as constant bit rate voice where there is little concern about excess bandwidth, the

344 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

guaranteed bandwidth dominates the node; whereas in others, such as bursty data,
where a well-defined bandwidth is not always possible, the concept of weight domi-
nates the node. As an example, consider the Peak Information Rate (PIR) mode where
a Guaranteed Rate (G-Rate) is not explicitly set, combined with queues that have low
transmit rate values. In this case, a queue may be above its transmit rate, using excess
bandwidth most of the time. In contrast, in the Committed Information Rate (CIR)
mode, where CIR = G-Rate, the gap between the G-Rate and shaping rate tends to
determine how big a role excess rate weighting has on a queue’s bandwidth. Details on
the PIR and CIR modes of operation are provided in the Hierarchical CoS section.

Guaranteed versus Excess Bandwidth and Priority Handling

The model allows multiple levels of priority to be combined with guaranteed bandwidth
in a general and useful way. There is a set of three priorities for guaranteed levels and
a set of two priorities for excess levels that are at a lower absolute level. For each guar-
anteed level, there is only one excess level paired with it. You can configure one guar-
anteed priority and one excess priority. For example, you can configure a queue for
guaranteed low (GL) as the guaranteed priority and configure excess high (EH) as the
excess priority.

Nodes maintain their guaranteed priority level for GH and GM traffic. If the node runs
low on G-Rate, it demotes GL into excess to keep the guaranteed path from being
blocked. When performing per-priority shaping, the node reduces the priority of traffic
in excess of the shaper, except for EL, which is already at the lowest priority.

When demoting, the source queue’s settings control the value of the demotion. A queue
set to excess none therefore blocks demotion at scheduler nodes.

If the queue bandwidth exceeds the guaranteed rate, then the priority drops to the
excess priority (for example, excess high [EH]). Because excess-level priorities are lower
than their guaranteed counterparts, the bandwidth guarantees for each of the other
levels can be maintained.

Trio MPC/MIC interfaces do not support the excess-bandwidth-sharing statement.
You can use the excess-rate statement in scheduler maps and traffic control profiles
instead.

Input Queuing on Trio

Currently, input queuing is not supported on the Trio MPC/MIC interfaces. This ca-
pability is totally supported by the hardware but not yet implemented in JUNOS as of
the v11.4 release. This capability is expected in an upcoming Junos release, but there
is a price to pay, which in this case is a reduction of the PFE’s bandwidth capacity by
one-half. This is because to enable simultaneous ingress/egress class of service pro-
cessing, the CoS engine has to process the traffic twice, hence halving its total through-
put. At this time, it’s expected that all egress CoS features will be also provided in ingress
with the following known exceptions:

Trio CoS Flow | 345

www.it-ebooks.info

http://www.it-ebooks.info/

Classification for ingress queuing will be only available using BA classifiers.
Interface-set (Level 2 nodes) won’t be supported in ingress.
Aggregated Ethernet won’t be supported.

Trio Buffering

The Trio MPC/MIC interfaces do not support the q-pic-large-buffer statement at
the[edit chassis fpc fpc-number pic pic-number] hierarchy level. All tunnel interfaces
have 100-ms buffers. The huge-buffer-temporal statement is not supported.

In most cases, MPCs provide 100 ms worth of buffer per port when the delay buffer
rate is 1 Gbps or more, and up to 500 ms worth of buffer when the delay buffer rate is
less than 1 Gbps. The maximum supported value for the delay buffer is 256 MB and
the minimum value is 4 kB, but these values can vary by line card type. In addition, due
to the limited number of drop profiles supported and the large range of supported
speeds, there can be differences between the user-configured value and the observed
hardware value. In these cases, hardware can round the configured values up or down
to find the closest matching value.

When the Trio MPC/MIC interface’s delay buffers are oversubscribed by configuration
(that is, the user has configured more delay-buffer memory than the system can sup-
port), the configured WRED profiles are implicitly scaled down to drop packets more
aggressively from the relatively full queues. This creates buffer space for packets in the
relatively empty queues and provides a sense of fairness among the delay buffers. There
is no configuration needed for this feature.

Trio Drop Profiles

The enhanced queuing (EQ) Trio MPC/MIC interfaces support up to 255 drop profiles
and up to 128 tail-drop priorities for guaranteed low (GL) priorities and 64 each for
guaranteed high and medium priorities. Dropping due to congestion is done by making
two decisions: first a WRED decision is made, and then a tail drop decision is made.
The time averaged queue length represents level of congestion of the queue used by the
WRED drop decision. The instantaneous queue length represents the level of conges-
tion of the queue used by the tail drop decision.

Trio Bandwidth Accounting

Trio MPC/MIC interfaces take all Layer 1 and Layer 2 overhead bytes into account for
all levels of the hierarchy, including preamble, interpacket gaps, and the frame check
sequence (cyclic redundancy check). Queue statistics also take these overheads into
account when displaying byte statistics; note that rate limit drop byte counts reflect
only the frame overhead and don't include any preamble or IPG bytes (18 vs. 38 Bytes).
On I-chip/IQ2, Layer 3 interface statistics are based on the Layer 3 rate, but the shaping
itself is based on Layer 2 rate; IQ2Bridge interfaces display statistics based on Layer 2
rate.

346 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Trio MPCs allow you to control how much overhead to count with the
traffic-manager statement and its related options. By default, an overhead of 24 bytes
(20 bytes for the header, plus 4 bytes of CRC) is added to egress shaping statistics. You
can configure the system to adjust the number of bytes to add or subtract from the
packet when shaping. Up to 124 additional bytes of overhead can be added or up to120
bytes can be subtracted. As previously noted, Trio differs from IQ2 interfaces in that,
by default, Trio factors Ethernet Layer 1 overhead, to include 20 bytes for the preamble
and inter-frame gap, in addition to the 18 bytes of frame overhead, as used for MAC
addresses, the type code, and the FCS. Thus, the default shaping overhead for Trio is
38 bytes per frame. Subtract 20 bytes to remove the preamble and IPG from the cal-
culation, which in turn matches the Trio overhead and shaping calculations to those
used by IQ2/IQ2E interfaces.

Trio Shaping Granularity

Trio MPC/MIC interfaces have a certain granularity in the application of configured
shaping and delay buffer parameters. In other words, the values used are not necessarily
precisely the values configured. Nevertheless, the derived values are as close to the
configured values as allowed. For the Trio MPC, the shaping rate granularity is 250
kbps for coarse-grained queuing on the basic hardware and 24 kbps for fine-grained
queuing on the enhanced queuing devices.

With hierarchical schedulers in oversubscribed PIR mode, the guaranteed rate for every
logical interface unit is set to zero. This means that the queues transmit rates are always
oversubscribed, which makes the following true:

If the queue transmit rate is set as a percentage, then the guaranteed rate of the
queue is set to zero, but the excess rate (weight) of the queue is set correctly.
If the queue transmit rate is set as an absolute value and if the queue has guaranteed
high or medium priority, then traffic up to the queue transmit rate is sent at that
priority level. However, for guaranteed low traffic, that traffic is demoted to the
excess low region. This means that best-effort traffic well within the queue transmit
rate gets a lower priority than out-of-profile excess high traffic. This differs from
the IQE and IQ2E PICs.

Trio MPLS EXP Classification and Rewrite Defaults

Trio PFEs do not have a default MPLS EXP classifier or rewrite rule in effect.

RFC 5462 renames the MPLS EXP field to Traffic Class (TC); the func-
tionality remains the same, however.

If your network’s behavior aggregate (BA) classifier definitions do not include a custom
EXP classifier and matching rewrite table, then you should at least specify the defaults

Trio CoS Flow | 347

www.it-ebooks.info

http://www.it-ebooks.info/

using a rewrite-rules exp default statement at the [edit class-of-service inter
faces interface-name unit logical-unit-number] hierarchy level. Doing so ensures
that MPLS EXP value is rewritten according to the default BA classifier rules, which are
based on forwarding class and packet loss priority being mapped into the EXP field.
This is especially important for Trio PFEs, which unlike other M and T-series platforms
don’t have a default EXP classifier or rewrite rule in effect, which can cause unpredict-
able behavior for MPLS packets, such as having the IP TOS value written into the label.
To illustrate, this is from a M120 with no CoS configuration:

[edit]
user@M120# show class-of-service

[edit]
user@M120#

user@M120# run show class-of-service interface ge-2/3/0
Physical interface: ge-2/3/0, Index: 137
Queues supported: 8, Queues in use: 4
 Scheduler map: <default>, Index: 2
 Input scheduler map: <default>, Index: 2
 Chassis scheduler map: <default-chassis>, Index: 4
 Congestion-notification: Disabled

 Logical interface: ge-2/3/0.0, Index: 268
 Object Name Type Index
 Rewrite exp-default exp (mpls-any) 33
 Classifier exp-default exp 10
 Classifier ipprec-compatibility ip 13

Compared to a Trio-based MX, also with a factory default (no) CoS configuration:

{master}[edit]
jnpr@R1-RE0# show class-of-service

{master}[edit]
jnpr@R1-RE0#

jnpr@R1-RE0# run show class-of-service interface xe-2/1/1
Physical interface: xe-2/1/1, Index: 151
Queues supported: 8, Queues in use: 4
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

 Logical interface: xe-2/1/1.0, Index: 330
 Object Name Type Index
 Classifier ipprec-compatibility ip 13

Trio CoS Processing Summary
Trio-based MX platforms offer flexible CoS capabilities at scale. Full support for Layer
3 IPv4 and IPv6 MF and BA classification as well as header rewrite is available, as is
Layer 2-based equivalents using MPLS EXP, IEEE 802.1p, or IEEE 802.1ad (also known

348 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

as QinQ) fields, including double label rewrite capability. The ability to perform MF
classification on IP and transport levels fields for traffic that is within a Layer 2 bridged
frame is a powerful indicator of the chipset’s flexibility, in part enabled by the ability
to peer up to 256 bytes into a packet!

Trio can back up the brute force of its interface speeds with sophisticated priority-based
scheduling that offers control over excess bandwidth sharing, with the ability to scale
to thousands of queues and subscribers per port, with as many as eight queues per
subscriber to enable triple-play services today, and into the future. Rich control over
how traffic is balanced helps make sure you get the most use out of all your links, even
when part of an AE bundle.

Lastly, H-CoS, the lengthy subject of the next section, offers network operators the
ability to support and manage large numbers of subscribers, as needed into today’s
Broadband Remote Access Server/Broadband Network Gateway (B-RAS/BNG)-based
subscriber access networks, where the ability to offer per-user- as well user-aggregate-
level CoS shaping is waiting to enable differentiated services, and increased revenue,
within your network.

Hierarchical CoS
This section details Hierarchical CoS. Before the deep dive, let’s get some terminology
and basic concepts out of the way via Table 5-9 and its terminology definitions.

Table 5-9. H-CoS and MX Scheduling Terminology.

Term Definition

CIR Committed information rate, also known as “guaranteed rate.” This parameters specifies the minimum band-
width for an IFL-Set or VLAN/IFL.

C-VLAN A Customer VLAN, the inner tag on a dual tagged frame, often used interchangeably with IFL as each customer
VLAN is associated with a unique IFL. See also S-VLAN.

Excess-prior-
ity

Keyword in a class of service scheduler container. Specifies the priority of excess bandwidth. Excess bandwidth
is the bandwidth available after all guaranteed-rates have been satisfied. Options are Excess High or Low (EH/
EL).

Excess-rate Keyword in class of service traffic control profile and scheduler containers. Specifies how excess bandwidth is
distributed amongst peers in a scheduler-hierarchy.

Guaranteed-
rate (G-Rate)

See “CIR.” In the Trio Queuing Model, the guaranteed rate is denoted as “G” for guaranteed. G-Rate priority is
Strict-High/High, Medium, or Low (SH, H, M, L). Queues transmit rate is considered a G-Rate when not
overbooked, else the committed information rate in Traffic Control Profiles (TCPs).

Interface Set
(IFL-Set)

A logical grouping of C-VLANs/IFLs or S-VLANs. Allows aggregate-level shaping and scheduling over a set of
IFLs or S-VLANs.

Node A scheduler node is the entity that manages dequeueing traffic from queues. In H-CoS, there are three levels
of scheduling nodes. A node can be a root node, internal node, or a leaf node.

PIR Peak information rate, also known as a “shaping rate.” The PIR/shaping rate specifies maximum bandwidth
and is applied to ports, IFL-Sets, and IFLs/VLANs.

Hierarchical CoS | 349

www.it-ebooks.info

http://www.it-ebooks.info/

Term Definition

Shaping-rate See “PIR.” The maximum rate a queue, IFL, IFL-Set, or IFD can send at. By default, IFD speed sets the maximum
rate.

Scheduler A class of service CLI container where queue scheduling parameters may be configured.

S-VLAN Service VLAN, normally the outer VLAN of a dual stacked frame. Used interchangeably with IFL-set as a single
S-VLAN often represents a group of C-VLANs. S-VLANs are often associated with aggregation devices such as
a DSLAM. See also C-VLAN.

Traffic Control
Profile (TCP)

A container for CoS/scheduling parameters designed to provide a consistent way of configuring shaping and
guaranteed rates; can be specified at the Port, IFL, and IFL-Set level.

CIR mode A physical interface is in CIR mode when one of more of its “children” (logical interfaces in this case) have a
guaranteed rate configured, but some logical interfaces have a shaping rate configured.

Default mode A physical interface is in default mode if none of its “children” (logical interfaces in this case) have a guaranteed
rate or shaping rate configured.

Excess mode A physical interface is in excess mode when one of more of its “children” (logical interfaces in this case) has an
excess rate configured.

PIR mode A physical interface is in PIR mode if none of its “children” (logical interfaces in this case) have a guaranteed
rate configured, but some logical interfaces have a shaping rate configured.

The H-CoS Reference Model
With all this previous talk of H-CoS, it’s time to get down to it. Figure 5-7 provides the
current H-CoS reference model. Recall H-CoS (and currently even per-unit scheduling)
is only supported on Trio Q and EQ MPCs.

350 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-7. The Trio Hierarchical CoS Reference Model.

Let’s begin with an overview of some hierarchical scheduling terminology to better
facilitate the remainder of the discussion. Scheduler hierarchies are composed of nodes
and queues. Queues terminate the scheduler hierarchy and are therefore always at the
top. Queues contain the notification cells that represent packets pending egress on
some interface. Below the queues, there are one or more scheduler nodes. A scheduler
node’s position in the hierarchy is used to describe it as a root node, a leaf node, or
nonleaf node; the latter is also referred to as an internal node. Leaf nodes are the highest
scheduling nodes in the hierarchy, which means they are the closest to the queues. As
the name implies, an internal node is positioned between two other scheduling nodes.
For example, an interface-set, which is shown at level 2 in Figure 5-7, is above a physical

Hierarchical CoS | 351

www.it-ebooks.info

http://www.it-ebooks.info/

port (root) node and below the leaf node at the logical interface level, making it an
internal node.

The figure is rather complicated, but it amounts to a virtual Rosetta stone of Junos H-
CoS, so it has to be. Each level of the H-CoS hierarchy is described individually to keep
things in manageable chunks.

Level 4: Queues
Figure 5-7 represents a four-level scheduling hierarchy in conventional format, which
places the IFD on the left for a horizontal view or at the bottom of the figure for vertically
oriented diagrams. As the discussion surrounds egress queuing, it can be said that things
begin on the right, where the queues are shown at level 4. The egress queues hold the
notification cells that are in turn received over the switch fabric. Ingress queue, when
supported, worked in the opposite direction, ultimately holding notification cells re-
ceived over a WAN port and now pending transmission over the switch fabric.

The queue level of the hierarchy is always used in any CoS model, be it port mode, per
unit, or hierarchical.

Trio MPCs support eight user queues, each with a buffer used to store incoming noti-
fications cells that represent packets enqueued for transmission over the IFD. Note that
WRED actions in Trio occur at the tail of the queue, rather than at the head, which
means a packet that is selected for discard is never actually queued.

Queue-level configuration options are shown below the queues at the bottom of Fig-
ure 5-7. These parameters allow you to configure each queue’s transmit (guaranteed
rate), scheduling priority, excess priority, buffer depth, and WRED settings.

shaping rate
Optional: This parameter places a maximum limit on a queue’s transmit capacity.
The differences between the transmit rate and shaping rate is used to accommodate
excess traffic. By default, shaping rate is equal to the interface speed/shaping rate,
which means a queue is allowed to send at the full rate of the interface.

burst size
Optional: You can manage the impact of bursts of traffic on your network by con-
figuring a burst size value with a queue’s shaping rate. The value is the maximum
bytes of rate credit that can accrue for an idle queue (or another scheduler node).
When a queue or node becomes active, the accrued rate credits enable the queue
or node to catch up to the configured rate. The default is 100 milliseconds. Burst
size is detailed in a subsequent section.

transmit-rate
Optional: Defines a queue’s transmit weight or percentage. Defines the guaranteed
rate for the queue, assuming no priority-based starvation occurs. When no transmit
weight is specified, or when the transmit rate is reached, the queue can only send
excess-rate traffic as that queue’s priority is demoted to the excess region. Note

352 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

that strict-high cannot exceed its transmit weight of 100% and therefore is never
subject to queue level demotion.

Options to transmit-rate include exact, remainder, and rate-
limit. Use exact to prevent a queue from exceeding the configured
transmit weight, in effect imposing a shaper where PIR is equal to
transmit weight. As with any shaper, excess traffic is buffered and
smoothed, at the expense of added latency as a function of buffer
depth. Given this, you cannot combine the shaping-rate statement
with exact.

The remainder option gives the queue a share of any unassigned
transmit rate for the interface. If the sum of configured transmit
weight is 80%, then a single queue set to remainder will inherit a
transmit rate of 20%. The rate-limit option uses a policer to pre-
vent a queue from exceeding its transmit rate, trading loss for delay
and making its use common for LLQ applications like VoIP.

priority
Optional: Sets a queues scheduler priority to one of three levels for guaranteed rate
traffic. Default is guaranteed-low when not set explicitly.

excess-rate
Optional: Defines a queue’s weight as either a percentage, or a proportion, for any
unused bandwidth. Behavior varies based on interface mode, explicit configura-
tion, and whether any other queues have an explicit weight configured. By default,
excess bandwidth between the guaranteed and shaped rate is shared equally among
queues. If none of the queues have an excess rate configured, then the excess rate
will be the same as the transmit rate percentage. If at least one of the queues has
an excess rate configured, then the excess rate for the queues that do not have an
excess rate configured will be set to zero.

excess-priority
Optional: Set one of two priorities for excess rate traffic, or none to prevent the
queue from sending any excess rate traffic. This behavior results in the queue being
forced to buffer any traffic that exceeds the configured G-Rate. By default, excess
priority matches normal priority such that H/SH get EH while all other get EL.

buffer-size
Optional: This parameter allows you to specific an explicit buffer size, either as a
percent of interface speed or as a function of time (specified in microseconds); the
latter option is popular for real-time or low-latency queues (LLQ). By default,
buffer size is set to a percentage that equals the queue’s transmit rate.

Hierarchical CoS | 353

www.it-ebooks.info

http://www.it-ebooks.info/

WRED drop-profiles
Optional: Drop profiles define WRED values to define one or more queue fill level
to drop probability points. While not defined at the queue level, drop profiles are
mapped to a specific queue using the drop-profile-map statement.

drop-profile-map
Optional: Drop profile maps tie one or more WRED drop profiles to a queue. The
default WRED profile is used when no explicit drop profile mapping is specified.

In Figure 5-7, queues 1 and 5 are detailed to show that both have a transmit and excess
rate configured; the focus is on the guaranteed rate at queue 1 and the excess rate at
queue 5. At queue 1, guaranteed rate traffic is sent at one of the three normal or guar-
anteed priorities, based on the queue’s configuration. In like fashion, queue 5 is con-
figured to use one of two excess rate priorities along with an excess weight that is used
to control each queue’s share of remaining bandwidth. In both cases, a queue-level
shaper is supported to place an absolute cap on the total amount of guaranteed + excess
rate traffic that can be sent.

In the current implementation, WRED congestion control is performed at the queue
level only; if a queue’s WRED profile accepts a packet for entry to the queue, no other
hierarchical layer can override that decision to perform a WRED discard.

H-CoS does not alter the way you assign these parameters to queues. As always, you
define one or more schedulers that are then linked to a queue using a scheduler map.
However, you will normally link the scheduler map through a TCP rather than applying
it directly to the IFL. For example:

{master}[edit]
jnpr@R1-RE0# show class-of-service schedulers sched_ef_50
transmit-rate percent 50 rate-limit;
buffer-size temporal 25k;
priority strict-high;

In this case, the scheduler is named sched_ef_50 and defines a transmit rate, priority,
and temporal buffer size. The rate-limit option is used to prevent this strict-high queue
from starving lesser priority queues through a policer rather than buffering (shaping)
mechanism. The scheduler does not have a shaping rate, but the combination of trans-
mit rate with rate limit caps this scheduler to 50% of the IFD rate.

Next, the sched_map_pe-p scheduler map in turn links this scheduler, along with the six
others, to specific forwarding classes (FCs), which in Junos are synonymous with
queues.

{master}[edit]
jnpr@R1-RE0# show class-of-service scheduler-maps
sched_map_pe-p {
 forwarding-class ef scheduler sched_ef_50;
 forwarding-class af4x scheduler sched_af4x_40;
 forwarding-class af3x scheduler sched_af3x_30;
 forwarding-class af2x scheduler sched_af2x_10;
 forwarding-class af1x scheduler sched_af1x_0;

354 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 forwarding-class be scheduler sched_be_5;
 forwarding-class nc scheduler sched_nc;
}

Explicit Configuration of Queue Priority and Rates

Before moving down the hierarchy into level 3, it should be stressed that priority and
transmit rate/excess weights are explicitly configured for queues via a scheduler defi-
nition and related scheduler map. Other areas of the hierarchy use inherited or propa-
gated priority to ensure that all levels of the hierarchy operate at the same priority at
any given time, a priority that is determined by the highest priority queue with traffic
pending.

Level 3: IFL
Still referring to the figure, it’s clear that in a four-level hierarchy, queues feed into
logical interfaces or IFLs (Interface Logical Levels). On an Ethernet interface, each
VLAN represents a separate IFL (subinterface), so the terms IFLs and VLANs are often
used interchangeably, but given the MX also supports WAN technologies this could
also be a Frame-Relay DLCI, making IFL the more general term. The figure shows that
the first set of schedulers is at level 3 and that there is a discrete scheduler for each of
the five scheduling priorities supported in Trio. These schedulers service the queues
based on their current priority, starting with high and working down to excess-low, as
described in the section titled Trio Scheduling.

Level 3 has its own set of traffic conditioning parameters, including a guaranteed (CIR),
shaping rate (PIR), and burst size. In contrast to queues, you use traffic-control-
profiles (TCPs) to specify traffic parameters at levels 1 to 3. The TCP used at the node
below queues, which is the IFL level in this example, specifies the scheduler map that
binds specific schedulers to queues.

The IFL level of the hierarchy is used in per-unit and hierarchical CoS. When in port
mode, a dummy L3 (and L2) node is used to link the IFD to the queues. In per-unit or
hierarchical mode, multiple level 3 IFLs, each with their own set of queues and sched-
ulers, can be mapped into a shared level 2 node.

The Guaranteed Rate

With H-CoS, you can configure guaranteed bandwidth, also known as a committed
information rate (CIR), at Layer 2 or Layer 3 nodes. You configure CIR and PIR pa-
rameters within a traffic control profile, which you then attach to the desired L2/L3
node to instantiate the selected CIR and PIR. A TCP attached to a L1/IFD node can
perform shaping to a peak rate only; guaranteed rates are not supported at L1 of the
hierarchy.

The guaranteed rate is the minimum bandwidth the queue should receive; if excess
physical interface bandwidth is available for use, the logical interface can receive more

Hierarchical CoS | 355

www.it-ebooks.info

http://www.it-ebooks.info/

than the guaranteed rate provisioned for the interface, depending on how you choose
to manage excess bandwidth and the interface’s mode of PIR versus CIR/PIR, as ex-
plained in the following.

The queue transmit rate is considered a form of guaranteed rate, but assigning a trans-
mit rate to a queue is not the same thing as allocating G-Rate bandwidth to a scheduler
node. Assigning a G-Rate is optional. You can use shaping rates alone to define a PIR
service, which is similar to a 0 CIR Frame Relay service. In PIR mode, there is no
guarantee, only maximum rated limits. Still, a queue expects to get its transmit rate
before it is switched to an excess priority level. The CIR mode extends the PIR model
by allowing you to allocate reserved bandwidth that ideality is dimensions based on
aggregate queue transmit rates.

Junos does allow overbooking of CIRs in H-CoS mode. However, just because you can
does not mean you should. To ensure that all nodes and queues can achieve their G-
Rates, you should ensure that G-Rates are not overbooked. Overbooking is not sup-
ported in per unit mode and is not applicable to port mode CoS.

Clearly, you cannot expect to get simultaneous G-Rate throughput among all queues
in an overbooked CIR configuration; still, customers have asked for the capability.
Some external mechanism of controlling sessions/traffic flow known as Connection
Admission Control (CAC) is needed in these environments if guarantees are to be made,
in which case the CAC function ensures that not all queues are active at the same time,
such as might be the case in a Video on Demand (VoD) service. Overbooking is not
supported in per unit scheduling mode, making it necessary that the sum of IFL CIRs
never exceed the IFD shaping rate.

In per-unit mode, you cannot provision the sum of the guaranteed rates
to be more than the physical interface bandwidth. If the sum of the
guaranteed rates exceeds the interface shaping bandwidth, the commit
operation does not fail, but one or more IFLs will be assigned a G-Rate
of 0, which can dramatically affect their CoS performance if they are
competing with other IFLs on the same IFD that were able to receive
their G-Rate. H-CoS mode permits G-Rate overbooking without any
automatic scaling function.

When using per unit scheduler and CIR mode, be sure to factor the G-
Rate bandwidth that is allocated to the control scheduler. This entity is
automatically instantiated on VLAN tagged interface using unit 32767
and is used to ensure that LACP control traffic can still be sent to a
remote link partner, even if the egress queues are in a congested state.
In the v11.4R1 release, this scheduler was provisioned with 2 Mbps of
G-Rate bandwidth, so you may need to increase IFD shaping rate by
that amount when the sum of user allocated IFL G-Rates are within
2Mbps of the IFD shaping rate. Details on the control scheduler are
provided later in the CoS Lab section.

356 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Priority Demotion and Promotion

Scheduler and queues handle priority promotion and demotion differently. Scheduler
nodes at levels 2 and 3 perform both priority promotion and priority demotion, a func-
tion that is based on two variables. The primary demotion behavior relates to the node’s
configured guaranteed rate versus the aggregate arrival rate of G-Rate traffic at that
node; G-Rate traffic is the sum of GH, G, and GM priority levels. Priority promotion
does not occur at level 1, the IFD level, given that node supports peak-rate shaping only
and does not understand the notion of a guaranteed rate.

A second form of demotion is possible based on per priority shaping, occurring when
a given traffic priority exceeds the node’s per priority shaper. Per priority shaping de-
motion applies to GH, GM, and GL traffic, but you can block node-level priority shap-
ing-based demotion of GH/GM by setting the queue to an excess priority of none.

As shown in Figure 5-7, all GH and GM traffic de-
queued at a given level 2/3 node is subtracted from the node’s configured guaranteed
rate. The remaining guaranteed bandwidth is used to service GL traffic; if GL and GM
traffic alone should exceed the node’s G-Rate, the node begins accruing negative credit;
G-Rate demotion does not affect GH and GM, which means queues at this priority
should always get their configured transmit rate, which will be based on the IFL’s G-
Rate. When the G-Rate is underbooked, credits will remain to allow the node to handle
GL traffic, and it is possible to even promote some excess traffic into the guaranteed
region, as described in the following.

In the event that the node’s GL load exceeds the remaining G-Rate capacity (an event
that can occur due to priority promotion, as described next, or because of simple G-
Rate overbooking), the excess GL traffic is demoted to either EH or EL, based on the
queue’s excess-priority setting as a function of priority inheritance. Queues that have
no explicit excess priority setting default to a mapping that has strict high and high
going into excess-high while medium and low map to the excess low region.

Because a scheduler node must be able to demote EL to ensure that the
guaranteed path is not blocked in the event of overbooked G-Rates, you
cannot combine the excess-priority none statement with a queue set
to low priority.

In reverse fashion, excess traffic can be promoted into the guaranteed region when L2
or L3 nodes have remaining G-Rate capacity after servicing all G-Rate queues. In the
case of promotion, both excess high and low are eligible, but even in their new lofty
stations, the node’s scheduler always services real GL before any of the promoted excess
traffic, a behavior that holds true in the case of GL demotion as well; the effect is that
the relative priority is maintained even in the face of promotion or demotion.

H-CoS supports shaping traffic at L1, L2, and
L3 scheduler nodes based on one of five priority levels (three used for the guaranteed

G-Rate Based Priority Handling at Nodes.

Per Priority Shaping–Based Demotion at Nodes.

Hierarchical CoS | 357

www.it-ebooks.info

http://www.it-ebooks.info/

region and two for operating in the excess region), thus you can configure up to five
per priority shapers at each node. Traffic in excess of the per priority shaper is demoted,
again based on the queue’s excess priority setting. When a queue is set to an excess
priority of none, it prevents demotion at a per priority shaper, which forces the queue
to stop sending and begin buffering in that case.

It’s important to note that a queue demotes its own GH,
GM, or GL as a function of exceeding the configured transmit rate. In effect, a queue’s
transmit rate is its G-Rate, and it handles its own demotion and promotion based on
whether it’s sending at or below that rate. The queue demotes traffic in excess of its
transmit rate to the configured excess level, and that demoted priority is in turn inher-
ited by scheduler nodes at lower levels, a function that is independent of scheduler node
promotion and demotion, as described previously.

A queue promotes its traffic back to the configured G-Rate priority whenever its again
transmitting at, or below, its configured rate. A queue that is blocked from using excess
levels appears to simply stop sending when it reaches its configured transmit rate.

Because the priority inheritance scheme is used to facilitate priority de-
motion setting, a queue to excess-rate none prevents demotion at sub-
sequent scheduling levels. Such a queue is forced to buffer traffic (or
discard if rate limited) rather than being demoted to an excess region.

Based on configuration variables, it’s possible that such a queue may be
starved; this is generally considered a feature, and therefore proof that
things are working as designed. The software does not guarantee to
catch all cases where such a queue may be starved, but a commit fail is
expected if you configure excess none for a queue that is also configured
with a transmit-rate expressed as a percent, when the parent’s guaran-
teed rate is set to zero (i.e., the IFD is in PIR mode). This is because such
a queue has no guaranteed rate and can only send at the excess level and
so would be in perpetual starvation. PR 778600 was raised during testing
when the expected commit error for this configuration was not
generated.

Level 2: IFL-Sets
Still referring to Figure 5-7, the next stage in the hierarchy is level 2, the mystical place
where IFL-Sets are to be found. All that was described previously for level 3 holds true
here also, except now we are scheduling and shaping an aggregate set of IFLs or a list
of outer VLANs; the degenerate case is a set with a single IFL or VLAN, which yields
a set of one. An IFL-Set is an aggregation point where you can apply group-level policies
to control CIR, PIR, and how each set shares any excess bandwidth with other nodes
at the same hierarchy level (other IFL-Sets). In the PIR mode, the sum of queue transmit
rates should be less than or equal to the L2 nodes shaping rate. By increasing the L2
nodes shaping rates, you make more excess bandwidth available to the IFLs that attach

Queue-Level Priority Demotion.

358 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

to it. In CIR mode, the sum of queue transmit rates should be less than or equal to the
node’s guaranteed rate. By assigning a shaping rate that is higher, you are again pro-
viding excess bandwidth to the IFLs and their queues.

Remaining Traffic Profiles

One of the IFLs in the figure is associated with a special traffic profile called remain-
ing; the same construct can also be found for the IFD at level 1. The ability to define a
set of traffic scheduling and shaping/CIR parameters for IFLs that otherwise have no
explicit scheduler setting of their own is a powerful Trio feature that is detailed in a
later section. For now, it’s sufficient to say that IFLs can be automatically mapped into
a shared level 2 scheduler associated with a specific IFL-Set to catch IFLs that are listed
as a member of that set yet which have no scheduler settings applied. And, one so
grouped all such IFLs are then treated to a shared set of queues and a common TCP
profile.

The IQ2E card does not support the notion of a remaining CoS profile,
forcing you to explicitly configure all IFLs for some level of CoS.

The remaining traffic profile construct is supported at the IFD level as well; as with
level 2, it’s again used to provide a default CoS-enabled container for IFLs, but this
profile catches those IFLs that are not placed into any IFL-Set and which also do not
have their own scheduler settings applied (either directly or through a scheduler map
within a TCP container).

The IFL-Set level also supports priority-based shaping, which allows you to shape at
each of the five priority levels. As shown, priority-level shaping is in addition to the
aggregate shaping for all traffic at the node.

Forcing a Two-Level Scheduling Hierarchy

In some cases, users may opt for a reduction in the number of scheduler hierarchies to
promote better scaling. When operating in per unit scheduling mode, all logical inter-
faces share a common dummy level 2 scheduling node (one per port). In contrast, when
in the full-blown hierarchical scheduling mode, each logical interface can have its own
level 2 node, which means that a key scaling factor for H-CoS is the total number of
level 2 nodes that can be allocated.

When in hierarchical scheduling mode, you can limit the number of scheduling levels
in the hierarchy to better control system resources. In this case, all logical interfaces
and interface sets with a CoS scheduling policy share a single (dummy) level 2 node,
so the maximum number of logical interfaces with CoS scheduling policies is increased
to the scale supported at level 3, but this forces IFL-sets to be at level 3, the cost being

Hierarchical CoS | 359

www.it-ebooks.info

http://www.it-ebooks.info/

that in two-level mode you lose the ability to have IFLs over IFL-Sets and cannot support
IFL-Set-level remaining queues.

The system tries to conserve level 2 scheduler nodes by default; a level
2 scheduler node is only created for IFL-Sets when any member IFL has
traffic-control-profile configured, or the internal node command is
used at the [edit class-of-service]hierarchy:

class-of-service interfaces {
 interface-set foo internal-node
}

Figure 5-8 illustrates the impacts of a dummy L2 scheduling node that results from a
two-level hierarchy.

Figure 5-8. Two-Level Scheduling Hierarchy.

Note that in two-level mode, only IFD/port-level remaining queues are supported, and
that all IFL-Sets must be defined at level 3. Figure 5-9 provides a similar view of full-
blown H-CoS, with its three-level scheduling hierarchy, to provide clear contrast to the
previous two-level scheduling hierarchy.

360 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-9. A Three-Level Scheduling Hierarchy.

To configure scheduler node scaling, you include the hierarchical-schedulers state-
ment with the maximum-hierarchy-levels option at the [edit interfaces xe-fpc/pic/
port] hierarchy level. In the v11.4R1 release, the only supported value is 2.

{master}[edit interfaces xe-2/0/0]
jnpr@R1-RE0# set hierarchical-scheduler maximum-hierarchy-levels ?
Possible completions:
<maximum-hierarchy-levels> Maximum hierarchy levels (2..2)
{master}[edit interfaces xe-2/0/0]
jnpr@R1-RE0# set hierarchical-scheduler maximum-hierarchy-levels 2

{master}[edit interfaces xe-2/0/0]
jnpr@R1-RE0# show
hierarchical-scheduler maximum-hierarchy-levels 2;
vlan-tagging;
. . .

Hierarchical CoS | 361

www.it-ebooks.info

http://www.it-ebooks.info/

Level 1: IFD
Again referring to Figure 5-7, the next stage in the hierarchy is level 1, the physical
interface or IFD level. The IFD level is a bit unique when compared to levels 2 and 3
in that it does not support a CIR (G-Rate), which in turn means that G-Rate-based
priority promotion and demotion does not occur at the IFD level. PIR shaping is sup-
ported, both as an aggregate IFD rate in addition to five levels of per priority shaping.

Remaining
The user may have some traffic that is not captured by explicit class of service config-
uration at various levels of the hierarchy. For example, the user may configure three
logical interfaces over a given S-VLAN set (level 2), but apply a traffic control profile
to only one of the C-VLANs/IFLs at level 3. Traffic from the remaining two C-VLANs/
IFLs is considered “unclassified traffic.” In order for the remaining traffic to get transmit
rate guarantees, the operator must configure an output-traffic-control-profile-
remaining to specify a guaranteed- and shaping-rate for the remaining traffic. In the
absence of this construct, the remaining traffic gets a default guaranteed rate of 0 bps,
or not much guarantee at all. You can limit, or cap, the total remaining traffic by in-
cluding the shaping-rate statement. As with any TCP, you can also alter the delay-
buffer-rate to control the size of the delay buffer for remaining traffic, when desired.

Junos H-CoS supports remaining TCPs at the IFL-Set and IFD hierarchy levels; the
former captures remaining VLANs for a given IFL-Set, whereas the latter is used to
capture all leftover VLANs that are not part of any IFL-Set.

If you don’t configure a remaining scheduler, unclassified traffic is given
a minimum bandwidth that is equal to two MTU-sized packets.

Remaining Example

Figure 5-10 shows how remaining scheduler nodes are used to provide CoS for other-
wise unconfigured IFLs/C-VLANs. In this example, the C-VLANs are captured as part
of an IFL-Set called iflset_1.

362 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-10. Remaining C-VLANs in an IFL-Set.

To make this happen, the user has configured logical interfaces 0 to 4 under an inter
face-set at the [edit interfaces interface-set] hierarchy. However, a traffic control
profile is only attached to a subset of the IFLs at the[edit class-of-service inter
faces] hierarchy, namely IFLs 0 and 2. IFLs 3 and 4, which don’t have traffic control
profile attached, are called “remaining” traffic. In this case, the remaining scheduler is
used to capture these IFLs, with the result being they share a set of queues and the CoS
profile of the associated level 3 scheduler node. Here, two IFL-Sets are defined to en-
compass the IFD’s 5 logical units:

{master}[edit]
jnpr@R1-RE0# show interfaces interface-set iflset_0
interface xe-2/0/0 {
 unit 0;
 unit 1;
}

{master}[edit]
jnpr@R1-RE0# show interfaces interface-set iflset_1
interface xe-2/0/0 {
 unit 2;
 unit 3;
 unit 4;
}

While interface set 1 has three IFLs, a TCP is applied to only one of them; note that
both of the IFLs in IFL-Set 0 have TCPs applied:

{master}[edit]
jnpr@R1-RE0# show class-of-service interfaces xe-2/0/0
output-traffic-control-profile 500m_shaping_rate;
unit 0 {
 output-traffic-control-profile tc-ifl0;

Hierarchical CoS | 363

www.it-ebooks.info

http://www.it-ebooks.info/

}
unit 1 {
 output-traffic-control-profile tc-ifl1;
}
unit 2 {
 output-traffic-control-profile tc-ifl2;
}

Meanwhile, the two interface sets are linked to TCPs that control the level 2 scheduler
node’s behavior:

jnpr@R1-RE0# show class-of-service interfaces interface-set iflset_0
output-traffic-control-profile tc-iflset_0;

{master}[edit]
jnpr@R1-RE0# show class-of-service interfaces interface-set iflset_1
output-traffic-control-profile tc-iflset_1;
output-traffic-control-profile-remaining tc-iflset_1-remaining;

The key point is that IFL-Set 1 uses the output-traffic-control-profile-remaining
keyword to link to a second TCP that is used to service any IFLs in the named set that
do not have explicit TCP configuration, thus matching the example shown in Fig-
ure 5-10. Note that this remaining profile links to a scheduler map that is used to provide
schedulers for the shared set of queues that are shared by all remaining IFLs in this set:

{master}[edit]
jnpr@R1-RE0# show class-of-service traffic-control-profiles tc-iflset_1-remaining
scheduler-map smap-remainder;
shaping-rate 100m;

Be sure to include a scheduler map in your remaining traffic profiles to
ensure things work properly. Without a map, you may not get the de-
fault scheduler and so end up without any queues.

This example uses a customized scheduler for remaining traffic that has only two FCs
defined. If desired, the same scheduler map as used for the IFLs could be referenced.
The scheduler map is displayed for comparison:

{master}[edit class-of-service scheduler-maps]
jnpr@R1-RE0# show
sched_map_pe-p {
 forwarding-class ef scheduler sched_ef_50;
 forwarding-class af4x scheduler sched_af4x_40;
 forwarding-class af3x scheduler sched_af3x_30;
 forwarding-class af2x scheduler sched_af2x_10;
 forwarding-class af1x scheduler sched_af1x_5;
 forwarding-class be scheduler sched_be_5;
 forwarding-class nc scheduler sched_nc;
 forwarding-class null scheduler sched_null;
}
smap-remainder {
 forwarding-class be scheduler sched_be_5;

364 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 forwarding-class nc scheduler sched_nc;
}
. . .

Figure 5-11 goes on to demonstrate how remaining is used at the IFD level to capture
VLANs/IFLs that are not part of any IFL-Set.

Figure 5-11. Remaining C-VLANs in an IFD.

It’s much the same principle as the previous IFL-Set remaining example, but in this
case you apply the remaining TCP, here called tc-xe-2/0/0_remaining, to the IFD itself:

jnpr@R1-RE0# show class-of-service interfaces xe-2/0/0
output-traffic-control-profile 500m_shaping_rate;
output-traffic-control-profile-remaining tc-xe-2/0/0_remaining;
unit 0 {
 output-traffic-control-profile tc-ifl0;
}
unit 1 {
 output-traffic-control-profile tc-ifl1;
}
unit 2 {
 output-traffic-control-profile tc-ifl2;
}

The new TCP, which is used by IFLs/VLANs that are not assigned to any sets, is shown:

{master}[edit]
jnpr@R1-RE0# show class-of-service traffic-control-profiles tc-xe-2/0/0_remaining
scheduler-map smap-remainder;
shaping-rate 100m;
guaranteed-rate 5m;

Note again the inclusions of a scheduler-map statement in the remaining TCP; the map
is used to bind schedulers to the shared set of queues.

Hierarchical CoS | 365

www.it-ebooks.info

http://www.it-ebooks.info/

To put the IFD-level set remaining TCP to use, the previous configuration is modified
to remove IFL 4 from iflset_1:

{master}[edit]
jnpr@R1-RE0# show interfaces interface-set iflset_1
interface xe-2/0/0 {
 unit 2;
 unit 3;
}

Note this interface inherited its scheduler map from the TCP applied to the IFL-Set,
and thereby had eight queues, EF set to SH, etc. Just as with an IFL-Set remaining
profile, you can include a scheduler map statement in the remaining profile, unless you
want the default scheduler for this traffic.

The configuration results in the scheduling hierarchy shown in Figure 5-11. To sum-
marize, we now have two interface sets and five IFLs, but IFL 4 does not belong to
either set. The two IFLs in IFL-Set 0 both have a TCP applied and so both have their
own level 3 scheduler node. IFL 3, in contrast, is assigned to IFL-Set 1 but does not
have a TCP, and therefore uses the remaining TCP for that IFL-Set, here
called tc-iflset_1-remaining. IFL 4 does not belong to any IFL-Set, nor does it have a
TCP attached. As such it’s caught by the remaining traffic profile at the L1 node. The
resulting scheduler hierarchy is confirmed:

NPC2(R1-RE0 vty)# show cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 500000 0 0 0
 iflset_0 85 200000 100000 0 0
 xe-2/0/0.0 332 100000 60000 0 0
 q 0 - pri 0/0 44600 0 10% 0 0%
 q 1 - pri 0/0 44600 0 10% 0 0%
 q 2 - pri 0/0 44600 0 10% 0 0%
 q 3 - pri 3/0 44600 0 10% 0 0%
 q 4 - pri 0/0 44600 0 10% 0 0%
 q 5 - pri 4/0 44600 0 40% 25000 0% exact
 q 6 - pri 0/0 44600 0 10% 0 0%
 q 7 - pri 2/5 44600 0 0 0 0%
 xe-2/0/0.1 333 100000 40000 0 0
 q 0 - pri 0/0 44600 0 10% 0 0%
 q 1 - pri 0/0 44600 0 10% 0 0%
 q 2 - pri 0/0 44600 0 10% 0 0%
 q 3 - pri 3/0 44600 0 10% 0 0%
 q 4 - pri 0/0 44600 0 10% 0 0%
 q 5 - pri 4/0 44600 0 40% 25000 0% exact
 q 6 - pri 0/0 44600 0 10% 0 0%
 q 7 - pri 2/5 44600 0 0 0 0%
 iflset_0-rtp 85 500000 0 0 0

366 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
 iflset_1 86 400000 300000 0 0
 xe-2/0/0.2 334 200000 100000 0 0
 q 0 - pri 0/0 44600 0 10% 0 0%
 q 1 - pri 0/0 44600 0 10% 0 0%
 q 2 - pri 0/0 44600 0 10% 0 0%
 q 3 - pri 3/0 44600 0 10% 0 0%
 q 4 - pri 0/0 44600 0 10% 0 0%
 q 5 - pri 4/0 44600 0 40% 25000 0% exact
 q 6 - pri 0/0 44600 0 10% 0 0%
 q 7 - pri 2/5 44600 0 0 0 0%
 iflset_1-rtp 86 100000 5000 5000 0
 q 0 - pri 0/0 10466 0 10% 0 0%
 q 3 - pri 3/0 10466 0 10% 0 0%
 xe-2/0/0.32767 339 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
 xe-2/0/0-rtp 148 100000 5000 5000 0
 q 0 - pri 0/0 10466 0 10% 0 0%
 q 3 - pri 3/0 10466 0 10% 0 0%

Of note here is how both the IFL-Set and IFD remaining profiles (rtp) are shown with
the two queues that result from the user-specified scheduler map. In testing, it was
found that without the scheduler map statement in the remaining profile, the RTPs
were displayed as if no remaining profile was in effect at all. Compare the below to the
output shown above, when the scheduler maps are applied to remaining profiles, and
note the absence of queues next to the RTPs:

{master}[edit]
jnpr@R1-RE0# show | compare
[edit class-of-service traffic-control-profiles tc-iflset_1-remaining]
- scheduler-map smap-remainder;
[edit class-of-service traffic-control-profiles tc-xe-2/0/0_remaining]
-
NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 500000 0 0 0
 iflset_0 85 200000 100000 0 0
 xe-2/0/0.0 332 100000 60000 0 0
 q 0 - pri 0/0 44600 0 10% 0 0%
 q 1 - pri 0/0 44600 0 10% 0 0%
 q 2 - pri 0/0 44600 0 10% 0 0%
 q 3 - pri 3/0 44600 0 10% 0 0%
 q 4 - pri 0/0 44600 0 10% 0 0%
 q 5 - pri 4/0 44600 0 40% 25000 0% exact
 q 6 - pri 0/0 44600 0 10% 0 0%
 q 7 - pri 2/5 44600 0 0 0 0%
 xe-2/0/0.1 333 100000 40000 0 0
 q 0 - pri 0/0 44600 0 10% 0 0%

Hierarchical CoS | 367

www.it-ebooks.info

http://www.it-ebooks.info/

 q 1 - pri 0/0 44600 0 10% 0 0%
 q 2 - pri 0/0 44600 0 10% 0 0%
 q 3 - pri 3/0 44600 0 10% 0 0%
 q 4 - pri 0/0 44600 0 10% 0 0%
 q 5 - pri 4/0 44600 0 40% 25000 0% exact
 q 6 - pri 0/0 44600 0 10% 0 0%
 q 7 - pri 2/5 44600 0 0 0 0%
 iflset_0-rtp 85 500000 0 0 0
 iflset_1 86 400000 300000 0 0
 xe-2/0/0.2 334 200000 100000 0 0
 q 0 - pri 0/0 44600 0 10% 0 0%
 q 1 - pri 0/0 44600 0 10% 0 0%
 q 2 - pri 0/0 44600 0 10% 0 0%
 q 3 - pri 3/0 44600 0 10% 0 0%
 q 4 - pri 0/0 44600 0 10% 0 0%
 q 5 - pri 4/0 44600 0 40% 25000 0% exact
 q 6 - pri 0/0 44600 0 10% 0 0%
 q 7 - pri 2/5 44600 0 0 0 0%
 iflset_1-rtp 86 100000 5000 5000 0
 xe-2/0/0.32767 339 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
 xe-2/0/0-rtp 148 100000 5000 5000 0

Be sure to reference a scheduler map in remaining profiles to avoid this issue.

Interface Modes and Excess Bandwidth Sharing
Interfaces are said to operate in either a Committed Information Rate/Peak Information
Rate (CIR/PIR) mode, or in PIR-only mode alone. The interface’s mode is an IFD-level
attribute, which means it has global effects for all IFLs/VLANs and scheduler nodes
configured on the interface. The IFD mode is determined by the guaranteed rate con-
figuration (or lack thereof) across all children/grandchildren on the IFD. If all descend-
ants of the IFD are configured with traffic control profiles that specify only a shaping
rate with no guaranteed rate, then the interface is said to be operating in the PIR mode.

If any of the descendants are configured with a traffic control profile that has a guar-
anteed rate, then the interface is said to be operating in the CIR/PIR mode. Switching
an interface from PIR to CIR/PIR mode can affect bandwidth distribution among
queues. This is because once a G-Rate is set, the concepts of priority promotion and
demotion at scheduler nodes come into play. A CIR interface will attempt to meet all
GH/GM queue transmit rates, even if they exceed the available G-Rate. The difference
is made up by demoting GL queues, even though they have not yet reached their trans-
mit rates, and the balance needed for the GH/GM CIRs comes out of the PIR region,
thereby reducing the amount of excess bandwidth available for GL queues. This be-
havior is demonstrated in a later section.

368 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

While a queue’s transmit rate is said to be a committed rate/G-Rate, it’s
not technically the same as a TCP’s guaranteed-rate statement that is
applied to a scheduler node. The former does not place the IFD into CIR
mode, whereas the latter does. Still, you could view the case of all queues
having a 0 transmit rate, but being allowed to enter excess region, as an
extreme case of the PIR mode. In such an extreme case, a queue’s excess
bandwidth weighting dominates its share of the bandwidth. In contrast,
when in CIR mode GH/GM queues with high transmit weights tend to
be favored.

As noted previously, an interface is in PIR mode when only shaping
rates are configured at the IFL/IFL-Set levels of the hierarchy (levels 2 and 3). The
default behavior for this interface mode is a function of scheduler mode and whether
or not the interface is overbooked, a condition that occurs when the sum of configured
shaping rates exceeds the IFD shaping speed. For PIR mode, the shaping and guaran-
teed rates are computed as:

shaping-rate = 'shaping-rate' if configured or IFD 'port-speed'
guaranteed-rate =
 per-unit mode:
 IFD is under-subscribed?
 shaping-rate is configured?
 guaranteed-rate = shaping rate, else guaranteed-rate = 1/nth of
 remaining bw
 IFD is oversubscribed?
 over-subscribed guaranteed-rate = 0
 IFD is in H-Cos?
 hierarchical mode guaranteed-rate = 0

An IFD is in PIR/CIR mode when at least one scheduling node in
the hierarchy has guaranteed rate (CIR) configured via a TCP. For this mode, shaping
and guaranteed rates are calculated as:

shaping-rate = 'shaping-rate' if configured or ifd 'port-speed'
guaranteed-rate = 'guaranteed-rate' if configured, or 0

In CIR mode, excess rates are programmed in proportion of guaranteed rates, or in the
case of queues, their transmit rates. Scheduler nodes without a guaranteed rate inherit
a G-Rate of 0, which affects not only normal transmission, but also excess bandwidth
sharing given that the excess bandwidth is shared among nodes at the same hierarchy
in proportion to their G-Rates.

Shaper Burst Sizes

MX routers with Trio interfaces support shaping to a peak rate at all levels of the hier-
archy through the shaping-rate keyword. The shaping rate statement is used a sched-
uler definition for application to a queue, or in a TCP for shaping at other hierarchies.
Levels 2 and 3 of the hierarchy support shaping to a guaranteed (CIR) rate in addition

PIR Characteristics.

PIR/CIR Characteristics.

Hierarchical CoS | 369

www.it-ebooks.info

http://www.it-ebooks.info/

to a peak rate, while queue levels shaping through the shaping-rate statement is only
to the peak rate.

Shapers are used to smooth traffic to either the guaranteed or peak information rates,
in effect trading latency for a smoother output that eases buffering loads on downstream
equipment. You can manage the impact of bursts of traffic on your network by con-
figuring a burst-size value with either a shaping rate or a guaranteed rate. The value
is the maximum bytes of rate credit that can accrue for an idle queue or scheduler node.
When a queue or node becomes active, the accrued rate credits enable the queue or
node to catch up to the configured rate.

By default, a shaper allows for small periods of burst over the shaping rate to make up
for time spent waiting for scheduler service. The default shaping burst size on Trio is
based around support for 100 milliseconds of bursting, a value that has been found
adequate for most networking environments, where the brief burst above the shaping
rate generally does not cause any issues. Figure 5-12 shows the effects of burst size on
the shaped traffic rate.

Figure 5-12. Shaper Burst Size Effects.

Figure 5-12 shows two shapers, both set for 30 Mbps. In the first case, a large burst size
of 1 GB is set versus the second shaper, which has a very minimal burst size of only 1
byte. In both cases, user traffic has dropped off to 0, perhaps due to lack of activity.
Even with constant activity, there are still small delays in a given queue as it waits for
a scheduler’s attention. The goal of the burst size parameter is to allow a queue to make
up for the period of below shaped rate traffic by allowing extra transmit capacity as a
function of burst size. As noted, a larger burst value means the queue is able to make

370 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

up for lost time, as shown by the spike to 40 Mbps, which is well above the shaped
rate; while good for the queue or scheduler node in question, a downstream device that
has minimal buffers and therefore bases its operation on a smooth shaping rate may
well drop some of the excess burst. The low burst rate example on the right shows how
smaller burst result in a smoother rate and therefore less buffering needs in downstream
equipment.

You can alter the default burst size using the burst-size argument to the shaping-
rate or guaranteed-rate statements. You use this statement to specify the desired burst
limit in bytes. The supported range for burst size is 0 through 1,000,000,000 bytes (1
GB). While very low burst values can be set, the system always computes a platform-
dependant minimum burst size and uses the larger of the two, as described in the fol-
lowing.

Use caution when selecting a different burst size for your network. A
burst size that is too high can overwhelm downstream networking
equipment, causing dropped packets and inefficient network operation.
Similarly, a burst size that is too low can prevent the network from ach-
ieving your configured rate.

If you choose to alter the default burst size, keep the following considerations in mind:

• The system uses an algorithm to determine the actual burst size that is implemented
for a node or queue. For example, to reach a shaping rate of 8 Mbps, you must
allocate 1 Mbps of rate credits every second. In light of this, a shaping rate of 8
Mbps with a burst size of 500,000 bytes of rate-credit per second is illegal as it only
enables the system to transmit at most 500,000 bytes, or 4 Mbps. In general, the
system will not install a burst size that prevents the rate from being achieved.

• The minimum and maximum burst sizes can vary by platform, and different nodes
and queue types have different scaling factors. For example, the system ensures the
burst cannot be set lower than 1 Mbps for a shaping rate of 8 Mbps. To smoothly
shape traffic, rate credits are sent much faster than once per second, but the actual
interval at which rate credits are sent varies depending on the platform, the type
of rate, and the scheduler’s level in the hierarchy.

• The system installs the computed minimum burst size if it’s larger than the con-
figured burst size. Very small burst sizes are rounded up to the system minimum.

• The guaranteed rate and shaping rate for a given scheduler share the same burst
size. If the guaranteed rate has a burst size specified, that burst size is used for the
shaping rate; if the shaping rate has a burst size specified, that bursts size is used
for the guaranteed rate. If you have specified a burst size for both rates, the system
uses the lesser of the two values.

• The system generates a commit error when the burst size configured for the guar-
anteed rate exceeds the burst size configured for the shaping rate.

Hierarchical CoS | 371

www.it-ebooks.info

http://www.it-ebooks.info/

• You can configure independent burst size values for each rate, but the system uses
the maximum burst size value configured in each rate family. For example, the
system uses the highest configured value for the guaranteed rates (GH and GM) or
the highest value of the excess rates (EH and EM). The system assigns a single burst
size to each of the following rate pairs at each scheduling node:

— Shaping and guaranteed rate

— Guaranteed high (GH) and guaranteed medium (GM)

— Excess high (EH) and excess low (EL)

— Guaranteed low (GL)

To provide a concrete example of platform variance for minimum burst size, consider
that a Trio Q-type MPC currently supports a minimum burst of 1.837 milliseconds at
a L1 and L2 scheduler node for PIR/CIR shaping. On this same card, the minimum
burst size for GH/GM priority grouping is 3.674 milliseconds.

In contrast, an MPC EQ-style MPC requires 2.937 milliseconds at the L1 and L2
scheduler levels for PIR/CIR shaping. The increased minimum time/burst rate stems
from the fact that an EQ MPC has more scheduling nodes to service, when compared
to the Q-style MPC, and therefore it can take longer between scheduling visits for a
given node. The longer delay translates to a need to support a larger value for minimum
burst size on that type of hardware.

The default burst size is computed by determining how
much traffic can be sent by the highest shaping rate in a pairing (the rate pairs were
described previously) in a 100 millisecond period, and then rounding the result up to
an exponent of a power of two. For example, the system uses the following calculation
to determine the burst size for a scheduler node with a shaping rate of 150 Mbps when
an explicit burst size has not been configured:

Max (Shaping rate, guaranteed rate) bps * 100 ms / (8 bits/byte * 1000 ms/s) = 1,875,000
bytes.

The value is then rounded up to the next higher power of two, which is 2,097,150
(2**21, or 0x200000). Adding a guaranteed rate less than 150 Mbps does not alter the
result, as the larger of the two rate pairs is used. Given that CIR is always less than or
equal to PIR, when both are set the PIR is used to compute the default burst size.

When no burst size is specified, the system uses a default
burst for a given rate-pair that is based on 100 milliseconds, as described previously.
Otherwise, when a burst size is configured, the system uses the following algorithm to
choose the actual burst:

• If only one of the rate pair shapers is configured with a burst size, use its configured
burst size.

• If both rate pair shapers are configured with a burst size, use the lesser of the two
burst sizes.

Calculating the Default Burst Size.

Choosing the Actual Burst Size.

372 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

• Round the selected burst size down to the nearest power of two; note this differs
from the case of computing a default burst rate, where the value is rounded up to
nearest power of two.

• Calculate a platform-dependant minimum burst size.

• Compare configured burst to the platform specific minimum burst size, select the
larger of the two as the actual burst rate. If the user-configured value exceeds the
platform specific maximum, then select the platform maximum as the burst rate.

There is no indication on the RE’s CLI as to whether the user-configured
or platform-specific minimum or maximum burst size has been pro-
grammed. PFE level debug commands are needed to see the actual burst
size programmed.

The best way to get all this straights is through a concrete example.
R4 is confirmed to have a Q style MPC:

[edit]
jnpr@R4# run show chassis hardware | match fpc
FPC 2 REV 15 750-031088 YR7240 MPC Type 2 3D Q

And the configuration is set to shape the IFD at 500 Mbps with a user-configured shaper
burst size of 32kB, which is confirmed in the operational mode CLI command:

[edit]
jnpr@R4# show class-of-service traffic-control-profiles tc-ifd-500m
shaping-rate 500m burst-size 40k;
overhead-accounting bytes −20;
shaping-rate-priority-high 200m;

[edit]
jnpr@R4# run show class-of-service traffic-control-profile tc-ifd-500m
Traffic control profile: tc-ifd-500m, Index: 17194
 Shaping rate: 500000000
 Shaping rate burst: 40000 bytes
 Shaping rate priority high: 200000000
 Scheduler map: <default>

To compute the actual burst size, the larger of the burst sizes configured for the PIR/
CIR pairing is rounded down to the nearest power of 2. Here only PIR is specified, so
its burst size is used:

40,000 rounded down to nearest power of 2: 32,000 (2^5).

Then a minimum burst size is computed based on the hardware type (Q versus EQ)
and the node’s position, both of which influences the minimum burst value in milli-
seconds. In this example, the 1.837 milliseconds value is used, given this is a L1 node
on a Q type MPC:

500 Mbps * 1.837 ms/8000 = 114,812.5 bytes.

Burst Size Example.

Hierarchical CoS | 373

www.it-ebooks.info

http://www.it-ebooks.info/

The resulting value is then rounded up to the nearest power of two:

114,812.5 rounded up to nearest power of 2: 131,072 (2^17)

Select the larger of the two, which in this case is the system minimum of 131,072 bytes.
PFE shell commands are currently needed to confirm the actual burst value:

NPC2(R4 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 0 0 0 0
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 500000 0 0 0
 iflset_premium 25 30000 20000 0 0
 xe-2/2/0.200 335 3000 2000 0 0
 q 0 - pri 0/0 20205 0 1000 0 35%
 q 1 - pri 0/0 20205 0 1000 0 5%
 q 2 - pri 0/0 20205 0 1000 0 10%
 q 3 - pri 3/1 20205 0 1000 10% 5%
 q 4 - pri 0/0 20205 0 1000 0 30%
 q 5 - pri 4/0 20205 0 1000 25000 0% exact
 q 6 - pri 0/0 20205 0 1000 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%

NPC2(R4 vty)# sho cos halp ifd 152

--
IFD name: xe-2/2/0 (Index 152)
 QX chip id: 1
 QX chip L1 index: 1
 QX chip dummy L2 index: 1
 QX chip dummy L3 index: 3
 QX chip base Q index: 24
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 24 Configured 500000000 0 2097152 950 GL EL 4 82
 25 Configured 500000000 0 2097152 1 GL EL 0 255
 26 Configured 500000000 0 2097152 1 GL EL 0 255
 27 Configured 500000000 0 2097152 50 GL EL 4 25
 28 Configured 500000000 0 2097152 1 GL EL 0 255
 29 Configured 500000000 0 2097152 1 GL EL 0 255
 30 Configured 500000000 0 2097152 1 GL EL 0 255
 31 Configured 500000000 0 2097152 1 GL EL 0

NPC2(R4 vty)# show qxchip 1 l1 1
L1 node configuration : 1
 state : Configured

374 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 child_l2_nodes : 2
 config_cache : 21052000
 rate_scale_id : 0
 gh_rate : 200000000, burst-exp 18 (262144 bytes scaled by 16)
 gm_rate : 0
 gl_rate : 0
 eh_rate : 0
 el_rate : 0
 max_rate : 500000000
 cfg_burst_size : 32768 bytes
 burst_exp : 13 (8192 bytes scaled by 16)
 byte_adjust : 4
 cell_mode : off
 pkt_adjust : 0

The configured and actual burst size values are shown. Note the configured has been
rounded down. Multiplying 8,192 by the scale factor shown yields the actual burst
value, which is 131,072, as expected.

Shapers and Delay Buffers

Delay buffers are used by shapers, either CIR or PIR, to absorb bursts so that the output
of the shaper is able to maintain some degree of smoothness around the shaped rate.
While adding a “bigger buffer” is a genuine fix for some issues, you must consider that
a bigger buffer trades loss and shaper accuracy for increased latency. Some applications
would prefer loss due to a small buffer, rather than being delivered late in the eyes of
a real-time application, where they may be seen as causing more harm than good.

The delay buffer can be increased from the default 100 ms to 200 ms of the port speed
and can also be oversubscribed beyond 200 milliseconds using the delay-buffer-
rate configuration at the port IFD level via a TCP. The maximum delay buffer varies
by MPC type and is currently limited to 500 milliseconds of shaped rate, which for a 1
Gbps interface is equivalent to 500 Mb or 62.5 MB. Unlike the IQ2 hardware, Trio does
not use dynamic buffer allocations. There is no concept of MAD (Memory Allocation
Dynamic) in Trio.

The 16x10GE MPC uses four Trio PFEs. Each PFE has a 5 Gb delay
buffer, which provides each of the 16 ports (4 ports per PFE) with 100
milliseconds of delay bandwidth buffer. The remaining 100 millisec-
onds of delay buffer can be allocated among the four ports on each PFE
using CLI configuration.

By default, the delay-buffer calculation is based on the guaranteed rate, the shaping
rate if no guaranteed rate is configured. You can alter the default behavior with the
delay-buffer-rate parameter in a TCP definition. This parameter overrides the shaping
rate as the basis for the delay buffer calculation. If any logical interface has a configured
guaranteed rate, all other logical interfaces on that port that do not have a guaranteed
rate configured receive a delay buffer rate of 0. This is because the absence of a guar-

Hierarchical CoS | 375

www.it-ebooks.info

http://www.it-ebooks.info/

anteed rate configuration corresponds to a guaranteed rate of 0 and, consequently, a
delay buffer rate of 0.

When an interface is oversubscribed and you do not specify a shaping
rate or a guaranteed rate, or a delay buffer rate, the node receives a
minimal delay buffer rate and minimal bandwidth equal to two MTU-
sized packets.

You can configure a rate for the delay buffer that is higher than the guaranteed rate.
This can be useful when the traffic flow might not require much bandwidth in general,
but in some cases traffic can be bursty and therefore needs a large buffer. Configuring
large buffers on relatively slow-speed links can cause packet aging. To help prevent this
problem, the software requires that the sum of the delay buffer rates be less than or
equal to the port speed. This restriction does not eliminate the possibility of packet
aging, so you should be cautious when using the delay-buffer-rate statement. Though
some amount of extra buffering might be desirable for burst absorption, delay buffer
rates should not far exceed the service rate of the logical interface. If you configure delay
buffer rates so that the sum exceeds the port speed, the configured delay buffer rate is
not implemented for the last logical interface that you configure. Instead, that logical
interface receives a delay buffer rate of 0, and a warning message is displayed in the
CLI. If bandwidth becomes available (because another logical interface is deleted or
deactivated, or the port speed is increased), the configured delay-buffer-rate is reeval-
uated and implemented if possible. If the guaranteed rate of a logical interface cannot
be implemented, that logical interface receives a delay buffer rate of 0, even if the con-
figured delay buffer rate is within the interface speed. If at a later time the guaranteed
rate of the logical interface can be met, the configured delay buffer rate is reevaluated;
if the delay buffer rate is within the remaining bandwidth, it is implemented.

You configure the delay-buffer-rate parameter in
TCPs that are attached scheduling nodes in the H-CoS model. In port-level queuing,
the speed (physical or shaped) of the IFD is implicitly known and is used as the basis
for queue-level delay buffers. In H-CoS, the bandwidth of a VLAN/IFL cannot be im-
plicitly derived and requires explicit configuration for delay bandwidth calculations. If
a delay buffer value is not explicitly configured, the bandwidth is based on the specified
CIR, or when no CIR is specified the PIR.

Generally speaking, the delay buffer rate setting at one level of the hierarchy becomes
the reference bandwidth used at the next higher layer, and the sum of reference band-
width cannot exceed the value used at a lower layer. Figure 5-13 shows these concepts.

Delay Buffer Rate and the H-CoS Hierarchy.

376 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-13. Delay Buffer Rate and H-CoS.

Figure 5-13 shows an example of explicitly setting delay buffer rate to be 5 Mb (bits)
higher than that level’s shaping rate, thereby overriding the default of using CIR when
configured, else PIR. Note how the queue-level scheduler setting for buffer-size uses
the IFL layer’s delay buffer rate as its reference, thereby getting 10% of 15 Mb in this
example. In turn, IFL 1 then feeds into an IFL-Set at level 2, which again has an explicit
delay buffer rate configured, with the result being that the reference bandwidth for the
IFL 1 is 25 MB rather than the 15 Mb shaped rate. Also note how the sum of delay
buffers at Layers 4 through 2 are less than the delay buffer at level 1, the IFD. For
predictable operation, this should be true at all levels of the hierarchy.

Sharing Excess Bandwidth

Historically, with Junos CoS, once all nodes/queues receive their guaranteed rate, the
remaining excess bandwidth is divided among them equally. As this method of sharing
excess bandwidth was not always desired, Trio platforms provide additional control.
Specifically, the excess-rate option used in a TCP for application to a scheduler node,
combined with the excess-rate and the excess-priority options that are configured
at the scheduler level for application to queues.

Hierarchical CoS | 377

www.it-ebooks.info

http://www.it-ebooks.info/

The excess-bandwidth-share(equal | proportional) option, applied at
the [edit class-of-service interface (interface-set | interface)]
hierarchy is used for queuing DPCs only. The option is not applicable
to Trio MPCs.

When applied to a scheduling node, you control the sharing of excess bandwidth
among different users, for example how much excess bandwidth a given IFL can use
when you configure excess rate at a level 2 IFL-Set node. When applying at the queue
level, you can combine excess-rate/excess-priority with a shaping rate to control the
sharing of excess bandwidth among services from a single user (i.e., between queues
attached to a specific C-VLAN/IFL). Typically, users configure excess sharing at both
scheduler and queue levels for control over both node and queue levels of excess
sharing.

For both nodes and queues, you specify excess rate as either a percentage or a propor-
tion. Percent values are from 1 to 100, and you can configure a total percentage that
exceeds 100%. Proportional values range from 1 to 1,000. By default, excess bandwidth
is shared equally among siblings in the scheduler hierarchy.

It’s a good practice to configure either a percentage or a proportion of
the excess bandwidth for all schedulers with the same parent in the H-
CoS hierarchy; try not to mix percentages and proportions as things are
hard enough to predict without the added complexity. In addition,
when using an approach that is based on percentages, try and make
them sum to 100%. For example, if you have two IFLs in a set, configure
interface xe-1/1/1.0 with 20% of the excess bandwidth, and configure
interface xe-1/1/1.1 with 80% of the excess bandwidth.

Shaper and schedulers are applied to level 2 or 3 scheduler nodes
through a TCP. You can configure excess bandwidth sharing within a TCP as shown:

jnpr@R1-RE0# set class-of-service traffic-control-profiles test excess-rate?
Possible completions:
> excess-rate Excess bandwidth sharing proportion
> excess-rate-high Excess bandwidth sharing for excess-high priority
> excess-rate-low Excess bandwidth sharing for excess-low priority
{master}[edit]

The excess-rate keyword value specified applies to both excess priority levels. Starting
with the v11.4 release, you can specify different excess rates based on the priority. You
use the high and low excess options when you need to share excess bandwidth differ-
ently based on traffic type. For example, you might have all users send BE at excess
priority low with a 1:1 ratio, meaning any BE traffic sent as excess results in the sched-
uler sending one packet from each user in a WRR manner, thus no differentiation is
provided for BE, or for any other traffic sent at excess low for that matter. To provide
a gold level of service, the operator can set business class users so that their schedulers

Scheduler Nodes.

378 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

demote to excess high priority, while normal users have all their schedulers set for
excess low. You can set excess high to be shared at a different ratio, for example, 4:1,
to provide the business class users four times the share of excess bandwidth for that
traffic type.

When excess-rate is specified, you cannot specify an excess-rate-high or excess-rate-
low as the CLI prevents configuring excess-rate along with either of these two
attributes.

In the case of queues, you can also define the priority level for excess traffic.

jnpr@R1-RE0# set class-of-service schedulers test excess-priority ?
Possible completions:
 high
 low
 medium-high
 medium-low
 none

While the CLI offers all priority levels, in the current release only high,
low, and none are valid. Specifying an unsupported option will result in
the default setting that is based on the queue’s normal priority.

The configuration of excess-rate or excess-priority is prohibited for a queue when:

Shaping with the transmit-rate exact statement, because in this case the shaping
rate equals the transmit rate, which means the queue can never operate in the excess
region.
The scheduling priority is set to strict-high, which means the queue’s transmit
rate is set to equal the interface bandwidth, which once again means can never
operate in excess region.

In testing the v11.4R1 Junos release, it was found that excess-priority
none could be combined with strict-high and it appeared to take effect.
Documentation PR 782534 was filed to sort things out. The expected
commit error was encountered when excess-rate was combined with
strict-high.

Starting in the v11.4 release, you can prevent priority demotion at the queue
level by specifying an excess priority level of none. You can only use this option when
combined with a scheduler priority of high or medium; a commit error is generated
when combined with priority low, as this guaranteed level is associated with G-Rate-
based priority demotion at scheduler nodes and therefore must remain eligible for de-
motion, as described previously. Unless rate limited, once a queue hits its transmit rate,
it switches from its normal priority to its configured excess priority, and can then con-
tinue to send, being capped by its shaping rate if specified, else the shaping rate of the

Queues.

Excess None.

Hierarchical CoS | 379

www.it-ebooks.info

http://www.it-ebooks.info/

IFL, else the shaping rate of IFL-Set, else the shaping rate of the IFD; unless, of course,
it runs out of excess bandwidth first.

If a shaping rate is not specified, and there is no other traffic contention from other
queues, then even a queue with a small transmit rate is able to send at the interface rate,
albeit with the majority of its traffic in the excess region in such a case. This behavior
is considered a feature, but some users found that priority demotion later muddied
their plans to perform priority-based shaping on a traffic class aggregate, as some of
the traffic they expected to shape at priority value x was demoted and allowed to bypass
the planned priority-x shaper. The fix to this problem is to specify excess-rate none
for queues at priority x.

Combining excess none with a low transmit rate is an excellent way to starve a queue;
this is considered a feature, perhaps to enable the offering of a penalty box CoS level
reserved for users that don’t pay their bills on time. To help avoid unwanted starvation,
a safety check is in place to generate an error when excess priority none is set on a
scheduler that has a transmit rate expressed as a percent when the parent level 2 IFL
scheduling node has a guaranteed rate (CIR) of zero.

Shaping with Exact Versus Excess Priority None
Users often ask, “What is the difference between shaping a queue using exact and
preventing demotion through excess priority none?” It’s a great question, and one with
a somewhat convoluted answer. Typically, you will see the same behavior with the two
options, as both shape the queue to the configured transmit rate. However, the fact
that the later prevents any and all demotion, while the former does not, means there
can be a difference, especially if you are overbooking G-Rates, using GL which is eligible
for demotion, or performing per priority shaping.

A queue with exact that is within its transmit rate, if at GL, can be demoted into excess
at L2/L3, nodes, or it can be demoted at any node if the traffic is found to exceed a per
priority shaper. Note that a queue with exact that is within its transmit rate is not
demoted as a function of G-Rate if it’s set to GH or GM priority.

In contrast, a queue with excess priority none can never ever be demoted; this is why
you cannot combine the excess none option with the GL priority, as GL must remain
demotable to facilitate G-Rate handing at L2/L3 nodes.

So, in the case of a per priority shaper that wants to demote, an excess none queue that
is within its transmit rate will see back pressure, while a queue set for exact may get
demoted (even though the queue is within its transmit rate).

You can create a scheduler with no transmit rate to blackhole traffic by
omitting a transmit rate and specifying an excess priority of none:

{master}[edit]
jnpr@R1-RE0# show class-of-service schedulers sched_null
priority medium-high;
excess-priority none;

380 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

The default behavior for excess rate varies based on interface
mode of PIR or PIR/CIR, and whether an excess rate has been explicitly configured:

PIR Mode (none of the IFLs/IFL-Sets have guaranteed-rate configured)
The excess rate is based on shaping rate, by default an excess rate of 0% with weight
proportional to queue transmit ratio.

PIR/CIR Mode (at least one IFL/IFL-Set has guaranteed-rate configured)
The excess rate is based on guaranteed rate, else shaping rate. The default excess
rate is 0% with weight proportional to queue transmit ratio.

Excess-Rate Mode (at least one IFL/IFL-Set has excess-rate configured)
When explicitly configured, excess rate is equal to configured value, else excess
rate is 0% with weight proportional to configured excess rate, else 0.

The last bit bears repeating. In both PIR and CIR modes, if you assign an excess rate
to a queue, the interface enters the excess rate mode. Any queue that does not have an
excess-rate assigned gets a 0 weight for excess sharing, even if that queue is at high
priority with a have a guaranteed rate!

The default excess sharing has all queues at 0% excess rate with a
weighting that is based on the ratio of the queue transmit rates. The
result is that a queue with two times the transmit rate of another also
gets two times the excess bandwidth.

If you plan to deviate from the default excess rate computation, you
should configure all queues with an excess rate, even those queues that
you actually want to have 0 excess weighting. Having a queues go from
an excess weight that is based on queue transmit ratios to an excess
weight of 0 can be a big change, and not one that is typically anticipated.

Given that the excess-rate statement is intended to dis-
tribute excess bandwidth once scheduling nodes reach their guaranteed rate and none
of the scheduling nodes have guaranteed rate configured when in PIR mode, it can be
argued that allowing an excess rate configuration doesn’t make sense in PIR mode.
However, due to customer feedback, the rules were relaxed, and as of v11.4 you can
now specify an excess rate for interfaces in PIR mode. As a result of the change, the
commit is no longer blocked and the configured excess rates are honored. As with the
CIR model, queues drop the priority into an excess region when sending above the
configured transmit rate with excess shared based on the ratio of the configured excess
rates.

Figure 5-14 shows an example of excess sharing in a PIR/CIR H-
CoS environment.

Excess Handling Defaults.

Excess Rate and PIR Interface Mode.

Excess Sharing Example.

Hierarchical CoS | 381

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-14. Excess Bandwidth Sharing—IFL Level.

Here, the focus is on IFL- and IFL-Set-level sharing. We begin at the IFD level, which
is shown to be a 1 Gbps interface. The sum of the G-Rates assigned to the IFLs, and to
IFL-Set 1, sum to 600 Mbps, thus leaving a total of 400 Mbps remaining for excess
bandwidth usage. In this example, the default behavior of using the IFL transmit ratios
to set the proportion for excess sharing.

The first round of sharing occurs at L2, which given the dummy L2 node shown for
IFL 1 means the first division is between IFL 1 and IFL-Set 1. In this case, the former
has a proportion of 200 while the latter has 400, thus leading to the math shown. Excess
rates are set as a proportional value from 1 to 1,000, and so this slide uses realistic
excess weighting values. In this case, the 200/400 proportion can be simplified to a 1:2
ratio. In decimals, these can be rounded to 0.3333 and 0.6666, respectively; the alter-
nate form of math is also shown in Figure 5-14. Multiplying those values by the available
excess share (400 M * 0.3333 = ~ 133.3 M) yields the same numbers on the slide, but
requires the decimal conversion.

The result is IFL 1 gets 133.3 Mbps of excess bandwidth, while the IFL-Set nets two
times the excess bandwidth, or 266 Mbps, which is expected given it has twice the
excess rate proportion. A similar calculation is now performed for the two IFLs shown

382 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

belonging to the IFL-Set, where the two IFLs are now contending for the remaining 266
Mbps. Their proportions are 200 and 600, respectively, leading to the math shown and
the resulting 66.5 Mbps for IFL 2 and the 199.5 Mbps for IFL 3.

The final result is shown in the right-hand table, where the IFL G-Rate is added to the
calculated excess rates to derive the expected maximum rate for each IFL. Fig-
ure 5-15 builds on the current state of affairs by extending the calculation into level 4,
the domain of queues.

Figure 5-15. Excess Bandwidth Sharing—Queue Level.

In this case, we focus on the queues assigned to IFL 1, which recall had a 1G shaping
rate, a G-Rate of 100 M, along with a computed 133.3 Mbps of excess bandwidth
capacity, yielding a guaranteed throughput potential for the IFL of 233.3 to be divided
among its queues. The IFL is shown with three queues (0 to 2) with transmit rates (G-
Rate) of 50 Mbps, 40 Mbps, and 10 Mbps, respectively. The queues are set with excess
rate specified as a percentage, in this case 10%, 60%, and 40%, respectively, along with
an excess priority of EH, EL, and EL, respectively. Given that G-Rates are not over-
booked, we can assume that all three queues can send at their transmit rates simulta-
neously with up to 133.3 Mbps of excess available for division among them.

The table on the left computes the excess bandwidth expected for each queue, as a
function of priority, which in Trio scheduling is absolute. Note that the excess-rate

Hierarchical CoS | 383

www.it-ebooks.info

http://www.it-ebooks.info/

parameter sets a minimal fair share, but is in itself not an actual limit on excess bandwidth
usage. Thus, Q0 is therefore limited only by its shaping rate of 100 Mbps, and not the
sum of its G-Rate + excess rate, and therefore is expected to reach the full 100 Mbps
shaping rate. This leaves 83 Mbps for queues 1 and 2, which being at the same priority
split the remaining excess based on their excess share percentages, a 60/40 split (3:2
ratio) in this case, results in 49.8 Mbps to Q1 and the remaining 33.2 Mbps going to
Q2. The table on the right adds the queue G-Rate to its computed maximum excess
rate to derive the maximum expected throughput for each queue when all are fully
loaded.

If some queues are not using their bandwidth share, other queues can achieve high
throughputs, but as always the queue’s maximum bandwidth is limited by the shaping
rate. If a shaping rate is not set at the queue level, then the queue limit becomes the
shaping rate of the IFL, IFL-Set, or IFD, respectively. If no shaping is performed, IFD
physical speed is the queue bandwidth limit.

Priority-Based Shaping
Referring back to the H-CoS reference hierarchy, shown in Figure 5-7, you can see that
Trio H-CoS supports shaping traffic based on its priority at L1, L2, and L3 scheduler
nodes. You can define a shaping rate for each of the supported priorities to control
aggregate rates on a per priority basis. You can combine priority-based shaping with
queue-, IFL-, and IFL-Set-level shaping to exercise control over the maximum rate of
a user (IFL), and an IFL-Set for all priorities, and then shape per priority at the IFD level
to place an aggregate cap on a per priority basis for all users and IFL/IFL-Sets; this cap
might be less than the sum of the IFL-Set shaping or G-Rates, such that statistical
multiplexing comes into play for certain priorities of traffic while also allowing network
capacity planning based on a fix aggregate that is independent of total user IFL and
IFL-Set counts on the interface.

On possible usage might be to cap overall high-priority VoIP traffic to help ensure that
it’s not starving other priority levels due to excess call volume, perhaps because some-
one fails to factor Mother’s Day call volume.

Priority shaping is configured within a TCP; the options are shown:

[edit]
jnpr@R1# set class-of-service traffic-control-profiles test shaping-rate-e?
Possible completions:
> shaping-rate-excess-high Shaping rate for excess high traffic
> shaping-rate-excess-low Shaping rate for excess low traffic
[edit]
jnpr@R1# set class-of-service traffic-control-profiles test shaping-rate-p?
Possible completions:
> shaping-rate-priority-high Shaping rate for high priority traffic
> shaping-rate-priority-low Shaping rate for low priority traffic
> shaping-rate-priority-medium Shaping rate for medium priority traffic
[edit]
jnpr@R1# set class-of-service traffic-control-profiles test shaping-rate-p

384 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Here the IFD-level TCP that shapes all traffic to 500 Mbps is modified to shape priority
medium at 10 Mbps and applied to the IFD level:

{master}[edit]
jnpr@R1-RE0# show class-of-service traffic-control-profiles 500m_shaping_rate
shaping-rate 500m;
shaping-rate-priority-medium 10m;

jnpr@R1-RE0# show class-of-service interfaces xe-2/0/0 unit 0
output-traffic-control-profile 500m_shaping_rate;
classifiers {
. . . .

And the result is confirmed, both in the CLI and in the MPC itself:

{master}[edit]
jnpr@R1-RE0# run show class-of-service traffic-control-profile 500m_shaping_rate
Traffic control profile: 500m_shaping_rate, Index: 54969
 Shaping rate: 500000000
 Shaping rate priority medium: 10000000
 Scheduler map: <default>

NPC2(R1-RE0 vty)# sho cos ifd-per-priority-shaping-rates

EGRESS IFD Per-priority shaping rates, in kbps
 per-priority shaping-rates (in kbps)
 ----------------------------- ---------------------------------------
Ifd Shaping Guarantd DelayBuf GH GM GL EH EL
Index Rate Rate Rate Rate Rate Rate Rate Rate
------ --------- --------- --------- ------- ------- ------- ------- -------
 148 500000 500000 500000 0 10000 0 0 0
 149 0 10000000 10000000 0 0 0 0 0
 150 0 10000000 10000000 0 0 0 0 0
 151 0 10000000 10000000 0 0 0 0 0
 152 0 10000000 10000000 0 0 0 0 0
 153 0 10000000 10000000 0 0 0 0 0
 154 0 10000000 10000000 0 0 0 0 0
 155 0 10000000 10000000 0 0 0 0 0

Per priority shaping does not occur at the queue level, but you can control what priority
a queue uses for traffic within and in excess of its transmit rate through the queue-level
excess priority setting, as a function of priority inheritance. You can shape overall queue
bandwidth using the shaping-rate statement, but this is not on a priority basis.

Why Does Priority-Based Policing Not Limit Queue Bandwidth?
A common question to be sure. Imagine you have a queue set to priority high with a
rate limit of 1 Mbps. Below that queue, you have an IFL with a shaping rate priority
high 500 kbps statement. You expect that upon commit the queue will fall back to the
IFL priority shaping rate of 0.5 Mbps, but instead it remains at 1 Mbps. Why?

The answer is priority demotion at scheduler nodes, here at level 3. When the incoming
rate of the GH traffic exceeds the priority shaper, the node demotes the traffic to the
queue’s excess priority level. Granted, the traffic is no longer at the same priority, but

Hierarchical CoS | 385

www.it-ebooks.info

http://www.it-ebooks.info/

if there’s no congestion it’s delivered. You can set the queue to excess-priority none
to prevent this behavior, and have per priority policers impose a limit on queue
throughput. Note that excess-priority none cannot be used on queues set for the
default GL priority.

Fabric CoS
The concept of fabric CoS was mentioned in a previous section on “intelligent over-
subscription.” In addition, the use of the switch fabric to move traffic from ingress to
egress MPC, using a request/grant mechanism, was discussed in Chapter 1 “Trio Hard-
ware Architecture.” Here, we focus on how CoS configuration is used to mark selected
traffic types as high priority to ensure they have minimum impact should any fabric
congestion occur.

The default setting of switch fabric priority varies by interface mode. In port mode, any
schedulers that use high priority automatically map that FC to a high fabric priority.
In H-CoS mode, all FCs default to normal fabric priority, regardless of the associated
scheduling priority. To alter, you must explicitly set a high priority at the [edit class-
of-service forwarding-classes class<name>] hierarchy:

jnpr@R1-RE0# set forwarding-classes class ef priority ?
Possible completions:
 high High fabric priority
 low Low fabric priority
{master}[edit class-of-service]
jnpr@R1-RE0# set forwarding-classes class ef priority high

{master}[edit class-of-service]
jnpr@R1-RE0# commit

The priority change is confirmed:

{master}[edit class-of-service]
jnpr@R1-RE0# run show class-of-service forwarding-class
Forwarding ID Queue Restricted Fabric Policing SPU
class queue priority priority priority
 be 0 0 0 low normal low
 af1x 1 1 1 low normal low
 af2x 2 2 2 low normal low
 nc 3 3 3 low normal low
 af4x 4 4 0 low normal low
 ef 5 5 1 high premium low
 af3x 6 6 2 low normal low
 null 7 7 3 low normal low

Note that only the EF class has an altered fabric priority, despite both the EF and NC
schedulers having the same high priority:

{master}[edit class-of-service]
jnpr@R1-RE0# show schedulers sched_nc
transmit-rate 500k;

386 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

priority high;

{master}[edit class-of-service]
jnpr@R1-RE0# show schedulers sched_ef_50
transmit-rate {
 2m;
 rate-limit;
}
buffer-size temporal 25k;
priority strict-high;

Given that FC to switch fabric priority mapping defaults vary by an interface’s CoS
mode, the best practice is to explicitly set the desired fabric priority, a method that
yields predictable operation in all CoS modes. If desired, you can combined WRED
drop profiles for each fabric priority using a scheduler map. This example uses the
default RED profile for high fabric priority while using a custom drop profiles for low
fabric priority traffic:

{master}[edit]
jnpr@R1-RE0# show class-of-service fabric
scheduler-map {
 priority low scheduler sched_fab_high;
}

The linked schedulers only support drop profiles because concepts such as scheduler
priority and transmit rate have no applicability to a fabric scheduler; the traffic’s fabric
priority is set as described previously, outside of the scheduler:

jnpr@R1-RE0# show class-of-service schedulers sched_fab_high
drop-profile-map loss-priority high protocol any drop-profile dp-fab-high;
drop-profile-map loss-priority low protocol any drop-profile dp-fab-low;

And the customer WRED fabric profile is confirmed for low fabric priority traffic:

NPC2(R1-RE0 vty)# sho cos fabric scheduling-policy
 Fabric plp/tcp plp/tcp plp/tcp plp/tcp
 Priority (0/0) (1/0) (0/1) (1/1)
 -------- -------- -------- -------- --------
 low 64745 48733 64745 48733
 high 1 1 1 1

The result is more aggressive drops for low fabric priority while the default WRED
profile does not begin discarding high fabric priority until 100%.

Control CoS on Host-Generated Traffic
You can modify the default queue assignment (forwarding class) and DSCP bits used
in the ToS field of packets generated by the RE using the host-outbound-traffic state-
ment under the class-of-service hierarchy, or through a firewall filter applied in the
output direction of the loopback interface.

Hierarchical CoS | 387

www.it-ebooks.info

http://www.it-ebooks.info/

Default Routing Engine CoS

By default, the forwarding class (queue) and packet loss priority (PLP) bits are set ac-
cording to the values given in the default DSCP Classifier. TCP-related packets, such
as BGP or LDP sessions, first use queue 0 (BE) and then fall back to use queue 3 (network
control) only when performing a retransmission.

The default outgoing queue and FC selection for selected RE traffic is shown in Ta-
ble 5-10. The complete list can be found at http://www.juniper.net/techpubs/en_US/
junos11.4/topics/reference/general/hw-cos-default-re-queues-reference-cos-config-guide
.html.

Table 5-10. Default Queue Mappings for RE-Generated Traffic.

Protocol Queue

ATM OAM Queue 3

Bidirectional Forwarding Detection (BFD) Protocol Queue 3

BGP/BGP Retransmission Queue 0/Queue 3

Cisco High-Level Data Link Control (HDLC) Queue 3

FTP Queue 0

IS-IS Queue 3

IGMP query/report Queue 3/Queue 0

IPv6 Neighbor Discovery Queue 3

IPv6 Router Advertisement Queue 0

LDP UDP hellos (neighbor discovery) Queue 0

LDP TCP session data/retransmission Queue 0/Queue 3

Link Aggregation Control Protocol (LACP) Queue 3

Open Shortest Path First (OSPF) Queue 3

PPP (Point-to-Point Protocol Queue 3

PIM (Protocol Independent Multicast) Queue 3

Real-time performance monitoring (RPM) probe Queue 3

Resource Reservation Protocol (RSVP) Queue 3

Simple Network Management Protocol (SNMP) Queue 0

SSH/Telnet Queue 0

VRRP Queue 3

The default ToS markings for RE traffic can vary by type.

Routing Protocols
Protocols like OSPF, RSVP, IS-IS, PIM, LDP, RIP, and so on use the CS6 IP prece-
dence value of 110. It may seem odd they are not sent with CS7/111, but with a

388 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/topics/reference/general/hw-cos-default-re-queues-reference-cos-config-guide.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/reference/general/hw-cos-default-re-queues-reference-cos-config-guide.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/reference/general/hw-cos-default-re-queues-reference-cos-config-guide.html
http://www.it-ebooks.info/

default IP precedence classifier Junos sees a set LSB as an indicator for high drop
probability, making CS6 more reliable than CS7 should congestion occur.

Management Traffic
Traffic such as NTP, DNS, Telnet, and SSH use routine precedence 000.

Variable, based on Request
ICMP and SNMP traffic uses variable settings. When locally generated, the default
000 is used, but when responding to a request the replies are set with the same ToS
marking as in the request.

To change the default queue and DSCP bits for RE sources traffic, include the host-
outbound-traffic statement at the [edit class-of-service] hierarchy level. Changing
the defaults for RE-sourced traffic does not affect transit or incoming traffic, and the
changes apply to all packets relating to Layer 3 and Layer 2 protocols, but not MPLS
EXP bits or IEEE 802.1p bits. This feature applies to all application-level traffic such
as FTP or ping operations as well. The following notes regarding EXP and VLAN tag-
ging IEEE 802.1p should be kept in mind:

For all packets sent to queue 3 over a VLAN-tagged interface, the software sets the
802.1p bit to 110.
For IPv4 and IPv6 packets, the software copies the IP type-of-service (ToS) value
into the 802.1p field independently of which queue the packets are sent out.
For MPLS packets, the software copies the EXP bits into the 802.1p field.

As with any classification function, care must be taken to ensure the
queue selected is properly configured and scheduled on all interfaces. It
is always good practice to leave queue 3 associated with the network
control forwarding class and to use extreme caution when placing any
other types of traffic into this queue. Starving network control traffic
never leads to a desirable end, unless your goal is networkwide disrup-
tion of services.

This example places all routing engine-sourced traffic into queue 3 (network control)
with a DSCP code point value of 101010:

{master}[edit]
jnpr@R1-RE0# show class-of-service host-outbound-traffic
forwarding-class nc;
dscp-code-point 111000;

It’s not a good idea to mix things like Telnet and ping along with OSPF
hellos. It’s best that the host-outbound-traffic option is not used.

Given this is rather heavy handed, and results in noncritical traffic such as FTP, pings,
and Telnet sessions now competing with network control, the preferred way to alter
outbound RE queue selection is with a firewall filter, as described in Chapter 3. For

Hierarchical CoS | 389

www.it-ebooks.info

http://www.it-ebooks.info/

example, this filter places all TCP-based control traffic, initial or retransmissions, into
the NC queue and keeps the rest of the default behavior unmodified:

{master}[edit]
jnpr@R1-RE0# show interfaces lo0
unit 0 {
 family inet {
 filter {
 output RE_CLASSIFIER_OUT;
 }
}

{master}[edit]
jnpr@R1-RE0# show firewall family inet filter RE_CLASSIFIER_OUT
term BGP {
 from {
 protocol tcp;
 port bgp;
 }
 then {
 forwarding-class nc;
 accept;
 }
}
term LDP {
 from {
 protocol tcp;
 port ldp;
 }
 then {
 forwarding-class nc;
 accept;
 }
}
term everything-else {
 then accept;
}

Dynamic Profile Overview

MX platforms are often used to support subscriber access networks. Often, some form
of DSLAM is used, along with RADIUS, to provide user access and authentication into
the network. Operators can choose to provide static H-CoS to these dynamic users,
perhaps leveraging the power of the remaining profile construct to provide basic CoS
for dynamic users. Alternatively, dynamic CoS can be provided as a function of au-
thentication based on RADIUS Vendor Specific Attributes (VSAs), which are used to
map the user’s authentication results to a set of CoS parameters.

A dynamic profile is a set of characteristics, defined in a type of template that’s used to
provide dynamic subscriber access and services for broadband applications. These
services are assigned dynamically to interfaces. The dynamic-profiles hierarchy ap-

390 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

pears at the top level of the CLI hierarchy and contains many Junos configuration
statements that you would normally define statically.

Dynamic profile statements appear in the following subhierarchies within the [edit
dynamic-profiles] hierarchy. In the v11.4R1 release, these options are available:

{master}[edit]
jnpr@R1-RE0# set dynamic-profiles test ?
Possible completions:
<[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> class-of-service Class-of-service configuration
> firewall Define a firewall configuration
> interfaces Interface configuration
> policy-options Routing policy option configuration
> predefined-variable-defaults Assign default values to predefined variables
> profile-variable-set Dynamic profiles variable configuration
> protocols Routing protocol configuration
> routing-instances Routing instance configuration
> routing-options Protocol-independent routing option configuration
> variables Dynamic variable configuration
 | Pipe through a command

There are many options that allow you to customize a user’s experience; here, the focus
is on CoS-related operation, but generally speaking you will combine CoS with other
dynamic profile functions to completely flesh out a service definition.

You can identify subscribers statically or dynamically. To identify
subscribers statically, you can reference a static VLAN interface in a dynamic profile.
To identify subscribers dynamically, you create variables for demultiplexing (demux)
interfaces that are dynamically created when subscribers log in.

A demux interface can be statically or dynamically created. The demux interface is a logical
interface that shares a common, underlying logical interface (in the case of IP demux) or
underlying physical interface (in the case of VLAN demux). You can use these interfaces
to identify specific subscribers or to separate individual circuits by IP address (IP
demux) or VLAN ID (VLAN demux).

Dynamic CoS

Once authenticated to a basic CoS profile, subscribers can use RADIUS change-of-
authorization (CoA) messages to activate a subscriber-specific service profile that in-
cludes customized values for key CoS parameters such as:

Shaping rate
Delay buffer rate
Guaranteed rate
Scheduler map

Dynamic Profile Linking.

Hierarchical CoS | 391

www.it-ebooks.info

http://www.it-ebooks.info/

Optionally, you can configure default values for each parameter. Configuring default
values is beneficial if you do not configure RADIUS to enable service changes. During
service changes, RADIUS takes precedence over the default value that is configured.

Generally speaking, to deploy dynamic CoS you must first manually configure your
network infrastructure for basic CoS, which includes all the classification, rewrites,
scheduler settings, scheduler maps, IFL sets, etc., as detailed in this chapter. Once you
have a CoS-enabled network that works to your design specifications, you then build
on top of this infrastructure by adding dynamic CoS profiles. A detailed discussion of
dynamic CoS is outside the scope of this chapter. Information on dynamic H-CoS in
the v11.4 Junos release is available at the following URLs:

http://www.juniper.net/techpubs/en_US/junos11.4/topics/task/configuration/cos
-subscriber-access-dynamic-summary.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/cos-subscriber-ac
cess-guidelines.html

H-CoS Summary
The H-CoS architecture, as supported on fine-grained queuing Trio MPCs, is a pow-
erful feature designed to provide a flexible and scalable CoS solution in B-RAS sub-
scriber access applications where triple-play or business class offerings are enabled
through IP CoS. The IFL-Set level of hierarchy is the heart and soul of H-CoS, as this
new scheduling level allows you to apply CoS profiles to groupings of IFLs, thereby
allowing you to lump subscribers into aggregate classes with specifically tailored guar-
anteed and peak rate parameters that map to services classes, and ultimately how much
can be charged for the differentiated service levels. H-CoS at the IFL-Set level is a perfect
way to offer the so-called olympic levels of service, namely gold, silver, and bronze.

H-CoS supports the notion of remaining CoS sets, with support for IFL-Sets, IFLs, and
queues. Given that all MPC types have a finite number of queues and level 1/2/3 sched-
uler nodes, the ability to share these resources through a remaining group of IFL-Sets,
IFLs, or queues, that would otherwise have no explicit CoS configuration, is a critical
component in the ability to scale CoS to tens of thousands of subscriber ports.

H-CoS alone is pretty awesome. When you add support for dynamic CoS through
RADIUS VSAs, a world of opportunities open up. For example, you can provide a
“turbo charge” feature that allows a user to boost the parameters in their CoS profile
through a resulting authentication exchange, in effect giving them a taste of the per-
formance available at the higher tiers, which is an effort toward upselling the service
tier or possibly adding per-use charging premiums for turbo mode, once the user is
addicted to VoD or other high-capacity services. And all this is possible at amazing
scale with MX Trio technology.

392 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/topics/task/configuration/cos-subscriber-access-dynamic-summary.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/task/configuration/cos-subscriber-access-dynamic-summary.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/cos-subscriber-access-guidelines.html
http://www.juniper.net/techpubs/en_US/junos11.4/topics/concept/cos-subscriber-access-guidelines.html
http://www.it-ebooks.info/

Trio Scheduling and Queuing
The scheduling stage determines when a given queue is serviced, in which order, and
how much traffic can be drained at each servicing. In the Trio architecture, schedulers
and queues are no longer closely linked, in that you can now have schedulers and
shapers at all four levels of the H-CoS hierarchy, with queues only found at level 4.

When you configure a scheduler, you can define parameters for each of up to eight
queues. These parameters include the scheduling priority, maximum queue depth/
temporal delay, transmit rate, a peak rate (shaping), and how (or if) excess bandwidth
is shared. At the queue level, you can also link to one or more WRED profiles; only
queue-level schedulers support WRED profile linking. With H-CoS you can also define
scheduling and shaping parameters at other levels of the hierarchy, though the specific
parameters supported can vary by the node’s position in the hierarchy.

Scheduling Discipline
MX routers with Trio-based MPCs use a form of Priority Queue Deficit Weighted
Round Robin (PQ-DWRR) scheduling with five levels of strict priority. PQ-DWRR
extends the basic deficit round robin (DWRR) mechanism by adding support for one
or more priority queues that exhibit minimal delay. The deficit part of the algorithm’s
name stems from the allowance of a small amount of negative credit in an attempt to
keep queues empty. The resultant negative balance from one servicing interval is carried
over to the next quantum’s credit allocation, keeping the average dequeueing rate near
the configured transmit value.

Strict priority means that a configured transmit rate, or weight, is only relevant among
queues at the same priority level. Within a given priority, weighted round robin is
performed, but the next lower priority level is only serviced when all queues at the
current and higher priority level are empty (or have met their shaping limits). With this
type of scheduler, starvation is always a potential if using more than one priority
without some form of rate limit or shaping in effect. In Trio, queues that have reached
their transmit rate automatically drop their priorities, a mechanism that helps prevent
high priority queues from starving out lower ones.

APQ-DWRR scheduler is defined by four variables:

Buffer size
This is the delay buffer for the queue that allows it to accommodate traffic bursts.
You can configure a buffer size as a percentage of the output interface’s total buffer
capacity, or as a temporal value from 1 to 200,000 microseconds, which simply
represents buffer size as a function of delay, rather than bytes. The value configured
is mapped into the closest matching hardware capability. Most Trio PFEs offer 500
milliseconds of delay bandwidth buffer, based on a 4 × 10GE MIC; each port is
preassigned 100 milliseconds of that buffer with the balance left for assignment via
the CLI.

Trio Scheduling and Queuing | 393

www.it-ebooks.info

http://www.it-ebooks.info/

The quantum
The quantum is the number of credits added to a queue every unit of time and is
a function of the queue transmit rate. The actual quantum used by Trio varies by
hardware type and the level of the scheduling node in the H-CoS hierarchy; in
general it’s based on a 21 millisecond interval. The queue’s transmit rate specifies
the amount of bandwidth allocated to the queue and can be set based on bits per
second or as a percentage of interface bandwidth. By default, a queue can be serv-
iced when in negative credit, as long as no other queues have traffic pending and
it’s not blocked from excess usage. When desired, you can shape a queue to its
configured transmit rate with inclusion of the exact keyword, or rate limit the
queue using a policer via the rate-limit option.

Priority
The priority determines the order in which queues are serviced. A strict priority
scheduler services high-priority queues in positive credit before moving to the next
level of priority. In Trio, in-profile queues of the same priority are serviced in a
simple round-robin manner, which is to say one packet is removed from each queue
while they remain positive. This is opposed to WRR, which would dequeue n
packets per servicing with n being based on the configured weight. When a queue
exceeds its transmit rate, it can send at an excess low or high priority level based
on configuration. Excess bandwidth sharing on Trio is based on a weighting factor,
which means that WRR scheduling is used to control excess bandwidth sharing
on trio.

A strict-high priority queue is a special case of high priority, where the effective
transmit weight is set to equal egress interface capacity. This means that a strict-
high queue can never go negative and therefore is serviced before any low-priority
queue anytime it has traffic waiting. The result is known as low-latency queuing
(LLQ). Care should be used when a queue is set to strict high to ensure that the
queue does not starve low-priority traffic; a strict high queue should be limited
using either the exact keyword to shape it, the rate-limit keyword to police it, or
some external mechanism such as a policer called through a filter to ensure star-
vation does not occur.

In the v11.4 release, only one queue can be designated as strict-
high in a given scheduler map, otherwise the following commit
error is generated:

[edit]
jnpr@R4# commit
[edit class-of-service]
 'scheduler-maps sched_map_core'
 More than one schedulers with priority strict-high for scheduler-map
sched_map_core
error: configuration check-out failed

When you have two or more queues set to high priority (both at high, or one high
and one strict high), the PQ-DWRR scheduler simply round-robins between them

394 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

until one goes negative due to having met its transmit rate (in the case of high) or
for strict high when the queue is empty or has met its rate limit. When the remaining
high-priority queue is serviced, the scheduler can move on to the next scheduling
priority level.

Shaping adds latency/delays and is therefore not the ideal way to
limit traffic in a LLQ. Consider Connection Admission Control
(CAC) mechanisms such as ingress policing or hard rate limiting.

Deficit counter
PQ-DWRR uses the deficit counter to determine whether a queue has enough
credits to transmit a packet. It is initialized to the queue’s quantum, which is a
function of its transmit rate, and is the number of credits that are added to the
queue every quantum.

Scheduler Priority Levels
As noted previously, Trio PFEs support priority-based MDWRR at five priority levels.
These are:

Guaranteed high (GH)
Guaranteed medium (GM)
Guaranteed low (GL)
Excess high (EH)
Excess low (EL)

The first three levels are used for traffic in the guaranteed region, which is to say traffic
that is sent within the queue’s configured transmit rate. Once a queue has reached the
configured guaranteed rate for a given guaranteed level, it either stops sending, for
example in the case of a hard rate limit using exact, or it transitions to one of the two
excess regions based on the queue’s configuration. When so desired, you can configure
a queue with 0 transmit weight such that it may only send excess traffic, or if desired
prevent a queue from using any excess bandwidth using either the exact, rate-limit,
or excess-priority none options. Figure 5-16 shows how priority-based scheduling
works over the different priorities.

Trio Scheduling and Queuing | 395

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-16. Trio Priority-Based Scheduling.

The figure shows the five scheduler priorities that are found at all levels of the Trio
scheduling hierarchy. While only one set is shown, recall that scheduling can occur in
three places in the current H-CoS architecture. However, due to priority inheritance
(described in the following), it can be said that at any given time all three levels select
the same priority level, which is based on the queue with the highest priority traffic
pending, such that we can focus on a single layer for this discussion. It’s important to
note that queues and hardware priority are a many-to-one mapping, in that a single
priority level can be assigned to all queues if desired; note that such a setting effectively
removes the PQ from the PQ-DRR scheduling algorithm as it places all queues on an
equal footing.

The scheduler always operates at the highest priority level that has traffic pending. In
other words, the scheduler first tries to provide all high-priority queues with their con-
figured transmit weights before moving down to the next priority level where the pro-
cess repeats. Priority levels that have no active queues are skipped in a work-conserving
manner. Traffic at the lowest priority level (excess-low) can only be sent when the sum
of all traffic for all active priorities above it is less than the interface’s shaping rate. As
previously noted, priority-based scheduling can lead to starvation of lower classes if
steps are not taken to limit the capacity of higher priority queues.

Once a given priority level becomes active, the scheduler round-robins between all the
queues at that level, until a higher level again interrupts to indicate it has new traffic
pending or until all queues at the current priority level are empty, the latter allowing
the scheduler to move on to service traffic at the next lowest priority.

Scheduler to Hardware Priority Mapping

While Trio hardware supports five distinct hardware priorities, the Junos CLI is a bit
more flexible in that it predates Trio and supports a wide range of networking devices.

396 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

As such, not all supported Junos CLI scheduler or TCP priorities map to a correspond-
ing hardware scheduling priority. Table 5-11 shows the mappings between Trio and
Junos CLI priorities.

Table 5-11. Scheduler to Hardware Priority Mappings.

CLI Scheduler Priority
HW Pri:
TX < CIR

HW Pri: TX
> CIR Comment

Strict-high 0 0 GH: Strict-high and high have same hardware priority, but strict-high
is not demoted as it should be shaped or rate limited to transmit rate.

High 0 3/4 GH: Excess level depends on configuration, default is GH.

Medium-high

Medium-low

1 3/4 GM: Excess level depends on configuration, default is EL. The two
medium CLI priorities share a HW priority. Can use RED/PLP to dif-
ferentiate between the two.

Low 2 3/4 GL: Excess level depends on configuration. Cannot combine with ex-
cess none.

Excess priority high NA 3 EH: Trio has two excess levels; this is the highest of them.

Excess priority medium-
high

NA 3 NA: Commit error, not supported on Trio.

Excess priority medium-
low

NA 4 NA: Commit error, not supported on Trio.

Excess priority low NA 4 GL: The lowest of all priorities.

Excess priority none NA NA, excess
traffic is not
permitted.

Traffic above CIR is queued (buffered), can be sent only as G-Rate.

In Table 5-11, hardware priority levels 0 to 2 reflect in-profile or guaranteed rate traffic,
which is to say traffic at or below the queue’s transmit rate.

Guaranteed High (GH), or just high, is the highest of the hardware priorities and is
shared by both high and strict high. The difference is that by default Strict High (SH)
gets 100% of an interface’s bandwidth if not rate limited or shaped, and therefore it
cannot exceed transmit rate and go negative at the queue level. A SH queue that is
shaped or rate limited is also unable to exceed its limits, again not going into excess at
the queue level.

Testing shows that both SH and H are subjected to priority demotion at scheduler
nodes when per priority shaping rates are exceeded.

The medium-high and medium-low scheduler priorities both map to Guaranteed Medium
(GM) and so share a hardware priority level, which affords them the scheduling be-
havior from a priority perspective. You can set medium-low to have a high PLP and
then use a WRED profile to aggressively drop PLP high to differentiate between the
two medium levels of service if desired.

Trio Scheduling and Queuing | 397

www.it-ebooks.info

http://www.it-ebooks.info/

Priorities 3 and 4 represent the Excess High (EH) and Excess Low (EL) priorities. This
level is used by queues for traffic above the queue’s transmit rate, but below the queue’s
shaping or PIR rate. Whenever the queue is sending above its transmit rate, it switches
to either EH or EL, based on configuration. EH and EL can also represented any guar-
anteed level priority (GH, GM, GL), after it has been demoted at a scheduler node in
response to exceeding per priority shapers.

You can block both behaviors with an excess setting of none, which is detailed later.

Priority Propagation

As mentioned previously, a queue demotes its own traffic to the configured excess
region once it has met the configured transmit rate. A queue that is set for strict high
is the exception. Such a queue is provided with a transmit rate that equals the interface’s
rate (shaped or physical), and as such cannot go negative. Typically, a strict high queue
is rate limited or shaped (to prevent starvation of lesser priority queues), but any queue
that is rate limited/shaped to its transmit rate must also remain within the guaranteed
region and is therefore inherently limited from excess bandwidth usage.

Therefore, in H-CoS, the priority of a queue is determined strictly by its scheduler
configuration (the default priority is low), and whether the queue is within its config-
ured transmit rate. However, the other hierarchical schedulers do not have priorities
explicitly configured. Instead, the root and internal scheduling nodes inherit the pri-
ority of their highest priority grandchild/child through a mechanism called priority
propagation. The inherited priority may be promoted or demoted at Level 3 nodes, in
a process described subsequently.

The specific priority of a given node is determined by:

The highest priority of an active child.
If an L3 node, also factor whether above its configured guaranteed rate (CIR) (only
relevant if the physical interface is in CIR mode).

The result is that a high-priority queue should only have to wait for a period of time
that is equal to the transmission time of a single MTU-sized packet before the L1, L2,
and L3 schedulers sense a higher priority child is active via priority propagation. As
soon as the current low-priority frame is transmitted, the scheduler immediately jumps
back to the highest active priority level where it can service the new high-priority traffic.
Figure 5-17 shows the priority propagation process.

398 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-17. Scheduler Node Priority Propagation Part 1.

The figure holds a wealth of information, so let’s begin with an overview. First, note
that a full four-level hierarchical scheduler model is shown and that it’s based on S-
VLAN IFL-Sets at level 2 and C-VLAN based IFLs at level 3, each with a set of queues
at level 4. The queues have a mix of SH, H, M, and L priority schedulers configured.
The queues with traffic pending have their configured priority shown, both in CLI terms
of H, M, and L, and using the Trio hardware priority values that range from 0 to 2 for
traffic below the transmit rate. All queues are configured for an excess priority of high,
with the exception of the SH queue as it can technically never enter an excess region,
making such a setting nonapplicable.

The scheduler nodes at level 2 and 3 are shown with both a PIR (shaped rate) as well
as a CIR (guaranteed rate). In keeping with best practice, note that the sum of the CIRs
assigned to a node’s children is then carried down to become the lower level node’s
CIR. This is not necessarily the case with the PIRs, which may or may not be set to
equal or excess the sum of the node’s child PIRs. For example, note how the sum of
PIRs for the two S-VLAN nodes sums to 600 Mbps, which is 100 Mbps over the PIR
configured at the IFD level. While the two IFL-Sets can never both send at their shaped
rates simultaneously, the sum of their CIRs is below the IFD’s shaped rate, and no CIRs

Trio Scheduling and Queuing | 399

www.it-ebooks.info

http://www.it-ebooks.info/

are overbooked in this example, thereby making the guaranteed rates achievable by all
queues simultaneously. Such a practice makes good CoS sense; given that PIR is a
maximum and not a guaranteed rate, many users do not feel compelled to ensure that
all nodes can send at their shaped rates at the same time. Generally, the opposite is true
for CIR or guaranteed rates. In order to ensure that all nodes can obtain their guaranteed
rate at the same time, you must ensure that the CIR of one node is not overbooked by
a lower level node.

Junos H-CoS allows you to overbook CIR/guaranteed rates when in PIR/CIR mode.
While supported, overbooking of CIR is not recommended. Overbooked CIR is not
supported in per unit scheduling modes and is not applicable to port-level CoS, which
has only PIR mode support.

While you can overbook a queue’s shaping rate (PIR) with respect to its
level 3 (IFL) node’s PIR, it should be noted that Junos is expected to
throw a commit error if the sum of the queue transmit rates (as a per-
centage or absolute) exceeds a lower level node’s PIR, as such a config-
uration guarantees that the queue’s transmit rates can never be honored.
In testing the v11.4R1 release, it was found that the expected commit
error was not seen unless a Remaining Traffic Profile (RTP) with a
scheduler-map is used. PR 784970 was opened to restore the expected
commit error when the queue transmit rate exceeds either IFL or IFL-
Set shaped rates.

The instant of time captured in the figure has the queues for C-VLANs 0 and 2 when
they have just met their configured transmit weight. In this example, the SH queue does
not have a rate limit, making its transmit rate statement meaningless as it inherits the
full 100% rate of the interface, but we still speak in terms of it being above or below its
transmit weight to help explain the resulting behavior.

The scheduler node for C-VLAN 0 senses the SH queue has traffic pending, which
means that of all queues in the hierarchy it’s got the highest current priority (again,
despite it being above the transmit rate that is set due to being SH). Inheritance results
in the queue’s SH priority (0) value being inherited by the S-VLAN 0 scheduler node
at level 2, a process repeated at the IFD level scheduler, resulting in the SH queue being
serviced first, as indicated by the dotted line.

Meanwhile, over at C-VLAN 2, the high-priority queue exceeded its transmit rate lead-
ing to demotion into excess priority high, causing its level 3 scheduler node to inherit
that same value, as it’s currently the highest priority asserted by any of its children (the
queues).

The sequence continues in Figure 5-18.

400 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-18. Scheduler Node Priority Propagation Part 2.

Because C-VLAN 3 has not entered into excess range yet, it remains at M priority (1).
As a result, the L2 scheduler node for S-VLAN 1 inherits the highest active priority,
which here is the medium-priority grandchild (queue) at C-VLAN 3, resulting in that
queue being serviced, as represented by the second dotted line.

In this stage of events, the SH queue at C-VLAN 0 is empty. Given all other queues
have met their transmit rates at this node, the priority drops to the configured excess
low range, causing its level 3 scheduler node to inherit the priority value 3. With no
level 0 priority queues pending, the scheduler drops to the next level and services C-
VLANs 1 and 3; as these queues are at the same priority, the scheduler will round-robin
between them, dequeueing one packet on each visit until the queues are either empty
or reach their transmit rate, causing their priority to drop.

Figure 5-19 completes the sequence.

Trio Scheduling and Queuing | 401

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-19. Scheduler Node Priority Propagation Part 3.

In Figure 5-19, all H and M priority queues have been emptied. This makes C-VLAN
4’s low-priority queue, at priority 2, the highest active priority in its level 3 and level 2
parent/grandparent nodes, resulting in the low-priority queue being serviced.

Though not shown, with all in-profile queues serviced and SH still empty, the scheduler
moves on to service excess traffic at C-VLANs 0 and 2. Because all queues have been
set to use the same excess priority in this example, the result is the scheduler moves on
to service the H/L queues at C-VLAN 0 and the H queue at C-VLAN 2 in round-robin
fashion according to their excess weights, rather than simple round-robin. If during
this time another queue asserts a higher priority, the inheritance mechanism ensures
that queue is serviced as soon as the current packet is dequeued, thus ensuring only
one MTU worth of serialization delay for higher priority traffic at this scheduling block.

Level 2 and Level 3 scheduler nodes have the ability to
promote excess levels into the guaranteed low region, as well as to demote guaranteed
low into an excess region, as described previously in the “The H-CoS Reference
Model” on page 350 .

Priority Promotion and Demotion.

402 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduler nodes perform both types of demotion: G-Rate and per priority shaping. The
former occurs when a scheduling node’s G-Rate credits fall low and it demotes GL into
the excess region. The second form can occur for GH, GM, or GL, as a function of a
per priority shaper, which demotes traffic in excess of the shaper into an excess region.
Promotion and demotion of G-Rate at L1 scheduler nodes is not supported, as these
nodes have no concept of a guaranteed rate in the current H-CoS reference model.

At the queue level, priority is handled a bit differently. Queues don’t factor scheduler
node G-Rates; instead, they perform promotion/demotion based strictly on whether
they are sending below or above their configured transmit rate. Queue-level priority
demotion occurs for GH, GM, and GL, with the specific excess priority level being
determined by a default mapping of SH/H to EH and M/L to EL, or by explicit con-
figuration at the queue level.

Queues versus Scheduler Nodes
It’s easy to gets queues and scheduler nodes confused, but they are distinctly different.
Queues are that which is scheduled and which hold the actually notification cells that
represent packets slated for transmission. Scheduler nodes, in contrast, exist to select
which queue is to be serviced based on its relative priority, a function that varies de-
pending on if the queue is within, or above, its configured transmit rate.

Another key difference is the way priority is handled. Priority is explicitly configured
at queues only; scheduler nodes inherit the priority of the queue being serviced. Priority
demotion is handled differently at queues versus scheduler nodes, as described in this
section, and only a scheduler node can promote priority based on exceeding a G-Rate
or per priority shaper.

Scheduler Modes
A Trio interface can operate in one of three different scheduling modes. These are port-
level, per unit, and hierarchical modes. All MPC types support per port scheduling, but
only the dense queuing MPCs are capable of the per unit or hierarchical scheduling
modes.

Port-Level Queuing

In per port scheduling mode, a single scheduler node at the IFD level (level 1) services
a set of queues that contain traffic from all users via a single IFL. This is illustrated in
Figure 5-20.

Trio Scheduling and Queuing | 403

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-20. Trio Port-Based Queuing.

Port-level scheduling is the default mode of operation when you do not include a per-
unit-scheduler or hierarchical-scheduler statement at the [edit interfaces
<name>] hierarchy. As previously noted, all Trio MPCs are capable of operating in port-
level scheduling mode, and while the overall operation is the same, there are slight
differences in the way things are implemented on queuing versus nonqueuing cards.
On the former, the Dense Queuing ASIC (QX) handles the scheduling, while in the
latter the function is pushed off to the Buffer Management ASIC (MQ) as there is no
queuing ASIC present. When performed on a queuing MPC, port-level scheduling in-
corporates a dummy level 2 and level 3 scheduling node, as shown in Figure 5-20.

Because PIR mode requires a shaper with a guaranteed rate be attached
at either L2 or L3, and in port mode these are dummy nodes that do not
accept a TCP, port mode operation is always said to operate in PIR
mode. Currently, L1 nodes (IFD) can only shape to a PIR using a TCP,
and so the L1 scheduler does not support CIR mode.

Port-level CoS supports queue shaping, as well as a IFD and per priority shapers at the
L1 node. An example port-level CoS configuration is shown:

{master}[edit]
jnpr@R1-RE0# show class-of-service schedulers

404 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

sched_ef_50 {
 transmit-rate 2m rate-limit;
 buffer-size temporal 25k;
 priority strict-high;
}
sched_af4x_40 {
 transmit-rate 1m;
 excess-rate percent 40;
 excess-priority high;
}
sched_af3x_30 {
 transmit-rate 1m;
 excess-rate percent 30;
 excess-priority low;
}
sched_af2x_10 {
 transmit-rate 1m;
 excess-rate percent 10;
 excess-priority low;
}
sched_af1x_5 {
 transmit-rate 1m;
 excess-rate percent 5;
 excess-priority low;
}
sched_be_5 {
 transmit-rate 1m;
 shaping-rate 3m;
 excess-priority low;
}
sched_nc {
 transmit-rate 500k;
 buffer-size percent 10;
 priority high;
}

{master}[edit]
jnpr@R1-RE0# show class-of-service scheduler-maps
sched_map_pe-p {
 forwarding-class ef scheduler sched_ef_50;
 forwarding-class af4x scheduler sched_af4x_40;
 forwarding-class af3x scheduler sched_af3x_30;
 forwarding-class af2x scheduler sched_af2x_10;
 forwarding-class af1x scheduler sched_af1x_0;
 forwarding-class be scheduler sched_be_5;
 forwarding-class nc scheduler sched_nc;

jnpr@R1-RE0# show class-of-service interfaces
xe-2/0/0 {
 output-traffic-control-profile TCP_PE-P_5;
 unit 0 {
 classifiers {
 ieee-802.1 ieee_classify;
 }
 rewrite-rules {

Trio Scheduling and Queuing | 405

www.it-ebooks.info

http://www.it-ebooks.info/

 ieee-802.1 ieee_rewrite;
 }
 }
 unit 1 {
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }
}
. . .
{master}[edit]
jnpr@R1-RE0# show interfaces xe-2/0/0
vlan-tagging;
unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}
unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }
 family iso;
}

Note how the IFD, xe-2/0/0 in this example, has no per-unit-scheduler or hierarchi
cal-scheduler statements, placing it into the default port-level mode. The interface is
using a mix of Layer 2 and Layer 3 rewrite and classification rules, applied to unit 0
and 1, respectively, given the trunk between R1 and R2 supports both bridged and
routed traffic. A pure Layer 2 port, such as the S1-facing xe-2/2/0, needs only the L2
rules; in like fashion, a Layer 3 interface such as xe-2/1/1 requires only the L3 classifi-
cation and rewrite rules.

A single Traffic Control Profile (TCP) is applied at the IFD level; no unit number is
specified for the interface, and attempting to do so generates a commit error unless per
unit or hierarchical mode is in effect. As a result, both the L2 and L3 unit on the IFD
share the 5 Mbps shaper and a single set of queues. Traffic from all seven FCs/queues
is scheduled into the shaped bandwidth based on each queues transmit rate, scheduled
according to the queue’s priority, with excess bandwidth shared according to the
specified percentages.

Here the EF queue is rate limited (not shaped) to ensure it cannot starve lesser classes.
It’s also provisioned with a buffer based on temporal delay, in microseconds, again to
help limit per node delay and therefore place a cap on end-to-end delays for the real-
time service. The network control (NC) queue has been granted a larger delay buffer
than its 500 kbps transmit rate would normally have provided to help ensure less a

406 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

greater chance of delivery during congestion, albeit at the cost of a potentially higher
queuing delay; given that network control is not real-time, additional delay in favor of
reduced loss is generally a good trade.

In this port mode CoS example, the transmit rates are set to an absolute bit rate rather
than a percentage. In such cases, the sum of queue bandwidth is allowed to exceed the
L1 node’s shaping rate, such as in this case where the total queue bandwidth sums to
7.5 Mbps while the IFD is shaped to 5 Mbps.

This is not the case when rates are specified as a percentage, where the sum cannot
exceed 100%. For example, here the rates are converted to percentages that exceed
100% and a commit error is returned:

sched_ef_50 {
 transmit-rate percent 50 rate-limit;
 buffer-size temporal 25k;
 priority strict-high;
}
sched_af4x_40 {
 transmit-rate percent 20;
 excess-rate percent 40;
 excess-priority high;

}
sched_af3x_30 {
 transmit-rate percent 20;
 excess-rate percent 30;
 excess-priority low;

}
sched_af2x_10 {
 transmit-rate percent 20;
 excess-rate percent 10;
 excess-priority low;

}
sched_af1x_5 {
 transmit-rate percent 20;
 excess-rate percent 5;
 buffer-size percent 10;
 excess-priority low;
}
sched_be_5 {
 transmit-rate percent 5;
 shaping-rate 3m;
 buffer-size percent 5;
 excess-priority low;
}
sched_nc {
 transmit-rate percent 5;
 priority high;
 buffer-size percent 10;
}

Trio Scheduling and Queuing | 407

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit class-of-service scheduler-maps sched_map_pe-p]
jnpr@R1-RE0# commit
re0:
[edit class-of-service interfaces]
 'xe-2/0/0'
 Total bandwidth allocation exceeds 100 percent for scheduler-map sched_map_pe-p
error: configuration check-out failed

Standard CLI show commands are issued to confirm the
TCP is applied to the IFD, and to verify the L2 and L3 rewrite and classification rules:

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface xe-2/0/0
Physical interface: xe-2/0/0, Index: 148
Queues supported: 8, Queues in use: 8
 Output traffic control profile: TCP_PE-P_5, Index: 28175
 Congestion-notification: Disabled

 Logical interface: xe-2/0/0.0, Index: 332
 Object Name Type Index
 Rewrite ieee_rewrite ieee8021p (outer) 16962
 Classifier ieee_classify ieee8021p 22868

 Logical interface: xe-2/0/0.1, Index: 333
 Object Name Type Index
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

 Logical interface: xe-2/0/0.32767, Index: 334

The display confirms the classifiers and rewrite rules, and the application of a TCP at
the IFD level. The TCP and scheduler-map is displayed to confirm the IFD shaping rate,
as well as queue priority and bandwidth, delay buffer, and WRED settings:

{master}[edit]
jnpr@R1-RE0# run show class-of-service traffic-control-profile TCP_PE-P_5
Traffic control profile: TCP_PE-P_5, Index: 28175
 Shaping rate: 5000000
 Scheduler map: sched_map_pe-p

{master}[edit]
jnpr@R1-RE0# run show class-of-service scheduler-map sched_map_pe-p
Scheduler map: sched_map_pe-p, Index: 60689

 Scheduler: sched_be_5, Forwarding class: be, Index: 4674
 Transmit rate: 1000000 bps, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: low
 Shaping rate: 3000000 bps
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

Operation Verification: Port Level.

408 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Scheduler: sched_af1x_5, Forwarding class: af1x, Index: 12698
 Transmit rate: 1000000 bps, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: low, Excess rate: 5 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_af2x_10, Forwarding class: af2x, Index: 13254
 Transmit rate: 1000000 bps, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: low, Excess rate: 10 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_nc, Forwarding class: nc, Index: 25664
 Transmit rate: 500000 bps, Rate Limit: none, Buffer size: 10 percent,
 Buffer Limit: none, Priority: high
 Excess Priority: unspecified
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_af4x_40, Forwarding class: af4x, Index: 13062
 Transmit rate: 1000000 bps, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: high, Excess rate: 40 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_ef_50, Forwarding class: ef, Index: 51203
 Transmit rate: 2000000 bps, Rate Limit: rate-limit, Buffer size: 25000 us,
 Buffer Limit: exact, Priority: strict-high
 Excess Priority: unspecified
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

Trio Scheduling and Queuing | 409

www.it-ebooks.info

http://www.it-ebooks.info/

 Scheduler: sched_af3x_30, Forwarding class: af3x, Index: 13206
 Transmit rate: 1000000 bps, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: low, Excess rate: 30 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_null, Forwarding class: null, Index: 21629
 Transmit rate: 0 bps, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: medium-high
 Excess Priority: none
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

The show interfaces queue output confirms support for eight FCs and that currently
only BE and NC are flowing:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: be
 Queued:
 Packets : 43648 0 pps
 Bytes : 5499610 0 bps
 Transmitted:
 Packets : 43648 0 pps
 Bytes : 5499610 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 1, Forwarding classes: af1x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps

410 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 2, Forwarding classes: af2x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 3, Forwarding classes: nc
 Queued:
 Packets : 4212 12 pps
 Bytes : 396644 9040 bps
 Transmitted:
 Packets : 4212 12 pps
 Bytes : 396644 9040 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 4, Forwarding classes: af4x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps

Trio Scheduling and Queuing | 411

www.it-ebooks.info

http://www.it-ebooks.info/

 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 6, Forwarding classes: af3x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 7, Forwarding classes: null
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps

412 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

Egress queue statistics are shown for all eight forwarding classes. Of significance here
is that only one set of queues is displayed, despite there being two IFLs on the interface.
Attempts to view per IFL stats display only local traffic:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0.1
 Logical interface xe-2/0/0.1 (Index 333) (SNMP ifIndex 2978)
 Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1000] Encapsulation: ENET2
 Input packets : 10
 Output packets: 13

{master}[edit]
jnpr@R1-RE0#

To view the port mode scheduling hierarchy, we quickly issue a VTY command on the
MPC that houses the port mode CoS interface, which here is FPC 2:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 5000 0 0 0
 q 0 - pri 0/1 60689 3000 1000 0 0%
 q 1 - pri 0/1 60689 0 1000 0 5%
 q 2 - pri 0/1 60689 0 1000 0 10%
 q 3 - pri 3/0 60689 0 500 10% 0%
 q 4 - pri 0/2 60689 0 1000 0 40%
 q 5 - pri 4/0 60689 0 2000 25000 0% exact
 q 6 - pri 0/1 60689 0 1000 0 30%
 q 7 - pri 2/5 60689 0 0 0 0%
. . .

The display confirms eight queues attached to the interface. No IFL-level queuing or
information is shown. A later section details what all the scheduler queue-level settings
mean; what is important now is that the two logical units on xe-2/2/0, unit 0 for bridges
Layer 2 and unit 1 for routed L3, both share the same set of egress queues. There is no
way to provide different levels of service for one IFL versus the other, or more impor-
tantly perhaps, to isolate one from the other should excess traffic levels appear, say as
a result of a loop in the L2 network.

Trio Scheduling and Queuing | 413

www.it-ebooks.info

http://www.it-ebooks.info/

But all this soon changes as we segue into per unit scheduling. The output also confirms
the IFD level shaping rate is in effect.

Per Unit Scheduler

Figure 5-21 illustrates the per unit scheduler mode of operation.

Figure 5-21. Trio Per-Unit Mode Scheduling: Queues for Each IFL.

In per unit scheduling, the system creates a level 3 hierarchy that supports a set of
queues per IFL, or C-VLAN, rather than one set per port, as in the previous example.
The added granularity lets you provide per IFL CoS, where some IFLs are shaped dif-
ferently and perhaps even have altered scheduling behavior as it relates to priority,
transmit, and delay buffer sizes. You evoke this scheduling mode by adding the per-
unit-scheduler statement under an IFD that’s housed in a queuing MPC.

Only queuing MPCs support per unit scheduling in the current Trio
hardware.

The configuration at R1 is modified to illustrate these concepts. In this example, the
previous set of schedulers are adjusted to use the more common transmit rate as a

414 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

percentage approach, rather than specifying an absolute bandwidth rate, as this allows
for flexible scheduler usage over interfaces with wide ranging speeds or shaping rates.
The change in scheduler rate from an absolute value to a percentage has no bearing on
port level versus per unit or hierarchical CoS. The change could easily have been in-
troduced in the previous port-level CoS example:

{master}[edit]
jnpr@R1-RE0# show class-of-service schedulers
sched_af4x_40 {
 transmit-rate percent 10;
 excess-rate percent 40;
 excess-priority high;
}
sched_af3x_30 {
 transmit-rate percent 10;
 excess-rate percent 30;
 excess-priority low;
}
sched_af2x_10 {
 transmit-rate percent 10;
 excess-rate percent 10;
 excess-priority low;
}
sched_af1x_5 {
 transmit-rate percent 10;
 excess-rate percent 5;
 excess-priority low;
}
sched_be_5 {
 transmit-rate percent 10;
 shaping-rate 3m;
 excess-priority low;
}
sched_nc {
 transmit-rate percent 10;
 buffer-size percent 10;
 priority high;
}
sched_ef_50 {
 transmit-rate {
 percent 40;
 rate-limit;
 }
 buffer-size temporal 25k;
 priority strict-high;
}

A queue’s transmit rate percentage is based on the related IFL’s shaping
rate, when one is configured, or the IFD level shaping rate or port speed
is used.

Trio Scheduling and Queuing | 415

www.it-ebooks.info

http://www.it-ebooks.info/

The changes that convert R1 from port level to per unit scheduling mode are pretty
minor. In the class of service hierarchy, the scheduler map statement is removed from
the applied to the IFD (note that the IFD-level TCP is left in place to shape the IFD),
and a new TCP is defined for application to both of the IFLs on the xe-2/0/0 interface
at the [edit class-of-service interface] hierarchy:

{master}[edit]
jnpr@R1-RE0# show class-of-service interfaces xe-2/0/0
output-traffic-control-profile TCP_PE-P_5;
unit 0 {
 output-traffic-control-profile tc-ifl;
 classifiers {
 ieee-802.1 ieee_classify;
 }
 rewrite-rules {
 ieee-802.1 ieee_rewrite;
 }
}
unit 1 {
 output-traffic-control-profile tc-ifl;
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
}

Again, note that the scheduler map, which binds queues to schedulers, is now applied
at the IFL level. This permits different scheduler maps and shaping rates on a per IFL
basis; this example uses the same values for both units:

{master}[edit]
jnpr@R1-RE0# show class-of-service traffic-control-profiles
TCP_PE-P_5 {
 shaping-rate 5m;
}
tc-ifl {
 scheduler-map sched_map_pe-p;
 shaping-rate 1m;
}

The final change in switching from port to per unit mode occurs at the interfaces level
of the hierarchy, where the per-unit-scheduler statement is added to the interface:

{master}[edit]
jnpr@R1-RE0# show interfaces xe-2/0/0
per-unit-scheduler;
vlan-tagging;
unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}

416 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }
 family iso;
}

In this example, the same TCP is applied to both IFLs, thereby giving them the same
shaping and scheduling behavior. It can be argued that similar effects can be achieved
with port-level operation by providing a shaped rate of 2 Mbps at the IFD level, which
in this case matches the combined per unit shaping rates. However, per unit is providing
several advantages over port based CoS; namely, with per unit:

You can have independent IFD and IFL shaping rates.
You can use different IFL-level shapers and scheduler maps to effect different CoS
treatment.
Even if the same IFL level TCP is used, as in this example, per unit scheduling helps
provide CoS isolation between the units that share an IFL. With the configuration
shown, each IFL is isolated from traffic loads on the other; recall that in port mode
all IFLs shared the same set of queues, scheduler, and shaped rate. As such, it’s
possible for excess traffic on unit 0, perhaps resulting from a Layer 2 malfunction
that produces a loop, to effect the throughput of the Layer 3 traffic on unit 1. With
per unit, each IFL is isolated to its shaped rate when isolates other IFLs from ex-
cessive loads.

After committing the change, the effects are confirmed:

jnpr@R1-RE0# run show class-of-service interface xe-2/0/0 detail
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Link-level type: Ethernet, MTU: 1518, LAN-PHY mode, Speed: 10Gbps, Loopback: None,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : Scheduler

Physical interface: xe-2/0/0, Index: 148
Queues supported: 8, Queues in use: 7
 Output traffic control profile: TCP_PE-P_5, Index: 28175
 Congestion-notification: Disabled

 Logical interface xe-2/0/0.0
 Flags: SNMP-Traps 0x24024000 Encapsulation: Ethernet-Bridge
 bridge
Interface Admin Link Proto Input Filter Output Filter
xe-2/0/0.0 up up bridge
Interface Admin Link Proto Input Policer Output Policer
xe-2/0/0.0 up up
 bridge

 Logical interface: xe-2/0/0.0, Index: 332
 Object Name Type Index

Trio Scheduling and Queuing | 417

www.it-ebooks.info

http://www.it-ebooks.info/

 Traffic-control-profile tc-ifl Output 50827
 Rewrite ieee_rewrite ieee8021p (outer) 16962
 Classifier ieee_classify ieee8021p 22868

 Logical interface xe-2/0/0.1
 Flags: SNMP-Traps 0x4000 VLAN-Tag [0x8100.1000] Encapsulation: ENET2
 inet 10.8.0.0/31
 iso
 multiservice
Interface Admin Link Proto Input Filter Output Filter
xe-2/0/0.1 up up inet
 iso
 multiservice
Interface Admin Link Proto Input Policer Output Policer
xe-2/0/0.1 up up
 inet
 iso
 multiservice __default_arp_policer__

 Logical interface: xe-2/0/0.1, Index: 333
 Object Name Type Index
 Traffic-control-profile tc-ifl Output 50827
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

In contrast to the per port mode, now each unit is listed with its own output TCP,
which in this case contains the scheduler map that links the IFL to its own set of queues.
This is further confirmed with the output of a show interfaces queue command, which
now shows IFD-level aggregates as well as per IFL-level queuing statistics.

First the combined IFD level is verified. Only the EF class is shown to save space:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0 forwarding-class ef
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 7 in use
Egress queues: 8 supported, 7 in use
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 1493319 445 pps
 Bytes : 334496610 799240 bps
 Transmitted:
 Packets : 1493319 445 pps
 Bytes : 334496610 799240 bps
 Tail-dropped packets : 0 0 pps
 RL-dropped packets : 596051 167 pps
 RL-dropped bytes : 121594294 272760 bps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps

418 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

And now, stats from each set of IFL queues, starting with the bridged Layer 2 IFL
unit 0:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0.0 forwarding-class ef
 Logical interface xe-2/0/0.0 (Index 332) (SNMP ifIndex 5464)
Forwarding classes: 16 supported, 7 in use
Egress queues: 8 supported, 7 in use
Burst size: 0
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 1490691 222 pps
 Bytes : 333907938 399160 bps
 Transmitted:
 Packets : 1490691 222 pps
 Bytes : 333907938 399160 bps
 Tail-dropped packets : 0 0 pps
 RL-dropped packets : 586459 0 pps
 RL-dropped bytes : 119637526 0 bps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

And now unit number 1, used for Layer 3 routing:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0.1 forwarding-class ef
 Logical interface xe-2/0/0.1 (Index 333) (SNMP ifIndex 2978)
Forwarding classes: 16 supported, 7 in use
Egress queues: 8 supported, 7 in use
Burst size: 0
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 5679 222 pps
 Bytes : 1272096 398408 bps
 Transmitted:
 Packets : 5679 222 pps
 Bytes : 1272096 398408 bps
 Tail-dropped packets : 0 0 pps
 RL-dropped packets : 16738 1319 pps
 RL-dropped bytes : 3414552 2153288 bps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps

Trio Scheduling and Queuing | 419

www.it-ebooks.info

http://www.it-ebooks.info/

 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

The per unit scheduler hierarchy is displayed in the MPC:

NPC2(R1-RE0 vty)# show cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 5000 0 0 0
 xe-2/0/0.0 332 1000 0 0 0
 q 0 - pri 0/1 60689 3000 10% 0 0%
 q 1 - pri 0/1 60689 0 10% 0 5%
 q 2 - pri 0/1 60689 0 10% 0 10%
 q 3 - pri 3/0 60689 0 10% 10% 0%
 q 4 - pri 0/2 60689 0 10% 0 40%
 q 5 - pri 4/0 60689 0 40% 25000 0% exact
 q 6 - pri 0/1 60689 0 10% 0 30%
 xe-2/0/0.1 333 1000 0 0 0
 q 0 - pri 0/1 60689 3000 10% 0 0%
 q 1 - pri 0/1 60689 0 10% 0 5%
 q 2 - pri 0/1 60689 0 10% 0 10%
 q 3 - pri 3/0 60689 0 10% 10% 0%
 q 4 - pri 0/2 60689 0 10% 0 40%
 q 5 - pri 4/0 60689 0 40% 25000 0% exact
 q 6 - pri 0/1 60689 0 10% 0 30%
 xe-2/0/0.32767 334 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%

Note that now three sets of queues appear, one for each of the interface IFLs. The Layer
2 and Layer 3 IFLs, 0 and 1 respectively, show the same set of scheduling parameters,
including their 1 Mbps shaping rates that stem from the common TCP applied to both.
When desired, you can shape and schedule each IFL independently in per unit or H-
CoS scheduling modes.

You may be wondering about the third set of queues. They are there to support the
sending of LACP control traffic (as used to support AE link bonding) to the remote end
of the link even when egress queues are congested. The 32767 unit is created automat-
ically when VLAN tagging is in effect and a default scheduler map is automatically
applied which supports 95%/5% BE and NC.

Per unit scheduling mode, which is supported only on queuing MPCs in the v11.4
release, is a logical step between the extremely coarse port-level mode and the upcoming
hierarchical mode, which goes to the other extreme, with fine-grained queuing control
at multiple levels of scheduling hierarchy.

420 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Specifying the hierarchical-scheduler statement under a sup-
ported IFD provides full hierarchical CoS capabilities. Most of this chapter is devoted
to H-CoS operation, so here it’s sufficient to say that H-CoS add a new interface-
set level construct that allows scheduling and shaping among a set of IFLs, each with
their own set of queues that can be individually shaped. Refer to Figure 5-7 for an
overview of hierarchical scheduling. Refer to Table 5-3 for details on current H-CoS
scaling capabilities.

H-CoS and Aggregated Ethernet Interfaces
Aggregated Ethernet (AE) interfaces are quite common. Junos and Trio provide pow-
erful CoS support over AE interfaces, including H-CoS scheduling mode in nonlink
protection scenarios, albeit with the restrictions listed:

IFL-Sets are not supported.
Input CoS (input scheduler-map, input traffic-control-profile, input-shaping-
rate) is not supported.
Dynamic interfaces are not supported as part of AE bundle; Demux interfaces are
supported.

Aggregated Ethernet H-CoS Modes

An AE interface can operate in one of two modes when configured for H-CoS. These
are referred to as the scale and the replication modes. The scale mode is also referred
to as an equal division mode. The operating mode is determined by the setting of the
member-link-scheduler parameter at the [edit class-of-service interface <ae-inter
face-name>] hierarchy.

{master}[edit]
jnpr@R1-RE0# set class-of-service interfaces ae0 member-link-scheduler ?
Possible completions:
 replicate Copy scheduler parameters from aggregate interface
 scale Scale scheduler parameters on aggregate interface
{master}[edit]
jnpr@R1-RE0# set class-of-service interfaces ae0 member-link-scheduler

By default, scheduler parameters are scaled using the equal division mode among ag-
gregated interface member links. Figure 5-22 illustrates the key concepts of the equal
division model.

Hierarchical Scheduler.

Trio Scheduling and Queuing | 421

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-22. The Equal Share Mode of AE H-CoS.

In Figure 5-22, the two routers are connected by three links, which are bundled into
an AE bundle called ae0 at R1. Two IFLs have been provisioned on the AE bundle: IFL
0 with VLAN 100 and IFL 1 with VLAN 200. A TCP with a shaping rate of 450 Mbps
is applied to the AE0 IFD, while the PIR and CIR parameters shown are applied to the
two IFLs, again through a TCP. Note that IFL 0 gets the higher CIR and PIR rates, being
assigned 150 Mbps and 90 Mbps versus IFL 1’s 90 and 60 Mbps values.

In the equal division mode, the IFD’s shaping bandwidth is divided equally among all
three member IFDs, netting each a derived PIR of 150 Mbps. Because traffic from the
two VLAN can be sent over any of the three constituent links, each member link is
given two logical units/IFLs, as shown, and then the AE bundle level’s IFL CoS pa-
rameters are also divided by the number of member links and applied to the respective
IFL created on those member links; thus the parameters from ae0.0 get scaled and
applied to unit 0 of the member links while ae0.1 is scaled and applied to the unit 1
members. The resulting CoS hierarchy for the AE bundle in equal share mode is shown
in ASCII art format to help illustrate the alternating nature of the way the CoS param-
eters are applied on a per unit basis.

422 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 ae0 --> PIR = 450 M
 / | \
 / | \
 _______/ | _________
 | | |
 xe-1/0/0 xe-1/0/1 xe-1/0/2
 (PIR=150M) (PIR=150M) (PIR=150M)
 / \ / \ / \
 / \ / \ / \
 / | | \ | ----+
 / | | \ | |
Subunits---> .0 .1 .0 .1 .0 .1
 / | | \ \ \
 (PIR=50M) (PIR=30M) (PIR=50M) (PIR=30M) (PIR=50M) (PIR=30M)
 (CIR=30M) (CIR=20M) (CIR=30M) (CIR=20M) (CIR=30M) (CIR=20M)

In contrast, in the replication model, all the traffic control profiles and scheduler-related
parameters are simply replicated from the AE bundle to the member links. There is no
division of shaping rate, transmit rate, or delay buffer rate as is performed in the equal
division model. ASCII art is, perhaps again, the best way to illustrate the mode
differences.

 ae0 --> PIR = 450 M
 / | \
 / | \
 _______/ | _________
 | | |
 xe-1/0/0 xe-1/0/0 xe-1/0/2
 (PIR=450M) (PIR=450M) (PIR=450M)
 / \ / \ / \
 / \ / \ / \
 / | | \ | ----+
 / | | \ | |
Subunits---> .0 .1 .0 .1 .0 .1
 / | | \ \ \
 (PIR=150M) (PIR=90M) (PIR=150M)(PIR=90M) (PIR=150M) (PIR=90M)
 (CIR=90M) (CIR=60M) (CIR=90M) (CIR=60M) (CIR=90M) (CIR=60M)

Note that now each link member is provided with the AE bundles IFD-level shaping
rate, and the AE bundles IFL traffic parameters are applied to each member without
any scaling.

Schedulers, Scheduler Maps, and TCPs
The queue level of the H-CoS hierarchy is configured by defining schedulers that are
then linked into a scheduler map, which applies the set of schedulers to a given IFL,
thus granting it queues. In contrast, a Traffic Control Profile (TCP) is a generic CoS
container that can be applied at all points of the H-CoS hierarchy to affect CIR, PIR,
and excess bandwidth handling. The TCP that is applied closest to the queue is special
in that it also references a scheduler map. As shown previously for port mode CoS, the
TCP with the scheduler map is applied at the IFD level. For per unit scheduling, the

Trio Scheduling and Queuing | 423

www.it-ebooks.info

http://www.it-ebooks.info/

TCP with a scheduler map is applied under each IFL. The primary change with H-CoS
is the ability to also apply such a TCP to IFL-Sets at level 2.

As part of your basic CoS infrastructure, you will need to define at least one scheduler
per forwarding class. Once the core is up and running, you can extend this to a multi-
service edge by defining multiple schedulers with various queue handling characteris-
tics. For example, to support various types of real-time media ranging from low-speed
voice to HD video, you may want several EF schedulers to support rates, say 64 kbps,
500 kbps, 1 Mbps, 2 Mbps, 10 Mbps, etc. Then, based on the service that is being
provisioned, a specific form of EF scheduler is referenced in the scheduler map. In effect,
you build a stable of schedulers and then mix and match the set that is need based on
a particular service definition.

Schedulers are defined at the [editclass-of-serviceschedulers] hierarchy and indicate
a forwarding class’s priority, transmit weight, and buffer size, as well as various shaping
and rate control mechanisms.

{master}[edit class-of-service]
jnpr@R1-RE0# show schedulers
be_sched {
 transmit-rate percent 30;
 priority low;
 drop-profile-map loss-priority high protocol any drop-profile be_high_drop;
 drop-profile-map loss-priority low protocol any drop-profile be_low_drop;
}
ef_sched {
 buffer-size temporal 50k;
 transmit-rate percent 60 exact;
 priority high;
 drop-profile-map loss-priority high protocol any drop-profile ef_high_drop;
 drop-profile-map loss-priority low protocol any drop-profile ef_low_drop;
}
nc_sched {
 transmit-rate percent 10;
 priority low;
 drop-profile-map loss-priority high protocol any drop-profile nc_high_drop;
 drop-profile-map loss-priority low protocol any drop-profile nc_low_drop;
}

This example supports three forwarding classes—BE, EF, and NC—and each for-
warding class’s scheduler block is associated with a priority and a transmit rate. The
transmit rate can be entered as a percentage of interface bandwidth or as an absolute
value. You can rate limit (sometimes called shape) a queue with the exact keyword,
which prevents a queue from getting any unused bandwidth, effectively capping the
queue at its configured rate. Trio also supports hard policing rather than buffering using
the rate-limit keyword. If there are not enough choices for you yet, alternatively, you
can block a queue from using any excess bandwidth with excess priority none, with
results similar to using rate limit.

In this example, the EF scheduler is set to high priority and is shaped to 60% of the
interface speed, even when all other schedulers are idle, through the addition of the

424 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

exact keyword. Using exact is a common method of providing the necessary forwarding
class isolation when a high-priority queue is defined because it caps the total amount
of EF that can leave each interface to which the scheduler is applied. As a shaper, this
exact option does increase delays, however. When a low latency queue (LLQ) is desired,
use the rate-limt option in conjunction with a temporally sized buffer.

With the configuration shown, each of the three forwarding classes are guaranteed to
get at least their configured transmit percentages. The EF class is limited to no more
than 60%, while during idle periods both the BE and NC classes can use 100% of egress
bandwidth. When it has traffic pending, the high-priority EF queue is serviced as soon
as possible—that is, as soon as the BE or NC packet currently being serviced has been
completely dequeued.

Assuming a somewhat worst-case T1 link speed (1.544 Mbps), and a default MTU of
1,504 bytes, the longest time the EF queue should have to wait to be serviced is only
about 7.8 milliseconds (1/1.5446 * [1504 * 8]). With higher speeds (or smaller packets),
the servicing delay becomes increasingly smaller. Given that the typical rule of thumb
for the one-way delay budget of a Voice over IP application is 150 milliseconds, as
defined in ITU’s G.114 recommendation, this PHB can accommodate numerous hops
before voice quality begins to suffer.

Scheduler Maps

Once you have defined your schedulers, you must link them a set of queues on an IFL
using a scheduler-map. Scheduler maps are defined at the [editclass-of-servicesched
uler-maps] hierarchy.

{master}[edit class-of-service]
jnpr@R1-RE0# show scheduler-maps
three_FC_sched {
 forwarding-class best-effort scheduler be_sched;
 forwarding-class expedited-forwarding scheduler ef_sched;
 forwarding-class network-control scheduler nc_sched;
}

Applying a scheduler-map to an interface places the related set of schedulers and drop
profiles into effect. The older form of configuration places the scheduler map directly
on the IFD or IFL; the former is shown here:

[edit class-of-service]
lab@Bock# show interfaces
fe-0/0/0 {
 scheduler-map three_FC_sched;
}

The newer and preferred approach is to reference the map within a TCP:

{master}[edit class-of-service]
jnpr@R1-RE0# show traffic-control-profiles
TCP_PE-P_5 {
 scheduler-map sched_map_pe-p;

Trio Scheduling and Queuing | 425

www.it-ebooks.info

http://www.it-ebooks.info/

 shaping-rate 5m;
}

{master}[edit class-of-service]
jnpr@R1-RE0# show interfaces xe-2/0/0
output-traffic-control-profile TCP_PE-P_5;
unit 0 {
 classifiers {
 ieee-802.1 ieee_classify;
. . .

Defining scheduler blocks that are based on a transmit percentage rather than an ab-
solute value, such as in this example, makes it possible to apply the same scheduler-
map to all interfaces without worrying whether the sum of the transmit rates exceeds
interface capacity.

Why No Chassis Scheduler in Trio?
Because it is simply not needed, that’s why. The chassis-schedule-map statement is
designed for use on systems that were designed around four queues, when using IQ/
IQ2EPICs, which offered support for eight queues. In these cases, the default behavior
of the chassis scheduler when sending into the switch fabric was to divide the band-
width into quarters, and sent one-quarter of the traffic over each of the four chassis
queues (all at low priority). Because MX routers support eight queues, the default
chassis scheduler does not need to be overridden, making this option irrelevant for MX
platforms.

You configure a WRED drop profile at the [editclass-of-
servicedrop-profiles] hierarchy. WRED drop profiles are placed into effect on an
egress interface via application of a scheduler-map. Recall that, as shown previously,
the scheduler-map references a set of schedulers, and each scheduler definition links to
one or more drop profiles. It is an indirect process, to be sure, but it quickly begins to
make sense once you have seen it in action.

Here are some examples of drop profiles, as referenced in the preceding scheduler-
map example:

{master}[edit class-of-service]
jnpr@R1-RE0# showdrop-profiles
be_high_drop {
 fill-level 40 drop-probability 0;
 fill-level 50 drop-probability 10;
 fill-level 70 drop-probability 20;
}
be_low_drop {
 fill-level 70 drop-probability 0;
 fill-level 80 drop-probability 10;
}
ef_high_drop {
 fill-level 80 drop-probability 0;

Configure WRED Drop Profiles.

426 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 fill-level 85 drop-probability 10;
}
ef_low_drop {
 fill-level 90 drop-probability 0;
 fill-level 95 drop-probability 30;
}
nc_high_drop {
 fill-level 40 drop-probability 0;
 fill-level 50 drop-probability 10;
 fill-level 70 drop-probability 20;
}
nc_low_drop {
 fill-level 70 drop-probability 0;
 fill-level 80 drop-probability 10;
}

In this example, the drop profiles for the BE and NC classes are configured the same,
so technically a single-drop profile could be shared between these two classes. It’s best
practice to have per class profiles because ongoing CoS tuning may determine that a
particular class will perform better with a slightly tweaked WRED threshold setting.

Both the BE and NC queues begin to drop 10% of high-loss priority packets once the
respective queues average a 50% fill level. You can specify as many as 100 discrete
points between the 0% and 100% loss points, or use the interpolate option to have all
the points automatically calculated around any user-supplied thresholds. A similar ap-
proach is taken for the EF class, except it uses a less aggressive profile for both loss
priorities, with discards starting at 80% and 90% fill for high and low loss priorities,
respectively. Some CoS deployments disable RED (assign a 100/100 profile) for real-
time classes such as EF, because these sources are normally UDP-based and do not
react to loss in the same way that TCP-based applications do.

The be_high drop profile is displayed:

{master}[edit]
jnpr@R1-RE0# run show class-of-service drop-profile be_high_drop
Drop profile: be_high_drop, Type: discrete, Index: 27549
 Fill level Drop probability
 40 0
 50 10
 70 20

To provide contrast, the be_high profile is altered to use interpolate, which fills in all
100 points between 0% and 100% loss, as constrained by any user-specified fill/drop
probability points:

{master}[edit]
jnpr@R1-RE0# show class-of-service drop-profiles be_high_drop
interpolate {
 fill-level [40 50 70];
 drop-probability [0 10 20];
}

{master}[edit]

Trio Scheduling and Queuing | 427

www.it-ebooks.info

http://www.it-ebooks.info/

jnpr@R1-RE0# run show class-of-service drop-profile be_high_drop
Drop profile: be_high_drop, Type: interpolated, Index: 27549
 Fill level Drop probability
 0 0
 1 0
 2 0
. . .
 51 10
 52 11
 54 12
 55 12
 56 13
 58 14
 60 15
 62 16
 64 17
 65 17
 66 18
 68 19
 70 20
 72 25
. . .
 96 89
 98 94
 99 97
 100 100

Scheduler Feature Support

Schedulers are a critical component of the Junos CoS architecture. Capabilities vary by
hardware type. Table 5-13 highlights key capabilities and differences between Trio
hardware and the previous I-chip-based IQ2 interfaces. In this table, the OSE PICs
refer to the 10-port 10-Gigabit OSE PICs (described in some guides as the 10-Gigabit
Ethernet LAN/WAN PICs with SFP+).

Table 5-12. Comparing Scheduler Parameters by PIC/Platform.

Scheduler Parameter
M320/T-
Series Trio MPC IQ PIC IQ2 PIC IQ2E PIC

OSE on T-
Series

Enhanced IQ
PIC

Exact Y Y Y - - Y Y

Rate limit - Y - Y Y Y Y

Traffic Shaping - Y - - Y Y Y

More than one H Pri
Queue

Y Y Y - Y - Y

Excess Priority Sharing - Y - - - - Y

H-CoS - Y (Q/EQ
MPC)

- - Y - -

428 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Traffic Control Profiles

As mentioned, a TCP is a CoS container that provides a consistent and uniform way of
applying CoS parameters to portion of the H-CoS hierarchy. As of v11.4, TCP con-
tainers support the following options:

{master}[edit]
jnpr@R1-RE0# set class-of-service traffic-control-profiles test ?
Possible completions:
> adjust-minimum Minimum shaping-rate when adjusted
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> delay-buffer-rate Delay buffer rate
> excess-rate Excess bandwidth sharing proportion
> excess-rate-high Excess bandwidth sharing for excess-high priority
> excess-rate-low Excess bandwidth sharing for excess-low priority
> guaranteed-rate Guaranteed rate
> overhead-accounting Overhead accounting
 scheduler-map Mapping of forwarding classes to packet schedulers
> shaping-rate Shaping rate
> shaping-rate-excess-high Shaping rate for excess high traffic
> shaping-rate-excess-low Shaping rate for excess low traffic
> shaping-rate-priority-high Shaping rate for high priority traffic
> shaping-rate-priority-low Shaping overhead-accounting rate for low priority traffic
> shaping-rate-priority-medium Shaping rate for medium priority traffic
{master}[edit]

The scheduler-map statement in a TCP is only used for the TCP that is applied closest
to the queues. For H-CoS and per unit scheduler modes, this is typically the IFL level.
TCPs applied at the IFD and IFL-Set levels normally only contain shaped rates, guar-
anteed rates, and excess bandwidth sharing settings. The use of the delay-buffer-
rate option to set a reference bandwidth for use by a child node or queue was discussed
previously.

The overhead-accounting option in a TCP is used to alter how
much overhead is factored into shaping and G-Rates, and is designed to accommodate
different encapsulations, such as frame to cell for ATM-based B-RAS/DSLAM appli-
cations, or to simply account for the presence of one versus two VLAN tags in a stacked/
Q-in-Q environment. Cell and frame modes are supported, with the default being frame
mode.

As an example, consider that a B-RAS aggregator may receive untagged frames from its
subscribers while the MX, upstream, receives dual-tagged traffic resulting in eight extra
bytes being added to the frame, at least from the viewpoint of the subscriber, who likely
sent untagged traffic to begin with. In this case the overhead accounting function is
used to remove eight bytes (−8) from the accounting math, such that the end user’s
realized bandwidth more closely matches the service definition and reflects the (un-
tagged) traffic that user actually sends and receives, thereby avoiding any indirect pen-
alty that stems from the network’s need to impose VLAN tags on a per service and
subscriber basis.

Overhead Accounting on Trio.

Trio Scheduling and Queuing | 429

www.it-ebooks.info

http://www.it-ebooks.info/

The available range is −120 through 124 bytes. The system rounds up
the byte adjustment value to the nearest multiple of 4. For example, a
value of 6 is rounded to 8, and a value of −10 is rounded to −8.

Trio differs from IQ2 interfaces in that by default it factors Ethernet Layer 1 overhead,
including 20 bytes for the preamble and interframe gaps, as well as the Ethernet frame
overhead of 18 bytes, as used for MAC addresses, type code, and FCS. Thus, the default
shaping overhead for Trio is 38 bytes per frame. To remove the preamble and IPG from
the calculator, subtract 20 bytes:

{master}[edit]
jnpr@R1-RE0# show class-of-service traffic-control-profiles tc-ifd
overhead-accounting frame-mode bytes −20;

And, to confirm the change TCP is displayed in operational CLI mode:

{master}[edit]
jnpr@R1-RE0# run show class-of-service traffic-control-profile tc-ifd
Traffic control profile: tc-ifd, Index: 50819
 Scheduler map: <default>
 Overhead accounting mode: Frame Mode
 Overhead bytes: −20

Trio Scheduling and Priority Summary
This section detailed Trio scheduling modes and behavior, including priority demotion
at both queues and scheduler nodes, as well as the default behavior and configuration
options for scheduler burst sizes and queue/scheduler node delay bandwidth buffers.
Excess bandwidth sharing, and how this relates to an interfaces mode, as either PIR or
PIR/CIR, was also dicussed.

MX Trio CoS Defaults
Junos software comes with a set of default CoS settings that are designed to ensure that
both transit and control plane traffic is properly classified and forwarded. This means
all Juniper boxes are IP CoS enabled, albeit at a low level of functionality, right out of
the box, so to speak. You will want to modify these defaults to tailor behavior, gain
support for additional forwarding classes, and to ensure consistent classification and
header rewrite operations throughout your network. A summary of default CoS char-
acteristics includes the following:

Support for two forwarding classes (BE and NC) and implements for an IP prece-
dence-style BA classifier that maps network control into queue 3 while all other
traffic is placed into queue 0 as BE.

430 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

A scheduler is placed into effect on all interfaces that allocates 95% of the band-
width to queue 0 and the remaining 5% to queue 3. Both of the queues are low-
priority, which guarantees no starvation in any platform.
A default WRED profile with a single loss point is placed into effect. The 100%
drop at 100% fill setting effectively disables WRED.
No IP packet rewrite is performed with a default CoS configuration. Packets are
sent with the same markers as when they were received.
No MPLS EXP or IEEE802.1p rewrites. The former is a departure from CoS defaults
on M/T series platforms, which have a default EXP rewrite rule in effect that sets
EXP based on queue number (0 to 3) and PLP.
Per port scheduling is enabled, no shaping or guaranteed rates are in effect, and
IFD speed is the factor for all bandwidth and delay buffer calculations.

Four Forwarding Classes, but Only Two Queues
The default CoS configuration defines four forwarding classes—BE, EF, AF, and NC—
that are mapped to queues 0, 1, 2, and 3, respectively. However, as noted previously,
there is no default classification that will result in any traffic being mapped to either
the AF or the EF class. This is good, because as also noted previously, no scheduling
resources are allocated to queue 1 or 2 in a default CoS configuration. Some very in-
teresting and difficult-to-solve problems occur if you begin to classify AF or EF traffic
without first defining and applying schedulers for those classes. Doing so typically
results in intermittent communications (some small trickle credit is given to 0% queues
to prevent total starvation, along the lines of two MTUs worth of bandwidth and buffer)
for the AF/EF classes, and this intermittency is tied to the loading levels of the BE and
NC queues given that when there is no BE or NC traffic, more AF/EF can be sent,
despite the 0% default weighting.

{master}[edit]
jnpr@R1-RE0# show class-of-service

{master}[edit]
jnpr@R1-RE0#

With no CoS configuration present, the default FCs and schedulers are shown:

{master}[edit]
jnpr@R1-RE0# run show class-of-service forwarding-class
Forwarding class ID Queue Restricted Fabric Policing SPU
 queue priority priority priority
 best-effort 0 0 0 low normal low
 expedited-forwarding 1 1 1 low normal low
 assured-forwarding 2 2 2 low normal low
 network-control 3 3 3 low normal low
{master}[edit]
jnpr@R1-RE0# run show class-of-service scheduler-map
Scheduler map: <default>, Index: 2

 Scheduler: <default-be>, Forwarding class: best-effort, Index: 21

MX Trio CoS Defaults | 431

www.it-ebooks.info

http://www.it-ebooks.info/

 Transmit rate: 95 percent, Rate Limit: none, Buffer size: 95 percent,
 Buffer Limit: none, Priority: low
 Excess Priority: low
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: <default-nc>, Forwarding class: network-control, Index: 23
 Transmit rate: 5 percent, Rate Limit: none, Buffer size: 5 percent, Buffer Limit:
none, Priority: low
 Excess Priority: low
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

Recognizing CoS Defaults Helps Spot Errors and Mistakes
Anytime you see a scheduler with 95%/5% for queues 0 and 3, it’s a really good indi-
cation you are dealing with a default CoS configuration. When this is unexpected, check
to make sure the CoS stanza or the interface within the CoS stanza is not deactivated.
If all else fails and the configuration is correct, check the cosd or messages log while
committing the configuration (consider using commit full as well). In some cases, CoS
problems, either relating to unsupported configurations or lack of requisite hardware,
are not caught by the CLI, but are reported in the log. In some cases, an error results
in the configured CoS parameter being ignored, in which case the interface gets the
default CoS setting for some or all parameters.

Default BA and Rewrite Marker Templates
Junos creates a complete set of BA classifiers and rewrite marker tables for each sup-
ported protocol family and type, but most of these tables are not used in a default CoS
configuration. For example, there is both a default IP precedence (two actually) and a
default DSCP classifier and rewrite table. You can view default and custom tables with
the showclass-of-serviceclassifier or showclass-of-servicerewrite-rule command.

The default values in the various BA classifier and rewrite tables are chosen to represent
the most common/standardized usage. In many cases, you will be able to simply apply
the default tables. Because you cannot alter the default tables, it is suggested that you
always create custom tables, even if they end up containing the same values as the
default table. This is not much work, given that you can copy the contents of the default
tables into a custom table, and in the future you will be able to alter the customer tables
as requirements change. For example, to apply the default EXP rewrite rules include

432 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

the rewrite-rules exp default statement at the [edit class-of-service interfaces
interface-name unit logical-unit-number] hierarchy level.

In a default configuration, input BA classification is performed by the ipprec-
compatibility table and no IP rewrite is in effect, meaning the CoS marking of packets
at egress match those at ingress.

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface xe-2/0/0
Physical interface: xe-2/0/0, Index: 148
Queues supported: 8, Queues in use: 4
Total non-default queues created: 8
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

 Logical interface: xe-2/0/0.0, Index: 332

 Logical interface: xe-2/0/0.1, Index: 333
 Object Name Type Index
 Classifier ipprec-compatibility ip 13

. . .

The output from this IP- and family bridge-enabled interface confirms use of the default
scheduler map and the absence of any rewrite rules. Note the default IP precedence-
based classifier is in effect on the Layer 3 unit; in contrast, the Layer 2 bridge unit has
no default IEEE802.1p classifier.

ToS Bleaching?
ToS bleaching is a term used to describe the resetting, or normalization, of ToS mark-
ings received from interfaces. Generally, unless you are in some special situation where
paranoia rules, the concept of an untrusted interface is limited to links that connect
other networks/external users. Given that by default all Junos IP interfaces have an IP
precedence classifier in effect, it is a good idea to at least prevent end users from sending
traffic marked with CS6 or CS7 to prevent them from getting free bandwidth from the
NC queue, in the best case, or at the worst, trying to get free bandwidth and in so doing
congesting the NC queue, which can lead to control plane flaps and all the joy that
brings.

You can use a MF classifier to reset ToS markings if you need to support more than
one FC. For IFLs that are relegated to only one FC, the best practice is fixed classifica-
tion. This statement forces all traffic received on xe-2/2/0.0 into the BE forwarding
class; at egress ToS rewrite bleaches the DSCP field (which subsumes IP precedence)
to the specified setting, which for BE is normally all 0s:

{master}[edit class-of-service]
jnpr@R1-RE0# set interfaces xe-2/2/0 unit 0 forwarding-class be

MX Trio CoS Defaults | 433

www.it-ebooks.info

http://www.it-ebooks.info/

If your network uses MPLS, you should add an explicit MPLS rewrite
rules to all core-facing interfaces to ensure predictable and consistent
MPSL EXP rewrite, which is then used by downstream P-routers to cor-
rect classify incoming MPLS traffic. Failing to do this on MX Trio plat-
forms can lead to unpredictable classification behavior as currently, the
IP precedence bits are written into the EXP field when an EXP rewrite
rules is not in place.

MX Trio CoS Defaults Summary
This section detailed the factor default behavior of Trio-based MX MPC when no ex-
plicit CoS configuration is in effect. As always, things can evolve so it’s best to check
the documentation for your release, as the defaults described here are based on
v11.4R1.

Always make sure you back up any user-defined FC with a scheduler, and be sure to
include that scheduler in the scheduler map applied to any interface that is expected
to transport that FC. Placing traffic into an undefined/default FC results a pretty ef-
fective blackhole as only minimal resources are provided to such traffic.

Predicting Queue Throughput
It took some time to get here. CoS is a big subject, and the Trio capabilities are so broad
in this regard that it can be overwhelming at first, even if you are already familiar with
the general CoS processing and capabilities of Junos platforms. This section is designed
to serve as a practical review of the key points and behaviors covered. The approach
taken here is somewhat pop quiz-like to keep things fun.

If you find yourself surprised at some of the answers, read back over the last 100 pages
or so. The truth is out there.

CoS is one of those tricky subjects; the kind where everything is working fine, and so,
feeling bored, you decide to make a small tuning adjustment, for example explicitly
assigning an excess rate to a queue that is equal to the one it has already been using
through default inheritance. Yes, a very minor, very small, seemingly innocuous
change. Yet boom! Suddenly all sorts of behaviors change and you are once again eter-
nally thankful for the rollback feature of Junos. It’s hard to test CoS in a live network
for numerous reasons that are so obvious they need not be enumerated here. The take-
away is that you should test and model the behavior of any proposed CoS change in a
lab setting to make sure you understand all behavior changes before rolling the pro-
posed change into production. Small changes really can have big impacts, and these
are often unanticipated, as the material in this section is intended to demonstrate.

434 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Where to Start?
Before jumping into the details, here’s a brief review of some important points to keep
in mind:

• The IFL shaping rate limits queue throughput. The IFD shaping rate limits IFL
throughput.

• In PIR mode, transmit rate is based on shaped speed. A queue with a 10% transmit
rate on an IFL shaped to 10 Mbps can send up to 10% of shaped speed at normal
priority (H, M, L) and is then entitled to another 10% of any remaining shaped
bandwidth with default excess rate settings.

• A queue transmit rate is a guarantee, of sorts, assuming you design things correctly.
But this is not the same as guaranteed rate/G-Rate. The latter is a function of
scheduler nodes and use of guaranteed rate in a TCP. The former is a queue-level
setting only. It’s possible for a GL queue to be in excess, for example because it
has exceeded a low transmit rate value, while the L3 scheduler node for that IFL
has excess G-Rate capacity and therefore sends the traffic as guaranteed via the
priority promotion process. The key here is that such a queue thinks it’s in excess,
and so a low excess rate setting, or blocking excess by setting excess none, can
reduce its throughput, even though the attached scheduler has remaining G-Rate.

• By default, transmit and excess rates are equal. In CIR mode, the transmit rate is
based first on CIR/guaranteed rate, and then when in excess on the PIR/shaped
rate. On a 2 Mbps CIR/10 Mbps PIR IFL, a queue with 10% transmit rate gets 10%
of 2 Mbps at its guaranteed priority level (H, M, or L) and is also able to get 10%
(by default) of the remaining PIR (8 Mbps) at its excess level (EH or EL).

• In CIR mode, if you have a lot of PIR bandwidth, it tends to favor queues with high
excess rates and priority. The opposite is also true, in that a configuration with a
large CIR tends to favor queues with high transmit rates. Here, PIR is the difference
between IFL-shaped speed and the configured guaranteed rate, and not the differ-
ence between the sum of queue transmit weights and the IFL shaping speed. An
IFL shaped to 10 Mbps with a 5 Mbps CIR has 5 Mbps of G-Rate and 5 Mbps of
PIR, regardless of how many queues you have or if the queue’s percentages are
underbooked (i.e., summing to less than 100%).

• By default, excess weighting is based on transmit rate. If you explicitly set an excess
rate for one queue, you place the IFL into the excess rate mode and all queues not
explicitly set with an excess rate gets a minimal weight of 1. If you set excess rate
on one queue, it’s a good idea to set it on all. Many users don’t anticipate the effects
of excess rate mode; you can always explicitly set minimum weights if that is what
you want, and at least the configuration makes it clear what to expect.

• A queue’s throughput is generally determined by its priority, transmit rate, excess
priority, and excess rate, in that order, but this is not always so. A queue with a
low transmit rate but with a very high excess rate can get more bandwidth then a
higher priority queue that has a higher transmit rate if the PIR-to-CIR ratio is large.

Predicting Queue Throughput | 435

www.it-ebooks.info

http://www.it-ebooks.info/

For example, setting excess none prevents even a high-priority queue from getting
any excess bandwidth, and if your CIR model has a lot of excess bandwidth, well,
there you go.

• A queue can demote GH, GM, or GL to its configured excess rate when it exceeds
the configured transmit rate. By default, SH/H gets EH while all others get EL. SH
is never demoted at the queue level when configured properly as rate limiting/
shaping should be in effect.

• SH gets 100% of the IFL-shaped rate and cannot be demoted; the transmit rate for
an SH queue is only relevant for shaping or rate limiting. You must have some form
of rate control if you deploy SH. Adding a transmit rate as percentage or as absolute
bandwidth to SH is primarily done for cosmetic reasons, unless you are using rate-
limit or exact to limit/shape the queue, in which case the limits are based on the
specified rate.

• Anytime you deploy SH, you are in effect overbooking the interface. Again, the
assumption is that you will rate limit the EF queue, but still this can make the math,
and results, less than intuitive. For example, once you subtract the SH traffic from
the G-Rate, it’s possible that a queue set to a GL priority with a 10% rate on a 10
Mbps CIR mode interface will enter the excess region long before it sends the 1
Mbps of GL traffic it was configured for. Stay tuned for details.

• In per unit mode, CIR cannot be overbooked. Watch for warnings in the logs or
look to confirm that all guaranteed rates are in fact programmed in the PFE. If an
interface cannot get its G-Rate, it gets a G-Rate of 0, and even if the underlying
shaping rate is increased to accommodate its needs you may have to flap that in-
terface before it will get the configured G-Rate.

• Be aware of the 2 Mbps G-Rate preassigned to the LACP control function on all
VLAN-tagged interfaces. In H-CoS mode, the ability to overbook means you don’t
have to increase underlying shaping rates to accommodate this scheduler’s 2 Mbps
of G-Rate bandwidth. In per unit mode, failing to do so can lead to IFLs with a 0
G-Rate. Having no G-Rate is not so bad, as long as all the other IFLs on that IFD
also lack one. However, if two IFLs are intended to contend in a predictable manner
based on the ratio of their G-Rate, and one ends up with no G-Rate, then all bets
are truly off.

• CoS schedulers are not permitted on IRB interfaces, but don’t forget to put BA or
MF classifiers there. Traffic going through an IRB is replicated, and any ingress
classification is lost in this process. This is true for both directions, L2 to L3, and
L3 back into L2.

• There is no command, CLI or shell, to tell if a queue is currently at normal versus
excess priority. Such changes can occur almost instantaneously, so it’s not clear
that such a command is useful for real-time analysis, but the history of such a
command could prove if, and how often, the queue enters excess. One of the best
ways to prove or disprove excess usage is to set the queue to H/MH, and then set
excess none (changing the priority can have side effects, but excess none is not

436 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

supported with GL, the default priority). If the queue throughput drops off, it’s a
good indication it was using excess bandwidth.

• Because of priority promotion and demotion, a GL queue can be below its transmit
rate and be in excess. In contrast, a GH/GM is never in excess until it has met
transmit rate, as these priorities cannot be demoted based on G-Rate. In like fash-
ion, a GL queue can be above its transmit and be promoted, such that it is in the
guaranteed region. If the sum of GH + GM exceed the IFL’s G-rate, GL is demoted
and the excess needed to meet GH/GM transmit rate is taken from the PIR, which
means less excess to share.

• Per priority shapers can demote any priority except GL. If a queue is set to 10 Mbps
of GH and you have a 5 Mbps priority high shaper in effect, don’t be surprised
when the queue still gets 10 Mbps. It’s just that 5 Mbps of that is now sent at EH
due to demotion at the per priority shaper. A per priority shaper is a good way to
limit the volume of a given priority, but not really effective at limiting queue
throughput.

• In v11.4R1, a SH scheduler with a rate limit bases its queue’s transmit rate against
the PIR, even when a CIER is configured. Other priorities, or SH when you do not
include rate-limit or exact, use the CIR to compute transmit speeds. Depending
on the difference between CIR and shaped/PIR rate, this can have a big impact on
EF bandwidth allocation. This behavior is only noted when transmit is a percent-
age. If you specify an absolute bandwidth, that is the value assigned.

Trio CoS Proof-of-Concept Test Lab
Figure 5-23 details a simplified lab topology that facilitates analysis of Trio CoS
behavior.

Predicting Queue Throughput | 437

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-23. CoS Test Lab Topology.

438 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, a single IFL is defined that uses four queues (0, 1, 2, and 5). The IFD
remains shaped at 10 Mbps throughout the experiment, and the ingress traffic loads
are based on 300 byte Layer 2 frames at the rates shown. The total ingress load is either
23 Mbps or 33 Mbps, which given the 10 Mbps shaping at egress from the xe-2/0/0
interface at R1 is guaranteed to induce congestion. This section focuses on queuing and
scheduling behavior; to the focus, only IP traffic is flowing. This traffic arrives at R1 for
classification and then egresses toward R2 after being scheduled and shaped. It’s this
egress behavior at R1 that serves as the area of focus in this section.

There is no IGP running, which is good, as no NC queue is provisioned for this test; a
static route at R1 for the 192.168.4.0/30 destination network ensures it knows what to
do with the test traffic and that we are immune from control plane flap and the resulting
test disruption that results.

The figure also shows a basic set of scheduler definitions, the scheduler map, as well
as the TCP used to shape the interface.

The IFD-level TCP used for shaping is adjusted to subtract 20 bytes of
overhead from its calculations. This eliminates the Layer 1 overhead and
matches the router to the tester, as the latter generates traffic based on
L2, not L1, rates.

Most of this figure remains in place as various scenarios are tested. As such, let’s take
a closer look at the schedulers that are configured. In the majority of cases, the AF2
queue consumes no bandwidth as it usually has no input load offered; in some cases,
a 10 Mbps input rate may be started.

The EF queue is a special case given its use of a SH scheduling priority. This queue
always gets served first and is only limited by the input traffic rate; recall that as SH, it
has 100% transmit rate (the configured rate does not really matter to a SH queue, except
for rate limiting/shaping) and it cannot be demoted at the queue level (it’s limited), nor
at scheduler nodes based on G-Rate given its H priority. The only thing that prevents
this queue from starving all other traffic in this configuration is the input limit of 3
Mbps that is imposed by the traffic generator. Without a rate limit or exact shaping, or
an ingress policer to limit, this would be a very dangerous configuration to deploy, not-
withstanding the lack of a dedicated NC queue to boot!

Given AF2’s usual lack of input, and the fixed behavior of the EF queue, it’s clear that
most of the analysis is directed to the interaction of the BE and AF1 queues as they
jockey for their transmit rates and a share of any remaining bandwidth.

The sum of queue transmit rates equals 100% (not counting EF’s 100%, of course),
and all queues except EF are excess eligible. With no explicit excess rate configurations,
the defaults are in place, making this a good place to begin the Trio CoS Proof of
Concept (PoC) testing.

Predicting Queue Throughput | 439

www.it-ebooks.info

http://www.it-ebooks.info/

A Word on Ratios

Before moving into specifics, it’s good to know ratios as they are used to proportion
both guaranteed and excess bandwidth. Taking Q0 and Q1 as examples, they have a
20:40 ratio between their transmit rates. That simplifies to a 1:2 ratio. Speaking in terms
of rounded numbers, the ratio for queue 0 is therefore 1:3 or 0.333, whereas the ratio
for queue 1 is 2:3 or 0.666. If there was 1 Mbps to split between these queues, then Q0
gets 1 * 0.333, or 0.333 Mbps, while queue 1 gets 1 * 0.666, or 0.666 Mbps. Summing
the two, you arrive at the total 1 Mbps that was available to be shared.

Example 1: PIR Mode

Pop Quiz 1:
How will excess bandwidth be shared?

What does a transmit rate of 20% mean in this context? Will it be 2 Mbps or 1
Mbps?

What throughput do you expect for the BE queue?

Details on the scheduler and its settings are displayed:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 10000 0 0 0
 xe-2/0/0.1 325 10000 0 0 0
 q 0 - pri 0/0 20205 0 20% 20% 0%
 q 1 - pri 2/0 20205 0 40% 40% 0%
 q 2 - pri 3/0 20205 0 40% 40% 0%
 q 5 - pri 4/0 20205 0 3000 0 0%
 xe-2/0/0.32767 326 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%

NPC2(R1-RE0 vty)# sho cos halp ifl 325
IFL type: Basic

--
IFL name: (xe-2/0/0.1, xe-2/0/0) (Index 325, IFD Index 148)
 QX chip id: 0
 QX chip dummy L2 index: −1
 QX chip L3 index: 3
 QX chip base Q index: 24
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 24 Configured 10000000 2000000 131072 153 GL EL 4 9
 25 Configured 10000000 4000000 131072 307 GM EL 4 138
 26 Configured 10000000 4000000 131072 307 GH EH 4 202

440 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 27 Configured 10000000 0 131072 1 GL EL 0 255
 28 Configured 10000000 0 131072 1 GL EL 0 255
 29 Configured 10000000 Disabled 131072 230 GH EH 4 196
 30 Configured 10000000 0 131072 1 GL EL 0 255
 31 Configured 10000000 0 131072 1 GL EL 0 255

The output goes far in answering the questions. It’s clear that transmit rates are based
on IFD shaping rate (this is PIR, so there is no G-Rate), and that excess bandwidth is
shared based on the queues transmit rate. Hence, BE at 20% gets one-half of the
weighting of the AF classes, which are both at 40%. The scheduler settings confirm
that the IFL does not have a guaranteed rate configured; G-Rates are not supported at
the IFD level. This confirms a PIR mode interface example.

Pop Quiz 1 Answers:
How will excess bandwidth be shared?

Excess is shared based on priority and excess weight. Queue 1 has its default excess
priority modified such that both queue 0 and 1 have the same excess priority,
allowing them to share according to weight. Excess weight is also at the default,
which means weighting ratio is based on queue transmit weight. At one point, only
CIR mode interfaces could be configured with excess rate parameters, as the lack
of G-Rate in PIR mode means all traffic is in excess of the 0 G-Rate used on PIR.
In v11.4, you can configure excess rate for PIR mode; this example shows usage of
the default parameter values.

What does a transmit rate of 20% mean in this context? Will it be 2 Mbps or 1 Mbps?
In PIR mode, the lesser of the IFD speed/shaping rate or IFL shaping rate is used
to calculate transmit rate values as bandwidth. In this case, the calculation is based
on the 10 Mbps IFD shaping rate; hence 20% yields 2 Mbps.

What throughput do you expect for the BE queue?
This is where the rubber meets the road, so to speak. The math:

10 Mbps PIR available

EF gets 3 M, 7 Mbps PIR remains

AF1 gets 4 Mbps of transmit based on MH priority/rate, 3 Mbps of PIR remains

BE gets 2 Mbps of transmit based on L priority weight, 1 Mbps of PIR remains

Excess bandwidth: 1M

BE gets 1 Mbps * 0.333 = 0.333 Mbps

AF1 gets 1 Mbps * 0.666 = 0.666 Mbps

Totals:

EF: 3M

BE: 2.33 Mbps (2 Mbps + 0.333 Mbps)

AF1: 4.66 Mbps (4 M + 0.666 Mbps)

Figure 5-24 shows the measured results. While not matching exactly, they are very close
and confirm the predictions for PIR mode.

Predicting Queue Throughput | 441

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-24. PIR Mode Measured Results.

Example 2: CIR/PIR Mode

The configuration at R1 is modified to add a 5 Mbps guaranteed rate to IFL 1 via the
tc_l3_ifl_5m TCP:

{master}[edit]
jnpr@R1-RE0# show | compare
[edit class-of-service traffic-control-profiles tc_l3_ifl_5m]
- shaping-rate 10m;
+ guaranteed-rate 5m;
[edit class-of-service interfaces xe-2/0/0 unit 1]
+ output-traffic-control-profile tc_l3_ifl_5m;

{master}[edit]
jnpr@R1-RE0# commit
re0:
. . .

442 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

The tc_l3_ifl_5m TCP was already in place to support a scheduler map
for the queues. It had a shaping rate of 10 Mbps specified, just like the
IFD level, so that the configuration would commit. An IFL-level TCP
must have a G-Rate, shaping rate, or excess rate statement so the shaping
rate was added to allow the commit, and use of a TCP to provide the
scheduler map. Testing showed that shaping the IFL at the same speed
as the IFD had no effect of measured throughput, making it a null IFL
layer TCP. Without a TCP, the scheduler-map needs to be directly at-
tached to the IFL unit.

This seems like a pretty minor change, but big things can come in small packages. Think
about your answers carefully, given the new interface mode.

Pop Quiz 2 Part 1:
How will excess bandwidth be shared?

What does a transmit rate of 20% mean in this context? Will it be 2 Mbps or 1
Mbps?

What throughput do you expect for the BE queue?

Details on the scheduler and its settings are displayed:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 10000 0 0 0
 xe-2/0/0.1 325 0 5000 0 0
 q 0 - pri 0/0 20205 0 20% 20% 0%
 q 1 - pri 2/0 20205 0 40% 40% 0%
 q 2 - pri 3/0 20205 0 40% 40% 0%
 q 5 - pri 4/0 20205 0 3000 0 0%
 xe-2/0/0.32767 326 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 0 0 0 0
xe-2/2/1 153 0 0 0 0
xe-2/3/0 154 0 0 0 0
xe-2/3/1 155 0 0 0 0

NPC2(R1-RE0 vty)# sho cos halp ifl 325
IFL type: Basic

--
IFL name: (xe-2/0/0.1, xe-2/0/0) (Index 325, IFD Index 148)
 QX chip id: 0

Predicting Queue Throughput | 443

www.it-ebooks.info

http://www.it-ebooks.info/

 QX chip dummy L2 index: −1
 QX chip L3 index: 3
 QX chip base Q index: 24
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 24 Configured 10000000 1000000 131072 125 GL EL 4 8
 25 Configured 10000000 2000000 131072 250 GM EL 4 136
 26 Configured 10000000 2000000 131072 250 GH EH 4 200
 27 Configured 10000000 0 131072 1 GL EL 0 255
 28 Configured 10000000 0 131072 1 GL EL 0 255
 29 Configured 10000000 Disabled 131072 375 GH EH 4 196
 30 Configured 10000000 0 131072 1 GL EL 0 255
 31 Configured 10000000 0 131072 1 GL EL 0 255

Once again, the output provided holds much gold. The biggest change is the 5 Mbps
G-Rate now shown for IFL 1; this confirms a CIR/PIR mode interface. In this mode,
queue bandwidth is based on G-Rate, and so all queue throughput values are now
halved from the previous example, despite having the same rate percentages. The excess
weights are still in the ratio of queue transmit rates but are now factored against the
guaranteed rate bandwidth these rates equate to, which as noted changed from the
previous PIR example. While the numbers change to reflect the BE rate moving from
2 Mbps to 1 Mbps, for example, the ratios are the same, thus the net effect is the same
in that they sum to 999 and queue 1 still gets twice the excess as queue 0.

Again, think carefully before you answer.

Pop Quiz 2 Part 1 Answers:
How will excess bandwidth be shared?

Excess is still shared based on excess priority and excess weight. Q1 has its default
excess priority modified such that both queue 0 and 1 have the same excess priority
so they share excess based on their weight ratio, as before. However, now the excess
rates are factored from the PIR, or excess region, which is 5 Mbps in this example.
However, the PIR region can be reduced if needed to fulfill the CIR of GH and GM
queues. As such, the CIR interface mode example brings the complexity of priority
promotion and demotion into play.

What does a transmit rate of 20% mean in this context? Will it be 2 Mbps or 1 Mbps?
In CIR mode, bandwidth is based on the guaranteed rate, which is 5 Mbps in this
example. Therefore, Q0’s 10% rate now equates to 1 Mbps; in the PIR case, it was
2 Mbps.

What throughput do you expect for the BE queue?
5 Mbps CIR/5 Mbps PIR available

EF gets 3 Mbps of G-rate, 2 Mbps CIR/5 Mbps PIR remains

AF1 gets its 2 Mbps CIR based on GM priority/rate, 0 CIR/5 Mbps PIR remains

To avoid going into negative credit, the L3 node demotes the BE queue (was at GL)
into the EL region, despite it not having sent its CIR/G-Rate. Once in GL, it no
longer has a G-Rate and must contend for excess region bandwidth!

444 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Excess bandwidth: 5 M

BE gets 5 Mbps * 0.333 = 1.665 Mbps (now at EL, demoted at L3 node)

AF1 gets 5 Mbps * 0.666 = 3.33 Mbps (now at EL, above transmit rate)

Totals:

EF: 3 Mbps (all at GH)

BE: 1.65 Mbps (all at EL)

AF1: 5.33 Mbps (2 Mbps at GM + 3.33 Mbpsat EL)

So there you go. It’s all pretty straightforward, right?

Figure 5-25 shows the measured results. Again, while not an exact match, the values
are very close and confirm the predictions for CIR/PIR mode.

Figure 5-25. CIR/PIR Mode Measured Results: 5 Mbps Guaranteed Rate.

Perhaps a bit more explanation regarding the observed behavior is warranted here. If
we take the EF and AF2x queues off the table, it leaves us to focus on the BE versus
AF1 bandwidth sharing. These two queues are set to a 20% and 40% share of the G-
Rate, yielding a 1:2 ratio, as already mentioned. Given they have the same excess pri-
ority (the default is based on their scheduling priority), they are expected to share any

Predicting Queue Throughput | 445

www.it-ebooks.info

http://www.it-ebooks.info/

excess bandwidth in the same ratio. Note that if AF1x/Q1 was modified to use excess
high priority it would be able to use all the excess bandwidth, in effect starving out Q0.

After EF is served, there is 2 Mbps of CIR and 5 Mbps of PIR bandwidth remaining.
Queue 1, with its higher priority, gets first crack at the G-Rate bandwidth, until the
queue hits its transmit rate and demotes itself; recall that at GM, this priority is not
subjected to G-Rate-based demotion at a node. In this case, the AF1 queue is able to
meet its transmit rate within the remaining G-Rate, but this leaves 0 G-Rate left, and
given BE’s demotion, and AF1 having met its transmit rate, both queues now enter
excess priority.

This puts queue 0 and 1 back on equal standing, as they now both have the same EL
priority, allowing them share the remaining 5 Mbps of PIR according to their weights.
Table 5-13 summarizes the results of going from PIR to CIR/PIR mode while all other
settings remained the same.

Table 5-13. Effects of Switching from PIR to CIR mode.

FC/Queue Offered Load Priority TX/Excess rate PIR G-Rate: 5 Mbps

BE/0 10 M L/EL 20%/20% 2.33 M 1.65M

AF1/1 10 M MH/EL 40%/40% 4.66 M 5.33M

AF2/2 0 M H 40%/40% 0 0

EF/3 3 M SH NA 3 M 3 M

Total 9.99 M 9.98 M

The delta between PIR and CIR mode may seem a bit surprising, given no queue pa-
rameters changed. We did mention this CoS stuff is hard to predict, right? The reason
for the behavior change is that in the PIR case there was 7 Mbps of excess that was
shared in a 1:2 ratio; given this was in PIR/excess range, the higher priority of queue 1
does not give it any edge over queue 0 and only its weight matters. In contrast, the CIR
case had 2 Mbps of G-Rate remaining, and this allowed Q1 to use its GM priority to
consume all remaining CIR, at which point the queues share the remaining 5 Mbps of
excess according to their weights. The result is Q1 gets an advantage over Q0 in CIR
mode that was not observed in PIR mode. A higher CIR-to-PIR ratio tends to favor
higher priority queues with larger transmit weights. The PIR case was an extreme with
0 CIR, hence BE fared better there than in the CIR case where the ratio was 1:1.

It’s always fun when things work to plan. Given this type of fun is not yet illegal, let’s
have some more!

Pop Quiz 2 Part 2:
What is the maximum rate of the AF2x queue?

Predict what will happen to BE queue throughput if the 10 Mbps AF2x flow is
started.

446 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Before you answer, it should be noted that the AF2 class is set to GH priority. This
results in scheduler round-robin between AF2 and the EF queue. Also, as AF2 gets a
default excess priority of EH, expect changes there. Remember, no queue is rate limited
other than through the input load itself.

Also, there is no configuration change. This is a 100% data-driven change in behavior
based on the absence or presence of AF2x traffic, the latter bringing it higher priority,
both for CIR and excess, into the fray.

Refer to the previous scheduler output for specifics as needed.

Pop Quiz 2 Part 2 Answers:
What is the maximum rate of the AF2x queue?

You might be tempted to think that without contention from other queues, and
lacking any form of rate limit or shaping rate, the AF1 queue can send up to IFL-
shaped speed, or 10 Mbps in this example. The presence of EF at the same priority
will limit it to no more than 7 Mbps, however. While reasonable, this is not the case.

Though perhaps not expected, the presence of AF1 at GM priority has an impact
on AF2’s maximum rate. This is because L2/L3 schedulers must honor GH and
GM CIRs, a behavior that stems from the node not being able to demote these
priorities. The result is that the scheduler ends up going into 2 Mbps negative G-
Rate credits to please both, which effectively adds 2 Mbps to the IFL’s G-Rate. The
extra bandwidth comes from the excess region, effectively taking it from AF2 where
it will otherwise dominate all excess bandwidth given its higher priority. Thus AF2
is expected to get no more than 5 Mbps of bandwidth when both EF and AF1 are
flowing.

Predict what will happen to BE queue throughput if the 10 Mbps AF2x flow is started.
A lot changes given AF2’s GH/EH priority. The higher excess priority and lack of
rate limiting means this queue can dominate all PIR/excess region bandwidth. The
BE queue’s GL priority makes it eligible for demotion at the L3 scheduler node,
making its G-Rate no longer guaranteed. It seems that the venerable BE queue may
soon feel rather slighted by the scheduler as it enters a famine state.

5 Mbps CIR/5 Mbps PIR available

EF gets 3 Mbps, 2 Mbps CIR/5 Mbps PIR remains

AF2 gets 2 Mbps based on GH priority/rate, 0 CIR/5 Mbps PIR remains

AF1 gets 2 Mbps based on GM priority/rate, −2 M CIR/3 M PIR remains. L2 and
L3 schedulers have to honor GH/GM guaranteed rates! BE at GL is demoted into
excess region at EL

Excess bandwidth: 3 M

AF2 gets all 3 Mbps (now at EH, starves both AF1 and BE for excess/PIR band-
width)

Totals:

EF: 3 Mbps (all at GH)

Predicting Queue Throughput | 447

www.it-ebooks.info

http://www.it-ebooks.info/

BE: 0 Mbps (demoted to EL at L3, starved in PIR region by AF2)

AF1: 2 Mbps (all at GM, starved in PIR region)

AF2: 5 Mbps (2 Mbps at GH + all 3 Mbps of PIR region)

Figure 5-26 shows the measured results. Again, this is close enough to confirm predic-
tions of Trio behavior are possible, though at first this may not seem the case.

Figure 5-26. CIR/PIR Mode with AF2x.

Example 3: Make a Small, “Wafer-thin” Configuration Change

Things are returned to the initial CIR interface mode state; the AF2x traffic is again
disabled. Recall that previous displays confirmed the excess rate weighting was based
on the ratio of queue transmit rate. The values are shown again to refresh:

NPC2(R1-RE0 vty)# sho cos halp ifl 325
IFL type: Basic

--
IFL name: (xe-2/0/0.1, xe-2/0/0) (Index 325, IFD Index 148)
 QX chip id: 0
 QX chip dummy L2 index: −1
 QX chip L3 index: 7
 QX chip base Q index: 56
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 56 Configured 10000000 1000000 131072 125 GL EL 4 8
 57 Configured 10000000 2000000 131072 250 GM EL 4 136
 58 Configured 10000000 2000000 131072 250 GH EH 4 200
 59 Configured 10000000 0 131072 1 GL EL 0 255

448 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 60 Configured 10000000 0 131072 1 GL EL 0 255
 61 Configured 10000000 Disabled 131072 375 GH EH 4 196
 62 Configured 10000000 0 131072 1 GL EL 0 255
 63 Configured 10000000 0 131072 1 GL EL 0 255

In this example, your goal is to simply add an explicit excess-rate proportion config-
uration to the BE queue that matches the current default value of 125; given it’s the
same value being explicitly set, this seems like a null operation as far as CoS behavior
changes:

{master}[edit]
jnpr@R1-RE0# set class-of-service schedulers sched_be_20 excess-rate proportion 125

{master}[edit]
jnpr@R1-RE0# show | compare
[edit class-of-service schedulers sched_be_20]
+ excess-rate proportion 125;

{master}[edit]
jnpr@R1-RE0# commit
re0:

Now, this is most definitely a minor change, right?

Pop Quiz 3:
How will excess bandwidth be shared?

What throughput do you expect for the BE queue?

Again, think about your answers carefully and factor them against the new scheduler
setting outputs shown:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 10000 0 0 0
 xe-2/0/0.1 325 0 5000 0 0
 q 0 - pri 0/0 20205 0 20% 20% 125
 q 1 - pri 2/0 20205 0 40% 40% 0%
 q 2 - pri 3/0 20205 0 40% 40% 0%
 q 5 - pri 4/0 20205 0 3000 0 0%
 xe-2/0/0.32767 326 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 0 0 0 0
xe-2/2/1 153 0 0 0 0
xe-2/3/0 154 0 0 0 0
xe-2/3/1 155 0 0 0 0

Predicting Queue Throughput | 449

www.it-ebooks.info

http://www.it-ebooks.info/

NPC2(R1-RE0 vty)# sho cos halp ifl 325
IFL type: Basic

--
IFL name: (xe-2/0/0.1, xe-2/0/0) (Index 325, IFD Index 148)
 QX chip id: 0
 QX chip dummy L2 index: −1
 QX chip L3 index: 3
 QX chip base Q index: 24
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 24 Configured 10000000 1000000 131072 1000 GL EL 4 8
 25 Configured 10000000 2000000 131072 1 GM EL 4 136
 26 Configured 10000000 2000000 131072 1 GH EH 4 200
 27 Configured 10000000 0 131072 1 GL EL 0 255
 28 Configured 10000000 0 131072 1 GL EL 0 255
 29 Configured 10000000 Disabled 131072 1 GH EH 4 196
 30 Configured 10000000 0 131072 1 GL EL 0 255
 31 Configured 10000000 0 131072 1 GL EL 0 255

In case it was missed, the key change here is the explicit setting places the interface into
explicit excess rate mode. In this mode, any queue that lacks an excess rate setting gets
a default exceeds rate of 0, yielding them a weighting of 1. With AF2x again out of the
picture due to no input stimulus, it’s expected that BE will now dominate the excess
bandwidth region.

Pop Quiz 3 Answers:
How will excess bandwidth be shared?

There is no change in behavior here. Excess is shared based on priority and excess
weight. With AF2 out of contention, the BE queues large excess weight will allow
it to dominate the excess region.

What throughput do you expect for the BE queue?
5 Mbps CIR/5 Mbps PIR available

EF gets 3 Mbps, 2 Mbps CIR/5 Mbps PIR remains

AF1 gets 2 Mbps based on MH priority/rate, 0 CIR/7 Mbps PIR remains, node
enters PIR region, BE at GL is demoted. AF1 enters excess having reached its
transmit rate

Excess bandwidth: 5 Mbps queue 0/1 now at 1,000:1 ratio

BE gets 5 Mbps * 0.999 = 4.995 Mbps (no G-rate, all at EL)

AF1 gets 5 Mbps * 0.001 = 0.005 Mbps (no G-rate, now at EL)

Totals:

EF: 3 Mbps (all at GH)

BE: 4.99 Mbps (all at EL)

AF1: 2 Mbps (2 Mbps at GM + 0.005 Mbps at EL)

450 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-27 shows the measured results. While not matching exactly, they are very close
and confirm the predictions for the slightly modified CIR/PIR mode experiment.

Figure 5-27. CIR/PIR Mode: Effects of Explicit Excess Priority on One Queue.

Predicting Queue Throughput Summary
The examples in this section were designed to help the reader put many abstract con-
cepts and facts regarding Trio H-CoS scheduling behavior to a practical test. Doing so
helps explain why predicting CoS behavior can be difficult and helps stress the need to
test and model CoS changes before simply putting them into production.

The next section builds on these points by demonstrating Trio CoS as part of an end-
to-end CoS solution.

CoS Lab
OK, after all that talk it’s time to get down to CoS business. In this section, you enable
your Trio-based MX network for L2 and L3 CoS, and then verify that all has gone to
plan. Figure 5-28 shows the CoS test topology.

CoS Lab | 451

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-28. The Trio CoS Test Topology.

The test topology does not use AE interfaces given that H-CoS support for IFL-Sets on
AE is not present in 11.4R1. A single 10 Gbps link is used between the switches and
routers. R1 and R2 both serve a Layer 2 domain with VLAN 100 the area of focus. The
VLAN is assigned logical IP subnet (LIS) 192.0.2.0/25. R1’s irb.100 interface is assigned
192.0.2.2, while R2 is given 192.0.2.3. The VRRP VIP, owned by R1 when operational,
is 192.0.2.1.

The redundant links in the L2 domain have been eliminated to constrain traffic to the
single path between the L2 source and receiver to help keep the focus on CoS. IS-IS
level 2 is enabled on the core backbone links between R1, R2, and R4. Passive mode is
configured on the Layer 3 source and receiver ports to ensure reachability to the asso-
ciated 192.168.x.x/30 subnetworks.

The initial goal is to configure and verify IP CoS is working for both L2 switched and
L3 routed traffic, with the focus on R1’s configuration and operation.

452 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Configure Unidirectional CoS
Virtually all IP networks are duplex in nature, which is to say traffic is both sent and
received. A CoS design tends to be symmetric as well, providing the same sets of clas-
sification, rewrite, and scheduling behavior in both directions. This is not a mandate,
however. When learning CoS in a test network, the authors believe it makes sense to
focus on a single direction. Once you have the steps down, and things are working to
your satisfaction, it’s relatively trivial to then extend the CoS design into the other
direction.

Remember, CoS only matters when things get congested. If links are less than 80%
utilized, there is no real queuing; hence, things just work. Thus, in our test network
where we have full control over traffic volumes as well as who sends and who receives,
it’s safe to leave default CoS or partial CoS in the “receive” direction, again knowing
there is no congestion in this direction and therefore no chance for lost ACKs that might
skew results if, for example, one was conducting stateful TCP-based throughput testing
(which we are not, as all test traffic is IP-based with no TCP or UDP transport).

As shown in Figure 5-28, traffic in this lab moves from top to bottom. The L2 bridged
traffic originates at port 201/1, flows via S1, R1, R2, and then S2, to arrive at receiver
port 202/1. In like fashion, the L3 routed traffic originates at port 203/1, transits R1,
R2, and then R4, to arrive at port 102/1. All links are either L2 or L3, with the exception
of the R1-R2 link, which has two units: 0 for bridged and 1 for routed IP. The MAC
addresses for the two router tester ports in the L2 domain are documented, as is the IP
addressing assignments for all L3 interfaces.

Before starting on the CoS, a quick spot check of the configuration and some opera-
tional checks are performed:

{master}[edit]
jnpr@R1-RE0# show interfaces xe-2/0/0
hierarchical-scheduler;
vlan-tagging;
unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}
unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }
 family iso;
}

{master}[edit]
jnpr@R1-RE0# run show isis adjacency
Interface System L State Hold (secs) SNPA
xe-2/0/0.1 R2-RE0 2 Up 21

CoS Lab | 453

www.it-ebooks.info

http://www.it-ebooks.info/

The display confirms the xe-2/0/0 interface’s L2 and L3 configuration, and that the IS-
IS adjacency to R2 is operational. VRRP and STP state is checked:

{master}[edit]
jnpr@R1-RE0# run show vrrp
Interface State Group VR state VR Mode Timer Type Address
irb.100 up 0 master Active A 0.072 lcl 192.0.2.2
 vip 192.0.2.1
irb.200 up 1 master Active A 0.306 lcl 192.0.2.66
 vip 192.0.2.65

{master}[edit]
jnpr@R1-RE0# run show spanning-tree bridge vlan-id 100
STP bridge parameters
Routing instance name : GLOBAL
Enabled protocol : RSTP

STP bridge parameters for VLAN 100
 Root ID : 4196.00:1f:12:b8:8f:d0
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Message age : 0
 Number of topology changes : 6
 Time since last topology change : 243505 seconds
 Local parameters
 Bridge ID : 4196.00:1f:12:b8:8f:d0
 Extended system ID : 100

The output confirms that R1 “is like a boss,” as least from the perspective of VLAN
100 and VRRP; it’s the root of the STP and the current VIP master. Routes to all loop-
back interfaces and to the L3 content ports is also verified:

{master}[edit]
jnpr@R1-RE0# run show route protocol isis

inet.0: 23 destinations, 23 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.255.2/32 *[IS-IS/18] 2d 19:34:41, metric 10
> to 10.8.0.1 via xe-2/0/0.1
10.7.255.4/32 *[IS-IS/18] 2d 19:34:41, metric 20
> to 10.8.0.1 via xe-2/0/0.1
10.8.0.2/31 *[IS-IS/18] 2d 19:34:41, metric 20
> to 10.8.0.1 via xe-2/0/0.1
192.0.2.192/26 *[IS-IS/18] 2d 19:34:41, metric 83
> to 10.8.0.1 via xe-2/0/0.1
192.168.4.0/30 *[IS-IS/18] 2d 19:34:41, metric 30
> to 10.8.0.1 via xe-2/0/0.1

iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

And, connectivity is confirmed between the loopbacks of R1 and R4:

{master}[edit]
jnpr@R1-RE0# run ping 10.7.255.4 source 10.3.255.1

454 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

PING 10.7.255.4 (10.7.255.4): 56 data bytes
64 bytes from 10.7.255.4: icmp_seq=0 ttl=63 time=0.726 ms
64 bytes from 10.7.255.4: icmp_seq=1 ttl=63 time=0.636 ms
64 bytes from 10.7.255.4: icmp_seq=2 ttl=63 time=0.620 ms
^C
--- 10.7.255.4 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.620/0.661/0.726/0.047 ms

{master}[edit]
jnpr@R1-RE0# run traceroute 10.7.255.4 no-resolve
traceroute to 10.7.255.4 (10.7.255.4), 30 hops max, 40 byte packets
 1 10.8.0.1 0.459 ms 0.342 ms 0.331 ms
 2 10.7.255.4 2.324 ms 0.512 ms 0.453 ms

Note that for R1, the 192.168.0/30 subnet is a direct connection, and so is not learned
through IS-IS. The passive setting is verified at R1:

{master}[edit]
jnpr@R1-RE0# run show isis interface
IS-IS interface database:
Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
irb.100 0 0x1 Passive Passive 100/100
lo0.0 0 0x1 Passive Passive 0/0
xe-2/0/0.1 2 0x1 Disabled Point to Point 10/10
xe-2/1/1.0 0 0x1 Passive Passive 10/10

Also of note, given the last display, is that IS-IS is also set for passive option on the IRB
interfaces. As with the L3 content ports, this setting ensures that the related Layer 2
network IP subnet is advertised into the Layer 3 domain to accommodate routing traffic
into the bridged network. On the bridged side, a default gateway/default route is used
to route inter-VLAN traffic by directing it to the VLANs default gateway, which here
is the VIP address 192.2.0.1, currently owned by R1. Connectivity from L2 into L3, via
the IRB at R1, is verified at S1:

{master:0}[edit]
jnpr@S1-RE0# show routing-options
static {
 route 0.0.0.0/0 next-hop 192.0.2.1;
}

{master:0}[edit]
jnpr@S1-RE0#

{master:0}[edit]
jnpr@S1-RE0# run traceroute 192.168.4.2 no-resolve
traceroute to 192.168.4.2 (192.168.4.2), 30 hops max, 40 byte packets
 1 192.0.2.2 1.053 ms 0.679 ms 6.107 ms
 2 10.8.0.1 2.256 ms 0.666 ms 0.614 ms
 3 192.168.4.2 2.181 ms 0.862 ms 3.691 ms

With the baseline network’s operation verified, we move into the realm of Trio CoS.

CoS Lab | 455

www.it-ebooks.info

http://www.it-ebooks.info/

Establish a CoS Baseline

CoS configurations tend to be long and repetitive, in that the majority of the CoS set-
tings found in one node are likely to be found in the next. One hallmark of a successful
CoS design is, after all, consistent and predictable handling of traffic on a node-by-node
basis; a feat that is appreciably more complicated when all routers have random of
differing configurations. Getting a baseline CoS design up and running can seem over-
whelming, but as with all complex subjects, if taken one chunk at a time, the individual
pieces are easily managed. Establishing the CoS baseline for your network is the hard
part; after that, it’s mostly just tuning and tweaking to accommodate new services or
to fine tune operation.

Keep in mind the IP DiffServ model and basic Junos CoS processing are detailed in the
Junos Enterprise Routing book if a review of the basics is desired. It’s clear you must
consider the following questions in order to establish a CoS baseline for your network.

What protocols are transported?
Clearly, the answer here determines what type of classifiers are needed, how pack-
ets are rewritten, and ultimately how many sets of classification or rewrite rules
end up applied to an interface. The good news is you can deploy CoS starting with
one protocol and then add support for additional protocols incrementally. This
approach greatly lessens the daunting factor of trying to deploy CoS at multiple
levels, for multiple protocols, at the same time, and allows you to leverage existing
work, such as scheduler definitions, which are just as applicable to IPv6 as they are
to bridged traffic; schedulers are protocol agnostic, after all.

How many forwarding classes (FCs)/queues?
Most networks need at least three, with the trend being to use as many as eight. In
Junos, an FC generally maps on a 1-to-1 basis to a queue, but this is not always the
case. As queue handling is ultimately where the CoS rubber meets the road, so to
speak, best practice dictates you should only have as many FCs as you can uniquely
provide CoS handling for, which means FCs should equal queues on a 1:1 basis.

Classification type, MF or BA?
Generally the answer here is both, as MF classification using a firewall filter tends
to be performed at the edges, while BA classification is done in the core. Even so,
there may be multiple options as to what type of BA to use, for example IP DSCP
versus IP precedence. In many cases, IP is encapsulated into VPLS or MPLS, which
means the appropriate L2/MPLS EXP classifiers and rewrite rules are needed on P-
routers.

As an example, consider an L3VPN environment using MPLS. Here, it’s typical
that PE routers use IP-based classification at ingress and then rewrite both the IP
and MPLS headers at egress. P-routers along the path use the tunnel encapsulation
for CoS classification. The egress router normally receives a single label packet due
to Penultimate Hop Popping (PHP), where the second-to-last hop router pops,
rather than swaps, the outer transport label, resulting in receipt of a packet with a

456 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

single VRF label at the egress node. In these cases, Trio PFEs can perform IP-level
classification as an egress node, such that the egress filters and rewrites rules for
the traffic heading to the remote CE are based on the IP layer.

Per forwarding class (queue) QoS parameters
This is where most of the brain work comes in. The cumulative effects of these
parameters provide the CoS handling for a given FC. By assigning different values
to these parameters, you legitimize your network’s CoS, which is to say it’s here
that you actually instantiate differing levels of service; if you assign the same pa-
rameters to all eight FCs, it can be said that your network has no CoS, as in the
end all traffic is treated the same.

QoS parameters for queues
You assign queue parameters through a scheduler definition and then apply one
or more schedulers to an interface with a scheduler map. Scheduler parameters for
queues include:

Scheduling priority

Transmit rate

Excess rate/priority

Delay buffer size

Drop profiles

Shaping

The scheduling mode
Options here are port-level, per unit, or hierarchical. Many incorrectly believe that
the choice of scheduler mode must be deployed consistently on a networkwide
basis. In fact, this is a choice that can be made on a per port basis and is generally
dictated by your need for granular CoS at scale versus simply providing CoS dif-
ferentiation among FCs.

Any interface with a single logical unit defined is a prime candidate for per port
mode, which conveniently is supported on all Trio MPCs. If your interface has
multiple units, you might consider using per unit mode if you need to handle the
queues from one unit differently than another. If all units support the same nature
of traffic, and you plan on scheduling all queues in the same fashion, then clearly
per port is a better choice; the overall effect is the same and the line card is cheaper,
as fine-grained queuing supported is not required.

In contrast, hierarchical mode is the only practical option if you are in the sub-
scriber aggregation businesses and the plan is to deploy high-speed interfaces with
literally thousands of IFLs, over which you need to offer multiple levels of services,
for example business class versus residential Internet, or triple play (Internet/voice/
video).

To help flesh out the requirements to narrow down the otherwise huge ream of possi-
bilities, consider these CoS design goals for the CoS lab:

CoS Lab | 457

www.it-ebooks.info

http://www.it-ebooks.info/

Provide CoS for both native Layer 2 bridged traffic, routed traffic, and traffic that
flows between bridged and routed domains
Support eight FCs and eight queues
Trust L3 DSCP markings, use BA classification and rewrite to preserve them
Use MF classification for bridged traffic to support DiffServ with four AFx classes
along with EF, NC, and BE
Provide isolation between Layer 2 bridged and Layer 3 routed traffic; excessive
levels of one should not impact the CoS of the other

The scheduling goals for the CoS lab are:

Provide a real-time LLQ for voice and video with 25 milliseconds of delay per node
and 30% of interface bandwidth; ensure this queue cannot cause starvation for
other classes
Ensure that network control queue has priority over all non-EF queues, again en-
sure no starvation for other classes
Support all four Assured-Forwarding (AF) classes according to IP DiffServ
Provide a penalty box queue for bad customers or traffic
Share excess bandwidth among all eligible FCs

Given the requirements, the plan is to use eight FCs/queues, DSCP-based BA for IPv4,
and MF classification for bridged traffic. As noted, intra-VLAN L2 traffic and routed
L3 traffic are both natively transported over the R1-R2 link using different units/IFLs.
MF classification is performed on the MX for the L2 traffic for several reasons. Use of
a MF classifier ties in well with Chapter 3, and its use overcomes the inherit limitations
of IEEE 802.1p-based classification, which, like IP precedence, supports only eight
combinations (their respective bit fields are each 3 bits in length). In contrast, a 6-bit
DSCP codes up to 64 combinations and full DiffServ support needs more than eight
code points.

The decision is made to provide different levels of CoS for the two traffic types, which
indicates the need for per unit scheduling, or a separate interface is needed between R1
and R2 so it can be dedicated to L2 traffic in order to meet the stated traffic isolation
requirement. H-CoS is overkill in this application but could also work.

As noted previously, per unit scheduling not only allows for different CoS profiles, but
also helps ensure a degree of separation between the bridged and routed traffic so that
abnormal traffic levels at one layer doesn’t necessarily impact the operation of the other.
For example, even with storm control enabled, if a loop forms in the bridged network,
significant bandwidth can be consumed on the R1-R2 link, bandwidth that is far in
excess of normal bridged loads. If port mode CoS is used, the shared set of queues
would be disproportionally filled with L2 traffic, resulting poor L3 performance. While
ingress policing could be used to help mitigate these concerns in such a design, the
routers in this lab have dense queuing-capable MPCs, so per unit and H-CoS are sup-
ported and you might as well use what you pay for.

458 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

With these criteria in mind, the baseline CoS settings are displayed.
Things start with the FC definitions, which is then backed up via operational mode
CLI commands:

{master}[edit]
jnpr@R1-RE0# show class-of-service forwarding-classes
class be queue-num 0 policing-priority normal;
class af1x queue-num 1 policing-priority normal;
class af2x queue-num 2 policing-priority normal;
class nc queue-num 3 policing-priority normal;
class af4x queue-num 4 policing-priority normal;
class ef queue-num 5 priority high policing-priority premium;
class af3x queue-num 6 policing-priority normal;
class null queue-num 7 policing-priority normal;

{master}[edit]
jnpr@R1-RE0# run show class-of-service forwarding-class
Forwarding ID Queue Restricted Fabric Policing SPU
class queue priority priority priority
 be 0 0 0 low normal low
 af1x 1 1 1 low normal low
 af2x 2 2 2 low normal low
 nc 3 3 3 low normal low
 af4x 4 4 0 low normal low
 ef 5 5 1 high premium low
 af3x 6 6 2 low normal low
 null 7 7 3 low normal low

The output confirms eight DiffServ-based FCs are defined. Note that NC has been left
in queue 3, a good practice, and that the EF class has been set to a high switch fabric
priority, to provide it preferential treatment in the event of congestion across the fabric;
preclassification ensures that NC is always sent over the fabric at high priority. The
policing priority value of premium or normal is used for aggregate policers, as described
in Chapter 3. While aggregate policers are not planned in the current CoS scenario,
they can always be added later, and having an explicit configuration in place helps
ensure things work correctly the first time. You may want to note the queue number
to FC mappings, as some of the subsequent displays list only the queue and its internal
index number, in which case they are always listed from 0 to 7. Trio platforms are
inherently eight-queue capably so no additional configuration is needed to use eight
queues per IFL.

Next, the DSCP classifier is displayed. This BA classifier is applied to all L3 interfaces:

{master}[edit]
jnpr@R1-RE0# sh class-of-service classifiers dscp dscp_diffserv
forwarding-class ef {
 loss-priority low code-points ef;
}
forwarding-class af4x {
 loss-priority low code-points af41;
 loss-priority high code-points [af42 af43];
}
forwarding-class af3x {

Baseline Configuration.

CoS Lab | 459

www.it-ebooks.info

http://www.it-ebooks.info/

 loss-priority high code-points [af32 af33];
 loss-priority low code-points af31;
}
forwarding-class af2x {
 loss-priority low code-points af21;
 loss-priority high code-points [af22 af23];
}
forwarding-class af1x {
 loss-priority low code-points af11;
 loss-priority high code-points [af12 af13];
}
forwarding-class nc {
 loss-priority low code-points [cs6 cs7];
 loss-priority high code-points [cs1 cs2 cs3 cs4 cs5];
}
forwarding-class be {
 loss-priority low code-points [000000 000001 000010 000011 000100 000101 000110
 000111 001001 001011 001101 001111 010001 010011 010101 010111 011001 011011
 011101 011111 100001 100011 100101 100111 101001 101010 101011 101100 101101
 101111 110001 110010 110011 110100 110101 110110 110111 111001 111010 111011
 111100 111101 111110 111111];
}

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface xe-2/1/1 | match class
 Classifier dscp_diffserv dscp 23080

And now the IEEE 802.1p classifier, which is based on 3-bit Priority Code Point (PCP)
field found in the VLAN tag. Clearly, with 3 bits available, only 8 combinations are
possible; this results in a loss of granularity when compared to the 64 combinations
offered by the 6-bit DSCP field. Perhaps it’s close enough and you are happy with partial
DiffServ support. If not, the power of Trio chipsets comes to the rescue as MF classi-
fication can be used to override any BA classifications and are a viable option where
the extra granularity is needed. As noted, this example ultimately uses MF classification
based on IP DSCP to demonstrate this very concept, but still applies the L2 BA classifier
as part of best practice design. Just another layer of consistency, and one less chance
for a packet being unclassified, and thereby given BE treatment.

{master}[edit]
jnpr@R1-RE0# show class-of-service classifiers ieee-802.1 ieee_classify
forwarding-class be {
 loss-priority low code-points 000;
 loss-priority high code-points 111;
}
forwarding-class af1x {
 loss-priority low code-points 001;
}
forwarding-class af2x {
 loss-priority low code-points 010;
}
forwarding-class nc {
 loss-priority low code-points 011;
}

460 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

forwarding-class af4x {
 loss-priority low code-points 100;
}
forwarding-class ef {
 loss-priority low code-points 101;
}
forwarding-class af3x {
 loss-priority low code-points 110;
}

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface xe-2/2/0 | match class
 Classifier ieee_classify ieee8021p 22868

As you would expect, the R1-R2 link has both the L2 and L3 BA classifiers in effect:

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface xe-2/0/0
Physical interface: xe-2/0/0, Index: 148
Queues supported: 8, Queues in use: 8
Total non-default queues created: 0
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

 Logical interface: xe-2/0/0.0, Index: 332
 Object Name Type Index
 Rewrite ieee_rewrite ieee8021p (outer) 16962
 Classifier ieee_classify ieee8021p 22868

 Logical interface: xe-2/0/0.1, Index: 333
 Object Name Type Index
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

 Logical interface: xe-2/0/0.32767, Index: 334

As noted previously, the automatically generated internal unit 32767, along with its
automatically generated scheduler, is used to handle LACP control protocol traffic sent
over the VLAN-tagged interface. This output also shows that both DSCP and IEEE
802.1p-based rewrite rules are in effect, again on a logical unit basis and according to
the protocol family that is configured on that unit. To save space, the rewrite rules are
not displayed. You may assume they are consistent with the classifiers shown above,
and that all interfaces have both a BA classifier as well as a set of rewrite rules in effect,
as per the following:

{master}[edit]
jnpr@R1-RE0# show class-of-service interfaces
xe-2/0/0 {
 unit 0 {
 classifiers {
 ieee-802.1 ieee_classify;
 }
 rewrite-rules {
 ieee-802.1 ieee_rewrite;
 }

CoS Lab | 461

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 unit 1 {
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }
}
xe-2/1/1 {
 unit 0 {
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }
}
xe-2/2/0 {
 unit 0 {
 classifiers {
 ieee-802.1 ieee_classify;
 }
 rewrite-rules {
 ieee-802.1 ieee_rewrite;
 }
 }
}

Because we are in the area of classification, the MF classifier used at R1 for DSCP
classification in the context of family bridge traffic received from the Layer 2 source at
S1 is displayed. Note the filter is applied in the input direction to catch received traffic:

{master}[edit]
jnpr@R1-RE0# show interfaces xe-2/2/0
unit 0 {
 family bridge {
 filter {
 input l2_mf_classify;
 }
 interface-mode trunk;
 vlan-id-list 1-999;
 }
}

{master}[edit]
jnpr@R1-RE0# show firewall family bridge
filter l2_mf_classify {
 term ef {
 from {
 ether-type ipv4;
 dscp ef;
 }

462 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 then {
 count ef;
 forwarding-class ef;
 accept;
 }
 }
 term af11 {
 from {
 ether-type ipv4;
 dscp af11;
 }
 then {
 count af11;
 forwarding-class af1x;
 accept;
 }
 }
 term af1x {
 from {
 ether-type ipv4;
 dscp [af12 af13];
 }
 then {
 count af1x;
 loss-priority high;
 forwarding-class af1x;
 accept;
 }
 }
 term af21 {
 from {
 ether-type ipv4;
 dscp af21;
 }
 then {
 count af21;
 forwarding-class af2x;
 accept;
 }
 }
 term af2x {
 from {
 ether-type ipv4;
 dscp [af22 af23];
 }
 then {
 count af2x;
 loss-priority high;
 forwarding-class af2x;
 accept;
 }
 }
 term af31 {
 from {
 ether-type ipv4;

CoS Lab | 463

www.it-ebooks.info

http://www.it-ebooks.info/

 dscp af31;
 }
 then {
 count af31;
 forwarding-class af3x;
 accept;
 }
 }
 term af3x {
 from {
 ether-type ipv4;
 dscp [af32 af33];
 }
 then {
 count af3x;
 loss-priority high;
 forwarding-class af3x;
 accept;
 }
 }
 term af41 {
 from {
 ether-type ipv4;
 dscp af41;
 }
 then {
 count af41;
 forwarding-class af4x;
 accept;
 }
 }
 term af4x {
 from {
 ether-type ipv4;
 dscp [af42 af43];
 }
 then {
 count af4x;
 loss-priority high;
 forwarding-class af4x;
 accept;
 }
 }
 term nc {
 from {
 ether-type ipv4;
 dscp [cs6 cs7];
 }
 then {
 count nc;
 forwarding-class nc;
 accept;
 }
 }
 term ncx {

464 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 from {
 ether-type ipv4;
 dscp [cs1 cs2 cs3 cs4 cs5];
 }
 then {
 count ncx;
 loss-priority high;
 forwarding-class nc;
 accept;
 }
 }
 term then_be {
 then {
 count be;
 forwarding-class be;
 accept;
 }
 }
}

To recap, the previous configuration and command output displays confirm an IPv4
and Layer 2 bridged network with the connectivity shown in the test topology, and that
the majority of the configuration needed for multilevel CoS are in place. Namely, def-
inition of forwarding classes, the mapping of the same to queues, L3 and L2 BA and
MF classification, and L2 and L3 BA rewrite to convey the local node’s classification
to downstream nodes.

Granted, the initial CoS infrastructure part is pretty easy, and again is generally part of
a consistent CoS configuration baseline that’s repeated in all nodes, allowing you to
copy and paste the work done at node 1 with only the interface-specific parts of the
CoS stanza needing to be specific to each node. Things get a bit more interesting in the
next section as we move into the scheduler and scheduler map definitions.

Getting to this point was pretty straightforward. Now comes the cer-
ebral part. The options available for schedulers and traffic control profiles (TCPs) yield
so many permutations that it’s guaranteed no one size can fit all, and that is without
even bringing H-CoS complexity into the mix. Junos CoS is so flexible that in many
cases the same overall effects are possible using different configuration approaches. In
the end, what’s important is that the operation matches your network’s needs, and that
your CoS model is based on a constant provisioning approach to ensure that new serv-
ices are turned up correctly and to ease troubleshooting and support burdens on sup-
port staff.

Once you have a CoS infrastructure in place, you can tailor and tune its
operation by adjusting and reapplying schedulers. For example, one set
of schedulers can be used for core-facing interfaces, while another set is
used for customer-facing links. In the latter case, several scheduler op-
tions may be available, with the set that is provisioned a function of the
service level the user has signed on for.

The Scheduler Block.

CoS Lab | 465

www.it-ebooks.info

http://www.it-ebooks.info/

The modular nature of Junos CoS means that moving a user from a best
effort to a business class CoS profile or increasing throughput rates from
1 Mbps to 10 Mbps requires only a few changes to the subscriber’s CoS
settings, in most cases using preconfigured schedulers/scheduler maps
that match the service-level options. For example, several real-time
schedulers can be provisioned, with the difference being transmit rate
and queue depth, and possible drop profile variance, for example a gold,
silver, and bronze EF scheduler. To upgrade a user’s level of service, all
that is needed is a modified scheduler map to reference the desired
scheduler.

Such an approach is not always possible given the reality of varying CoS capabilities in
the Juniper product line based on hardware type and software version. Trio platforms
made a clean break from historic CoS behavior. While this may mean one more set of
provisioning procedures and CoS operational quirks to have to track and learn, the
trend to migrate to Trio holds the promise of an all-Trio network that offers a single,
consistent CoS behavior, something we can all hope for to be sure.

As a reminder, the previously stated scheduling goals for the CoS lab are repeated:

Provide a real-time LLQ for voice and video with 25 milliseconds of delay per node
and 30% of interface bandwidth. Ensure this queue cannot cause starvation for
other classes.
Ensure that network control queue has priority over all non EF queues, again en-
sure no starvation for other classes.
Support all four Assured-Forwarding (AF) classes according to IP DiffServ.
Provide a penalty box queue for bad customers or traffic.
Share excess bandwidth among all eligible FCs.

When it comes to schedulers, the old saying about there being more than one way to
skin a cat certainly holds true. There are multiple ways you could meet the stated re-
quirements, so after much careful thought and deliberation, the plan settles on the
following schedulers:

{master}[edit]
jnpr@R1-RE0# show class-of-service schedulers
sched_ef_30 {
 transmit-rate {
 percent 30;
 rate-limit;
 }
 buffer-size temporal 25k;
 priority strict-high;
}
sched_af4x_30 {
 transmit-rate percent 30;
 excess-rate percent 30;
 drop-profile-map loss-priority low protocol any drop-profile dp-af41;
 drop-profile-map loss-priority high protocol any drop-profile dp-af42-af43;

466 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

}
sched_af3x_15 {
 transmit-rate percent 15;
 excess-rate percent 15;
 drop-profile-map loss-priority low protocol any drop-profile dp-af31;
 drop-profile-map loss-priority high protocol any drop-profile dp-af32-af33;
}
sched_af2x_10 {
 transmit-rate percent 10;
 excess-rate percent 10;
 drop-profile-map loss-priority low protocol any drop-profile dp-af21;
 drop-profile-map loss-priority high protocol any drop-profile dp-af22-af23;
}
sched_af1x_5 {
 transmit-rate percent 5;
 excess-rate percent 5;
 drop-profile-map loss-priority low protocol any drop-profile dp-af11;
 drop-profile-map loss-priority high protocol any drop-profile dp-af12-af13;
}
sched_be_5 {
 transmit-rate percent 5;
 excess-rate percent 35;
 drop-profile-map loss-priority any protocol any drop-profile dp-be;
}
sched_nc_5 {
 transmit-rate percent 5;
 excess-rate percent 5;
 excess-priority low;
 buffer-size percent 10;
 priority high;
}
sched_null {
 priority medium-high;
 excess-priority none;
}

Some observations about this critical component of Junos CoS are certainly warranted
here. Note there is one scheduler for each forwarding class. The null scheduler is an
example of one CoS extreme, which here serves as a penalty box queue, given it has no
guaranteed bandwidth, nor does it have the ability to use any excess bandwidth. The
null class requires a guaranteed priority that is higher than GL to be able to use excess
none, so it’s set to medium, but this means little as it has no weight. This queue is where
bad packets go to slowly live out their TTLs in peace. Well, that or to meet a swift and
merciful end at the hands of WRED performing drops at the tail end of a mighty short
queue.

The EF and NC queues, on the other hand, stand in stark contrast. EF with its SH
priority must only compete with the NC queue (the only other high-priority queue),
and it can never go negative because the queue is rate limited (not shaped, as buffering
is bad for real-time), therefore there is no need to configure excess sharing parameters.
Queue 5/EF gets up to 30% of an interface’s (PIR) bandwidth and then it’s policed.
The buffer for this queue is limited by a temporal value, in microseconds, to control

CoS Lab | 467

www.it-ebooks.info

http://www.it-ebooks.info/

the maximum per node queuing delay to 25 milliseconds or less. Combined with the
high scheduling priority and rate limiting, this creates a Low-Latency Queue (LLQ).
The NC queue is at high priority (GH), which from a scheduling viewpoint is just as
high as strict-high, but this scheduler is subjected to its transmit rate, and consequently
has a chance for excess bandwidth, hence the inclusion of parameters to control its
usage of excess bandwidth.

The NC class gets at least a guaranteed 5%, plus at least another 5% of excess band-
width, assuming that there is some excess available. The queue is not rate limited or
shaped, so it can also use additional excess that is not being used by other queues, up
to IFD shaping rate. In this case, the NC scheduler has been explicitly set for excess-
low priority, which is important here, because by default it would have inherited excess-
high as a result of its high scheduling priority. Had this happened, the NC class could
have used all excess bandwidth as it does not have a shaping rate (again, the excess rate
parameter defines a minimum fair share, not a maximum usage cap), and it would have
been the only queue with excess high; had this been the case, a shaper for the NC queue
would have been a good idea. No shaping is used in this case because, with the settings
shown, the NC queue must now contend with five others for excess bandwidth based
on a WRR algorithm that’s weighted based on the queue’s transmit rate. Despite there
being eight queues, the NC contends with only five other queues for excess bandwidth
in this example because the EF scheduler cannot enter the excess region and the null
class is prohibited from using any excess.

The BE scheduler is remarkable only by virtue of it having a larger weighting for excess
bandwidth; the other excess eligible schedulers have an excess rate percentage set to
match the queue’s transmit rate. This decision was made because the BE class is given
a relatively low transmit percentage (or a low guaranteed rate), and so it’s expected to
be sending in excess most of the time. In the worst case, when all classes are at their
assigned rates, BE is only guaranteed 5% of interface speed or shaped rate. It is what it
is, as they say. You have to pay to play, else it’s BE for you, along with few online gaming
friends and the unwelcome moniker of “lagger”!

This BE scheduler links to a single WRED profile because the concept of high versus
low loss priority for best effort made no sense to the network architect. Again, reason-
able people can disagree. The EF scheduler has no WRED profile either; its high priority
and limited queue depth, combined with rate limiting, creates a LLQ, which means at
most only one or two packets should be queued there, resulting in little chance for
appreciable delay buffer fill, which translates to no little benefit or need for WRED.
Besides, real-time applications don’t respond to TCP-based implicit congestion noti-
fication anyway.

The remaining schedulers serve variations of the Assured Forwarding (AF) class. There
can be up to four AF classes, and each should provide a higher level of service then the
one below, making AF2 better then AF1, and AF4 the best of all. Further, according to
DiffServ specifications, within each class there must be at least two loss probabilities.
At a minimum, the AFx1 group must have less loss than the AFx2 or AFx3 groups. To

468 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

meet these requirements, each AF class is linked to two WRED profiles; the first is used
for the lower drop probability, while the latter is used for other two subclasses, giving
them both the same (higher) drop probability.

Combined with the higher transmit rate for each success AF class, the different drop
behaviors should offer class differentiation, which is the whole idea of CoS, assuming
you get a chance to stop and smell the buffers along the way.

As a final note, all queues expected to be eligible for excess have an excess rate explicitly
set, even though it matches the no-config defaults. Recall that once an excess rate is set
for one queue, the defaults are off and all others get 0 excess rate unless they too are
given an explicit value.

The drop profiles for the AF1x class are shown:

jnpr@R1-RE0# show class-of-service drop-profiles dp-af11
interpolate {
 fill-level [34 100];
 drop-probability [0 100];
}

{master}[edit]
jnpr@R1-RE0# show class-of-service drop-profiles dp-af12-af13
interpolate {
 fill-level [12 34];
 drop-probability [0 100];
}

Here, AF11 queues is set to begin dropping at 34% fill while AF12 and AF13 start
dropping at a lower 12% fill level, going on to hit a rather harsh 100% drop probability
at only 34%! The difference in profiles should have a clear impact on drop behavior
under even moderate congestion.

As a final observation, the example shown follows best practice by specifying transmit
rate as a percentage, thus allowing flexible application of the schedulers regardless of
link speed or shaping rate. Also note that rates, as a percentage versus absolute, are
used consistently within the same scheduling hierarchy; mixing transmit percentages
and rates is supported but things are confusing enough already. The sum of transmit
rates percentages sum to 100%; they cannot exceed 100%, but can sum to less, in which
case you are guaranteeing some level of excess bandwidth is always available, even
when all queues are at their configured transmit rates.

Likewise, the excess rate percentages also sum to 100%, a restriction that is not re-
quired, but again tends to make things simpler to understand and predict. Note that
excess-rate can sum to over 100%, unlike transmit rate percentages.

The scheduler map is the last bit of the baseline configuration. It’s here that you link
schedulers to forwarding classes, and ultimately apply them to queues when the map
is applied to an interface. The map is displayed:

{master}[edit]
jnpr@R1-RE0# show class-of-service scheduler-maps

CoS Lab | 469

www.it-ebooks.info

http://www.it-ebooks.info/

sched_map_core {
 forwarding-class ef scheduler sched_ef_30;
 forwarding-class af4x scheduler sched_af4x_30;
 forwarding-class af3x scheduler sched_af3x_15;
 forwarding-class af2x scheduler sched_af2x_10;
 forwarding-class af1x scheduler sched_af1x_5;
 forwarding-class be scheduler sched_be_5;
 forwarding-class nc scheduler sched_nc_5;
 forwarding-class null scheduler sched_null;
}

No real surprises here. The CoS design makes use of eight queues, so there are eight
schedulers, and the map in turn links each to a FC/queue. Including information like
the associated FC name and scheduling rate in the scheduler names makes later mod-
ifications less prone to error and general CoS debugging that much easier.

The scheduler map is not yet attached as specifics of its attachment vary based on
scheduling mode, as covered in the next section. At this time, the default 95/5% BE/
NC scheduler is still in effect.

Select a Scheduling Mode

Trio MPCs can support three scheduling modes, but two of them require Q-based
MPCs. Given that the MPCs used in the JMX lab at R1, R2, and R4 are equipped with
Q capable MPCs, all scheduler modes are available:

{master}[edit]
jnpr@R1-RE0# run show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis JN111992BAFC MX240
Midplane REV 07 760-021404 TR5026 MX240 Backplane
FPM Board REV 03 760-021392 KE2411 Front Panel Display
PEM 0 Rev 02 740-017343 QCS0748A002 DC Power Entry Module
Routing Engine 0 REV 07 740-013063 1000745244 RE-S-2000
Routing Engine 1 REV 07 740-013063 9009005669 RE-S-2000
CB 0 REV 03 710-021523 KH6172 MX SCB
CB 1 REV 10 710-021523 ABBM2781 MX SCB
FPC 2 REV 15 750-031088 YR7184 MPC Type 2 3D Q
. . .

The output confirms that port-based, per unit, and hierarchical scheduling are all pos-
sible, but just because a feature is supported does not in itself mean it’s a good idea to
deploy it. The current requirements don’t specify any great levels of subscriber scaling;
in fact, the R1-R2 link has the greatest number of IFLs currently provisioned, and there
are only two! Hardly a case where IFL-Sets and the like seem justified. Yes, H-CoS could
work, but in keeping with the principle of Ockham’s razor, the simplest solution that
meets all requirements is generally the best, and given the current design requirements
that would be per unit scheduling mode.

470 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

When testing the v11.4R1 release, it was found that non-Q MPCs could
be configured for per unit scheduling mode, and it appeared to work.
However, at this time per unit and hierarchal scheduling modes are not
officially supported on non-Q MPCs. Even if per unit appears to work
you will have trouble getting JTAC support should anything go wrong,
and as an untested feature, scale and performance values levels are cur-
rently unknown.

As mentioned previously, the per unit scheduling mode on the R1-R2 link is required
to comply with the stated need to isolate Layer 2 traffic from Layer 3. In this mode,
each unit on the R1-R2 link gets its own set of schedulers, and if desired each IFL can
be shaped to limit its maximum bandwidth usage.

In contrast, per port CoS is all that is required on links that carry only one type of traffic;
for example, the R2-R4 link has only one unit, and it’s a Layer 3 IP unit, which makes
the presence of native bridged impossible. Note that both per unit and H-CoS modes
require that the IFL have multiple units (i.e., two VLAN tags), or you get a commit error.

Given these points, it does seem possible to meet the CoS design requirements with
most of the interfaces running in port mode, which means that unless future growth in
CoS scale or capabilities is planned, less expensive…but keep this in mind: if there is
one thing that stays the same in IP networks, it’s growth and evolution, so having
hardware capabilities that may not be needed until a future time can be a sound strategy
for future-proofing your network.

The multiservice interfaces at R1 and R2 are set for per unit scheduling mode, a con-
figuration that occurs at the IFD level under the [edit interfaces <interface-name>]
hierarchy:

{master}[edit]
jnpr@R1-RE0# set interfaces xe-2/0/0 per-unit-scheduler

The remaining interfaces are left in their default per-port mode setting.

With scheduling mode set, it’s time to apply the schedulers
to R1’s egress interface, the last step to putting this massive CoS configuration into
effect. The sched_map_core scheduler map can be applied directly to the interface IFLs
using a set class-of-service interfaces xe-2/0/0 unit 0 scheduler-map
sched_map_core statement, but you can also link to the map through a Traffic Control
Profile (TCP), which offers the added benefits of allowing you to specify guaranteed,
shaping, or excess rates.

This example makes use of shaping for two reasons; first, to meet the stated traffic
separation, and secondly, to slow things down, so to speak, as CoS is infinitely more
needed, and therefore testable, on slow speed links where it’s far easier to generate
congestion in order to observe the magic that is CoS.

To meet the first shaping goal, two TCPs are defined, one for each of the core interface’s
IFLs. Both reference the same scheduler map (different maps are supported, but not

Apply Schedulers and Shaping.

CoS Lab | 471

www.it-ebooks.info

http://www.it-ebooks.info/

needed in this case), and both have a 5 Mbps shaping rate. The latter part is critical to
ensuring the required isolation between the bridged and routed traffic, as assuming the
underlying IFD supports at least 10 Mbps, both types of traffic can operate at their G-
Rates simultaneously, and either can burst to its shaped rate when the other is not at
full capacity:

{master}[edit class-of-service]
jnpr@R1-RE0# show traffic-control-profiles
tc_l2_ifl_5m {
 scheduler-map sched_map_core;
 shaping-rate 10m;
 guaranteed-rate 5m;
}
tc_l3_ifl_5m {
 scheduler-map sched_map_core;
 shaping-rate 10m;
 guaranteed-rate 5m;
}
tc_ifd_10m {
 shaping-rate 10m;
}

The tc_ifd_10m TCP is defined to shape the underlying IFD to 10 Mbps, in keeping
with the plan to slow things down to make CoS easier to demonstrate and test. The
TCPs are then applied to R1’s core interface:

{master}[edit]
jnpr@R1-RE0# show class-of-service interfaces xe-2/0/0
output-traffic-control-profile tc_ifd_10m;
unit 0 {
 output-traffic-control-profile tc_l2_ifl_5m;
 classifiers {
 ieee-802.1 ieee_classify;
 }
 rewrite-rules {
 ieee-802.1 ieee_rewrite;
 }
}
unit 1 {
 output-traffic-control-profile tc_l3_ifl_5m;
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
}

Clearly, with a 10 Mbps bottleneck, both traffic types cannot hope to meet their PIR/
shaped rates simultaneously. In contrast, it’s expected that both can operate at their
CIR/G-Rates, and that no amount of user traffic should be able to starve out network
control, behavior that should be easy to test and confirm. In addition, no amount of

472 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

traffic on any one unit should have an impact on another unit’s ability to achieve at
least its G-Rate (albeit perhaps with no excess left to share).

The remaining routers, which are in per port scheduling mode as you will recall, are
not shaped and left to run at their native 10 Gbps rate to ensure no congestion can
occur there, a condition that if allowed would cloud up the ability to test the specific
behavior of the R1-R2 link, which is the focus here. The lack of shaping, G-Rate, or
excess rate specification on these routers means that a TCP cannot be used; instead the
direct scheduler map linking method is used. The configuration of R2’s R4 facing core
interface is shown:

{master}[edit]
jnpr@R2-RE0# show class-of-service interfaces xe-2/1/0
scheduler-map sched_map_core;
unit 0 {
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
}

Note that per port operation can be gleaned by the map’s application to the IFD, rather
than at the unit level.

With the completed CoS baseline now in place, again, for unidirectional traffic from
the sources to the receivers, we can proceed to operational verification.

Verify Unidirectional CoS
Before starting any traffic, the application of the TCPs and BA classification/rewrite
rules to R1’s core interface is verified:

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface xe-2/0/0
Physical interface: xe-2/0/0, Index: 148
Queues supported: 8, Queues in use: 8
Total non-default queues created: 24
 Output traffic control profile: tc_ifd_10m, Index: 10734
 Congestion-notification: Disabled

 Logical interface: xe-2/0/0.0, Index: 332, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile tc_l2_ifl_5m Output 55450
 Rewrite ieee_rewrite ieee8021p (outer) 16962
 Classifier ieee_classify ieee8021p 22868

 Logical interface: xe-2/0/0.1, Index: 333, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile tc_l3_ifl_5m Output 55442
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

CoS Lab | 473

www.it-ebooks.info

http://www.it-ebooks.info/

 Logical interface: xe-2/0/0.32767, Index: 334, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile __control_tc_prof Output 45866

Use the comprehensive switch to the show class-of-service interface
command to detailed CoS-related information, including queue counts,
drop statistics, drop profiles, and so on. The output is not shown here
to save space—that’s how much there is!

The output confirms the two user-configured units in addition to the automatically
created unit for control traffic. Interestingly, as a result, a total of 24 queues are now
allocated to the IFD, even though the control unit only has two FCs in use, thus proving
allocation of queues in units of eight. The IFD- and IFL-level output TCPs are also
confirmed to be in effect. Currently, input TCPs (and queuing) are not supported on
Trio, but the capability is in the hardware so a future Junos release will likely offer
support for ingress CoS functionality. The TCP rates are also verified:

{master}[edit]
jnpr@R1-RE0# run show class-of-service traffic-control-profile
Traffic control profile: tc_ifd_10m, Index: 10734
 Shaping rate: 10000000
 Scheduler map: <default>

Traffic control profile: tc_l2_ifl_5m, Index: 55450
 Shaping rate: 10000000
 Scheduler map: sched_map_core
 Guaranteed rate: 5000000

Traffic control profile: tc_l3_ifl_5m, Index: 55442
 Shaping rate: 10000000
 Scheduler map: sched_map_core
 Guaranteed rate: 5000
Confirm Queueing and Classification

So far there are no surprises, as the outputs match both expectations and the related
configuration settings.

Confirm Queuing and Classification

Previous displays confirmed eight queues and that classifiers and rewrite rules are at-
tached. Displaying CoS interface queues is an invaluable way to monitor and trouble-
shoot CoS operation. With no test traffic flowing, the interface statistics are cleared,
and the egress queue information is displayed for R1’s core interface (ingress stats for
traffic received from the L3 source are not yet supported):

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373

474 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: be
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 1, Forwarding classes: af1x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 2, Forwarding classes: af2x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps

CoS Lab | 475

www.it-ebooks.info

http://www.it-ebooks.info/

 High : 0 0 bps
Queue: 3, Forwarding classes: nc
 Queued:
 Packets : 3568 10 pps
 Bytes : 335795 9160 bps
 Transmitted:
 Packets : 3568 10 pps
 Bytes : 335795 9160 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 4, Forwarding classes: af4x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

476 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Queue: 6, Forwarding classes: af3x
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps
Queue: 7, Forwarding classes: null
 Queued:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Transmitted:
 Packets : 0 0 pps
 Bytes : 0 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

As expected, only network control is currently flowing; it’s quite rare to have a network
so entirely under one’s control that CoS can be tested in this granular a manner. Ah,
the beauty of a test lab. Enjoy it while it lasts. Given the length, subsequent output
queue displays will focus on one class or another based on what is being tested at the
time.

The MF classifier is confirmed by generating some EF
marked test traffic from S1 to the L2 receiver:

{master:0}[edit]
jnpr@S1-RE0# run ping 192.0.2.7 tos 184 count 5 rapid
PING 192.0.2.7 (192.0.2.7): 56 data bytes
!!!!!
--- 192.0.2.7 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.014/1.671/4.066/1.200 ms

Use Ping to Test MF Classification.

CoS Lab | 477

www.it-ebooks.info

http://www.it-ebooks.info/

{master:0}[edit]
jnpr@S1-RE0#

And the egress queue counts at R1 confirm all went to plan, at least at the first hop:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0 forwarding-class ef
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 5 0 pps
 Bytes : 630 0 bps
 Transmitted:
 Packets : 5 0 pps
 Bytes : 630 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

Consistent BA-based classification, and therefore marker write, is verified at the down-
stream node by repeating the ping at S1 after clearing statistics at R2:

{master}[edit]
jnpr@R2-RE0# run show interfaces queue xe-2/2/0 forwarding-class ef
Physical interface: xe-2/2/0, Enabled, Physical link is Up
 Interface index: 183, SNMP ifIndex: 665
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 5 0 pps
 Bytes : 630 0 bps
 Transmitted:
 Packets : 5 0 pps
 Bytes : 630 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps

478 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Medium-high : 0 0 bps
 High : 0 0 bps

Again, the count matches the generated test traffic nicely. As a final check of end-to-
end classification and rewrite, an AF42 marked ping is generated by R1 to the L3
receiver:

{master}[edit]
jnpr@R1-RE0# run ping 192.168.4.1 rapid count 69 tos 144
PING 192.168.4.1 (192.168.4.1): 56 data bytes
!!!
--- 192.168.4.1 ping statistics ---
69 packets transmitted, 69 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.705/1.317/35.678/4.203 ms

And (having first cleared the queue counters as previously mentioned), the egress count,
this time at R4 is displayed, and again found to be as expected, confirming L3 classi-
fication is working end-to-end:

[edit]
jnpr@R4# run show interfaces queue xe-2/2/0 forwarding-class af4x
Physical interface: xe-2/2/0, Enabled, Physical link is Up
 Interface index: 152, SNMP ifIndex: 544
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 4, Forwarding classes: af4x
 Queued:
 Packets : 69 0 pps
 Bytes : 8418 0 bps
 Transmitted:
 Packets : 69 0 pps
 Bytes : 8418 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

Useful CLI ToS Mappings
The following is a mapping of IP precedence to binary, along with the resulting decimal
equivalent. This can be useful when testing CoS using utilities such as ping or trace-
route. In Junos when you include the tos argument to a ping or traceroute, you must
specify the desired ToS coding using decimal, not binary or hexadecimal.

NC: DSCP Decimal

Precedence 7 → 111000xx --> 128+64+32+0+0+0+x+x → 224

CoS Lab | 479

www.it-ebooks.info

http://www.it-ebooks.info/

Precedence 6 → 110000xx → 128+64+0+0+0+0+x+x → 192

Precedence 5 → 101000xx → 128+0+32+0+0+0+x+x → 160

Precedence 4 → 100000xx → 128+0+0+0+0+0+x+x → 128

Precedence 3 → 011000xx → 0+64+32+0+0+0+x+x → 96

Precedence 2 → 010000xx → 0+64+0+0+0+0+x+x → 64

Precedence 1 → 010000xx → 0+0+32+0+0+0+x+x → 32

EF:

DSCP EF → 101110xx → 128+0+32+16+8+0+x+x → 184

AF:

DSCP AF12 → 001100xx → 0+0+32+16+0+0+x+x → 48

DSCP AF22 → 010100xx → 0+64+0+16+0+0+x+x → 80

DSCP AF32 → 011100xx → 0+64+32+16+0+0+x+x → 112

DSCP AF42 → 100100xx → 128+0+0+16+0+0+x+x → 144

Also, be sure to use the show class-of-service code-point-aliases command to see
mappings of BAs to FCs.

Previous results confirm that both L2 and L3 traffic is properly classified end-to-end,
at least when constrained to their native domains. Before moving on, a final test of
classification is performed to verify Layer 2 to Layer 3 classification/rewrite. As before,
interface counters are cleared (now back at R1), and test traffic is again generated from
S1, this time with an EF ToS and now destined for the L3 receiver, thus forcing traversal
of the IRB at R1:

{master:0}[edit]
jnpr@S1-RE0# run ping 192.168.4.1 rapid count 100 tos 184
PING 192.168.4.1 (192.168.4.1): 56 data bytes
!!!
--- 192.168.4.1 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.008/1.522/3.950/0.954 ms

Meanwhile, at R1, the news is not very cheerful:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 0, Forwarding classes: be
 Queued:
 Packets : 100 0 pps
 Bytes : 12600 0 bps
 Transmitted:
 Packets : 100 0 pps

480 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Bytes : 12600 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
. . .

Clearly, classification is broken for the interdomain traffic as it was all queued as BE.
The MF classification filter is cleared, and the test is repeated:

{master}[edit]
jnpr@R1-RE0# run clear firewall all

<pings at S1 ommited for brevity>

{master}[edit]
jnpr@R1-RE0# run show firewall

Filter: __default_bpdu_filter__

Filter: l2_mf_classify
Counters:
Name Bytes Packets
af11 0 0
af1x 0 0
af21 0 0
af2x 0 0
af31 0 0
af3x 0 0
af41 0 0
af4x 0 0
be 0 0
ef 10200 100

The EF term count matching test traffic confirms that the filter did its job. This is
interesting, as the same filter and test traffic was used for intra-L2 traffic and found to
work. Likewise, L3 classification from R1 to R4 was also confirmed. Clearly, there is
some piece in the middle not yet tested. That piece is the IRB interface itself, as it’s the
glue used to interconnect L2 and L3 domains. Having the wrong classifier there would
only affect traffic flowing between L2 and L3 domains, just as observed. The IRB’s CoS
settings are displayed and found to be wanting:

{master}[edit]
jnpr@R1-RE0# run show class-of-service interface irb
Physical interface: irb, Index: 142
Queues supported: 8, Queues in use: 8
 Scheduler map: <default>, Index: 2
 Congestion-notification: Disabled

 Logical interface: irb.100, Index: 321
 Object Name Type Index
 Classifier ipprec-compatibility ip 13

 Logical interface: irb.200, Index: 325
 Object Name Type Index
 Classifier ipprec-compatibility ip 13

CoS Lab | 481

www.it-ebooks.info

http://www.it-ebooks.info/

That looks like a default CoS profile, which supports only BE and NC, and thus goes
far to explain why DiffServ-based classification went so wrong once the interface was
crossed. The test results confirm that ingress BA/MF classification is lost when traffic
transits an IRB, so be sure to apply classifiers, either BA or MF, to the IRB interface
when supporting multilevel CoS. Generally, you do not need BA rewrite rules on the
IRB interface as the rewrite occurs at egress from the Layer 2 or Layer 3 interface,
depending on directionality. In this example, a rewrite rule is attached to keep the IRB
interface consistent with others:

{master}[edit]
jnpr@R1-RE0# show | compare
[edit class-of-service interfaces]
+ irb {
+ unit 100 {
+ classifiers {
+ dscp dscp_diffserv;
+ }
+ rewrite-rules {
+ dscp dscp_diffserv;
+ }
+ }
+ }

The change is committed, counters again cleared at R1, and the EF ping is again per-
formed at S1:

{master}[edit]
jnpr@R1-RE0# run clear interfaces statistics all

<EF ping repeated at S1>

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0 forwarding-class ef
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 100 0 pps
 Bytes : 12600 0 bps
 Transmitted:
 Packets : 100 0 pps
 Bytes : 12600 0 bps
 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps

482 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Medium-high : 0 0 bps
 High : 0 0 bps

At this time, Junos does not support or need scheduling on IRB inter-
faces. Only MF/BA classification and rewrite rules are supported.

Great, just the results that were hoped for! DiffServ classification and rewrite is con-
firmed working for Layer 2 traffic, Layer 3 traffic, and for brouted traffic (had to throw
that word in there), which in this case is traffic that is switched from Layer 2 into Layer
3 for routing.

Confirm Scheduling Details

Next is the confirmation of scheduler configuration, and how they are mapped to
queues/FCs. First, the CLI commands:

{master}[edit]
jnpr@R1-RE0# run show class-of-service scheduler-map sched_map_core
Scheduler map: sched_map_core, Index: 20205

 Scheduler: sched_be_5, Forwarding class: be, Index: 4674
 Transmit rate: 5 percent, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: unspecified, Excess rate: 35 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 48733 dp-be
 Medium low any 48733 dp-be
 Medium high any 48733 dp-be
 High any 48733 dp-be

 Scheduler: sched_af1x_5, Forwarding class: af1x, Index: 12698
 Transmit rate: 5 percent, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: unspecified, Excess rate: 5 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 64745 dp-af11
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 51467 dp-af12-af13

 Scheduler: sched_af2x_10, Forwarding class: af2x, Index: 13254
 Transmit rate: 10 percent, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: unspecified, Excess rate: 10 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 64649 dp-af21
 Medium low any 1 <default-drop-profile>

CoS Lab | 483

www.it-ebooks.info

http://www.it-ebooks.info/

 Medium high any 1 <default-drop-profile>
 High any 2411 dp-af22-af23

 Scheduler: sched_nc_5, Forwarding class: nc, Index: 2628
 Transmit rate: 5 percent, Rate Limit: none, Buffer size: 10 percent,
 Buffer Limit: none, Priority: high
 Excess Priority: low, Excess rate: 5 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_af4x_30, Forwarding class: af4x, Index: 13286
 Transmit rate: 30 percent, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: unspecified, Excess rate: 30 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 64585 dp-af41
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 35242 dp-af42-af43

 Scheduler: sched_ef_30, Forwarding class: ef, Index: 51395
 Transmit rate: 30 percent, Rate Limit: rate-limit, Buffer size: 25000 us,
 Buffer Limit: exact, Priority: strict-high
 Excess Priority: unspecified
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

 Scheduler: sched_af3x_15, Forwarding class: af3x, Index: 13267
 Transmit rate: 15 percent, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: low
 Excess Priority: unspecified, Excess rate: 15 percent,
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 64681 dp-af31
 Medium low any 1 <default-drop-profile>
 Medium high any 1 <default-drop-profile>
 High any 18763 dp-af32-af33

 Scheduler: sched_null, Forwarding class: null, Index: 21629
 Transmit rate: unspecified, Rate Limit: none, Buffer size: remainder,
 Buffer Limit: none, Priority: medium-high
 Excess Priority: none
 Drop profiles:
 Loss priority Protocol Index Name
 Low any 1 <default-drop-profile>
 Medium low any 1 <default-drop-profile>

484 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Medium high any 1 <default-drop-profile>
 High any 1 <default-drop-profile>

With the CLI outputs displaying expected settings and values, attention shifts to the
scheduler settings in the PFE itself.

In some cases, CLI configuration values may be adjusted by either
rounding up or down in order to fit into available hardware capabilities.
In most cases, these adjustments are minimal and do not yield any ap-
preciable differences in observed CoS behavior. However, sometimes
the CLI configuration may be rejected; perhaps due to an unsupported
configuration or lack of required hardware. Sometimes, the result of
such an error is default CoS values being programmed into the PFE.

In most cases, operational mode CLI commands will make this condi-
tion known, but when all else fails, and you have no idea why your
configuration is not behaving the way you expected, confirming the
values actually placed into the PFE is a good place to begin trouble-
shooting. It also wise to check for any conflicts of errors reported in the
system log when any changes are made to the CoS configuration.

The scheduling hierarchy for the per unit scheduler that’s now in effect on R1’s xe-2/0/0
interface is displayed:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 10000 0 0 0
 xe-2/0/0.0 332 10000 5000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.1 333 10000 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.32767 334 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%

CoS Lab | 485

www.it-ebooks.info

http://www.it-ebooks.info/

 q 3 - pri 0/1 2 0 5% 5% 0%
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 0 0 0 0
xe-2/2/1 153 0 0 0 0
xe-2/3/0 154 0 0 0 0
xe-2/3/1 155 0 0 0 0

The scheduler block initially appears as expected, apparently matching the configura-
tion well. Two units are present, each with eight queues, plus the automatically created
control 32767. The IFD shaping rate is confirmed at 10 Mbps, as are both IFL shaping
rates, also at 10 Mbps. The CIR/guaranteed rate for IFL 0 correctly indicates 5 Mbps;
oddly though, IFL 1 does not show a G-Rate, given the identical configuration that is
not expected. Also of note is that the automatically generated control channel, which
has managed to reserve 2 Mbps of G-Rate for itself. You may want to keep this tidbit
in mind; there’s more on this point later.

Both units have the same scheduler map, and so both sets of user queues are identical.
The values shown reflect their configured parameters.

Note that queue 5, used for EF, is marked with exact, indicating it is rate limited (or
shaped) to the specified speed/rate, and is not eligible for excess. Its configured tem-
poral buffer is shown, as is the nondefault 10% buffer allocation made to the NC queue;
all other queues use the default delay buffer based on transmit rate. The queues also
display the configured share of excess rate as a percentage; here, BE gets 35% weighting
for excess bandwidth, while the EF and Null queues are restricted from any excess.
Note how queue 7, the Null FC, accurately reflects its lack of transmit rate and inability
to use excess bandwidth.

The index number reflects the scheduling policy for the queue, and the use of the same
scheduler map on both IFLs gives all queues the same value. The policy wrapped in
book format was messy, so it’s shown in Figure 5-29.

Figure 5-29. Scheduler Policy.

The output matches other displays and the configuration. Note that the priority values
shown are for internal use and not the ones documented in this chapter, where GH

486 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

through EL range from 0 to 4. The NA in the E column here indicates that no explicit
excess priority is specified causing the default inheritance; the value 5 for queue 7 in-
dicates a queue that is blocked from excess usage. Also note the various WRED profile
indexes are displayed, should you care to view them.

You can view drop profiles in the CLI with the show class-of-service drop-profiles
command. While we are here, the default WRED profile, with index 1, is displayed in
the MPC itself:

NPC2(R1-RE0 vty)# sho cos red-drop-profile 1
Profile Id: 1
 fill-level: 100% drop-probability: 100%
Wred curve configuration : 1

curve point fill-level drop prob
----------- ---------- ---------
 0 0 % 0 %
 1 1 % 0 %
. . .
 62 96 % 0 %
 63 98 % 100 %

The output is truncated to save space, but you get the idea; with this profile, no WRED
drops occur until the buffer is 100% full, effectively disabling WRED. The details of
how scheduling parameter are actually programmed into platform-specific hardware
is available via the CoS Hardware Abstraction Layer (HAL). This information is very
useful in confirming queue-level priority and bandwidth settings. To begin, the Layer
2 IFL scheduling parameters are displayed; note the IFL index number 332 is obtained
from the previous display:

NPC2(R1-RE0 vty)# show cos halp ifl 332
IFL type: Basic

--
IFL name: (xe-2/0/0.0, xe-2/0/0) (Index 332, IFD Index 148)
 QX chip id: 0
 QX chip dummy L2 index: −1
 QX chip L3 index: 3
 QX chip base Q index: 24
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 24 Configured 10000000 250000 131072 350 GL EL 5 6
 25 Configured 10000000 250000 131072 50 GL EL 6 6
 26 Configured 10000000 500000 131072 100 GL EL 7 6
 27 Configured 10000000 250000 131072 50 GH EL 4 195
 28 Configured 10000000 1500000 131072 300 GL EL 8 6
 29 Configured 10000000 Disabled 131072 1 GH EH 4 196
 30 Configured 10000000 750000 131072 150 GL EL 9 6
 31 Configured 10000000 0 131072 1 GM EN 4 133

Rate limit info:
 Q 5: Bandwidth = 3000000, Burst size = 300000. Policer NH: 0x30a8da3200141000

CoS Lab | 487

www.it-ebooks.info

http://www.it-ebooks.info/

The output confirms the EF and NC queues are both at high scheduling priority. The
Null FC is at medium while all others are at the default low. Note that the queues are
shown as being shaped to the IFD rate of 10 Mbps under the max rate column. This is
expected, given that no queues have a shaping rate statement of their own. By default,
a queue’s PIR is equal to the IFL shaping rate. If the IFL is not shaped, the IFD shaping
rate or IFD rate is used.

The EF queue is rate limited, as previously noted. This is why it has a disabled G-Rate,
and the details on its rate limit are shown at the bottom of this display.

You might be surprised to see the EF rate limit is 3 Mbps, which is 30% of the IFL’s
shaped rate as opposed to 30% of the guaranteed rate, especially given how the other
queues show a bandwidth value that is based on their transmit percentage factors
against the 5 Mbps G-Rate. This is not a function of the EF class, or strict-high sched-
uling, but is in fact related to the use of rate limits or shaping through the use of rate-
limit or exact.

This point often catches users off guard, so it bears stressing that when
you set a queue transmit rate as a percentage without including rate-
limit or exact, the bandwidth for that queue is a function of the CIR,
or G-Rate; if no CIR is specified, the IFL shaping rate is used. When
either is specified, then a transmit rate as a percentage is based on the
IFL’s shaping rate, even if a G-Rate is configured. Because both are
queue-level settings, it’s possible to end up with a mix of transmit rates,
some based on shaping rate and others on G-Rate. To work around this
quirk, you can assign an absolute bandwidth or simply reduce the rate
percentage by one-half.

The weight column reflects the queue’s WRR share of excess bandwidth; queue 0, BE,
has the largest weighting given its higher excess rate setting. In contrast, both queue 5
and queue 7 have minimal excess weight, reflecting their inability to enter and use
bandwidth in the excess region. Queue 7 reflects its medium priority setting, for what
that is worth, given the other settings grant it nothing, which means it has little cause
to brag about its elevated priority in life! A final note regarding the display is that all
queues show the same excess low priority; for most this is a function of default inher-
itance based on low scheduler priority. For NC, this is an explicit setting and was
intended to keep it from using all available excess bandwidth, an event that can easily
have happened if it was the only queue at EH with no rate limiting/shaping. Queue 5,
EF, shows the default EH, but is rate limited and so again cannot enter excess. Queue
7 shows none for its priority, as expected.

Check for Any Log Errors

So far, all confirmation steps have returned the expected results, more or less. Recall
there was a discrepancy noted with regard to IFL 1 not showing a G-Rate in a previous
display. Perhaps that is normal, perhaps not. As always, scanning logs for error mes-

488 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

sages or reports of conflicts is a good idea, more so when an operation is found to
deviate from your expectations based on a device’s configuration.

A powerful feature of Junos is the ability to configure things that are not backed up
with supported hardware, for example a MIC that is not yet installed, without any
obvious warnings or commit errors. Again, this is a feature, in that one day the requisite
hardware can be hot-inserted and boom, things just work. However, one man’s feature
can sometimes be seen as another’s bug; it’s one thing to configure a feature you know
is intended for future use because that hardware is currently lacking, and it’s quite
another to simply not be aware of some hardware requirement or configuration re-
striction, only to find yourself confused when your configurations changes appear to
be ignored.

Keeping to this advice, the cosd and messages logs are scanned for any errors reported
around the time the per unit scheduler configuration was committed. Unfortunately,
in this case the search yields fruit, only it seems to be of the rotten kind; the following
is found in both the log files:

{master}[edit]
jnpr@R1-RE0# run show log messages | match cos
. . .
NPC2(R1-RE0 vty)# [May 21 19:44:54.439 LOG: Err] COS(cos_add_guaranteed_rate_on_ifl:
 3550): ifd(xe-2/0/0) guaranteed_bw_remain (3000000) is less than ifl-333's configured
 guaranteed rate (5000000)
. . .

These log messages can seem cryptic; so, like a code breaker, tweeze out each detail
you can, until sense is made or you cry foul and concede to open a JTAC case. The
message clearly relates to CoS on the xe-2/0/0 interface, which makes it of concern, to
say the least. It goes on to complain about insufficient guaranteed rate, claiming that
3 Mbps is available (where are those commas when you need them?), and that 5 Mbps
is needed. Previous displays confirm that IFL index 333 is unit 1, the Layer 3 unit, on
the xe-2/0/0 interface, and it has a TCP applied with a 5 Mbps G-Rate and a 10 Mbps
PIR. It’s odd that no error is noted for IFL 0, as it has the same traffic control profile
parameters. But where is the 3 Mbps/need 5 Mbps issue coming from? The IFD is
shaped to 10 M, which should make both 5 Mbps CIRs possible.

Then the answer dawns: a previous VTY-level show scheduling-hierarchy command
indicated that three IFLs are provisioned on this interface. Two were user configured,
but the third was automatically created to pass LACP traffic, and darned if it did not
get a 2 Mbps G-Rate for its scheduler. Math is a beautiful thing, at least when it works
out; the 10 Mbps IFD shaping rate was first deducted 2 Mbps for the control unit’s
CIR, then another 5 Mbps for unit 0, the bridged unit. That left only 3 Mbps remaining,
and unit 1 wants a 5 m CIR!

And viola, the issue is crystal clear. Keeping in mind that you can’t overbook G-Rates
on Trio when in per unit scheduler mode, the result of this error is a G-Rate imbalance
between the two IFLs, with IFL 0 getting the configured G-Rate while IFL 1 gets no

CoS Lab | 489

www.it-ebooks.info

http://www.it-ebooks.info/

guaranteed rate. As such, this is not a simple matter of potential CIR overbooking, but
an actual service-impacting condition!

Testing shows that in fact, significantly higher drops rates are observed on the Layer 3
IFL when both are driven simultaneously at a 10.6 Mbps rate to produce heavy con-
gestion, thereby proving it has diminished performance when compared to IFL 0. Both
IFL streams combine to produce an egress load of 21.2 Mbps at the interface, which
recall is shaped to 10 Mbps. But it gets worse. After several seconds of traffic flow, it
appeared the network control queue on IFL 1 was experiencing delays (but not star-
vation), which resulted in BFD flaps, that in turn brought down the IS-IS adjacency
between R1 and R2, which caused a loss of routing and more traffic loss:

May 22 12:54:11 R1-RE0 rpd[1458]: RPD_ISIS_ADJDOWN: IS-IS lost L2 adjacency to R2-RE0
 on xe-2/0/0.1, reason: 3-Way Handshake Failed
May 22 12:54:11 R1-RE0 bfdd[1469]: BFDD_TRAP_SHOP_STATE_DOWN: local discriminator: 18,
 new state: down, interface: xe-2/0/0.1, peer addr: 10.8.0.1
May 22 12:54:20 R1-RE0 bfdd[1469]: BFDD_TRAP_SHOP_STATE_UP: local discriminator: 18,
 new state: up, interface: xe-2/0/0.1, peer addr: 10.8.0.1
May 22 12:54:25 R1-RE0 rpd[1458]: RPD_ISIS_ADJUP: IS-IS new L2 adjacency to R2-RE0
 on xe-2/0/0.1
May 22 12:54:53 R1-RE0 rpd[1458]: RPD_ISIS_ADJDOWN: IS-IS lost L2 adjacency to R2-RE0
 on xe-2/0/0.1, reason: 3-Way Handshake Failed
May 22 12:54:53 R1-RE0 bfdd[1469]: BFDD_TRAP_SHOP_STATE_DOWN: local discriminator: 19,
 new state: down, interface: xe-2/0/0.1, peer addr: 10.8.0.1
May 22 12:55:06 R1-RE0 rpd[1458]: RPD_ISIS_ADJUP: IS-IS new L2 adjacency to R2-RE0 on
 xe-2/0/0.1
May 22 12:55:24 R1-RE0 rpd[1458]: RPD_ISIS_ADJDOWN: IS-IS lost L2 adjacency to R2-RE0
 on xe-2/0/0.1, reason: 3-Way Handshake Failed
May 22 12:55:33 R1-RE0 rpd[1458]: RPD_ISIS_ADJUP: IS-IS new L2 adjacency to R2-RE0
 on xe-2/0/0.1

This is very serious indeed and helps demonstrate how a CoS error can sometimes leave
you with unpredictable CoS behavior, which can be a real problem if your network
relies on CoS to keep the control plane safe and secure, even under extreme congestion.

It is noted that in this case the BFD session is running at a 1 millisecond interval with
a multiplier of 3. And, it bears reiterating that BFD is a protocol designed to provide
rapid detection of forwarding plane faults, and in this case it’s running with a somewhat
aggressive timer.

At any extent, results show that the lack of a G-rate caused IFL 1 to lose what should
have been a fair contention process for an equal share of the available 10 Mbps on the
IFD, which resulted in at least 3 milliseconds too much delay for some BFD update.
Put in that context the CoS issue may not seem so severe; I mean, 3 milliseconds is too
much delay, really? But in this setup, it was enough to start the house of cards falling.

Several possible solutions present themselves. You could switch to H-CoS, which al-
lows overbooking:

{master}[edit]
jnpr@R1-RE0# show | compare rollback 3
[edit interfaces xe-2/0/0]

490 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

- per-unit-scheduler;
- vlan-tagging;
- unit 0 {
- family bridge {
- interface-mode trunk;
- vlan-id-list 1-999;
- }
- }
- unit 1 {
- vlan-id 1000;
- family inet {
- address 10.8.0.0/31;
- }
- family iso;
- }
+ hierarchical-scheduler;
+ vlan-tagging;
+ unit 0 {
+ family bridge {
+ interface-mode trunk;
+ vlan-id-list 1-999;
+ }
+ }
+ unit 1 {
+ vlan-id 1000;
+ family inet {
+ address 10.8.0.0/31;
+ }
+ family iso;
+ }

Now in H-CoS mode, the same error is generated, as nothing changes here regarding
the interface’s G-Rate booking:

NPC2(R1-RE0 vty)# [May 23 15:45:30.570 LOG: Warning] ifd(xe-2/0/0)
guaranteed_bw_remain (0) is less than ifl-334's configured guaranteed rate (2000000)

But now, all IFLs are shown with a G-Rate, to include IFL 1, and the sum of G-Rate
booking is now 12 Mbps on a 10 Mbps link:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 10000 0 0 0
 xe-2/0/0.0 332 10000 5000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%

CoS Lab | 491

www.it-ebooks.info

http://www.it-ebooks.info/

 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.1 333 10000 5000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.32767 334 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
 xe-2/0/0-rtp 148 10000 0 0 0
. . .

Another option is to increase the shaping rate of the IFD by 2 Mbps. The IFLs would
still be limited to their 10 Mbps shaping rate, but now the extra 2 Mbps available at
the IFD can be used when both are active at the same time, assuming there is no LACP
traffic flowing, of course. If the shaped rate of the IFD has to stay at 10 Mbps, the
remaining option is to reduce the G-Rate of each IFL by 1 Mbps, again to accommodate
the 2 Mbps control scheduler, as its bandwidth is not configurable. In this case, the
second choice is taken, namely remain in per unit and increase IFD shape rate:

{master}[edit]
jnpr@R1-RE0# show | compare
[edit class-of-service traffic-control-profiles tc_ifd_10m]
- shaping-rate 10m;
+ shaping-rate 12m;

After committing the change, the new IFD shaped rate was found, as expected, and the
error message was no longer seen. But, frustratingly, IFL 1 still did not get the configured
G-Rate:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 12000 0 0 0
 xe-2/0/0.0 332 10000 5000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.1 333 10000 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%

492 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.32767 334 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 0 0 0 0
xe-2/2/1 153 0 0 0 0
xe-2/3/0 154 0 0 0 0
xe-2/3/1 155 0 0 0 0

Even a commit full did not alter the state. As mentioned previously, there are cases
where an interface itself had to be bounced, which is to say deactivated and reactivated,
before a new G-Rate can be applied. Juniper development indicated this was working
as designed, hence the advice to try flapping interfaces, or the whole CoS stanza, when
recent changes seem to not take effect. Here, just the affected IFL is flapped to minimize
any service disruption:

{master}[edit]
jnpr@R1-RE0# deactivate interfaces xe-2/0/0 unit 1

{master}[edit]
jnpr@R1-RE0# commit
re0:
configuration check succeeds
re1:
commit complete
re0:
commit complete

{master}[edit]
jnpr@R1-RE0# rollback 1
load complete

{master}[edit]
jnpr@R1-RE0# commit
re0:
configuration check succeeds
re1:
commit complete
re0:
commit complete

After the flap, all is as expected with both user IFLs getting their configured G-Rate:

NPC2(R1-RE0 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

CoS Lab | 493

www.it-ebooks.info

http://www.it-ebooks.info/

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 12000 0 0 0
 xe-2/0/0.0 332 10000 5000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.1 333 10000 5000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/0/0.32767 334 0 2000 2000 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%

When CoS changes don’t seem to be taking effect, it’s a good idea to try
a commit full (the full part is hidden). If that does not help, there are
times where it’s a good idea to deactivate the class-of-service stanza,
then reactivate it to ensure all changes are placed into effect. There is a
data plane impact to such actions, as a small burst of errors results from
reconfigured queue buffers, etc., and during the flap the box will be
using default CoS, so don’t dally around.

Flapping just the affected interfaces, as shown in this section, is also
known to activate CoS changes that are otherwise not taking effect.

Confirm Scheduling Behavior
It’s very difficult to test CoS scheduling behavior using only ping. While useful for the
basic classification and connectivity checks that brought us here, pings simply cannot
generate enough traffic to cause congestion. Enter the Agilent Router Tester (ART),
which allows both control and data plane stimulation. In this case, the traffic generator
is used to exercise the data plane as that’s the focus of CoS, which is control plane
independent. In this topology, passive IS-IS is used to provide reachability to the L3-
related content networks, and all traffic is generated/received from the direct subnet
associated with the tester ports.

Before starting up the traffic, some predictions are in order. Recall that the IFD is shaped
to 10 Mbps, as is each of the two IFLs. The IFLs are each given 5 Mbps of guaranteed

494 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

bandwidth. Figure 5-30 shows the state of affairs for the two IFLS and their shared
interface.

Figure 5-30. Per Unit Scheduling for Bridged and Routed Traffic.

Figure 5-30 highlights the IFD shaping rate of 12 Mbps and the two IFLs, each shaped
to 10 Mbps, and each with a CIR/G-Rate of 5 Mbps. The two sets of queues, one for
each IFL, are also shown, along with each queue/FCs, transmit rate/excess rate per-
centages, and their normal and excess rate scheduling priorities. The EF has no excess
rate due to its use of rate limiting, and the Null class is blocked from using any excess.
Most queues are using the default L/GL priority, and most have had their excess priority
values altered from the defaults that are based on transmit rate. All queues eligible for
excess have an explicit excess rate defined.

The easiest prediction one can level against this setup is that EF will always get its 3
Mbps first, due to its SH setting. As a basic sanity test, EF traffic is started on the L3
source. Things seem to go wrong from the start when the tester displays only 2.6 Mbps

CoS Lab | 495

www.it-ebooks.info

http://www.it-ebooks.info/

of traffic is received. With only the one source active, it’s hard to believe there is any
congestion of contention issues. Could there be some mismatch in data rate?

Match Tester’s Layer 2 Rate to Trio Layer 1 Shaping

The Agilent router tester used in this lab does not provide an option to generate Ethernet
traffic based on physical layer rate. In contrast, Trio chipsets display queue statistics
and shape based on Layer 1 overhead, which for Ethernet includes the 96-bit time (12
bytes) interface gap as well as the 8-byte preamble, overhead that totals 20 bytes. At
the frame layer, the tester and Trio both count Ethernet overhead that includes desti-
nation and source MACs (12 bytes), the Type/Length (2 bytes) field, and the 4-byte
FCS. Given the incompatibility is at Layer 1, you can use the overhead accounting
feature to subtract the 20 bytes of Layer 1 overhead from Trio accounting and shaping
to match their rates, a real benefit when doing this type of testing. Figure 5-31 shows
the before and after effects of matching the tester’s traffic rate to the router’s shaping
function.

Figure 5-31. Adjust Overhead Accounting Bytes to Match Tester and DUT.

496 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Note that the overhead accounting needs to be adjusted for all shapers in the chain in
order to achieve the expected results. In this case, that means the two IFL shapers and
the IFD-level shaper. If H-CoS were in play, you would also need to adjust any IFL-Set-
level shapers. It’s generally not a good idea to complicate things by mismatching the
overhead accounting values at different scheduling nodes for a given interface, but such
configurations are permitted.

With the overhead factors matched, the EF class shows the expected 3 Mbps of
throughput, and loss, again expected given the input rate exceeds the rate limiting that’s
in effect for this queue. Note the end-to-end latency, which at 35 microseconds is rather
low. This is confirmation of the lack of delay buffer/shaping for this queue. Pretty
remarkable, given that is the delay through all three MX routers with a 10 Mbps link
in the mix.

Compute Queue Throughput: L3

Looking at the queue priorities, transmit and excess rates, along with the IFL/IFD G-
Rates and shaping rate, respectively, can you predict what will happen if all six traffic
flows are started to generate the 11.5 Mbps shown? The same approach taken in the
previous Pop Quiz section is used again here. After all, the approach worked there; if
it’s not broken, why fix it?

Recall that in the CoS PoC lab, static routing was used so there was no
control plane traffic to muck up the results. To add realism, the current
test network is running various Layer 3 routing and Layer 2 switching/
control protocols, specifically IS-IS, BFD, STP, and the VRRP protocols.
The tester is not configured to generate any NC traffic to avoid causing
any problems with these protocols should NC congestion result. Inter-
face monitoring at R1 in steady state indicated approximately 5 kbps of
NC traffic is flowing in the background. The NC load is low enough
that it can be safely disregarded as far as the calculations go.

The queue throughput calculations start with elimination of any low-hanging fruit. The
Null queue is not being used, and the 5 kbps of background NC can safely be ignored.
That brings us from eight to six queues that are of concern. Keep these tips in mind
when thinking about the throughput for these queues:

The interface is in CIR/PIR mode due to a G-Rate being specified.
As before, it’s best to start with any SH traffic to get it out of the way, and then
work your way down based on priority.
Once all the G-Rates of GH/GM are met, you can determine if any CIR remains.
If so, calculate GL queue bandwidth based on transmit rate ratio until you enter
excess. Recall that GL gets demoted if the sum of GH/GM exceeds the G-Rate.
We’re saying this again: GH and GM will get their G-Rate even if it has to come
from the excess region.

CoS Lab | 497

www.it-ebooks.info

http://www.it-ebooks.info/

When in the PIR/excess range, make sure to factor excess priority. Remember that
EH will starve EL in the excess if there are no rate limits at work. For queues at the
same excess priority, the sharing is based on the ratio of their excess rates.
A previous PFE display indicated that based on CIR, the non-EF queues guaran-
teed-rates are Q0/Q1/Q3: 250 kbps; Q2: 500 kbps; Q4: 1.5 Mbps; Q5: NA; and
Q6: 750 kbs. The sum of non-EF G-Rates is therefore 3 Mbps. Adding the 3 Mbps
of EF brings this to 6 Mbps, and the IFL has a CIR of 5 Mbps. Clearly, not all
queues can get their CIR in the guaranteed region.
There is a difference between a queue’s maximum and actual rate. Previous ex-
amples had all queues overdriven, such that maximum rate was achieved. Here,
the input rate of 1.6 Mbps is less than the maximum rate of some queues, thereby
allowing others to make use of their leftover capacity.

While the primary goal is actual queue throughput,
both the maximum and actual queue rates are computed for the sake of completeness.
The calculation proceeds according to the previous guidelines. First, compute the
maximum rates when all queues are overdriven (which is not the current case):

Guaranteed Region:

5 Mbps CIR/5 Mbps PIR

Q5/EF gets 3 Mbps,

2 Mbps CIR/5 Mbps PIR remains

(Q3/NC at GH skipped, BG protocol traffic ~ 5 kbps)
(Q7/Null at GM skipped no input)

Five queues remain, all at GL, sharing G-Rate based on TX ratio; the sum of the five
queues’ transmit weights equal 65 (5 + 5 + 10 + 30 + 15 = 65). That number forms the
basis of the ratio calculation, and recall that 2 Mbps of CIR remains:

Q0/BE: 2 * 5/65 (0.076) = 0.152 Mbps
Q1/AF1: 2 * 5/65 (0.076) = 0.152 Mbps
Q2/AF2: 2 * 10/65 (0.153) = 0.306 Mbps
Q4/AF4: 2 * 30/65 (0.461) = 0.922 Mbps
Q6/AF3: 2 * 15/65 (0.230) = 0.460 Mbps
Total: 3 Mbps + 1.99 Mbps = 4.99 Mbps, 0 Mbps CIR/5 Mbps PIR remains

Excess Region: 5 Mbps PIR

With all G-Rate consumed, the L3 scheduler node demotes the queues. They are all at
GL and so demotable, and therefore despite some not having reached their configured
transmit rate, into the excess region (PIR) they all go with 5 Mbps of PIR to fight over.

The sum of the five queues’ excess rates equals 95 (35 + 5 + 10 + 30 + 15 = 95). That
number forms the basis of the ratio calculation, and recall that 5 Mbps of PIR remains.
Note that here percentages are being used. The same results can be had using the pro-
portional weights shown in the previous sho cos halp ifl 332 command output, where

The Layer 3 IFL Calculation: Maximum.

498 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

the weights are scaled by a factor of 10 to sum to 1,000, making Q0’s 35% into 350
while Q1’s 5% is 50, etc.

Q0/BE: 5 * 35/95 (0.368) = 1.84 Mbps
Q1/AF1: 5 * 5/95 (0.052) = 0.26 Mbps
Q2/AF2: 5 * 10/95 (0.105) = 0.525 Mbps
Q4/AF4: 5 * 30/95 (0.315) = 1.57 Mbps
Q6/AF3: 5 * 15/95 (0.157) = 0.785 Mbps
Total = 4.99 Mbps

Queue maximums when overdriven:

Q0: 0.152 Mbps + 1.84 Mbps = 1.992 Mbps

Q1: 0.152 Mbps + 0.26 Mbps = 0.412 Mbps

Q2: 0.306 Mbps + 0.525 Mbps = 0.831 Mbps

Q3: ~ 5 kbps

Q4: 0.922 Mbps + 1.57 Mbps = 2.492 Mbps

Q5: 3 Mbps

Q6: 0.461 Mbps + 0.785 Mbps = 1.256 Mbps

Total: 9.983 M

The calculation for actual queue throughput
with the input loads shown begins with the same steps as the previous maximum
throughput example. Things change when performing the excess rate calculations,
however.

From the previous calculation G-Rate bandwidth was allocated as shown:

Q0/BE: 2 * 5/65 (0.076) = 0.152 Mbps

Q1/AF1: 2 * 5/65 (0.076) = 0.152 Mbps

Q2/AF2: 2 * 10/65 (0.153) = 0.306 Mbps

Q4/AF4: 2 * 30/65 (0.461) = 0.922 Mbps

Q6/AF3: 2 * 15/65 (0.230) = 0.460 Mbps

Total: 3 M + 1.99 Mbps = 4.99 M, 0M CIR/5 Mbps PIR remains

Excess region: 5 Mbps PIR, total load 8 Mbps

We approach the excess sharing calculation a bit differently in this example. Given
there are now five queues with widely varying rates, and that the input load is less than
some queue’s maximum rate, it makes sense to order the queues from highest to lowest
excess rate and then see how each makes out. There is a total of 95% excess bandwidth
share among the five queues, and 5 Mbps to share. In rough numbers, this works out
to approximately 19% per 1 Mbps of excess bandwidth.

The Layer 3 IFL Calculation: Actual Throughput.

CoS Lab | 499

www.it-ebooks.info

http://www.it-ebooks.info/

Taking Q0 as an example, it was left with 0.152 Mbps of G-Rate bandwidth. It has an
input load of 1.6 M, making the difference 1.448 Mbps.With the excess-to-bandwidth
ratio in effect, that means Q0 needs 27.5% excess bandwidth to satisfy its load, leaving
7.5% of its excess weight unused. The process is repeated next on Q4, as it has the
highest remaining excess share, which is 30%.

The excess usage is computed. The percentages shown reflect excess bandwidth used,
not the excess rate values that are configured. Some classes are satisfied before they use
their full percentage, allowing other queues to borrow their unused excess.

Q0: 1.448 Mbps (27.5%)

Q1: 566 kbps (10.7%),

Q2: 1.13 Mbps (21.4%)

Q3: ~ 5 kbps

Q4: 0.678 Mbps (12.8%)

Q5: 0 Mbps/rate limited

Q6: 0.114 Mbps (21.6%)

Q7: 0 Mbps/excess none

Total: 4.9 Mbps

Table 5-14 summarizes the CIR and PIR rate calculation results for all queues.

Table 5-14. Excess Region Bandwidth Allocation and Queue Total Usage (in Mbps).

Queue Load

Ex-
cess
rate

G-Rate
BW Needs Gets

Excess
Rate
Used

Excess
Rate +/
−

PIR
Left (5
m)

Queue Total (CIR
+ PIR)

0/BE 1.6 M 35% 0.152 M 1.44 M 1.44 M 27.5% −7.5 3.55 M 0.152 + 1.448 =
1.6 (0 loss)

4/AF4 1.6 M 30% 0.922 M 0.678 M 0.678 M 12.8% −17.2 2.87 M 0.922 + 0.678 =
1.6 (0 loss)

6/AF3 1.6 M 15% 0.460 M 1.14 M 1.14 M 21.6% +6.6 1.73 M 0.460 + 1.14 = 1.6
(0 loss)

2/AF2 1.6 M 10% 0.306 M 1.29 M 1.13 M 21.4% +11 570 K 0.306 + 1.13 =
1.4M (144 PPS loss

1/AF1 1.6 M 5% 0.152 M 1.448 M 566 K 10.7% +5 0 0.152 + 0.566 =
0.71M (500 PPS
loss)

As shown, queues 1, 4, and 6 can support the offered load, with the first two queues
having excess capacity to spare; the excess represents additional load that queue could
carry. As a result, no loss is expected for these queues. In the case of queue 0, the 1.6

500 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Mbps shown plus excess bandwidth represented by its remaining 7.5 would bring the
queue to its maximum 1.9 Mbps computed previously.

When we get to queues 2 and 1, which are at a 2:1 sharing ratio, there is only 1.7 Mbps
PIR remaining. Clearly, both queues will not have their CIRs met. Given the ratio, queue
2 gets its two-thirds and queue 1 gets the remaining one-third.

Figure 5-32 shows the measured result when only the Layer 3 flows are active.

Figure 5-32. CoS Lab Measured Results: L3 Flow.

Once again, the measured results correlate well with the computed values. As a final
pop quiz, ask yourself what will happen to traffic on IFL 1’s queues if the L2 test streams
are stated up on IFL 0. Given that both IFLs have a peak rate of 10 Mbps due to shaping,
it’s clear that both IFLs can never send at their peak rate simultaneously. One IFL or
the other can burst to the IFL’s shaped speed of 10 M, but this leaves only 2 Mbps of
IFD-shaped bandwidth for the other IFL (recall IFD is shaped to 12 Mbps to accom-
modate the LACP control scheduler, but it’s not sending any traffic as LACP is not
enabled).

The most you can ever hope to get over the IFD is 12 Mbps, and the traffic on the two
IFLs can reach an aggregate rate of 23 Mbps, so something has to hit the floor. With

CoS Lab | 501

www.it-ebooks.info

http://www.it-ebooks.info/

rough math, it seems that each IFL can expect its 5 Mbps CIR + a share of the 2 Mbps
PIR that remains. This means you expect each queue to lose much of its excess band-
width and fall back to the CIR region. Therefore, both EF queues will remain at 3 Mbps
while BE should drop to some 0.6 Mbps, almost as high as AF4x. This may surprise
you, but it makes sense when you consider that AF4x gets most of the 2 Mbps CIR
(30%) while both AF4x and BE gets about one-third of the 1 Mbps PIR, thus keeping
AF4x in the lead over BE, with both coming in behind EF.

Figure 5-33 shows the measured results when both IFLs are driven at the same time
and at the same rates.

Figure 5-33. CoS Lab Measured Results: Both Flows Active.

The chart in the upper left is at steady state with all streams flowing. The WRED profile
and chronic congestion that was not present in the single IFL case do skew the numbers
a bit, but they are symmetrical between the queues on both IFLs, proving neither is
getting any advantage, as is expected given their identical settings. Note that EF is
unaffected given its SH priority and LLQ settings that result in a small buffer mean that
congestion does not affect this queue as much as the others, at least from a latency
perspective. The line graph on the right shows a sequence with just the Layer 3 IFL

502 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

sending, then both IFLs, and then just the Layer 2. Again, matched rates are confirmed
during the period when both are active, and it’s clear that when one IFL is inactive, the
other can take advantage by moving into the PIR region for excess bandwidth. In this
setup, one IFL’s CIR is the other’s PIR, a fact reflected nicely in the graph. The upper
right confirms the total offers load of 23 Mbps versus the total received load, which
hovers nicely around the 12 Mbps IFD shaping rate.

The math to compute the BE queues follows, if you are curious. Again, NC and Null
are left out:

The sum of the transmit rates for the five queues equals 65 (5 + 5 + 10 + 30 + 15 = 65),
while the sum of queue excess rate equals 85 (35 + 5 + 10 + 30 + 5 = 85). These numbers
form the basis of the ratio calculation for both CIR and PIR sharing respectively; the
ratios are converted to decimal:

CIR sharing:

5/65 = 0.076

10/65 = 0.153

15/65 = 0.230

30/65 = 0.461

PIR sharing:

5/85 = 0.058

10/85 = 0.117

30/85 = 0.352

35/85 = 0.411

And now the math, which is the same for both IFLs:

5 Mbps CIR/1 Mbps PIR

EF gets 3 Mbps, 2 Mbps CIR/1 Mbps PIR remains

CIR Bandwidth (2 Mbps available for all five queues):

Q0/BE: 2 * 0.076 = 0.152 Mbps

Q1/AF1: 2 * 0.076 = 0.152 Mbps

Q2/AF2: 2 * 0.153 = 0.306 Mbps

Q4/AF4: 2 * 0.461 = 0.922 Mbps

Q6/AF3: 2 * 0.230 = 0.460Mbps

Total = 1.992 Mbps, 0 Mbps CIR, 1 Mbps PIR remains

Excess Bandwidth (1 Mbps available for all five queues):

CoS Lab | 503

www.it-ebooks.info

http://www.it-ebooks.info/

Q0/BE: 1 * 0.461 = 0.461 Mbps

Q1/AF1: 1 * 0.058 = 0.058 Mbps

Q2/AF2: 1 * 0.117 = 0.117 Mbps

Q4/AF4: 1 * 0.352 = 0.352 Mbps

Q6/AF3: 1 * 0.058 = 0.058 Mbps

Total = 1.0 Mbps, 0 Mbps CIR, 0 Mbps PIR.

Queue totals, both IFLs active:

Q0/BE: 0.152 Mbps + 0.461 Mbps = 0.613 Mbps

Q1/AF1: 0.152 Mbps + 0.058 Mbps = 0.210 Mbps

Q2/AF2: 0.306 Mbps + 0.117 Mbps = 0.423 Mbps

Q4/AF4: 0.922 Mbps + 0.352 Mbps = 1.27 Mbps

Q5/EF: (all from CIR) = 3 Mbps

Q6/AF3: 0.460 Mbps + 0.058 Mbps = 0.518 Mbps

Total: 6.03 Mbps (5 Mbps CIR + 1 Mbps PIR)

Again, the numbers are remarkably close to the measured results. AF4x is the exception
here, showing a lower than computed result. It’s suspected that presence of the back-
ground NC, which is not taken into account in these calculations, is forcing demotion
into excess (NC is high-priority and so always gets its G-Rate) before it has received its
30% share of the 2 Mbps CIR. Once in excess, it starts losing to BE with its higher
excess rate. This is one of the many mysteries of CoS that keeps the job fun.

Before wrapping this up, the ultimate proof in the CoS pudding comes with pings
generated from S1 to the L3 receiver using different ToS values, as these best simulate
a Internet user’s experience and how it can vary based on what class they are assigned.
Note these tests are conducted when both traffic flows are present to induce chronic
congestion as described in the previous section. All queues except for Q3/NC and Q7/
Null, which are not driven by the tester, are showing packet drops and all of the avail-
able (shaped) bandwidth is utilized on the egress link at R1. First, the BE experience:

{master:0}[edit]
jnpr@S1-RE0# run ping 192.168.4.1
PING 192.168.4.1 (192.168.4.1): 56 data bytes
64 bytes from 192.168.4.1: icmp_seq=1 ttl=62 time=446.136 ms
64 bytes from 192.168.4.1: icmp_seq=3 ttl=62 time=484.471 ms
64 bytes from 192.168.4.1: icmp_seq=4 ttl=62 time=431.219 ms
64 bytes from 192.168.4.1: icmp_seq=5 ttl=62 time=542.507 ms
64 bytes from 192.168.4.1: icmp_seq=7 ttl=62 time=426.771 ms
64 bytes from 192.168.4.1: icmp_seq=8 ttl=62 time=439.971 ms
64 bytes from 192.168.4.1: icmp_seq=9 ttl=62 time=596.102 ms
64 bytes from 192.168.4.1: icmp_seq=12 ttl=62 time=488.459 ms
^C
--- 192.168.4.1 ping statistics ---

504 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

14 packets transmitted, 8 packets received, 42% packet loss
round-trip min/avg/max/stddev = 426.771/481.954/596.102/56.358 ms

The BE class is showing significant loss, and look at that delay. Oh, the humanity! Still,
based on its 5%/35% and default WRED profile, it’s getting better treatment than
AF12:

{master:0}[edit]
jnpr@S1-RE0# run ping 192.168.4.1 tos 48 rapid count 100
PING 192.168.4.1 (192.168.4.1): 56 data bytes
........................^C
--- 192.168.4.1 ping statistics ---
25 packets transmitted, 0 packets received, 100% packet loss

{master:0}[edit]
jnpr@S1-RE0#

Recall that the AF12 class is using a rather aggressive drop profile that is putting the
proverbial hurt on its traffic. Next, let’s try the EF class:

{master:0}[edit]
jnpr@S1-RE0# run ping 192.168.4.1 tos 184
PING 192.168.4.1 (192.168.4.1): 56 data bytes
64 bytes from 192.168.4.1: icmp_seq=0 ttl=63 time=468.405 ms
64 bytes from 192.168.4.1: icmp_seq=1 ttl=62 time=3.133 ms
64 bytes from 192.168.4.1: icmp_seq=2 ttl=62 time=1.341 ms
^C
--- 192.168.4.1 ping statistics ---
4 packets transmitted, 3 packets received, 25% packet loss
round-trip min/avg/max/stddev = 1.341/157.626/468.405/219.755 ms

The result is a bit ironic, showing that EF is just like first class; it’s great, but only when
you can get in. Recall this class is overdriven at ingress based on its rate limiter, and as
such, it’s fast for the traffic that is accepted, but otherwise it drops with the best of
them. Given what you know of the NC scheduler’s priority, and its lack of loading, it
seems that acting like NC is the way to go for the best performance possible in the
current congested state:

{master:0}[edit]
jnpr@S1-RE0# run ping 192.168.4.1 tos 225 count 3
PING 192.168.4.1 (192.168.4.1): 56 data bytes
64 bytes from 192.168.4.1: icmp_seq=0 ttl=62 time=1.476 ms
64 bytes from 192.168.4.1: icmp_seq=1 ttl=62 time=1.288 ms
64 bytes from 192.168.4.1: icmp_seq=2 ttl=62 time=4.055 ms

--- 192.168.4.1 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.288/2.273/4.055/1.262 ms

Not only is the NC queue low delay, but it’s also loss free:

jnpr@S1-RE0# run ping 192.168.4.1 tos 225 rapid count 100
PING 192.168.4.1 (192.168.4.1): 56 data bytes
!!!
--- 192.168.4.1 ping statistics ---

CoS Lab | 505

www.it-ebooks.info

http://www.it-ebooks.info/

100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.001/1.832/6.850/1.279 ms

A final confirmation step displays interface queue statistics to confirm WRED versus
rate limiter drops, starting with the EF queue:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0 forwarding-class ef
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 5, Forwarding classes: ef
 Queued:
 Packets : 36516 1834 pps
 Bytes : 7449264 2993600 bps
 Transmitted:
 Packets : 36516 1834 pps
 Bytes : 7449264 2993600 bps
 Tail-dropped packets : 0 0 pps
 RL-dropped packets : 6946 680 pps
 RL-dropped bytes : 1416984 1110400 bps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

The EF queue confirms only rate limit (RL-dropped) drops, as expected. By design, this
queue is always congestion free in order to keep latency low, trading low for delay every
day of the week. Note that packets dropped due to rate limiting are never actually
queued, and as such you don’t expect rate limit drops to be reflected in packet queue
or RED dropped statistics, as is the case here.

Meanwhile, the NC queue has had no drops, again in keeping with its high priority and
lack of loading:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0 forwarding-class nc
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 3, Forwarding classes: nc
 Queued:
 Packets : 1020 10 pps
 Bytes : 77999 7632 bps
 Transmitted:
 Packets : 1020 10 pps
 Bytes : 77999 7632 bps

506 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Tail-dropped packets : 0 0 pps
 RED-dropped packets : 0 0 pps
 Low : 0 0 pps
 Medium-low : 0 0 pps
 Medium-high : 0 0 pps
 High : 0 0 pps
 RED-dropped bytes : 0 0 bps
 Low : 0 0 bps
 Medium-low : 0 0 bps
 Medium-high : 0 0 bps
 High : 0 0 bps

In contrast, the AF1x class confirms historic and ongoing WRED drops:

{master}[edit]
jnpr@R1-RE0# run show interfaces queue xe-2/0/0 forwarding-class af1x
Physical interface: xe-2/0/0, Enabled, Physical link is Up
 Interface index: 148, SNMP ifIndex: 4373
Forwarding classes: 16 supported, 8 in use
Egress queues: 8 supported, 8 in use
Queue: 1, Forwarding classes: af1x
 Queued:
 Packets : 2181 1998 pps
 Bytes : 444924 3265488 bps
 Transmitted:
 Packets : 407 373 pps
 Bytes : 83028 609376 bps
 Tail-dropped packets : 1 0 pps
 RED-dropped packets : 1773 1625 pps

The display confirms drops at a 1.6k PPS rate in the AF1x queue, a number that rep-
resents drops for all three AF1x classes. A previous measured result confirmed less
drops in AF11 versus AF12, confirming that DiffServ design goals have been met. As
expected, the level of drops is less in AF2, AF3, and AF4, respectively:

{master}[edit]
jnpr@R1-RE0#
run show interfaces queue xe-2/0/0 forwarding-class af2x | match RED-dropped
 RED-dropped packets : 280612 1293 pps
 RED-dropped bytes : 57244848 2113088 bps

{master}[edit]
jnpr@R1-RE0#
run show interfaces queue xe-2/0/0 forwarding-class af3x | match RED-dropped
 RED-dropped packets : 503119 1214 pps
 RED-dropped bytes : 102636276 1983144 bps

{master}[edit]
jnpr@R1-RE0#
run show interfaces queue xe-2/0/0 forwarding-class af4x | match RED-dropped
 RED-dropped packets : 426313 956 pps
 RED-dropped bytes : 86967852 1561104 bps

These results conclude the basic Trio CoS deployment lab.

CoS Lab | 507

www.it-ebooks.info

http://www.it-ebooks.info/

Add H-CoS for Subscriber Access
People just can’t seem to let a DiffServ network rest. Now that you have IP CoS up and
running, the word is that you have to extend this CoS into a subscriber access network
that is expected to scale beyond 1,000 users. The design has to be scalable (obviously)
and has to offer not only IP DiffServ-based CoS, but also several performance profiles
that are needed to enable triple-play services and to facilitate a tiered service offering.

In this example, different levels of performance are achieved through varying IFL shap-
ing rates and level 2 scheduler node overbooking ratios. Clearly, users that are on IFLs
with a higher shaping rate with little to no overbooking can expect better performance
than those that have to contend for a overbooked group access rate while still being
limited by a lower IFL speed. As noted previously, an alternative and safer design option
is to only overbook PIR rates.

The design must offer per IFL/VLAN CoS profiles with eight queues per user. So at a
minimum, per unit scheduling is needed. In addition, the network architects have asked
that there be an interface-level usage limit on high-priority traffic. In like fashion, they
also want each subscriber access class (business versus basic) to have an overall usage
cap placed the same high-priority traffic. This high-priority traffic is special for having
a high scheduling priority, and because it’s often used to carry loss and delay sensitive
real-time traffic as well as network control (albeit in separate queues). Even though
each user IFL has a cap placed on total traffic via the IFL shaping rate, and there is a
rate limit in effect for the EF queue, the concern is that “nothing fails like success” and
the designers want overall caps placed on this traffic so that they can predict and model
network performance without having to factor down to the individual subscriber/
VLAN level. The hope is that with a hierarchical CoS design, the network planners can
predict worse-case EF loads on a per access network basis without having to concern
themselves with the day-to-day adds, moves, and changes in the subscriber network.

Because provisioning new users and executing move/change orders is a complicated
process, configuration mistakes often occur. The design must therefore include a de-
fault set of queues at both the IFL-Set and IFD levels for users that, for whatever reason,
either don’t have an IFL-level TCP applied or don’t belong to an official service tier
(i.e., their IFLs are not listed in any known interface set). The H-CoS remaining con-
struct fits this requirement nicely.

Defining a remaining profile at the IFD level, and for IFL-Sets, is a best practice when
deploying H-CoS. As described previously, each remaining profile provides a set of
shared queues that act as a safety net, catching users that are victims of provisioning
errors, or possibly those attempting unauthorized access. While remaining profiles can
provide a legitimate service class of their own, perhaps acting as the best-effort service
container, it’s also legitimate to provision remaining profiles so they give the attached
users just enough service to be miserable, so they complain, possibly via email or even
over the shiny new IP phone that came with their premium triple-play service. In the
model, the complaints from authorized users get the provisioning mistakes corrected,

508 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

and those that are attempting free service perhaps move on to a target with more band-
width.

Even if you don’t plan to use remaining traffic profiles (RTPs), defining
them is best practice to help guard against unexpected results that can
result from partial or misconfigurations.

Recall that IFLs that do not have a TCP attached at the [edit class-of-
service] hierarchy, and which are not listed in any interface set, are
supposed to be handled by the IFD’s RTP, while IFLs that are listed in
a set, but which also do not have a TCP attached, are supposed to be
handled by the IFL-Set’s RTP. Failing to define these RTPs can result in
an IFL getting significantly more bandwidth than you intended. This is
because when a specific RTP is not applied, the RTP profile inherits the
node’s shaping rate as a default. Thus for an IFD that is not part of a
set, it gets the full IFD shaping rate while in the IFL named to a set case
the IFL is expected to get the full IFL-Set’s shaping rate. In both cases,
a single IFL is allowed to consume shaped bandwidth that was likely
intended for a group of IFLs, or in the case of the IFD’s shaped rate, the
bandwidth intended to be shared by a group of IFL-Sets!

PR 783690 was raised for an unconfigured IFL-Set remaining profile
displaying the IFD shaping rate; the expected behavior, as described
previously, is for the default IFL-Set RTP to display the IFL-Set’s shaping
rate. Despite this display issue, testing showed that such an IFL got the
IFL-Set’s PIR, as was expected, even though the IFD’s PIR was dis-
played, making this issue appear cosmetic.

Defining remaining profiles, and attaching them to the IFD and to all
interface sets, avoids both issues and is therefore the current best prac-
tice when deploying H-CoS. With explicit RTPs in place, any IFL that
is listed in a set, but which does not have its own TCP applied, is at-
tached to the IFL-Set’s remaining profile, where it inherits the remaining
profile’s shaping and guaranteed rates in a predictable fashion. Like-
wise, any IFL that is not listed in an interface set, and which also does
not have a TCP applied, is now attached to the IFD’s remaining traffic
profile.

With the basic design goals in place, it’s time to get down to H-CoS configuration. The
bulk of the CoS configuration from the previous section remains unchanged. In fact,
all the changes happen at R4. Figure 5-34 shows the high-level CoS design.

Add H-CoS for Subscriber Access | 509

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-34. H-CoS Lab Topology.

Before getting into H-CoS proper, let’s cover a few things about the network design
and IP addressing details shown in Figure 5-34. A 192.168.4/22 supernet is available
to number the subscriber access network. The plan is to allocate a range of IFLs to each
service tier, and these IFLs will each be associated with a matching VLAN tag and an
IP address from the address pool assigned to the subscriber access network. The /22
aggregate route (supernet) yields a total of four/24 subnets; specifically, 192.168.4.0/24

510 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

through 192.168.7.0/24. In this design, subscriber access links use a /31 mask to allow
up to 128 subscriber links per subnet/service class.

The basic service is expected to have approximately 100 users, provisioned on IFLs 1
to 99, using VLAN IDs 1 to 99, and assigned IP addresses from the 192.168.5/24 space.
An aggregate route is defined at R4 and redistributed into IS-IS to accommodate routing
into the subscriber network:

[edit]
jnpr@R4# show | compare rollback 1
[edit]
+ routing-options {
+ aggregate {
+ route 192.168.4.0/22;
+ }
+ }
[edit protocols isis]
+ export agg_isis;
[edit]
+ policy-options {
+ policy-statement agg_isis {
+ term 1 {
+ from {
+ protocol aggregate;
+ route-filter 192.168.4.0/22 orlonger;
+ }
+ then accept;
+ }
+ }
+ }

And reachability to the new access network subnets is confirmed at R1:

{master}[edit]
jnpr@R1-RE0# run show route 192.168.7.0

inet.0: 24 destinations, 24 routes (24 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.168.4.0/22 *[IS-IS/165] 00:28:16, metric 30
> to 10.8.0.1 via xe-2/0/0.1

{master}[edit]
jnpr@R1-RE0#

The figure also provides a table that outlines the IFD, IFL-Set, and IFL level shaping;
CIR; and per priority shaping plans. Per priority shaping for high-priority traffic is
implemented at the IFD level to cap usage for the entire access network; priority-based
shaping is also performed on some IFL-Sets to help enforce service differentiation be-
tween the tiers. Figure 5-35 provides a configuration-friendly view of the same H-CoS
design.

Add H-CoS for Subscriber Access | 511

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-35. The H-CoS Configuration Plan.

Configure H-CoS
The actual configuration, at this stage of the chapter, is rather straightforward. The IFL
definitions at R4 are shown. To save space, a single IFL is defined for each of the three
sets, plus one extra to demonstrate use of a remaining profile. IFL 0 is left in place to
provide a numbered link into the access network’s DSLAM.

[edit]
jnpr@R4# show interfaces xe-2/2/0
hierarchical-scheduler;
vlan-tagging;
unit 0 {
 vlan-id 2000;
 family inet {
 address 192.168.4.2/30;
 }
}
unit 1 {
 vlan-id 1;
 family inet {
 address 192.168.5.0/31;
 }
}
unit 100 {
 vlan-id 100;

512 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 family inet {
 address 192.168.6.0/31;
 }
}
unit 200 {
 vlan-id 200;
 family inet {
 address 192.168.7.0/31;
 }
}
unit 500 {
 vlan-id 500;
 family inet {
 address 192.168.4.10/31;
 }
}

Note the presence of the hierarchical-scheduler command at the IFD level. Yeah baby!
The interface sets are displayed next:

[edit]
jnpr@R4# show interfaces
interface-set iflset_basic {
 interface xe-2/2/0 {
 unit 1;
 }
}
interface-set iflset_business {
 interface xe-2/2/0 {
 unit 100;
 }
}
interface-set iflset_premium {
 interface xe-2/2/0 {
 unit 200;
 }
}
. . .

Not too much to see there. As the service grows, you keep adding IFLs from the des-
ignated ranges. If desired, you can use the vlan-tags-outer keyword to specify the outer
tag, which for a dual tagged environment is an S-VLAN; otherwise, it’s a C-VLAN. At
a minimum, a set must have one member, and you cannot mix IFL and VLAN tag
formats in the same set. Currently, ranges are not supported, but this is a likely up-
coming enhancement. For now, you will have to enter all units/VLAN values individ-
ually, one at a time.

Next, the TCPs are displayed:

[edit]
jnpr@R4# show class-of-service traffic-control-profiles
tc-ifd-500m {
 shaping-rate 500m;
 overhead-accounting bytes −20;
 shaping-rate-priority-high 200m;

Add H-CoS for Subscriber Access | 513

www.it-ebooks.info

http://www.it-ebooks.info/

}
tc-iflset_basic {
 shaping-rate 2m;
 overhead-accounting bytes −20;
 shaping-rate-priority-high 1m;
 guaranteed-rate 1m;
}
tc-iflset_business {
 shaping-rate 10m;
 overhead-accounting bytes −20;
 shaping-rate-priority-high 3m;
 guaranteed-rate 5m;
}
tc-iflset_premium {
 shaping-rate 30m;
 overhead-accounting bytes −20;
 guaranteed-rate 20m;
}
tc-iflset_remain {
 scheduler-map sched_map_core;
 shaping-rate 500k;
 overhead-accounting bytes −20;
 shaping-rate-priority-high 500k;
}
tc-ifl_basic {
 scheduler-map sched_map_core;
 shaping-rate 1m;
 overhead-accounting bytes −20;
 guaranteed-rate 500k;
}
tc-ifl_business {
 scheduler-map sched_map_core;
 shaping-rate 2m;
 overhead-accounting bytes −20;
 guaranteed-rate 1m;
}
tc-ifl_premium {
 scheduler-map sched_map_core;
 shaping-rate 3m;
 overhead-accounting bytes −20;
 guaranteed-rate 2m;
}
tc-iflset_basic_remain {
 scheduler-map sched_map_core;
 shaping-rate 500k;
}
tc-iflset_business_remain {
 scheduler-map sched_map_core;
 shaping-rate 500k;
}
tc-iflset_premium_remain {
 scheduler-map sched_map_core;
 shaping-rate 500k;
}

514 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Note that each level of scheduling, IFD, IFL-Set, and IFL is represented here. In addi-
tion, the IFD and the three interface sets each have a remaining profile configured. The
TCPs that attach to IFLs include the scheduler map statement to provide the eight
forwarding classes and scheduling parameters described previously. This example uses
the same scheduler map, and therefore the same set of eight schedulers, for all IFLs.
This is not a requirement. For example, you may want only two FCs (BE and NC) for
the remaining profiles, or maybe you want different scheduler parameters for different
users, even though those users might be in the same service tier. For example, a par-
ticular application may demand some specific buffer setting or might be very intolerant
to loss, forcing a modified scheduler and a new scheduler map for that user.

Next is the class-of-service-level interface configuration. First, the IFL set definition,
here used to tie a TCP to each set that was defined previously under the [edit inter
faces] hierarchy:

[edit]
jnpr@R4# show class-of-service interfaces
interface-set iflset_basic {
 output-traffic-control-profile tc-iflset_basic;
 output-traffic-control-profile-remaining tc-iflset_basic_remain;
}
interface-set iflset_business {
 output-traffic-control-profile tc-iflset_business;
 output-traffic-control-profile-remaining tc-iflset_business_remain;
}
interface-set iflset_premium {
 output-traffic-control-profile tc-iflset_premium;
 output-traffic-control-profile-remaining tc-iflset_premium_remain;
}

And now, interface xe-2/2/0’s CoS settings:

. . .
xe-2/2/0 {
 output-traffic-control-profile tc-ifd-500m;
 output-traffic-control-profile-remaining tc-iflset_remain;
 unit * {
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }
 unit 0 {
 output-traffic-control-profile tc-ifl_business;
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }

Add H-CoS for Subscriber Access | 515

www.it-ebooks.info

http://www.it-ebooks.info/

 unit 1 {
 output-traffic-control-profile tc-ifl_basic;
 classifiers {
 dscp dscp_diffserv;
 }
 }
 unit 100 {
 output-traffic-control-profile tc-ifl_business;
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }
 unit 200 {
 output-traffic-control-profile tc-ifl_premium;
 classifiers {
 dscp dscp_diffserv;
 }
 rewrite-rules {
 dscp dscp_diffserv;
 }
 }
}

Of note here is the specification of the IFD-level shaping and remaining TCPs. Also,
note that unit 500 is not mentioned explicitly; this is a key point, as it means unit 500
is not specified in any interface set, nor does it have a TCP applied under [edit class-
of-service interfaces] hierarchy. As a result, we expect unit 500 to be serviced by the
IFD-level remaining profile. The use of a wild-card unit allows application of the DSCP
rewrite and classifiers to an interface that is not explicitly listed, such as IFL 500. Note
how units 1, 100, and 200 each have an IFL-level TCP applied, and that they are all
listed in an IFL-Set. The result in these IFLs will become level 3, and they will attach
to their associated interface set at level 2.

Verify H-CoS
You verify H-CoS in the same manner as shown previously in the per unit scheduling
example. The only real difference is the L2 scheduling nodes and presence of interface
sets. We begin with operational mode verification. First, the interface sets are
confirmed:

jnpr@R4# run show class-of-service interface-set
Interface-set: iflset_basic, Index: 4
Physical interface: xe-2/2/0, Index: 152
Queues supported: 8, Queues in use: 8
 Output traffic control profile: tc-iflset_basic, Index: 61878

Interface-set: iflset_business, Index: 5
Physical interface: xe-2/2/0, Index: 152
Queues supported: 8, Queues in use: 8

516 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 Output traffic control profile: tc-iflset_business, Index: 25290

Interface-set: iflset_premium, Index: 6
Physical interface: xe-2/2/0, Index: 152
Queues supported: 8, Queues in use: 8
 Output traffic control profile: tc-iflset_premium, Index: 23149

And now, the various TCPs:

[edit]
jnpr@R4# run show class-of-service traffic-control-profile
Traffic control profile: tc-ifd-500m, Index: 17194
 Shaping rate: 500000000
 Shaping rate priority high: 200000000
 Scheduler map: <default>

Traffic control profile: tc-ifl_basic, Index: 2288
 Shaping rate: 1000000
 Scheduler map: sched_map_core
 Guaranteed rate: 500000

Traffic control profile: tc-ifl_business, Index: 7785
 Shaping rate: 2000000
 Scheduler map: sched_map_core
 Guaranteed rate: 1000000

Traffic control profile: tc-ifl_premium, Index: 16776
 Shaping rate: 3000000
 Scheduler map: sched_map_core
 Guaranteed rate: 2000000

Traffic control profile: tc-iflset_basic, Index: 61878
 Shaping rate: 2000000
 Shaping rate priority high: 1000000
 Scheduler map: <default>
 Guaranteed rate: 1000000

Traffic control profile: tc-iflset_basic_remain, Index: 42633
 Shaping rate: 500000
 Scheduler map: sched_map_core

Traffic control profile: tc-iflset_business, Index: 25290
 Shaping rate: 10000000
 Shaping rate priority high: 3000000
 Scheduler map: <default>
 Guaranteed rate: 5000000

Traffic control profile: tc-iflset_business_remain, Index: 15725
 Shaping rate: 500000
 Scheduler map: sched_map_core

Traffic control profile: tc-iflset_premium, Index: 23149
 Shaping rate: 30000000
 Scheduler map: <default>
 Guaranteed rate: 20000000

Add H-CoS for Subscriber Access | 517

www.it-ebooks.info

http://www.it-ebooks.info/

Traffic control profile: tc-iflset_premium_remain, Index: 63572
 Shaping rate: 500000
 Scheduler map: sched_map_core

Traffic control profile: tc-iflset_remain, Index: 14271
 Shaping rate: 500000
 Shaping rate priority high: 500000
 Scheduler map: sched_map_core

Note how the TCPs that are used for L2 or L1 scheduling nodes omit the scheduler-
map statements, and so are shown using the default mapping. The tc-iflset_remain
TCP is applied to the IFD, but it functions as a type of level 2 interface set, so using the
scheduler-map statement here makes eight queues available for sharing among all IFLs
that fall into the remaining group. The CoS settings for the xe-2/2/0 interface are
displayed:

[edit]
jnpr@R4# run show class-of-service interface xe-2/2/0
Physical interface: xe-2/2/0, Index: 152
Queues supported: 8, Queues in use: 8
Total non-default queues created: 56
 Output traffic control profile: tc-ifd-500m, Index: 17194
 Congestion-notification: Disabled

 Logical interface: xe-2/2/0.0, Index: 327, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile tc-ifl_business Output 7785
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

 Logical interface: xe-2/2/0.1, Index: 328, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile tc-ifl_basic Output 2288
 Classifier dscp_diffserv dscp 23080

 Logical interface: xe-2/2/0.100, Index: 329, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile tc-ifl_business Output 7785
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

 Logical interface: xe-2/2/0.200, Index: 330, Dedicated Queues: yes
 Object Name Type Index
 Traffic-control-profile tc-ifl_premium Output 16776
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

 Logical interface: xe-2/2/0.32767, Index: 332

 Logical interface: xe-2/2/0.500, Index: 331
 Object Name Type Index
 Rewrite dscp_diffserv dscp 23080
 Classifier dscp_diffserv dscp 23080

518 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

Of note here is how unit 500 is not shown as having any TCP/scheduler applied. All
other units of this interface are specified as having a TCP, which in turn has the sched-
uler map to provide queues to the IFL. The key point, again, is that unit 500 is not listed
in any interface set, so will not be subjected to any set level remaining profile. This unit
does not have its own TCP applied, so the only way it will get its queues, and the
bandwidth they afford, is to use the interface-level remaining profile.

The real action is in the PFE. The resulting H-CoS scheduler hierarchy is displayed:

NPC2(R4 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 0 0 0 0
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 500000 0 0 0
 iflset_basic 4 2000 1000 0 0
 xe-2/2/0.1 328 1000 500 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_basic-rtp 4 500 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_business 5 10000 5000 0 0
 xe-2/2/0.100 329 2000 1000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_business-rtp 5 500 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%

Add H-CoS for Subscriber Access | 519

www.it-ebooks.info

http://www.it-ebooks.info/

 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_premium 6 30000 20000 0 0
 xe-2/2/0.200 330 3000 2000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_premium-rtp 6 500 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/2/0.0 327 2000 1000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 xe-2/2/0-rtp 152 500 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%

There is a lot of information here, but the only thing that is new in relation to previous
displays is the presence of interface sets. The iflset_basic set is given index 4, the
related IFL, unit 1, is indexed with 328, while the IFD itself is 152; these values are used
later to poke a little deeper, so keep them in mind. Note how each IFL-Set has a re-
maining traffic profile (RTP) that offers eight shared queues. Note how all IFL and IFL-
Sets display the configured PIR and CIR information. The basic set on IFL 1, for ex-
ample, shows 1 Mbps of PIR and 500 kbps of CIR.

All queues use the same scheduling policy index, given the same scheduler map is used
for all IFLs. Again, this is not a requirement, but again, CoS is all about consistency,

520 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

so there is something to be said for the common scheduler map model being demon-
strated here as well. The IFD-level remaining profile is index 152. Note the 500 kbps
PIR, again matching the deployment plans.

The CoS settings for the IFD are displayed:

NPC2(R4 vty)# sho cos ifd-entry 152
CoS IFD IDX: 152
Port Speed: 10000000000
Scheduler Mode: COS_IFD_SCHED_HIER_SCHED_MODE
IF toolkit scheduler mode: ifd_has_hier_sched:TRUE ifd_has_2level_hier_sched:FALSE
scheduler_map_id[egress] : 20205
EGRESS Traffic Params
--
 Speed : 500000000
 Total bw : 135500000
 bw_remain : 364500000
 g_bw_remain : 469500000
 delay_bw_remain : 500000000
 oversubscribed : FALSE
 num_ifl_default_bw : 0
 num_ifl_gbw : 7 (PIR/CIR)
 num_ifl_ebw : 0
 max_shaping_rate : 60000000
 max_g_rate : 40000000
Shaping Guaranteed Delay-Buffer Excess
rate rate rate rate
----------- ----------- ------------ -------
 500000000 500000000 500000000 0

EGRESS Remaining Traffic Params
--
Shaping Guaranteed Delay-Buffer Excess
rate rate rate rate
----------- ----------- ------------ -------
 500000 0 0 0

Of note is the section on egress remaining traffic parameters, which confirms correct
attachment of the remaining profile. The correct speed of 500 Mbps and the interface’s
PIR/CIR mode is confirmed here as well. Per priority shaping at the IFD is displayed:

NPC2(R4 vty)# sho cos ifd-per-priority-shaping-rates

EGRESS IFD Per-priority shaping rates, in kbps
 per-priority shaping-rates (in kbps)
 ----------------------------- ---------------------------------------
Ifd Shaping Guarantd DelayBuf GH GM GL EH EL
Index Rate Rate Rate Rate Rate Rate Rate Rate
------ --------- --------- --------- ------- ------- ------- ------- -------
 148 0 10000000 10000000 0 0 0 0 0
 149 0 10000000 10000000 0 0 0 0 0
 150 0 10000000 10000000 0 0 0 0 0
 151 0 10000000 10000000 0 0 0 0 0
 152 500000 500000 500000 200000 0 0 0 0
 153 0 10000000 10000000 0 0 0 0 0

Add H-CoS for Subscriber Access | 521

www.it-ebooks.info

http://www.it-ebooks.info/

EGRESS IFD Remaining-traffic shaping rates, in kbps
 per-priority shaping-rates (in kbps)
 ----------------------------- ---------------------------------------
Ifd Shaping Guarantd DelayBuf GH GM GL EH EL
Index Rate Rate Rate Rate Rate Rate Rate Rate
------ --------- --------- --------- ------- ------- ------- ------- -------
 152 500 0 0 500 0 0 0 0

This display confirms both the PIR and the high-priority shaping rates. Next, infor-
mation on an interface set, which is at level 2 of the H-CoS hierarchy, is displayed:

NPC2(R4 vty)# sho cos iflset-entry 4
EGRESS Traffic Params for interface-set index 4

Parent ifd: xe-2/2/0
Shaping-rate: 2000 kbps
Shaping-rate-burst: <none>
Guaranteed-rate: 1000 kbps
Guaranteed-rate-burst: <none>
Delay-buffer-rate: <none>
Excess-rate: <none>
Excess-rate-high: <none>
Excess-rate-low: <none>
Shaping-rate-pri-GH: 1000 kbps
Shaping-rate-pri-GM: <none>
Shaping-rate-pri-GL: <none>
Shaping-rate-pri-EH: <none>
Shaping-rate-pri-EL: <none>
Adjust-min-shaping-rate: <none>
Adjust-delta-sr: <none>
Scale-factor: <none>

EGRESS Remaining Traffic Params for interface-set index 4

RT Shaping-rate: 500 kbps
RT Shaping-rate-burst: <none>
RT Guaranteed-rate: <none>
RT Guaranteed-rate-burst: <none>
RT Delay-buffer-rate: <none>
RT Excess-rate: <none>
RT Excess-rate-high: <none>
RT Excess-rate-low: <none>

This output references index 4, which is the level 2 node assigned to the ifl
set_basic interface set. Once again, the expected PIR, CIR, and priority-based shaping
is in effect. The set’s remaining profile is also confirmed at a 500 kbps PIR. Having seen
the level 1 IFD and the level 2 IFL-Set, it seems like it’s time to look at an IFL belonging
to the iflset_basic set to complete the tour of scheduling levels:

NPC2(R4 vty)# sho cos ifl-entry 328
CoS IFL IDX: 328
 CoS IFLSET IDX: 4
 CoS IFD IDX: 152
Flags: 0x0

522 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

CoS Flags: 0x0
classifier[DSCP] : 23080
scheduler_map_id[egress] : 20205
EGRESS Traffic Params

Shaping Guaranteed Delay-Buffer Excess Excess
rate rate rate rate-hi rate-lo
----------- ----------- ------------ ------- -------
 1000000 500000 500000 12 12

This display is for IFL 1, which currently resides in the iflset_basic set. Note the IFL
level’s PIR and CIR rates match the values shown in the figure. While we are here, the
other IFL-level TCPs are displayed to provide contrast:

NPC2(R4 vty)# sho cos ifl-tc-profile
INGRESS Traffic Params
Ifl Shaping Guaranteed Delay-Buffer Excess Excess Ovrhd Ovrhd Adjust
index rate rate rate rate-hi rate-lo mode bytes min
------ ----------- ----------- ------------ ------- ------- ----- ----- ------
EGRESS Traffic Params
Ifl Shaping Guaranteed Delay-Buffer Excess Excess Ovrhd Ovrhd Adjust
index rate rate rate rate-hi rate-lo mode bytes min
------ ----------- ----------- ------------ ------- ------- ----- ----- ------
 327 2000000 1000000 1000000 25 25 Frame −20 0
 328 1000000 500000 500000 12 12 Frame −20 0
 329 2000000 1000000 1000000 25 25 Frame −20 0
 330 3000000 2000000 2000000 50 50 Frame −20

The output makes it clear that IFLs in the different service tiers should receive varying
levels of PIR and CIR. Indexes 328 to 330 represent IFLs 1, 100, and 200. Note that
the premium class IFL with index 330 has three times the guaranteed rate of a basic
user. The display also confirms the 20-byte adjustment made to overhead accounting.

The halp switch is added to get the hardware-specific view, and IFL-Set information is
displayed. Note how a L1 and L2 scheduler index is provided for each L3 IFL-Set:

NPC2(R4 vty)# sho cos halp iflset all
==
Interface Count: 3
==

--
IFLSET name: (iflset_basic, xe-2/2/0) (Index 4, IFD Index 152)
 QX chip id: 1
 QX chip L2 index: 2
 QX chip L3 index: 1
 QX chip base Q index: 8
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 8 Configured 500000 0 8192 350 GL EL 5 0
 9 Configured 500000 0 8192 50 GL EL 6 0
 10 Configured 500000 0 8192 100 GL EL 7 0
 11 Configured 500000 0 8192 50 GH EL 4 191

Add H-CoS for Subscriber Access | 523

www.it-ebooks.info

http://www.it-ebooks.info/

 12 Configured 500000 0 8192 300 GL EL 8 0
 13 Configured 500000 Disabled 8192 1 GH EH 4 191
 14 Configured 500000 0 8192 150 GL EL 9 0
 15 Configured 500000 0 8192 1 GM EN 4 127

Rate limit info:
 Q 5: Bandwidth = 150000, Burst size = 15000. Policer NH: 0x3064172200140000

 Index NH: 0xda4be05537001006

--
IFLSET name: (iflset_business, xe-2/2/0) (Index 5, IFD Index 152)
 QX chip id: 1
 QX chip L2 index: 3
 QX chip L3 index: 2
 QX chip base Q index: 16
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 16 Configured 500000 0 8192 350 GL EL 5 0
 17 Configured 500000 0 8192 50 GL EL 6 0
 18 Configured 500000 0 8192 100 GL EL 7 0
 19 Configured 500000 0 8192 50 GH EL 4 191
 20 Configured 500000 0 8192 300 GL EL 8 0
 21 Configured 500000 Disabled 8192 1 GH EH 4 191
 22 Configured 500000 0 8192 150 GL EL 9 0
 23 Configured 500000 0 8192 1 GM EN 4 127

Rate limit info:
 Q 5: Bandwidth = 150000, Burst size = 15000. Policer NH: 0x3064171a00141000

 Index NH: 0xda4be05522001006

--
IFLSET name: (iflset_premium, xe-2/2/0) (Index 6, IFD Index 152)
 QX chip id: 1
 QX chip L2 index: 4
 QX chip L3 index: 3
 QX chip base Q index: 24
Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
Index rate rate size G E Wred Tail
------ ----------- ----------- ------------ ------- ------ ---------- ----------
 24 Configured 500000 0 8192 350 GL EL 5 0
 25 Configured 500000 0 8192 50 GL EL 6 0
 26 Configured 500000 0 8192 100 GL EL 7 0
 27 Configured 500000 0 8192 50 GH EL 4 191
 28 Configured 500000 0 8192 300 GL EL 8 0
 29 Configured 500000 Disabled 8192 1 GH EH 4 191
 30 Configured 500000 0 8192 150 GL EL 9 0
 31 Configured 500000 0 8192 1 GM EN 4 127

Rate limit info:
 Q 5: Bandwidth = 150000, Burst size = 15000. Policer NH: 0x3064171200147000

 Index NH: 0xda4be0552c801006

524 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

And, in like fashion, an IFL-level display:

 NPC2(R4 vty)# sho cos halp ifl all
 ==
 Interface Count: 4
 ==

. . .

 --
 IFL name: (xe-2/2/0.1, xe-2/2/0) (Index 328, IFD Index 152)
 QX chip id: 1
 QX chip dummy L2 index: −1
 QX chip L3 index: 7
 QX chip base Q index: 56
 Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
 Index rate rate size G E Wred Tail
 ------ ----------- ----------- ------------ ------- ------ ---------- ----------
 56 Configured 1000000 25000 16384 350 GL EL 5 1
 57 Configured 1000000 25000 16384 50 GL EL 6 1
 58 Configured 1000000 50000 16384 100 GL EL 7 1
 59 Configured 1000000 25000 16384 50 GH EL 4 191
 60 Configured 1000000 150000 16384 300 GL EL 8 1
 61 Configured 1000000 Disabled 16384 1 GH EH 4 191
 62 Configured 1000000 75000 16384 150 GL EL 9 1
 63 Configured 1000000 0 16384 1 GM EN 4 128

 Rate limit info:
 Q 5: Bandwidth = 300000, Burst size = 30000. Policer NH: 0x8a6d83800020000

 Index NH: 0xda4be05501001006

 --
 IFL name: (xe-2/2/0.100, xe-2/2/0) (Index 329, IFD Index 152)
 QX chip id: 1
 QX chip dummy L2 index: −1
 QX chip L3 index: 8
 QX chip base Q index: 64
 Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
 Index rate rate size G E Wred Tail
 ------ ----------- ----------- ------------ ------- ------ ---------- ----------
 64 Configured 2000000 50000 32768 350 GL EL 5 2
 65 Configured 2000000 50000 32768 50 GL EL 6 2
 66 Configured 2000000 100000 32768 100 GL EL 7 2
 67 Configured 2000000 50000 32768 50 GH EL 4 192
 68 Configured 2000000 300000 32768 300 GL EL 8 2
 69 Configured 2000000 Disabled 32768 1 GH EH 4 192
 70 Configured 2000000 150000 32768 150 GL EL 9 2
 71 Configured 2000000 0 32768 1 GM EN 4 129

 Rate limit info:
 Q 5: Bandwidth = 600000, Burst size = 60000. Policer NH: 0x8a6d91000020000

 Index NH: 0xda4be0550a801006

 --

Add H-CoS for Subscriber Access | 525

www.it-ebooks.info

http://www.it-ebooks.info/

 IFL name: (xe-2/2/0.200, xe-2/2/0) (Index 330, IFD Index 152)
 QX chip id: 1
 QX chip dummy L2 index: −1
 QX chip L3 index: 9
 QX chip base Q index: 72
 Queue State Max Guaranteed Burst Weight Priorities Drop-Rules
 Index rate rate size G E Wred Tail
 ------ ----------- ----------- ------------ ------- ------ ---------- ----------
 72 Configured 3000000 100000 65536 350 GL EL 5 3
 73 Configured 3000000 100000 65536 50 GL EL 6 3
 74 Configured 3000000 200000 65536 100 GL EL 7 3
 75 Configured 3000000 100000 65536 50 GH EL 4 193
 76 Configured 3000000 600000 65536 300 GL EL 8 3
 77 Configured 3000000 Disabled 65536 1 GH EH 4 193
 78 Configured 3000000 300000 65536 150 GL EL 9 3
 79 Configured 3000000 0 65536 1 GM EN 4 130

 Rate limit info:
 Q 5: Bandwidth = 900000, Burst size = 90000. Policer NH: 0x8a6d9e800020000

 Index NH: 0xda4be05516801006

The IFL-level output again confirms the different service tiers parameters are in effect.
Note how IFL 500 is missing from all these displays. This is in keeping with its lack of
CoS configuration, and again is the reason we have the IFD-level remaining profile in
place. Currently, H-CoS queuing is handled by the fine-grained queuing block, a func-
tion performed by the QX ASIC. For the sake of completeness, the L1 scheduling node
at the IFD level is displayed. This node is shared by all IFL-Sets:

NPC2(R4 vty)# sho qxchip 1 l1 1
L1 node configuration : 1
 state : Configured
 child_l2_nodes : 5
 config_cache : 21052000
 rate_scale_id : 0
 gh_rate : 200000000, burst-exp 18 (262144 bytes scaled by 16)
 gm_rate : 0
 gl_rate : 0
 eh_rate : 0
 el_rate : 0
 max_rate : 500000000
 cfg_burst_size : 8388608 bytes
 burst_exp : 19 (524288 bytes scaled by 16)
 byte_adjust : 4
 cell_mode : off
 pkt_adjust : 0

And now a L2 node, in this case for the iflset_business IFL-Set:

 NPC2(R4 vty)# sho qxchip 1 l2 3
 L2 node configuration : 3
 state : Configured
 child_l3_nodes : 2
 l1_index : 1
 config_cache[0] : 00000000

526 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

 config_cache[1] : 000023e8
 config_cache[2] : fb0fc100
 rw_scale_id : 0
 gh_rate : 3000000, burst-exp 12 (4096 bytes scaled by 16)
 gm_rate : 0
 gl_rate : 0
 eh_rate : 0
 el_rate : 0
 max_rate : 10000000
 g_rate_enable : TRUE
 g_rate : 5000000
 cfg_burst_size : 131072 bytes
 burst_exp : 13 (8192 bytes scaled by 16)
 eh_weight : 125
 el_weight : 125
 byte_adjust : 4
 cell_mode : off
 gh_debit_to_g_rate : TRUE
 gm_debit_to_g_rate : TRUE
 eh_promo_to_g : TRUE
 el_promo_to_g : TRUE

The output confirms the L2 node’s G-Rate and PIR settings. Also, the per priority
shaper and the default priority handling flags, here confirming that excess can be pro-
moted into GL, and that GH/GM traffic is debited from the node’s G-Rate, but not
eligible for actual demotion, are also confirmed.

Verify H-CoS in the Data Plane

With the operational and shell level commands returning the expected values, it ap-
pears that H-CoS is up and running as per the design requirement and parameters
shown in Figure 5-35. To actually measure data plane behavior, the router tester is
modified to generate L3 traffic using four different profiles. Each profile consists of two
streams, BE and EF; there are four such profiles so that traffic can be sent to a member
of each service tier and to the remaining profile. The profiles generate both streams at
a combined Layer 2 rate of 90.909 Mbps. Figure 5-36 shows the measured results.

Add H-CoS for Subscriber Access | 527

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 5-36. H-CoS Measured Results.

The lower right portion of the display shows a line graph of BE through for all four
profiles. From bottom (slowest) to the top, we have BE remaining, BE basic, BE busi-
ness, and BE premium. The throughput rates shown in the upper left make it clear that
a business subscriber gets two times that of a basic user and that a premium user gets
three times that amount, receiving 1,500 PPS.

The upper right indicates the transmitted and received traffic rates. The receive
throughput value of 6.4 Mbps is quite interesting, given that we have maximum rate
traffic flowing on four IFLs; one for basic, (1 Mbps), one for business (2 Mbps), one
for premium (3 Mbps), and the final IFL for the remaining user (500 kbps). The ag-
gregate rate of 6.4 Mbps confirms that all traffic profiles are correctly configured, and
H-CoS is working properly in the test network.

The tabular data in the upper left confirms loss for all IFLs/streams, which is expected
given the input rate of 90 Mbps and the IFLs shaped to an aggregate of 3 Mbps with a
0.5 Mbps reserve for remaining. Recall that EF is set to 30% and rate limited. As such,
the 30% is based on IFL shaping, not committed rate. Note that the EF stream for the
basic user represents approximately 30% of 1 Mbps at 0.3 Mbps. In contrast, the busi-
ness user gets two times that, or 0.6 Mbps. And as expected, the premium user gets the
most real-time traffic at about 0.9 Mbps. Summing the EF and BE traffic shows that
each IFL is receiving its full-shaped bandwidth and clearly represents the service dif-
ferences between basic and premium.

528 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

This concludes the operational verification of Junos H-CoS.

Trio CoS Summary
When you combine Junos features with Trio-based PFEs, the world becomes your
oyster. This chapter covered Trio CoS capabilities and current scaling capabilities, with
focus on Trio scheduling and leftover bandwidth sharing. Port mode and per unit
scheduling were covered, but heavy emphasis was placed on the operation and design
characteristics of hierarchical CoS.

Having arrived here, you should be able to analyze an H-CoS configuration and predict
queue- and IFL-level throughput for both PIR and CIR/PIR mode interfaces. This is no
easy feat, and a self-high-five is in order for having stuck it out to the end of this rather
long chapter. If only there was a LLQ way to convey all this H-CoS, a great many trees
could have been saved.

Chapter Review Questions
1. What MPC types support per unit scheduling mode?

a. MPC1

b. MPC1 Q

c. MPC2E

d. MPC3E

2. Which option controls excess bandwidth sharing in Trio?

a. Excess rate

b. Excess bandwidth sharing

c. This is not under user control, always shared in proportion to transmit weight

d. This is not under user control, always shared in proportion to shaping weight

3. When shaping or displaying interface queue statistics, what overhead does Trio
take into account?

a. Layer 2 only

b. Layer 1 and Layer 2

c. Layer 3 only

d. Layer 2 and Layer 3

e. None of the above

4. Which of the below configures a guaranteed rate?

a. Transmit rate for a queue on a nonoversubscribed IFL

b. Adding peak information rate to a Traffic Control Profile applied to an IFL-Set

Chapter Review Questions | 529

www.it-ebooks.info

http://www.it-ebooks.info/

c. Adding committed information rate to a Traffic Control Profile applied to an
IFL-Set

d. Adding committed information rate to a Traffic Control Profile applied to an
IFD

e. Both A and C

5. Which of the below are true with regards to Trio H-CoS?

a. You can overbook guaranteed rates

b. The sum of queue transmit rates can exceed IFL shaping speed

c. The shaping rate of level 3 scheduler can be higher than the underlying shaped
rate of the level 1 or level 2 node

d. Remaining profiles can be used to provide CoS to IFLs either at the IFL-Set of
IFD levels

e. All of the above

6. Which is true regarding priority inheritance?

a. Strict-high queues are demoted once they reach their shaped or policed rate

b. A GL/low-priority queue can never be demoted

c. A queue can demote GH, GM, or GL, but scheduler nodes can only demote
GL in regards to guaranteed rates

d. A scheduler node can demote any priority level as a function of per priority
shaping

e. Both C and D

7. Which of the following are supported for AE interfaces in 11.4?

a. Equal share mode is supported

b. Replicated mode is supported

c. Interface sets (IFL-Sets)

d. You cannot use H-CoS over AE interfaces

e. Both A and B

8. Which of the following can be used to cap a queues bandwidth usage below the
IFL shaping rate?

a. Exact

b. Rate limit

c. Excess-priority none, combined with high priority

d. Shaping rate

e. All of the above

9. Which is true regarding scheduler maps and Traffic Control Profiles?

a. You use a TCP to set shaping rates for a queue

530 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

b. Scheduler maps link one or more schedulers to a level 1 or level 2 node

c. A TCP is a CoS container that can reference a scheduler map to support queues

d. A TCP does not use a scheduler map when applied to a scheduling node

e. Both C and D

10. Which is true regarding the delay-buffer-rate parameter in a TCP?

a. The delay buffer rate allows you to override default of a delay buffer that’s
based on G-Rate or shaping rate when G-Rate is not set

b. A larger delay buffer means less loss but more delay when dealing with bursty
traffic

c. The queue level buffer size statement is used to assign a queue some portion
of the delay buffer used by the underlying IFL

d. Trio uses a dynamic delay buffer that allows borrowing from other queues that
do not need their allocated buffer

e. A, B, and C

f. B and C

11. Which is true based on the output provided?

PC2(R4 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
xe-2/0/0 148 0 0 0 0
xe-2/0/1 149 0 0 0 0
xe-2/1/0 150 0 0 0 0
xe-2/1/1 151 0 0 0 0
xe-2/2/0 152 500000 0 0 0
 iflset_basic 4 2000 1000 0 0
 xe-2/2/0.1 328 1000 500 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_basic-rtp 4 500 0 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%

Chapter Review Questions | 531

www.it-ebooks.info

http://www.it-ebooks.info/

a. H-CoS is in effect

b. Two IFL-Sets are defined

c. The interface is in PIR mode

d. A remaining traffic profile is attached

e. Both A and D

12. Which is true regarding priority handling at a L2 node?

a. GH and GM in excess of G-Rate is not demoted

b. GL is demoted when there is a lack of G-Rate

c. EH and EL can be promoted into GL when there is excess credit

d. When demoting GL, the excess level (H or L) is determined by the queue level
excess priority setting

e. All of the above

13. You have a remaining profile for the IFD only. An interface is named in an IFL-Set
but does not have an IFL-level TCP applied. What happens?

a. Nothing, this is not supported. All IFLs must have a TCP applied explicitly

b. The IFL gets the IFD-level remaining profile

c. The IFL gets the L2 scheduling node’s remaining profile

d. The IFL gets an unpredictable level of CoS treatment; the L2 nodes RTP shows
the full IFD shaping rate

14. You have a queue set to strict-high. Which is true?

a. This queue is not subjected to priority demotion at queue level

b. This queue is not subjected to priority demotion at node level based on G-Rate

c. This queue is subjected to priority demotion related to per priority shaping

d. All of the above

Chapter Review Answers
1. Answer: B. Currently only queuing versions of MPC support per unit and H-CoS.

2. Answer: A. The excess rate option is used for Trio. Excess bandwidth share is used
for older IQ2 PICs on ADPCs. You can control excess share as a percentage or
proportion.

3. Answer: B. Trio interfaces factor both Layer 2 and Layer 1 overhead into the
shaping rate and display queue statistics. This includes Ethernet’s interframe gap
(IFG), preamble, and FCS. You can adjust the overhead values to add or subtract
bytes to ensure that shaping rates do not penalize end users for additional overhead
that may be added by carrier equipment, such as a DSLAM adding multiple VLAN
tags.

532 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

4. Answer: E. While you can oversubscribe G-Rates/queue transmit rates, this is not
ideal practice unless external means are in place to ensure all queues are not si-
multaneously active. A queue’s transmit rate is considered a G-Rate, as is setting
a CIR in a TCP, which is then applied to either L2 or L3 scheduling nodes.

5. Answer: E. All are true. See the previous note regarding overbooking G-Rates. If
you want to ensure traffic discard, you can set an IFL shaping to a rate that is higher
than the IFL-Set or IFD shaping rate, but again, this is not typical. The remaining
construct is a critical aspect of Trio H-CoS scale as, unlike IQ2 interfaces, it permits
CoS profiled for IFLs that would otherwise have no explicit CoS configuration.
The remaining profile can be just a PIR/shaped rate or can include a CIR/G-Rate
to provide guaranteed service levels.

6. Answer: E. Both C and D are true. With regards to G-Rate, GH and GM are only
demotable by queues as a function of reaching their transmit rates. At a scheduler
node, GL must remain demotable (which is why B is false) to the excess region in
the event that the sum of GH and GM exceed the node’s G-Rate. In contrast, a
scheduler node can demote any G-Rate (GH, GM, or GL) as a function of a per
priority shaper.

7. Answer: E. Both A and B are correct. In the v11.4 release, IFL-Sets are not sup-
ported for AE interfaces, but other aspects of H-CoS are. When used for H-CoS,
you can configure whether each AE member gets an equal division of the AE bun-
dle’s bandwidth or if the bundle bandwidth is replicated on each member link.

8. Answer: E. All are ways that can be used to limit a queue’s maximum rate below
that of the underlying IFL’s shaping rate.

9. Answer: E. Both C and D are correct. When a TCP references a scheduler map,
it’s applied at level 3 (IFL) for per unit or H-CoS, to support queues, or at level 1
(IFD) in per port mode, but again, to support queues. When applied to an internal
scheduler node, or at the IFD/root level as part of H-CoS, there are no queues so
a scheduler map is not used.

10. Answer E. A, B, and C are correct. Trio does not use dynamic memory allocation
for queue buffers.

11. Answer E. A and D are correct. Only H-CoS supports interface sets, and only
one interface set is defined. The remaining traffic profile handles traffic for IFLs
that are part of the basic set when the IFL does not have a TCP attached. There is
no explicit remaining IFL-Set.

12. Answer: E. All of the statements are true and describe current L2 node’s priority
demotion and promotion.

13. Answer: D. C is false as there is no IFL-Set level TCP and the IFD’s remaining TCP
is used for interfaces that are not named in any set. Testing shows the L2 node’s
RTP displays the IFD shaping rate typically adopts a default scheduler with 95%/
5%, but the IFL gets 10 Mbps of throughput. This is not a supported configuration
and one day a commit check may prevent it.

Chapter Review Answers | 533

www.it-ebooks.info

http://www.it-ebooks.info/

In the following, the H-CoS config is modified to remove the TCP from unit 200
while leaving it in the premium set so that it is not caught by the IFD remaining
profile. Unit 100 is moved into the premium IFL-Set to keep it active, as a set must
have a minimum of one member. Lastly, the premium IFL-Set has its remaining
profile removed. As a result, there is no place for unit 200 to go; it has no slot in
the IFL-Set it’s named to once its TCP is removed, and the set’s remaining profile,
the normal safety net for this type of mistake, has been removed. Upon commit,
the tester throughput for Ifl xe-2/2/0.200 went from the expected 3 Mbps to 10
Mbps (just why is not clear), and the scheduler hierarchy listed the 500 Mbps
shaped rate of the IFD as the rate for the premium IFL set’s RTP.

[edit]
jnpr@R4# show | compare jnx_harry/cos_case_h_cos
[edit interfaces interface-set iflset_premium interface xe-2/2/0]
+ unit 100;
[edit interfaces]
- interface-set iflset_business {
- interface xe-2/2/0 {
- unit 100;
- }
- }
[edit class-of-service interfaces interface-set iflset_premium]
- output-traffic-control-profile-remaining tc-iflset_premium_remain;
[edit class-of-service interfaces xe-2/2/0 unit 200]
- output-traffic-control-profile tc-ifl_premium;
NPC2(R4 vty)# sho cos scheduler-hierarchy

class-of-service EGRESS scheduler hierarchy - rates in kbps

 shaping guarntd delaybf excess
interface name index rate rate rate rate other
---------------------------- ----- ------- ------- ------- ------- -------------
. . .
xe-2/2/0 152 500000 0 0 0
 iflset_basic 22 2000 1000 0 0
. . .
 iflset_premium 25 30000 20000 0 0
 xe-2/2/0.100 335 2000 1000 0 0
 q 0 - pri 0/0 20205 0 5% 0 35%
 q 1 - pri 0/0 20205 0 5% 0 5%
 q 2 - pri 0/0 20205 0 10% 0 10%
 q 3 - pri 3/1 20205 0 5% 10% 5%
 q 4 - pri 0/0 20205 0 30% 0 30%
 q 5 - pri 4/0 20205 0 30% 25000 0% exact
 q 6 - pri 0/0 20205 0 15% 0 15%
 q 7 - pri 2/5 20205 0 0 0 0%
 iflset_premium-rtp 25 500000 0 0 0
 q 0 - pri 0/1 2 0 95% 95% 0%
 q 3 - pri 0/1 2 0 5% 5% 0%
. . .

14. Answer: E. All are true. Excess-high is the same priority as high, but can never be
demoted. This is why a rate limit, shaping, or filter-based policing is so important

534 | Chapter 5: Trio Class of Service

www.it-ebooks.info

http://www.it-ebooks.info/

for this priority setting; otherwise, it can starve all others. In testing, it was found
that a SH queue could be set to excess-priority none, and that this limited its
throughput to the priority shaping rate, so that SH is demotable at nodes, and that
excess none is supported for SH, at least in v11.4R1.

Chapter Review Answers | 535

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

MX Virtual Chassis

As the number of devices in your network grow, the operational burden increases. A
common term in the networking industry is “stacking,” which is a concept where mul-
tiple devices can be joined together and managed as a single device. A common problem
with stacking is the lack of intelligence in the implementation, which leads to high
availability problems. All too often, vendors implement a stacking solution that simply
designates master and slave devices to provide bare minimum functionality. In simple
stacking implementations, the failure of a networking device requires a lengthy mas-
tership election process and no synchronization of kernel state such as routing protocol
adjacencies, routing tables, and MAC address tables.

Virtual chassis really shows off Juniper’s engineering prowess. When looking at a
standalone chassis, there are many things that are a given: dual routing engines, non-
stop routing, nonstop bridging, and graceful routing engine switchover. Virtual chassis
was designed from the ground up to include these critical features and provide a true,
single virtual chassis.

Why should you accept anything less? To simply refer to Virtual chassis as “stacking”
is an insult.

What is Virtual Chassis?
Virtual chassis is very similar to a distributing computing concept called a single system
image (SSI), which is a cluster of devices that appears to be a single device. However,
simply appearing to be a single device isn’t good enough; all of the fault tolerance
features that are available in a physical chassis need to be present in the virtual chassis
as well. This creates a unique engineering challenge of constructing a virtual chassis
that looks, feels, and behaves like a true chassis, as shown in Figure 6-1. The two routers
R1 and R2 are joined together by a virtual chassis port (VCP) to form a virtual chassis.

537

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-1. Illustration of Virtual Chassis.

Once the two routers have been configured to participate in virtual chassis, the virtual
chassis will now act as a single router. For example, when you log in to the router and
execute commands such as show chassis hardware or show interfaces terse, you will
see the hardware inventory and interface list of both routers.

There are several features that contribute to the high availability in a typical chassis:

• Redundant power supplies

• Dual routing engines

• Nonstop routing

• Nonstop bridging

• Graceful routing engine switchover

• Multiple line cards

Each component is fully redundant so that there isn’t a single point of failure within a
single chassis. Virtual chassis takes the same high-availability features that are found
within a single chassis and extends them into multiple chassis.

Consolidating multiple chassis into a single virtual chassis creates a distinct operational
advantage. Operational and business support systems (OSS/BSS) are easier to configure
with virtual chassis, because although there are multiple chassis, virtual chassis looks
and feels as a single chassis. The following examples are features and services that
operate as a single pane of glass in virtual chassis:

• Simple Network Management Protocol (SNMP)

• Authentication, Authorization, and Accounting (AAA); this includes services such
as RADIUS and TACACS+

• Junos Application Programming Interface (API)

• Secure Shell (SSH)

• Configuration management

• Routing and switching

Virtual chassis is able to operate as a single entity because a single routing engine has
ownership of all of the data planes across all chassis within the virtual chassis.

538 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

MX-VC Terminology
Virtual chassis introduces a lot of new concepts and terminology. Let’s begin by starting
with the basics of virtual chassis and review the components and names.

VC
Virtual chassis represents the SSI of all the physical chassis combined.

VCCP
Virtual Chassis Control Protocol is a Juniper proprietary protocol that’s based on
IS-IS to discover neighbors and build a virtual chassis topology.

VCP
VC Port. Every chassis in a virtual chassis requires some sort of data and control
plane connectivity for VCCP to operate. Revenue ports are reserved in advanced
and transformed into VCP interfaces that are dedicated exclusively for interchassis
data plane and VCCP control traffic.

There is also a set of virtual chassis terminology associated with the routing engines of
each component. Because each physical chassis has its own set of routing engines, there
needs to be a standard method of identifying each routing engine within a virtual
chassis.

Table 6-1. Virtual Chassis Routing Engine Terminology.

Term Definition

VC-M Virtual Chassis Master

VC-B Virtual Chassis Backup

VC-L Virtual Chassis Line Card

VC-Mm Master Routing Engine in VC-M

VC-Mb Backup Routing Engine in VC-M

VC-Bm Master Routing Engine in VC-B

VC-Bb Backup Routing Engine in VC-B

VC-Lm Master Routing Engine in VC-L

VC-Lb Backup Routing Engine in VC-L

The three main components are the VC-M, VC-B, and VC-L. The other subcomponents
are merely master or backup routing engine notations. Only one chassis can be the
Virtual Chassis Master at any given time. A different chassis can only be the Virtual
Chassis Backup at any given time. All other remaining chassis in the virtual chassis are
referred to as Virtual Chassis Line Cards. Let’s put all of the virtual chassis pieces
together, as shown in Figure 6-2.

What is Virtual Chassis? | 539

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-2. Illustration of Virtual Chassis Components.

At a high level, there is a single virtual chassis called VC that is comprised of three
physical chassis: R1, R2, and R3. The chassis R1 is the virtual chassis master (VC-M),
R2 is the virtual chassis backup (VC-B), and R3 is a virtual chassis line card (VC-L). Each
chassis has redundant routing engines; for example, RE0 on R1 is the VC-M master
routing engine whereas RE1 is the VC-M backup routing engine. The other chassis
R2 and R3 follow the same routing engine master and backup standard except that R2
is the VC-B and R3 is a VC-L. Each chassis is connected to another chassis via a VC Port
(VCP). The VCP is used for VCCP control traffic and a data plane for transit traffic.
For example, if ingress traffic on R1 needed to be switched to an egress port on R3, the
traffic would traverse the VCP links from R1 to R2 and then finally to R2 to R3.

MX-VC Use Case
Virtual chassis is designed to solve the problem of reducing the overhead of OSS/BSS
by creating a single virtual chassis as the number of networking devices increase. This
creates some interesting side effects that are also beneficial to the architecture of the
network:

IEEE 802.3ad
By combing multiple systems into a single logical system, the ability to have node-
level redundancy with IEEE 802.3ad becomes trivial. MX-VC provides node-level
redundancy to any downstream IEEE 802.3ad clients and removes the requirement
for spanning tree.

Because the MX-VC uses VCCP to move traffic between the members in the virtual
chassis, traditional routing protocols are no longer required inside the virtual chas-
sis. From the point of view of a packet traveling through a virtual chassis, the ingress
and egress ports are on the same system and the packet’s TTL is decremented.

540 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid Deployment
The single control plane of MX-VC allows the virtual chassis to grow in the number
of members without downtime to the hardware or services. Additional chassis
become “plug and play” from the point of view of the control plane.

It’s common to see MX-VC in the core and aggregation of large data centers and mobile
backhaul. Virtual chassis simplifies the logical architecture while at the same time pro-
viding physical redundancy. Layer 2 aggregation with IEEE 802.3ad works very well
with virtual chassis because any downstream device will see the virtual chassis as a
single logical link that prevents the possibility of a loop in the network. Spanning tree
will not block the single logical link and the full bandwidth will be available for use.

Figure 6-3. Illustration of Different Types of Juniper MX Virtualization.

Starting at the bottom of the virtualization architecture stack in Figure 6-3, the Juniper
MX allows the virtualization of the links and next-hops. The next type of virtualization
is the division of a single chassis that is referred to as 1:N virtualization because a single
chassis is divided into N services (e.g., a router can have multiple routing instances). A
level above this type of single chassis virtualization is the concept of creating network
services across multiple chassis; this type of virtualization is referred to as N:1 virtual-
ization because it takes N chassis and spreads the service across them. The final form
of virtualization that can exist on top of N:1, 1:N, or simple next-hop virtualization is
the concept of network service virtualization. Technologies such as MPLS are able to
create virtual private networks (VPN) based on L2 or L3 network services in the form
of point-to-point or point-to-multipoint.

MX-VC Requirements
There are only a few requirements to be able to use virtual chassis on the Juniper MX.
The goal of virtual chassis is to create highly resilient network services, and this requires
the following:

What is Virtual Chassis? | 541

www.it-ebooks.info

http://www.it-ebooks.info/

Trio-based line cards
Virtual chassis can only be supported with MPC family line cards that utilize the
Trio chipset. Older-generation DPC line cards will not be supported.

Dual Routing Engines
As of Junos v11.4, the maximum number of members within a virtual chassis is
two. When two chassis are configured for virtual chassis, each chassis must have
dual routing engines. As the number of members in a virtual chassis is increased
in the future, the requirement for dual routing engines per chassis maybe elimina-
ted. The same type of routing engine must be used in all chassis as well. This is
because of the strict requirements of GRES, NSR, and NSB synchronization. For
example, if the RE-1800x4 is used in member0, the RE-2000 cannot be used in
member1.

Latency
It is possible to create a virtual chassis that spans cages in a data center, wiring
closets, or any distance that provides less than 100 ms of latency. This allows for
some creative solutions. The latency requirement is imposed on the VCP interfaces.
For example, using ZR optics, it’s possible to directly connect the chassis up to 80
kilometers away.

Junos Version
The version of Junos on each routing engine must be identical or virtual chassis
will not come up correctly.

VCP Interface Speed
Either 1G (ge) or 10G (xe) interfaces can be used to configure VCP interfaces. The
only restriction is that both types of interfaces cannot be used at the same time.
It’s recommended that 10G (xe) interfaces be used in the configuration of VCP
interfaces. The rule of thumb is to calculate the aggregate throughput of the virtual
chassis and configure 50% of that bandwidth as VCP interfaces. For example, if a
virtual chassis would be forwarding an aggregate 100 Gbps of traffic, it’s recom-
mended that at least five 10G interfaces be configured as VCP interfaces.

IEEE 802.1Q on VCP Interfaces
Typically, VCP interfaces are directly connected between members within a virtual
chassis; however, if you need to use an intermediate switch between members, the
VLAN ID used by the VCP interfaces is 4,094.

The MX-VC hardware requirements are a bit different from the EX. For example, the
EX4200 and EX4500 use a special VCP interface on the rear of the switch, whereas the
Juniper MX doesn’t require any special VCP hardware; only regular revenue ports on
MPC line cards are required for VCP interfaces. Another example is that the EX8200
requires a special external routing engine to create a virtual chassis; however, the MX
doesn’t require any special routing engine. The only routing engine requirement is that
all of the routing engines in the virtual chassis must be the same model and run the
same version of Junos.

542 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

MX-VC Architecture
Multiple chassis working together to emulate a single virtual chassis is such a simple
yet elegant concept. Virtual chassis opens the door to new architectural designs that
were previously impossible. For example, Figure 6-4 illustrates that R1 and R2 are now
able to provide an IEEE 802.3ad link to both S1 and S2. From the point of view of S1
and S2, the router on the other end of the IEEE 802.3ad link appears to be a single
entity. Cross-chassis IEEE 802.3ad requires no special configuration or knowledge on
S1 and S2. All of the magic happens on R1 and R2 using the VCCP protocol to appear
as a single virtual chassis.

Another benefit of virtual chassis is being able to simplify the OSS/BSS. Because the
multiple chassis now have a single control plane, services such as RADIUS, SNMP, and
syslog only need to be configured and installed once. For example, billing systems can
leverage SNMP to look at traffic counters for the virtual chassis as a whole; it appears
to be one large router with many different interfaces. Another example is that any sort
of alerts, messages, or failures will be handled by a single routing engine on the VC-M
and can be processed via syslog.

Figure 6-4. Illustration of Virtual Chassis Concept.

Traditionally, a single chassis has two routing engines: one master and one backup. As
described in Chapter 9, the backup routing engine runs a ksyncd process that keeps
itself up to date with kernel runtime objects. Through this synchronization, the backup

What is Virtual Chassis? | 543

www.it-ebooks.info

http://www.it-ebooks.info/

routing engine is able to takeover the control plane if the master routing engine were
to fail.

Virtual chassis changes the routing engine failover architecture from a localized concept
to a cross-chassis concept. For example, in Figure 6-4, the master routing engine lives
in R1 whereas the backup routing engine lives in R2. Just as before, there is a ksyncd
process living on R2 that is keeping the kernel synchronized; in the event of a failure on
R1 (VC-M), the router R2 (VC-B) would take over as the master routing engine.

It would perhaps seem logical that if the VC-Mm were to fail the VC-Mb would take
over, but this isn’t the case. Virtual chassis needs to assume the worst and has to operate
within the context of multiple chassis; the best course of action is to provide GRES and
NSR functionality between chassis instead of within a single chassis. It’s always in the
best interest of virtual chassis to mitigate any single point of failure.

MX-VC Kernel Synchronization

Let’s explore the virtual chassis kernel synchronization in more depth. When a chassis
operates in a virtual chassis mode, there is a requirement to have both local and
global kernel scope; this is different from a traditional chassis where there’s only a local
kernel scope. A chassis operating in virtual chassis mode is no longer the center of the
universe and must understand it’s cooperatively working with other chassis in a
confederation.

The local kernel scope handles state that’s local to the chassis and isn’t required to be
shared with other chassis. An example of local kernel scope would be the control of
the local VCP interfaces; they are set up and configured individually on each chassis
without concern of other chassis in the virtual chassis. The global kernel scope is ba-
sically everything else; some examples include hardware inventory and IFL state.

Virtual chassis introduces a new concept called a relay daemon (relayd) which is de-
signed to reduce the number of PFE connections to the kernel, as illustrated in Fig-
ure 6-5. The relayd passes Inter-Process Communication (IPC) messages between the
routing engine kernel and the line card. The number of PFE connections are reduced
because relayd acts as a proxy per chassis. For example, if VC-L had 12 line cards, each
line card would have a connection per PFE to the VC-L relayd; in turn, the VC-L
relayd would have a single connection to the VC-M routing engine kernel instead of
12. Each chassis has a relayd process on the master routing engine providing the fol-
lowing functions:

• Each line card has a PFE connection to the local chassis’ relayd process for both
the local and global state.

• Each chassis’ master routing engine synchronizes state between the local kernel
and local relayd state.

• If the chassis is the VC-M, relayd will synchronize its global state with the kernel
global state.

544 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

• If the chassis the VC-B or a VC-L, relayd will synchronize its global state with the
VC-Mm global kernel state.

Recall that GRES and NSR use the ksyncd process on the backup routing engine to keep
state synchronized. Virtual chassis will use GRES and NSR to synchronize state from
the VC-Mm to the VC-Bm, as illustrated in Figure 6-5.

• Each chassis’ backup routing engine will have a ksyncd process to synchronize the
local kernel state between the master and backup routing engines.

• The VC-B will have a special ksyncd process on the master routing engine to syn-
chronize global kernel state from the VC-M master routing engine.

This architecture of kernel synchronization and delegation makes it very easy for Junos
to establish a true virtual chassis that behaves just like a real traditional chassis. Each
chassis will individually manage their own VCP interfaces with the local kernel state,
whereas the VC-M will manage all other chassis in the virtual chassis as if it was just a
simple extension of hardware.

What is Virtual Chassis? | 545

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-5. Illustration of Virtual Chassis Kernel Replication.

546 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s take a quick look at the kernel processes on the VC-M and VC-B and verify the
proper locations of ksyncd and relayd. It’s expected that the VC-Mm will have a
relayd process while the VC-Mb will have a ksync process.

Let’s look at the VC-Mm first:

{master:member0-re0}
dhanks@R1-RE0>show system processes extensive | match relayd
18258 root 1 96 0 4528K 2620K select 0:00 0.00% relayd

It’s confirmed that relayd is operating on the VC-Mm in order to synchronize global
kernel state to local line cards and global kernel state to other chassis in the virtual
chassis. Now let’s look at the VC-Mb:

{master:member0-re0}
dhanks@R1-RE0>request routing-engine login re1

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
warning: This chassis is operating in a non-master role as part of a virtual-chassis
 (VC) system.
warning: Use of interactive commands should be limited to debugging and VC Port
 operations.
warning: Full CLI access is provided by the Virtual Chassis Master (VC-M) chassis.
warning: The VC-M can be identified through the show virtual-chassis status command
 executed at this console.
warning: Please logout and log into the VC-M to use CLI.
{local:member0-re1}
dhanks@R1-RE1>show system processes extensive | match ksyncd
 1451 root 1 96 0 5036K 2908K select 0:01 0.00% ksyncd

Because virtual chassis transforms a group of chassis into a single virtual chassis, you
will need to use the request routing-engine login command to access other routing
engines within the virtual chassis. As expected, the backup routing engine on R1 (VC-
Mb) has a ksyncd process to synchronize local kernel state.

Now that the kernel synchronization on VC-M has been verified, let’s move on to the
VC-B. It’s expected that the VC-Bm will have a copy of both ksyncd and relayd:

{master:member0-re0}
dhanks@R1-RE0>request routing-engine login member 1 re0

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
warning: This chassis is operating in a non-master role as part of a virtual-chassis
(VC) system.
warning: Use of interactive commands should be limited to debugging and VC Port
operations.
warning: Full CLI access is provided by the Virtual Chassis Master (VC-M) chassis.
warning: The VC-M can be identified through the show virtual-chassis status command
executed at this console.
warning: Please logout and log into the VC-M to use CLI.
{backup:member1-re0}
dhanks@R2-RE0>show system processes extensive | match relayd
 1972 root 1 96 0 4532K 2624K select 0:00 0.00% relayd

{backup:member1-re0}

What is Virtual Chassis? | 547

www.it-ebooks.info

http://www.it-ebooks.info/

dhanks@R2-RE0>show system processes extensive | match ksyncd
 1983 root 1 96 0 5032K 2988K select 0:00 0.00% ksyncd

Using the request routing-engine login command to login the master routing engine
on R2, it was evident that both relayd and ksyncd were operating. The VC-Bm uses
relayd to synchronize local relayd global state to the VC-Mm kernel global state. The
next function of relayd synchronizes the local state with the local kernel state. The final
function of relayd on VC-Bm synchronizes both the local and global state between the
local chassis line cards. Finally, ksyncd will synchronize global state with the VC-Mm
global kernel state and the local chassis global kernel state.

Now let’s check the VC-Bb to verify that ksyncd is up and operational:

{master:member0-re0}
dhanks@R1-RE0>request routing-engine login member 1 re1

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
warning: This chassis is operating in a non-master role as part of a virtual-
 chassis (VC) system.
warning: Use of interactive commands should be limited to debugging and VC
 Port operations.
warning: Full CLI access is provided by the Virtual Chassis Master
 (VC-M) chassis.
warning: The VC-M can be identified through the show virtual-chassis status
 command executed at this console.
warning: Please logout and log into the VC-M to use CLI.
{local:member1-re1}
dhanks@R2-RE1>show system processes extensive | match ksyncd
 1427 root 1 96 0 5036K 2896K select 0:00 0.00% ksyncd

As suspected, ksyncd is running on the backup routing engine on R2 (VC-Bb); its re-
sponsibility is to keep the local kernel state synchronized between VC-Bm and VC-Bb.

As of Junos v11.4, the MX only supports two members in a virtual
chassis, so the author were unable to demonstrate the VC-L kernel
synchronization.

MX-VC Routing Engine Failures

Given there are many different components that make up a virtual chassis, let’s analyze
each type of routing engine failure and how the virtual chassis recovers. There are six
different types of routing engines in a virtual chassis:

• VC-Mm

• VC-Mb

• VC-Bm

• VC-Bb

• VC-Lm

548 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

• VC-Lb

Each routing engine failure is a bit different. Let’s walk through all of them one at a
time and observe the before and after failure scenarios.

The failure of the VC-Mm will trigger a GRES event and the VC-B will
become the new VC-M. Let’s take a look:

Recall that virtual chassis performs global kernel state replication between the VC-Mm
and the VC-Bm. In the event that VC-Mm fails, the only other routing engine in the
virtual chassis that’s capable of performing a GRES would be the VC-Bm. After the
failure, the VC-Mb becomes the new VC-Bb, and both routing engines in the VC-B
become the new VC-M.

Figure 6-6. Illustration of MX-VC VC-Mm Failure.

Let’s take a look at the VC-Mm before the failure:

{master:member0-re0}
dhanks@R1-RE0>show task replication
 Stateful Replication: Enabled
 RE mode: Master

 Protocol Synchronization Status
 IS-IS Complete

The protocol synchronization for IS-IS is complete. Let’s trigger a failover on VC-Mm:

{master:member0-re0}
dhanks@R1-RE0>request chassis routing-engine master switch
Toggle mastership between routing engines ? [yes,no] (no) yes

Resolving mastership...
Complete. The other routing engine becomes the master.

{local:member0-re0}
dhanks@R1-RE0>

VC-Mm failure.

What is Virtual Chassis? | 549

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, the VC-Mm has become the new VC-Bb and the VC-Mb has become the
new VC-Bm. In addition, the VC-B has become the new VC-M. Let’s verify the new
VC-Mm:

{local:member0-re0}
dhanks@R1-RE0>request routing-engine login member 1 re0

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
{master:member1-re0}
dhanks@R2-RE0> show task replication
 Stateful Replication: Enabled
 RE mode: Master

 Protocol Synchronization Status
 IS-IS Complete

The annoying warning banner didn’t show up this time because when you login to the
VC-Mm, it’s the master routing engine for the virtual chassis. As expected, the old VC-
Bm has become the new VC-Mm and is showing the protocol synchronization for IS-
IS is complete. Let’s verify the switchover from the new VC-Bm:

{local:member0-re0}
dhanks@R1-RE0>request routing-engine login re1

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
warning: This chassis is operating in a non-master role as part of a virtual-
 chassis (VC) system.
warning: Use of interactive commands should be limited to debugging and VC Port
 operations.
warning: Full CLI access is provided by the Virtual Chassis Master (VC-M) chassis.
warning: The VC-M can be identified through the show virtual-chassis status command
 executed at this console.
warning: Please logout and log into the VC-M to use CLI.
{backup:member0-re1}
dhanks@R1-RE1>show system switchover
member0:
--
Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

member1:
--
Graceful switchover is not enabled on this member

Everything looks great. GRES is turned on and the configuration and kernel database
are ready for switchover.

A very simple failure scenario requiring no change is the VC-Mb. There’s
no topology change, mastership election, or GRES switch.
VC-Mb failure.

550 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-7. Illustration of MX-VC VC-Mb Failure.

The next type of routing engine failure is the master routing engine on the
VC-B chassis. This will cause the two routing engines on VC-B to change roles. The
VC-Bb will become the new VC-Bm and vice versa.

Figure 6-8. Illustration of MX-VC VC-Bm Failure.

Recall that the VC-Mm and the VC-Bm have a synchronized global kernel state; the
failure of the VC-Bm will cause the GRES, NSR, and NSB replication to stop until the
VC-Bb becomes the new VC-Bm and reestablishes connectivity back to the VC-Mm.

Let’s take a quick look at the GRES on VC-Mm before the failure:

{master:member0-re0}
dhanks@R1-RE0>show task replication
 Stateful Replication: Enabled
 RE mode: Master

 Protocol Synchronization Status
 IS-IS Complete

Now let’s switch the routing engine mastership on VC-B:

VC-Bm failure.

What is Virtual Chassis? | 551

www.it-ebooks.info

http://www.it-ebooks.info/

{master:member0-re0}
dhanks@R1-RE0>request routing-engine login member 1 re0

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
warning: This chassis is operating in a non-master role as part of a virtual-chassis
(VC) system.
warning: Use of interactive commands should be limited to debugging and VC Port
operations.
warning: Full CLI access is provided by the Virtual Chassis Master (VC-M) chassis.
warning: The VC-M can be identified through the show virtual-chassis status command
executed at this console.
warning: Please logout and log into the VC-M to use CLI.
{backup:member1-re0}
dhanks@R2-RE0>request chassis routing-engine master release
Request the other routing engine become master ? [yes,no] (no) yes

Resolving mastership...
Complete. The other routing engine becomes the master.

{local:member1-re0}
dhanks@R2-RE0>

Now that the routing engines in VC-B have changed roles, let’s take another look at
the GRES synchronization on VC-Mm:

{master:member0-re0}
dhanks@R1-RE0> show task replication
 Stateful Replication: Enabled
 RE mode: Master

 Protocol Synchronization Status
 IS-IS NotStarted

Just as expected; the GRES synchronization isn’t started because of the recent routing
engine switch on the VC-B. Let’s wait another 30 seconds and try again:

{master:member0-re0}
dhanks@R1-RE0>show task replication
 Stateful Replication: Enabled
 RE mode: Master

 Protocol Synchronization Status
 IS-IS Complete

Perfect. Now the VC-Mm is synchronized with the VC-B again. Let’s check from the
perspective of the new VC-Bm (RE1 on R2) to verify:

{master:member0-re0}
dhanks@R1-RE0>request routing-engine login member 1 re1

 --- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
warning: This chassis is operating in a non-master role as part of a virtual-chassis
(VC) system.
warning: Use of interactive commands should be limited to debugging and VC Port
operations.
warning: Full CLI access is provided by the Virtual Chassis Master (VC-M) chassis.

552 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

warning: The VC-M can be identified through the show virtual-chassis status command
executed at this console.
warning: Please logout and log into the VC-M to use CLI.
{backup:member1-re1}
dhanks@R2-RE1>show system switchover
member0:
--
Graceful switchover is not enabled on this member

member1:
--
Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

Everything checks out at this point. The VC-Mm protocol synchronization for IS-IS is
complete, the new VC-Bm is configured for GRES, and the configuration and kernel
are ready for failover.

Another simple failure scenario is the VC-Bb. It’s very similar to the VC-
Mb failure scenario. There’s no topology change or mastership election.

Figure 6-9. Illustration of MC-VC VC-Bb Failure.

Virtual chassis line card failures are easier to handle because there’s no
global kernel synchronization or mastership election processes to deal with. In the event
that a VC-Lm fails, the local backup routing engine simply takes over.

VC-Bb failure.

VC-Lm failure.

What is Virtual Chassis? | 553

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 6-10. Illustration of MX-VC VC-Lm Failure.

The final virtual chassis routing engine failover scenario is the VC-Lb. This is
another simple failover scenario that’s similar to the VC-Mb and VC-Bb. There’s no
topology change or mastership election process.

Figure 6-11. Illustration of MX-VC VC-Lb Failure.

In summary, the members of the virtual chassis work together to fully synchronize all
global kernel states so that in an event of a failure, the virtual chassis can switch from
the VC-Mm to the VC-Bm and reap all the benefits of GRES, NSR, and NSB. Any failure
of the VC-Mm or VC-Bm requires a GRES switchover and mastership election because
these two routing engines synchronize the global kernel state between the VC-M and
VC-B chassis. Failures of the VC-Mb, VC-Bb, VC-Lm, and VC-Lb are very low impact
and do not trigger a topology change or GRES switchover because these routing engines
aren’t responsible for global kernel state.

MX-VC Interface Numbering
With the introduction of virtual chassis, the interface numbering is a bit different than
a traditional chassis. Recall that the kernel has been broken into two scopes: local and

VC-Lb.

554 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

global. Virtual chassis requires VCP interfaces connect all chassis members in the virtual
chassis. There’s no requirement for special hardware when using virtual chassis on the
MX platform; standard revenue ports can be converted into VCP interfaces. Each chas-
sis’ local kernel state handles VCP interfaces individually and isn’t synchronized be-
tween members of the virtual chassis. Because VCP interfaces are handled by the local
kernel state, the FPC numbers do not change and remain the same as if it were a single
chassis. For example, in Figure 6-12, each chassis is a MX240 with two FPCs. Each
chassis will define and configure a local VCP that connects to an adjacent chassis. From
the perspective of each chassis, the VCP interface will live in FPC2. Figure 6-12 doesn’t
contain a typo; routers R2 and R3 really do say FPC13, FPC14, FPC25, and FPC26. MX-
VC VCP interfaces are local kernel state and use the traditional FPC numbering scheme;
however, global kernel state uses a different interface numbering system.

Figure 6-12. Illustration of MX-VC Interface Numbering.

The local kernel state for VCP interfaces is required because the VCP interfaces are
configured and defined before the virtual chassis is up and active. Because VCP inter-
faces are required to bring up the VCCP protocol and form adjacencies, it’s a chicken
or egg problem. The easiest solution was to create VCP interfaces on each chassis using
traditional interface numbering that tied to the local FPCs installed into the chassis.

The global kernel state manages everything else, including the global interface and FPC
inventory and numbering scheme. The formula to calculate the MX-VC FPC is:

Figure 6-13. MX-VC FPC Formula.

This formula holds true for all MX platforms and doesn’t change. Obviously, the base
line for the MX-VC FPC formula was the MX960 because it’s able to accept 12 FPCs.

What is Virtual Chassis? | 555

www.it-ebooks.info

http://www.it-ebooks.info/

So whether you configure MX-VC on the MX240, MX480, or MX960, the MX-VC FPC
formula is the same. For example, in Figure 6-12, R3 has two FPCs: FPC1 and FPC2.
To calculate the MX-VC FPC, simply multiply the member-id of 2 times 12 and add
the local FPC number. FPC2 on R3 would become a MX-FPX of 26, as shown in Fig-
ure 6-14:

Figure 6-14. Example Calculating MX-VC FPC for FPC2 on R3.

Now Figure 6-12 should come full circle. VCP interfaces use local kernel state while all
other interfaces use the global kernel state. For example, assume that the VCP interface
on R3 was on FPC2, PIC0, port 0. The VCP interface would be xe-2/0/0. All other ports
on the same FPC and PIC would be calculated different in the context of the global
kernel state for MX-VC; for example, FPC2, PIC0, port 1 on R3 would become
xe-26/0/1.

MX-VC Packet Walkthrough
A packet can be forwarded locally within a single chassis or it may have to go through
an intermediate member within a virtual chassis to reach its final destination. It all
depends on which members within a virtual chassis hold the ingress and egress inter-
faces; if the ingress and egress ports are on different members, the packet must travel
through the VCP interfaces that have the shortest path to the egress member. Each
member within a virtual chassis has a device route table that’s populated by VCCP;
this device route table is used to find which member contains the forwarding informa-
tion for the packet. Figure 6-15 illustrates a worst-case scenario: a packet is received
on member0 on xe-0/0/0 and needs to be forwarded through member1 to reach the
egress interface xe-36/0/0 on member2.

Figure 6-15. Worst-Case MX-VC Packet Forwarding Path.

556 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

In Figure 6-15, each member has both an ingress and egress PFE, and traffic needs to
be forwarded across the switch fabric. There are several operations that happen at each
step of the way through this example:

member0 ingress
The lookup process gives you the global egress PFE number, which in this case is
the egress PFE on member2.

member0 egress
Find shortest path from member0 to member3. In this example, member0 has to
go through member1 in order to reach the final destination of member2. Encap-
sulate the packet for VCP transport via vcp-2/0/0.

member1 ingress
Do a device route lookup and see that the destination is member2.

member1 egress
Forward the packet out interface vcp-2/0/1 to member2 on interface xe-2/0/0.

member2 ingress
Do a device route lookup and see that the packet is destined to itself. Decapsulate
the packet and send to the egress PFE.

member2 egress
Normal forwarding processing and encapsulate the packet for egress.

As the packet travels through the virtual chassis, it incurs encapsulation and decapsu-
lation overhead. It’s always best practice to ensure that each member within a virtual
chassis has a full mesh of VCP interfaces to every other member in the chassis for
optimal forwarding.

Let’s take a look at the packet encapsulation each step of the way through Figure 6-16:

Figure 6-16. Worst-Case MX-VC Packet Encapsulation.

The numbers in Figure 6-16 correspond to the steps in Figure 6-15. As the packet makes
its way through each system, it must be encapsulated for fabric or VCP and forwarded
to the next-hop. The light gray boxes indicate headers that do not change as the packet
is forwarded hop by hop. For example, the original IPv4 header is never changed and

What is Virtual Chassis? | 557

www.it-ebooks.info

http://www.it-ebooks.info/

the fabric header that is injected via step 2 stays with the packet all the way until step
7, where it is removed. Step 4 clearly has the most overhead as it requires the original
IPv4 payload, egress PFE fabric header, VCCP header, and the internal fabric header
within member1 to bridge the packet from its ingress to egress PFE.

It’s important to note this example is the worst-case scenario for packet forwarding
within virtual chassis. To avoid forwarding packets through intermediate members
within a virtual chassis, make sure there is a full mesh of VCP interface between each
member in a virtual chassis, as illustrated in Figure 6-17.

The full mesh ensures that each member within the virtual chassis has a direct VCP
interface to the destination member, eliminating the need for an intermediate chassis
in the forwarding path. For example, the virtual chassis member R1 has a direct VCP
interface to R2, R3, and R4.

The VCP interfaces add an extra 42 bytes to the packet size. In the case of the MX, the
maximum configurable MTU is 9,192 as of Junos 11.4. This means that packets larger
than 9,150 bytes will be discarded. If you suspect traffic is being discarded because the
payload is too large, check the first egress VCP interface, as this is where the traffic
would be discarded.

Virtual Chassis Topology
Because VCCP is based on IS-IS, virtual chassis is able to support any type of topology.
There are no restrictions on how members are connected to each other via VCP inter-
faces. Although a full mesh of VCP interfaces between all members in a virtual chassis,
as shown in Figure 6-17, is recommended, sometimes it isn’t possible.

Figure 6-17. Illustration of a Full Mesh of VCP Links Between All Members Within a Virtual Chassis.

Depending on the use case, it may be more efficient to use alternative topologies in
Figure 6-18 such as a ring or hub and spoke topology. For example, if the members are

558 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

geographically diverse, the physical cabling may only allow a ring topology or a partial-
mesh topology.

Figure 6-18. Illustration of Alternative Virtual Chassis Topologies.

Mastership Election
VCCP uses a simple algorithm to decide which member of a virtual chassis is elected
as the VC-M. The mastership election process is as follows:

• Internal member priority, routing engine is set to 129, line card is set to 1, and
member with undefined role is set to 128

• Prefer member of larger VC over that of smaller VC

• Prefer the current master

• Prefer the current backup

• Choose the one which has been up longer

• Choose previous master

• Choose member with lowest MAC address

The mastership election process is run every time there is a change in the VCCP top-
ology; this could include any of the following events:

• Adding a new member from the virtual chassis

• Removing a member from the virtual chassis

• Chassis failure

• Failure of the VC-Mm

• Failure of the VC-Bm

The general rule of thumb is to choose two members in the virtual chassis to handle
the VC-M responsibility and let VCCP choose which member is the VC-M. Having a

What is Virtual Chassis? | 559

www.it-ebooks.info

http://www.it-ebooks.info/

particular member in the virtual chassis as the VC-M doesn’t impact the transit traffic;
the impact of the VC-M is only in the control plane.

Summary
Virtual chassis is a very exciting technology as it takes all of the great high-availability
features from a traditional chassis such as GRES, NSR, and NSB and applies the same
methodology across multiple chassis to form one, single virtual chassis. To simply refer
to virtual chassis as “stacking” is an insult, because virtual chassis retains all of the
control plane high-availability features and engineering, but simply spreads it across
multiple chassis. Many vanilla “stacking” implementations merely attempt to give the
user a single command-line experience, but when it comes to high-availability features
and engineering, vanilla “stacking” fails to deliver.

To help support the high-availability features, the way kernel synchronization was per-
formed had to be rethought. Routing engines are no longer within the same chassis
being synchronized; with virtual chassis, the master and backup routing engines are in
different chassis. This creates unique scaling challenges; to solve this problem, Juniper
created the relay daemon to act as a proxy between FPCs and the kernel. The other
challenge is that there is local state that’s only relevant on a per chassis basis, while
there’s global state that needs to be replicated throughout the entire virtual chassis.
The kernel state was separated into local and global state to solve this problem. Local
state, such as local VCP interfaces, are not replicated throughout the virtual chassis and
are kept local to each chassis; however, global state, such as every other FPC, will be
synchronized throughout the virtual chassis.

The packet forwarding path through a virtual chassis depends on the number of inter-
mediate members it must pass through. The majority of the time, the packet will be
forwarded locally within the chassis and not incur any additional processing. The other
option is that the packet needs to be forwarded to another member in the virtual chassis
for processing. This requires that the packet be encapsulated and decapsulated as it
moves through VCP interfaces. The worst-case scenario is that the packet must be
forwarded through an intermediate member within the virtual chassis to reach its final
destination. To avoid this scenario, it’s recommended to create a full mesh of VCP
interfaces between each member in the virtual chassis. Although there is additional
encapsulation that must be performed when forwarding packets through the virtual
chassis, it’s important to remember that the processing is performed in hardware with
one pass through the Lookup Block; the amount of processing delay is very minimal.

Just a reminder that this chapter focuses on how virtual chassis is implemented on the
Juniper MX and keeps the content highly technical and assumes you already know the
basics. For more information about virtual chassis, please check out Junos Enterprise
Switching by Doug Marschke and Harry Reynolds (O’Reilly).

560 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

MX-VC Configuration
The configuration of virtual chassis on the MX is very similar to the EX. The most
challenging part is collecting the required information before creating the configura-
tion. Each chassis that is to be part the virtual chassis must be identified, and a handful
of information must be collected.

Be sure to use the console port on the routing engines as you configure
virtual chassis; this will ensure that if a mistake is made, the connection
to the router will not be lost.

Figure 6-19. Illustration of MX-VC Configuration Topology.

This section will build a MX-VC, as illustrated in Figure 6-19, using R1 and R2. The
S1 switch will be used to create an IEEE 802.3ad interface into the MX-VC.

Chassis Serial Number
Virtual chassis uses the serial number to uniquely identify each chassis in the topology.
It’s important to note that only the chassis serial number should be used. It’s easy to
confuse other serial numbers such as a power supply or line card. Use the show chassis
hardware command to find the chassis serial number. Let’s find the serial number for
the R1 chassis:

1 dhanks@R1-RE0>show chassis hardware
2 Hardware inventory:
3 Item Version Part number Serial number Description
4 Chassis JN111992BAFC MX240
5 Midplane REV 07 760-021404 TR5026 MX240 Backplane
6 FPM Board REV 03 760-021392 KE2411 Front Panel Display
7 PEM 0 Rev 02 740-017343 QCS0748A002 DC Power Entry Module

MX-VC Configuration | 561

www.it-ebooks.info

http://www.it-ebooks.info/

8 Routing Engine 0 REV 07 740-013063 1000745244 RE-S-2000
9 Routing Engine 1 REV 07 740-013063 9009005669 RE-S-2000
10 CB 0 REV 03 710-021523 KH6172 MX SCB
11 CB 1 REV 10 710-021523 ABBM2781 MX SCB
12 FPC 2 REV 15 750-031088 YR7184 MPC Type 2 3D Q
13 CPU
14 Fan Tray 0 REV 01 710-030216 XS7839 Enhanced Fan Tray

Line 4 shows the chassis serial number for the MX240 used in this book’s laboratory.
The chassis serial number for R1 is JN111992BAFC. Now let’s find the chassis serial num-
ber for R2:

1 dhanks@R2-RE0>show chassis hardware
2 Hardware inventory:
3 Item Version Part number Serial number Description
4 Chassis JN111C0B4AFC MX240
5 Midplane REV 07 760-021404 TR4825 MX240 Backplane
6 FPM Board REV 03 760-021392 KE7780 Front Panel Display
7 PEM 0 Rev 02 740-017343 QCS0812A061 DC Power Entry Module
8 Routing Engine 0 REV 06 740-013063 1000690737 RE-S-2000
9 Routing Engine 1 REV 07 740-013063 1000738188 RE-S-2000
10 CB 0 REV 03 710-021523 KH6173 MX SCB
11 CB 1 REV 03 710-021523 KH3620 MX SCBf

The chassis serial number for R2 is JN111C0B4AFC as shown in line 4. Let’s save the chassis
serial numbers for R1 and R2 and move on to the next section.

Please note that the chassis serial number will be anchored to the routing
engine located in /etc/vchassis/. Routing engines from one chassis
cannot be moved to other chassis in a virtual chassis, otherwise the vir-
tual chassis configuration will be invalidated and you will have to start
the configuration process all over again.

Member ID
Each member in a virtual chassis requires a unique member ID. Valid member IDs are
0 through 2 as of Junos 11.4. In this configuration example, the member ID for R1 will
be 0 and R2 will use a member ID of 1. The member ID is set from the operational mode
command line and will require a reboot of both routing engines. Use the request vir
tual-chassis member-id set command on the master routing engine to set the virtual
chassis member ID. Let’s configure R1 with a member ID of 0:

dhanks@R1-RE0>request virtual-chassis member-id set member 0
This command will enable virtual-chassis mode and reboot the system.
 Continue? [yes,no] (no) yes

Updating VC configuration and rebooting system, please wait...

{master}
dhanks@R1-RE0>
*** FINAL System shutdown message from dhanks@R1-RE0 ***

562 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

System going down IMMEDIATELY

This will configure both the master and backup routing engines for virtual chassis
mode. After a few minutes, the router will come back up ready for the next step. In the
mean time, let’s do the same for R2, but use a member ID of 1:

dhanks@R2-RE0>request virtual-chassis member-id set member 1
This command will enable virtual-chassis mode and reboot the system.
 Continue? [yes,no] (no) yes

Updating VC configuration and rebooting system, please wait...

{master}
dhanks@R2-RE0>
*** FINAL System shutdown message from dhanks@R2-RE0 ***

System going down IMMEDIATELY

You need to wait for both routers to reboot and become operational again before con-
tinuing to the next step.

R1 VCP Interface
A pair of VCP interfaces are required for R1 and R2 to build a VCCP adjacency and bring
the two routers together. Each router will use the interface xe-2/0/0 as the dedicated
VCP interface. Once xe-2/0/0 has been configured for a VCP interface, xe-2/0/0 will
be removed from the global kernel state, renamed to interface vcp-2/0/0, and placed
into the local kernel state of the chassis.

Let’s begin by configuring the VCP interface as xe-2/0/0 on R1:

{master:member0-re0}
dhanks@R1-RE0>request virtual-chassis vc-port set fpc-slot 2 pic-slot 0 port 0
vc-port successfully set

Use the show virtual-chassis command to verify that the VCP interface has been suc-
cessfully created:

{master:member0-re0}
dhanks@R1-RE0>show virtual-chassis vc-port
member0:
--
Interface Type Trunk Status Speed Neighbor
or ID (mbps) ID Interface
Slot/PIC/Port
2/0/0 Configured 3 Down 10000 1 vcp-2/0/0

The xe-2/0/0 interface on R1 has successfully been configured as a VCP port and is now
known as vcp-2/0/0; however, the status is Down. This is because R2 needs to configure
a VCP interface before the adjacency can come up.

MX-VC Configuration | 563

www.it-ebooks.info

http://www.it-ebooks.info/

Stop configuring VCP interfaces at this point. Do not continue to R2 and
do not pass go. A global virtual chassis configuration needs to be applied
on R1 before R2 is added to the virtual chassis.

It’s important to stop at this point and not configure VCP interfaces on R2. There is still
some global configuration work that needs to happen on R1 before R2 is brought online.
This is because some of the apply-group names have changed and the virtual chassis
stanza needs to be added. The process of configuring R1 with a global virtual chassis
configuration first designates R1 has the VC-M of the virtual chassis.

Routing Engine Groups
The next step is to begin creating a global virtual chassis configuration on R1 before the
VCP interfaces are configured on R2. One notable difference in a virtual chassis con-
figuration is the modification in routing engine apply-groups. On a single chassis, the
apply-groups re0 and re1 can be used to apply different configuration on the routing
engines. With virtual chassis, the names have been changed to account for all chassis
in the virtual chassis, as shown in Table 6-2.

Table 6-2. Single Chassis to Virtual Chassis Routing Engine Group Names.

Router Routing Engine

Standalone Chassis

Apply Group Name

Virtual Chassis

Apply Group Name

R1 re0 re0 member0-re0

R1 re1 re1 member0-re1

R2 re0 re0 member1-re0

R2 re1 re1 member1-re1

Note that Table 6-2 assumes that R1 has a member ID of 0 and R2 has a member ID of
1. The real apply-group name can be expressed as pseudocode where member-id is equal
to the member ID of the chassis and routing-engine is equal to 0 or 1:

foreach $member-id (0..2)
{
 foreach $routing-engine (0..1)
 {
 printf("member%i-re%i", $member-id, $routing-engine);
 }
}

With this new naming method, it’s possible to construct a global configuration for all
routing engines within the virtual chassis using apply-groups. The first step is to copy
the apply-groups re0 and re1 on R1 to member0-re0 and member0-re1:

master:member0-re0}
root>configure
Entering configuration mode

564 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

{master:member0-re0}[edit]
root# copy groups re0 to member0-re0

{master:member0-re0}[edit]
root# copy groups re1 to member0-re1

It’s also possible to simply rename re0 to member0-re0 and re1 to member0-re1, but using
the copy command will leave the original re0 and re1 apply-groups in place in case the
virtual chassis configuration is removed in the future.

The next step is to create the routing engine apply-groups for R2; these will be named
member1-re0 and member1-re1. Two methods can be used for this step. The first option
is to copy the member0-re0 to member1-re0 and member0-re1 to member1-re1; however,
you will have to make the necessary modifications to member1-re0 and member1-re1 such
as the hostname and fxp0 IP address. The other option is to use the load merge termi
nal command and simply cut and paste the re0 and re1 apply-groups from R2 into R1,
but don’t forget to rename re0 and re1 to member1-re0 and member1-re1. The bottom
line is that you need to create an apply-group for each member and routing engine in
the virtual chassis. In Junos, there are many different ways to accomplish the same task,
and the method you use is up to you; there’s no right or wrong way.

The next step is to remove any previous routing engine apply-groups from R1:

{master:member0-re0}[edit]
root# delete apply-groups re0
{master:member0-re0}[edit]
root# delete apply-groups re1

The last step is to enable the newly created virtual chassis routing engine apply-groups
on R1:

{master:member0-re0}[edit]
root# set apply-groups [member0-re0 member0-re1 member1-re0 member1-re1]

At this point, all standalone routing engine apply-groups have been removed and new
virtual chassis routing engine apply-groups have been installed for each member and
routing engine in the virtual chassis.

MX-VC Configuration | 565

www.it-ebooks.info

http://www.it-ebooks.info/

It’s important to understand how the routing engine interfaces (fxp0)
work in a virtual chassis. Traditionally, each routing engine has its own
fxp0 interface that can be used to directly login to a routing engine. With
virtual chassis, only the VC-Mm routing engine will honor the routing
engine interface. Other routing engines can configure the fxp0 interface,
but they will not respond until the virtual chassis mastership changes.
For example, if the routing engine from the member0-re0 apply-group
was the current VC-Mm, it would honor the fxp0 interface configuration
in the member0-re0 apply-group and respond, whereas the VC-Mb, VC-
Bm, VC-Bb, VC-Lm, and VC-Lb routing engines would not honor their
respective fxp0 interfaces. However, if there was a topology change and
member1-re0 become the new VC-Mm, the fxp0 configuration in the
member1-re0 apply-group would become active.

In order to log in to other routing engines, you must use the respective
RS-232 console port or use the request routing-engine login
command.

Virtual Chassis Configuration
The next step is to create the global virtual chassis configuration on R1. It’s time to find
the chassis serial numbers from R1 and R2, as shown in Table 6-3.

Table 6-3. R1 and R2 Chassis Serial Numbers for MX-VC.

Router Chassis Serial Number

R1 JN111992BAFC

R2 JN111C0B4AFC

The chassis serial numbers will be used in the preprovisioned virtual chassis configu-
ration. In the preprovisioned virtual chassis configuration, each member ID needs to
be defined along with its chassis serial number and role.

As of Junos 11.4, MX-VC requires that virtual chassis be preprovisioned.

There are two roles in virtual chassis: routing-engine and line-card. Table 6-4 illus-
trates that a role of routing-engine is able to become a VC-M, VC-B, or VC-L; however,
a role of line-card only allows the member to become a VC-L.

Table 6-4. MX-VC Roles.

Role Eligible MX-VC State

routing-engine VC-M, VC-B, and VC-L

line-card VC-L

566 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Given that R1 and R2 will create a two-member virtual chassis, it’s required that both
members have a role of routing-engine so that they can each become a VC-M or VC-
B depending on the mastership election process and failover scenarios.

Let’s configure R1 with the following virtual chassis configuration:

virtual-chassis {
 preprovisioned;
 no-split-detection;
 member 0 {
 role routing-engine;
 serial-number JN111992BAFC;
 }
 member 1 {
 role routing-engine;
 serial-number JN111C0B4AFC;
 }
}

The virtual chassis configuration hard codes the serial numbers of R1 and R2 so that no
other routers may inadvertently join the virtual chassis. When specifying the serial
number for each member, the preprovisioned option is required.

GRES and NSR

The last step in the virtual chassis configuration is to ensure that GRES and NSR are
configured. After all, the entire point of virtual chassis is to spread high-availability
features across chassis; it would be a shame if they were forgotten about. Let’s configure
GRES and NSR on R1:

chassis {
 redundancy {
 graceful-switchover;
 }
}
routing-options {
 nonstop-routing;
}

Don’t forget to enable commit synchronize unless you want to type commit synchron
ize every time you make a configuration change:

system {
 commit synchronize;
}

R2 VCP Interface
At this point, R1 has successfully been preconfigured as the first router in a virtual
chassis. It’s critical that the first router in a virtual chassis go through the preconfigu-
ration checklist before adding additional chassis to the virtual chassis. Let’s review the
preconfiguration steps again:

MX-VC Configuration | 567

www.it-ebooks.info

http://www.it-ebooks.info/

Chassis Serial Number
It’s important to find and document the chassis serial number of each chassis before
configuring the virtual chassis. The virtual chassis will use each chassis serial num-
ber as an anchor in the configuration. This will guarantee that only authorized
chassis are granted access into the virtual chassis.

Member Role
When designing the virtual chassis, the first decision point is to determine how the
virtual chassis will handle failures. It’s important to predetermine the VC-M and
VC-B chassis under normal operating conditions and how the virtual chassis will
react to routing engine or chassis failures.

Virtual Chassis Ports
Each member requires a connection to other members within the virtual chassis
to build the VCCP adjacency and provide a means of communication when transit
data needs to be transported between members. The VCP interfaces use the local
kernel state and require that you use the local chassis interface name during the
configuration. It’s important to remember that once an interface has been config-
ured for VCP, that interface is no longer available for use by the system and its only
purpose is for VCCP and intermember data plane traffic.

Routing Engine Apply Groups
Virtual chassis changes the apply-groups names for the various routing engines.
Instead of the traditional re0 and re1 apply-group names, a new naming convention
is required to uniquely specify the member and routing engine within the virtual
chassis. It’s important to preconfigure the first member in the virtual chassis with
a global apply-group configuration for all virtual chassis members and routing en-
gines. This allows for members to be added to the virtual chassis without having
to modify the configuration.

Graceful Routing Engine Switchover and Nonstop Routing
The two core features that provide the high availability for virtual chassis are GRES
and NSR. Applying the configuration on the first chassis in the virtual chassis will
ensure that GRES and NSR will always be active.

Commit Synchronize
By default, the commit command will only commit the configuration on the routing
engine on which it was executed. To replicate the configuration change to all rout-
ing engines within the virtual chassis, the commit synchronize option must be
enabled.

Now that R1 is preconfigured and ready to accept additional members into the virtual
chassis, the next logical step is to configure the VCP interface on R2. As soon as the
VCP interface is configured on R2, VCCP will immediately begin to establish adjacency
between R1 and R2 and form a virtual chassis. Once the VCCP adjacency is established,
virtual chassis will perform a mastership election process. Because R1 was configured
first, the election has been rigged and R1 will become the VC-M of the virtual chassis.

568 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s now configure the VCP interface on R2 as xe-2/0/0:

{master:member1-re0}
dhanks@R1-RE0>request virtual-chassis vc-port set fpc-slot 2 pic-slot 0 port 0
vc-port successfully set

At this point, VCCP will begin establishing adjacency and forming a virtual chassis.
Let’s give the system a minute before checking the status.

(Wait 30 seconds.)

Let’s check the VCP interfaces on R2:

{master:member1-re0}
dhanks@R2-RE0>show virtual-chassis vc-port
member1:
--
Interface Type Trunk Status Speed Neighbor
or ID (mbps) ID Interface
Slot/PIC/Port
2/0/0 Configured Absent

By looking at the VCP status of Absent, it’s obvious that VCCP still hasn’t completed.
Another hint is that the prompt on R2 still indicates that R2 still believes it’s the master
of the virtual chassis.

(Wait 30 more seconds.)

Now let’s check again:

{backup:member1-re0}
dhanks@R2-RE0>show virtual-chassis vc-port
member0:
--
Interface Type Trunk Status Speed Neighbor
or ID (mbps) ID Interface
Slot/PIC/Port
2/0/0 Configured 3 Up 10000 1 vcp-2/0/0

member1:
--
Interface Type Trunk Status Speed Neighbor
or ID (mbps) ID Interface
Slot/PIC/Port
2/0/0 Configured 3 Up 10000 0 vcp-2/0/0

Very interesting; the output has changed significantly. Let’s start by making a few ob-
servations. The first change is the command-line prompt; it now shows that it’s the
backup in the virtual chassis. The next change is that the command shows the output
from both member0 and member1. Obviously, if R2 is able to get the command output
from both members, virtual chassis is up and operational. The last piece of information
confirming the formation of virtual chassis is the VCP status now displays Up.

MX-VC Configuration | 569

www.it-ebooks.info

http://www.it-ebooks.info/

Virtual Chassis Verification
Now that R1 and R2 have been configured for virtual chassis and VCCP is converged,
it’s time to take a closer look at the virtual chassis. The easiest method for determining
the health, members, and VCP interfaces within a virtual chassis is the show virtual-
chassis status command:

dhanks@R1-RE0>show virtual-chassis status

Preprovisioned Virtual Chassis
Virtual Chassis ID: 12b0.f739.21d2
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0- 11) Prsnt JN111992BAFC mx240 129 Master* 1 vcp-2/0/0
1 (FPC 12- 23) Prsnt JN111C0B4AFC mx240 129 Backup 0 vcp-2/0/0

The example output provides a bird’s eye view of the virtual chassis. It isn’t apparent,
but you can determine that both chassis are present and that R1 is currently the VC-M
and R2 is the VC-B. The show virtual-chassis status command identifies each chassis
by the serial number instead of the hostname, and the VC-M status is indicated by the
role Master whereas the VC-B status is indicated by the role of Backup. There’s also a
helpful reminder in the second column of the command showing the FPC slot numbers.

Virtual Chassis Topology

The VCCP protocol builds a shortest path first (SPF) tree, and each node in the tree is
represented by a member in the virtual chassis. Let’s take a look at the VCCP adjacency:

{master:member0-re0}
dhanks@R1-RE0>show virtual-chassis protocol adjacency
member0:

Interface System State Hold (secs)
vcp-2/0/0.32768 001f.12b7.d800 Up 2

member1:

Interface System State Hold (secs)
vcp-2/0/0.32768 001f.12b8.8800 Up 2

VCCP has established adjacency on each member via the vcp-2/0/0 interface. Take
special notice of the System column; it’s using six octets worth of hexadecimal. It’s
interesting to note that another common six-octet field of hexadecimal is a MAC ad-
dress. Let’s take a look at the system MAC address of R1 and see if it matches the VCCP
System value.

{master:member0-re0}
dhanks@R1-RE0>show chassis mac-addresses
member0:

MAC address information:
 Public base address 00:1f:12:b8:88:00
 Public count 1984

570 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

 Private base address 00:1f:12:b8:8f:c0
 Private count 64

member1:

MAC address information:
 Public base address 00:1f:12:b7:d8:00
 Public count 1984
 Private base address 00:1f:12:b7:df:c0
 Private count 64

The system MAC address of R1 and the VCCP System are indeed identical. R1 has a
system MAC address of 00:1f:12:b8:88:00 and R2 has a system MAC address of 00:1f:
12:b7:d8:00. Armed with this new information, let’s take a look at the VCCP route
table and verify that the SPF tree is built using the system MAC address for each node.

{master:member0-re0}
dhanks@R1-RE0>show virtual-chassis protocol route
member0:
--

Dev 001f.12b8.8800 ucast routing table Current version: 154

System ID Version Metric Interface Via
001f.12b7.d800 154 7 vcp-2/0/0.32768 001f.12b7.d800
001f.12b8.8800 154 0

Dev 001f.12b8.8800 mcast routing table Current version: 154

System ID Version Metric Interface Via
001f.12b7.d800 154
001f.12b8.8800 154 vcp-2/0/0.32768

member1:

Dev 001f.12b7.d800 ucast routing table Current version: 126

System ID Version Metric Interface Via
001f.12b7.d800 126 0
001f.12b8.8800 126 7 vcp-2/0/0.32768 001f.12b8.8800

Dev 001f.12b7.d800 mcast routing table Current version: 126

System ID Version Metric Interface Via
001f.12b7.d800 126 vcp-2/0/0.32768
001f.12b8.8800 126

From the perspective of R1 (member0), the path to R2 (001f.12b7.d800) has a metric of
7 via the vcp-2/0/0 interface; it also sees itself (001f.12b8.8800) in the SPF tree with a
metric of 0. The same is true for R2 (member1); it shows a path to R1 (001f.12b8.8800)
with a metric of 7 via the vcp-2/0/0 interface.

MX-VC Configuration | 571

www.it-ebooks.info

http://www.it-ebooks.info/

Revert to Standalone
There are two methods of deconfiguring virtual chassis: the easy way and the manual
way. Each method has its own benefits and drawbacks. Let’s start with the easy way.
Simply login to the chassis to be removed from the virtual chassis and load the factory
configuration and commit:

{master:member0-re0}[edit]
dhanks@R1-RE0# load factory-default
warning: activating factory configuration
{master:member0-re0}[edit]
dhanks@R1-RE0# commit and-quit
{master:member0-re0}
dhanks@R1-RE0>request system reboot both-routing-engines
Reboot the system ? [yes,no] (no) yes

After the factory default configuration has been committed, simply reboot the routing
engines. Once the router reboots, it will no longer be part of the virtual chassis. The
benefit is that it only requires a single command. The only downside is that the entire
configuration is lost and you need to start from scratch; however, this method is the
most recommended.

The other method is to execute several commands manually. The following compo-
nents will need to be removed from the configuration: routing engine apply-groups and
the virtual-chassis stanza.

{master:member0-re0}[edit]
dhanks@R1-RE0# delete groups member0-re0
{master:member0-re0}[edit]
dhanks@R1-RE0# delete groups member0-re1
{master:member0-re0}[edit]
dhanks@R1-RE0# delete groups member1-re0
{master:member0-re0}[edit]
dhanks@R1-RE0# delete groups member1-re1
{master:member0-re0}[edit]
dhanks@R1-RE0# delete apply-groups member0-re0
{master:member0-re0}[edit]
dhanks@R1-RE0# delete apply-groups member0-re1
{master:member0-re0}[edit]
dhanks@R1-RE0# delete apply-groups member1-re0
{master:member0-re0}[edit]
dhanks@R1-RE0# delete apply-groups member1-re1
{master:member0-re0}[edit]
dhanks@R1-RE0# delete virtual-chassis
{master:member0-re0}[edit]
dhanks@R1-RE0# commit and-quit

The next step is to remove the VCP interfaces:

dhanks@R1-RE0>request virtual-chassis member-id delete
This command will disable virtual-chassis mode and reboot the system.
 Continue? [yes,no] (no) yes

Updating VC configuration and rebooting system, please wait...

572 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@R1-RE0>
*** FINAL System shutdown message from dhanks@R1-RE0 ***

System going down IMMEDIATELY

This method is a bit more verbose but allows you to retain the majority of the config-
uration on the routing engines.

Summary
The configuration of virtual chassis is very straightforward and should seem very fa-
miliar if you have already used virtual chassis on the Juniper EX series. The configura-
tion of the first member in the virtual chassis is the most critical. There is a laundry list
of items that need to be configured before the second member is added to the virtual
chassis. The routing engine apply-groups need to be updated, the virtual chassis con-
figuration needs to be created based off the chassis serial numbers of each member,
and GRES and NSR need to be enabled. Once the foundation has been built, adding
members into the virtual chassis becomes a plug and play exercise.

This chapter focuses on how virtual chassis is implemented on the Juniper MX and
keeps the content highly technical and assumes you already know the basics. For more
information about virtual chassis, please check out Junos Enterprise Switching.

VCP Interface Class of Service
Depending on the traffic patterns in the network, it’s possible to cause congestion on
the VCP interfaces. Recall that the VCP interfaces should be sized to roughly 50% of
the total aggregate transit traffic flowing through the member. Even with properly sized
VCP interfaces, it’s just a fact of life that there are microbursts of traffic that will cause
an interface to become congested. It’s important to remember that in addition to inter-
member transit traffic, the VCP interfaces also transmit the VCCP control traffic. If and
when the VCP interfaces become congested due to microbursts of traffic, there needs
to be a guarantee in place that gives control traffic priority so that the virtual chassis
isn’t negatively impacted.

VCP Traffic Encapsulation
All traffic that’s transmitted across the VCP interfaces is encapsulated in an IEEE
802.1Q header that allows VCP to set the proper IEEE 802.1p code points for traffic
differentiation. There are various types of traffic that use the VCP interfaces, as shown
in Table 6-5.

VCP Interface Class of Service | 573

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-5. VCP Interface Traffic to IEEE 802.1p Mapping.

Traffic Forwarding Class Packet Loss Priority IEEE 802.1p Code Point

PFE ↔ PFE best-effort Low 000

PFE ↔ PFE best-effort High 001

PFE ↔ PFE assured-forwarding Low 010

PFE ↔ PFE assured-forwarding High 011

PFE ↔ PFE expedited-forwarding Low 100

PFE ↔ PFE expedited-forwarding High 101

RE ↔ RE and RE ↔ PFE network-control Low 110

VCCP network-control High 111

As transit traffic flows across VCP interfaces, there could be IEEE 802.1p or DSCP code
points that need to be honored. By default, Junos reserves 95% for best effort and 5%
for network control. The default configuration poses two challenges: 5% of the VCP
interface bandwidth isn’t enough for a large virtual chassis in addition to regular control
traffic, and the default configuration doesn’t honor expedited and assured forwarding.

VCP Class of Service Walkthrough
VCP interfaces are able to work directly with the Junos class of service configuration
without any special requirements. From the perspective of the Junos class of service
daemon (cosd), the VCP is just another interface. Let’s take a look at a life of a transit
packet in a virtual chassis and how class of service is applied at each stage as it moves
from the ingress interface, through the virtual chassis, and finally to the egress interface.

Figure 6-20. Illustration of VCP Class of Service Walkthrough.

574 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s assume that a video server is connected to port xe-0/0/0, as illustrated in Fig-
ure 6-20; the egress port xe-12/0/0 is on another member in the virtual chassis and
needs to traverse the VCP interface vcp-2/0/0 to each member1. Let’s also assume that
both interfaces xe-0/0/0.0 and xe-12/0/0.0 are family inet and use DSCP for classifi-
cation.

1. The packet is subject to classification as it enters the xe-0/0/0 interface on mem-
ber0; the classification can be in the form of a behavior aggregate or multifield
classification. The end result is that the packet needs to be classified into a for-
warding class. For this example, let’s assume the video packets are classified into
the assured-forwarding forwarding class.

2. The queue information is carried throughout the switch fabric in a special fabric
tag. The forwarding class configuration determines the switch fabric priority. In
this example, the best-effort and assured-forwarding have a switch fabric priority
of low whereas expedited-forwarding and network-control have a switch fabric
priority of high.

3. The video packet is queued on interface vcp-2/0/0 on member0 in the scheduler
associated with the assured-forwarding forwarding class. The vcp-2/0/0 interface
on member0 has a rewrite rule for IEEE 802.1p that will give any packets in the
assured-forwarding forwarding class a code point of 010 or 011 depending on the
packet loss priority.

4. The video packet enters the vcp-2/0/0 interface on member1 and is subject to the
behavior aggregate classification on port vcp-2/0/0. The packet is sent to the
assured-forwarding forwarding class.

5. The queue information is carried throughout the switch fabric in a special fabric
tag. The forwarding class configuration determines the switch fabric priority.

6. The video packet is queued on interface xe-12/0/0 on member1 with the original
packet’s DSCP code points as retained by the fabric header.

As you can see, there’s nothing special in the class of service functions with virtual
chassis. The only caveat to be aware of is that if transit data must be sent to an egress
interface on another member in the virtual chassis, the VCP interfaces are subject to
IEEE 802.1p classification. This means that you need to create a consistent DSCP to
IEEE 802.1p rewrite rule that can be applied on a per-hop behavior (PHB) on each
member in the virtual chassis.

Forwarding Classes
Let’s begin creating a class of service configuration with four standardized forwarding
classes; this will keep the configuration simple and easy to troubleshoot. The majority
of network operators will find four forwarding classes more than adequate, as shown
in Table 6-6.

VCP Interface Class of Service | 575

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-6. Recommended Forwarding Classes for Virtual Chassis.

Forwarding Class Queue Number Switch Fabric Priority

best-effort 0 Low

assured-forwarding 1 Low

expedited-forwarding 2 High

network-control 3 High

Notice that the four forwarding classes have a 1:2 ratio with the number IEEE 802.1p
code points; this will give each forwarding class both a high and low loss priority. The
forwarding class configuration will be as follows:

class-of-service {
 forwarding-classes {
 queue 0 best-effort priority low;
 queue 1 assured-forwarding priority low;
 queue 2 expedited-forwarding priority high;
 queue 3 network-control priority high;
 }
}

As described in Chapter 5, the switch fabric has two queues: low and high. Looking at
the four forwarding classes created for virtual chassis, it would make sense to place the
two most important forwarding classes in the switch fabric high-priority queue and the
two remaining forwarding classes in the switch fabric low-priority queue. This will
ensure that the expedited-forwarding and network-control forwarding classes receive
preferential treatment as the traffic is sprayed across the switch fabric to the egress PFE.

Schedulers
The next logical step is to create schedulers and assign them to each of the forwarding
classes. The default 5% bandwidth scheduler for network control traffic isn’t quite big
enough to handle a large virtual chassis in addition to the routing engine-to-routing
engine and routing engine-to-PFE traffic. Table 6-7 illustrates four new schedulers and
the recommended settings.

Table 6-7. Recommended Schedulers for Virtual Chassis.

Scheduler Name Forwarding Class
Transmit
Rate

Buffer
Size Priority

Excess
Priority

Excess
Rate

s-medium-
priority

network-con
trol

10% 20% high high N/A

s-high-prior
ity

expedited-for
warding

50% + rate
limit

25ms strict-
high

high N/A

576 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Scheduler Name Forwarding Class
Transmit
Rate

Buffer
Size Priority

Excess
Priority

Excess
Rate

s-low-30 assured-for
warding

30% 30% N/A N/A 99%

s-low-weight best-effort 10% 10% N/A N/A 1%

The network-control forwarding class can now use up to 10% of the VCP interface’s
bandwidth, doubling the transmit rate from the Junos defaults. The buffer size of
network-control has been doubled to allow for deeper queuing during congestion. The
expedited-forwarding forwarding class is given a transmit rate of 50% and is rate limited
so that it could never exceed this value; this should be more than enough to guarantee
the delivery of latency sensitive packets through the virtual chassis. Also note the tem-
poral buffer of 25 ms; this will guarantee the speedy delivery of latency-sensitive traffic.
The assured-forwarding will receive a transmit rate of 30% whereas the best-effort
only receives 10%. Any excess bandwidth that’s left over from the expedited-forward
ing and network-control forwarding class schedulers will be given to the assured-for
warding and best-effort forwarding classes, with the exception that the assured-for
warding forwarding class shall receive 99% of the excess bandwidth. This may sound
harsh, but keep in mind that the schedulers will only enforce the transmit rates during
congestion of the interface, and during the congestion certain traffic has to be guaran-
teed to be transmitted. In order to guarantee the transmission of a certain type of traffic
requires that another type of traffic be penalized.

Let’s take a look at the scheduler configuration that’s derived from Table 6-7:

class-of-service {
 schedulers {
 s-high-priority {
 transmit-rate percent 10;
 buffer-size percent 20;
 priority high;
 }
 s-strict-high-priority {
 transmit-rate {
 percent 50;
 rate-limit;
 }
 buffer-size temporal 25k;
 priority strict-high;
 }
 s-low-30 {
 transmit-rate percent 30;
 excess-rate percent 99;
 drop-profile-map loss-priority low protocol any drop-profile low-plp;
 drop-profile-map loss-priority high protocol any drop-profile high-plp;
 }
 s-low-10 {
 transmit-rate percent 10;
 excess-rate percent 1;

VCP Interface Class of Service | 577

www.it-ebooks.info

http://www.it-ebooks.info/

 drop-profile-map loss-priority low protocol any drop-profile low-plp;
 drop-profile-map loss-priority high protocol any drop-profile high-plp;
 }
 }
}

The final step is to create a scheduler map that will assign a specific scheduler to a
particular forwarding class. Using the information in Table 6-7, the following scheduler
map is created:

class-of-service {
 scheduler-maps {
 sm-vcp-ifd {
 forwarding-class network-control scheduler s-medium-priority;
 forwarding-class expedited-forwarding scheduler s-high-priority;
 forwarding-class assured-forwarding scheduler s-high-weight;
 forwarding-class best-effort scheduler s-low-weight;
 }
 }
}

The next step is to apply the scheduler map sm-vcp-ifd to all of the VCP interfaces
within the virtual chassis:

class-of-service {
 traffic-control-profiles {
 tcp-vcp-ifd {
 scheduler-map sm-vcp-ifd;
 }
 }
 interfaces {
 vcp-* {
 output-traffic-control-profile tcp-vcp-ifd;
 }
 }
}

The use of an output traffic control profile is required to enforce schedulers that use
remainder and excess calculations. A traffic control profile called tcp-vcp-ifd was cre-
ated and references the scheduler map sm-vcp-ifd, which maps the various schedulers
to the correct forwarding class. Each VCP interface is then assigned an output traffic
control profile of tcp-vcp-ifd.

Classifiers
The next step is to create a behavior aggregate classifier that is to be applied to all VCP
interfaces. As traffic is received on a VCP interface, the behavior aggregate will inspect
the IEEE 802.1p code point and place the packet in the appropriate forwarding class,
as illustrated in Table 6-8.

578 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-8. Recommended Behavior Aggregate for Virtual Chassis.

IEEE 802.1p Code Point Packet Loss Priority Forwarding Class

000 Low best-effort

001 High best-effort

010 Low assured-forwarding

011 High assured-forwarding

100 Low expedited-forwarding

101 High expedited-forwarding

110 Low network-control

111 High network-control

Let’s review the classification configuration based off Table 6-8:

class-of-service {
 classifiers {
 ieee-802.1 vcp-classifier {
 forwarding-class best-effort {
 loss-priority low code-points 000;
 loss-priority high code-points 001;
 }
 forwarding-class assured-forwarding {
 loss-priority low code-points 010;
 loss-priority high code-points 011;
 }
 forwarding-class expedited-forwarding {
 loss-priority low code-points 100;
 loss-priority high code-points 101;
 }
 forwarding-class network-control {
 loss-priority low code-points 110;
 loss-priority high code-points 111;
 }
 }
 }
}

The IEEE 802.1p classifier vcp-classifier has been configured using the information
listed in Table 6-8. The next step is to apply the behavior aggregate to all VCP interfaces
in the virtual chassis:

class-of-service {
 interfaces {
 vcp-* {
 unit * {
 classifiers {
 ieee-802.1 vcp-classifier;
 }
 }
 }

VCP Interface Class of Service | 579

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

The behavior aggregate has successfully been applied to all VCP interfaces within the
virtual chassis. It’s important to create a consistent classification and rewrite rule so
that as a packet travels through a set of routers the PHB remains the same and the
preferential treatment of the packet is guaranteed end to end.

Rewrite Rules
The final step is to create a rewrite rule that’s consistent with the behavior aggregate.
As traffic is transmitted on a VCP interface, it’s critical that the forwarding classes have
the appropriate IEEE 802.1p code points to enforce the end-to-end preferential treat-
ment of packets across the virtual chassis, as shown in Table 6-9.

Table 6-9. Recommended Rewrite Rule for Virtual Chassis.

Forwarding Class Packet Loss Priority Code Point

best-effort Low 000

best-effort High 001

assured-forwarding Low 010

assured-forwarding High 011

expedited-forwarding Low 100

expedited-forwarding High 101

network-control Low 110

network-control High 111

Let’s review the recommended rewrite policy based off the information in Table 6-9:

class-of-service {
 rewrite-rules {
 ieee-802.1 vcp-rules {
 forwarding-class best-effort {
 loss-priority low code-point 000;
 loss-priority high code-point 001;
 }
 forwarding-class assured-forwarding {
 loss-priority low code-point 010;
 loss-priority high code-point 011;
 }
 forwarding-class expedited-forwarding {
 loss-priority low code-point 100;
 loss-priority high code-point 101;
 }
 forwarding-class network-control {
 loss-priority low code-point 110;
 loss-priority high code-point 111;
 }

580 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
}

The next step is to apply the rewrite rule to all VCP interfaces:

class-of-service {
 interfaces {
 vcp-* {
 unit * {
 rewrite-rules {
 ieee-802.1 vcp-rules;
 }
 }
 }
 }
}

Final Configuration
Each of the major class of service components has been carefully constructed and de-
signed to give preferential treatment to control plane traffic and any user traffic placed
into the expedited-forwarding forwarding class. All other traffic is given any remainder
and excess bandwidth during times of congestion.

Let’s put all of the pieces together into a final recommended configuration for virtual
chassis VCP interfaces:

class-of-service {
 classifiers {
 ieee-802.1 vcp-classifier {
 forwarding-class best-effort {
 loss-priority low code-points 000;
 loss-priority high code-points 001;
 }
 forwarding-class assured-forwarding {
 loss-priority low code-points 010;
 loss-priority high code-points 011;
 }
 forwarding-class expedited-forwarding {
 loss-priority low code-points 100;
 loss-priority high code-points 101;
 }
 forwarding-class network-control {
 loss-priority low code-points 110;
 loss-priority high code-points 111;
 }
 }
 }
 drop-profiles {
 low-plp {
 fill-level 70 drop-probability 1;
 }
 high-plp {

VCP Interface Class of Service | 581

www.it-ebooks.info

http://www.it-ebooks.info/

 interpolate {
 fill-level [25 50 75];
 drop-probability [50 75 90];
 }
 }
 }
 forwarding-classes {
 queue 0 best-effort priority low;
 queue 1 assured-forwarding priority low;
 queue 2 expedited-forwarding priority high;
 queue 3 network-control priority high;
 }
 traffic-control-profiles {
 tcp-vcp-ifd {
 scheduler-map sm-vcp-ifd;
 }
 }
 interfaces {
 vcp-* {
 output-traffic-control-profile tcp-vcp-ifd;
 unit * {
 classifiers {
 ieee-802.1 vcp-classifier;
 }
 rewrite-rules {
 ieee-802.1 vcp-rules;
 }
 }
 }
 }
 rewrite-rules {
 ieee-802.1 vcp-rules {
 forwarding-class best-effort {
 loss-priority low code-point 000;
 loss-priority high code-point 001;
 }
 forwarding-class assured-forwarding {
 loss-priority low code-point 010;
 loss-priority high code-point 011;
 }
 forwarding-class expedited-forwarding {
 loss-priority low code-point 100;
 loss-priority high code-point 101;
 }
 forwarding-class network-control {
 loss-priority low code-point 110;
 loss-priority high code-point 111;
 }
 }
 }
 scheduler-maps {
 sm-vcp-ifd {
 forwarding-class network-control scheduler s-high-priority;
 forwarding-class expedited-forwarding scheduler s-strict-high-priority;
 forwarding-class assured-forwarding scheduler s-low-30;

582 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

 forwarding-class best-effort scheduler s-low-10;
 }
 }
 schedulers {
 s-high-priority {
 transmit-rate percent 10;
 buffer-size percent 20;
 priority high;
 }
 s-strict-high-priority {
 transmit-rate {
 percent 50;
 rate-limit;
 }
 buffer-size temporal 25k;
 priority strict-high;
 }
 s-low-30 {
 transmit-rate percent 30;
 excess-rate percent 99;
 drop-profile-map loss-priority low protocol any drop-profile low-plp;
 drop-profile-map loss-priority high protocol any drop-profile high-plp;
 }
 s-low-10 {
 transmit-rate percent 10;
 excess-rate percent 1;
 drop-profile-map loss-priority low protocol any drop-profile low-plp;
 drop-profile-map loss-priority high protocol any drop-profile high-plp;
 }
 }
}

Verification
Once the recommended class of service configuration has been committed, it is best
practice to verify the results with a few show commands. A good place to start is re-
viewing the forwarding classes:

1 {master:member0-re0}
2 dhanks@R1-RE0>show class-of-service forwarding-class
3 Forwarding class ID Queue Restricted Fabric Policing SPU
 queue priority priority priority
4 best-effort 0 0 0 low normal low
5 assured-forwarding 1 1 1 low normal low
6 expedited-forwarding 2 2 2 high normal low
7 network-control 3 3 3 high normal low

The four forwarding classes have successfully installed and are showing the correct
queue number and switch fabric priority.

Let’s confirm the classification and rewrite rules for the VCP interface vcp-2/0/0 on
member0:

VCP Interface Class of Service | 583

www.it-ebooks.info

http://www.it-ebooks.info/

1 {master:member0-re0}
2 dhanks@R1-RE0> show class-of-service interface vcp-2/0/0
3 Physical interface: vcp-2/0/0, Index: 128
4 Queues supported: 8, Queues in use: 4
5 Output traffic control profile: tcp-vcp-ifd, Index: 31002
6 Congestion-notification: Disabled
7
8 Logical interface: vcp-2/0/0.32768, Index: 64
9 Object Name Type Index
10 Rewrite vcp-rules ieee8021p (outer) 34
11 Classifier vcp-classifier ieee8021p 11

Line 5 confirms that the correct traffic control profile has been applied to the VCP
interface. Lines 10 and 11 also confirm that the correct classifier and rewrite rule has
been applied.

Let’s take a look at the show interfaces command and confirm that the proper for-
warding classes and schedulers have been installed:

1 {master:member0-re0}
2 dhanks@R1-RE0> show interfaces xe-2/0/0 extensive | find "CoS information"
3 CoS information:
4 Direction : Output
5 CoS transmit queue Bandwidth Buffer Priority Limit
6 % bps % usec
7 0 best-effort 0 0 r 0 low none
8 1 assured-forwarding 0 0 r 0 low none
9 2 expedited-forwarding 90 9000000000 r 0 high none
10 3 network-control 10 1000000000 r 0 medium-high none

All four forwarding classes are correct and show the proper bandwidth and priority
assignments.

Summary
Virtual chassis is a powerful tool in the hands of a network engineer. Being able to
provide standard high-availability features such as GRES and NSR that span different
routing engines in different chassis is a simple but elegant method to mitigate risk when
providing chassis virtualization. Besides the obvious OSS/BSS benefits of virtual chas-
sis, the most often overlooked and powerful feature comes from the ability to add and
remove members from a virtual chassis; this creates a “plug and play” environment
where a new member can be installed into a virtual chassis to immediately scale the
number of ports providing network services.

Both Enterprise and Service Provider customers can instantly benefit from virtual chas-
sis. The administration benefits of managing and operating a single control plane versus
an entire army of routers have obvious and immediate impacts. Being able to present
a single system to SNMP collectors, syslog hosts, and AAA services makes everyone’s
life easier. Virtual chassis grants the network operator a single control plane and com-

584 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

mand line from which to make changes to the system, thereby removing the nuisance
of wondering which router to log into to change a particular function.

With great power comes great responsibility. The only downside to virtual chassis is
that it makes it much easier to propagate a mistake. For example, if you were modifying
a routing protocol setting and made a mistake, it would impact the entire virtual chassis.
Virtual chassis is subject to fate sharing; there’s no way of getting around it. One method
of helping ensure that critical components of the configuration aren’t changed by mis-
take is to deploy Junos automation. There is a feature in Junos automation called com-
mit scripts. These scripts are executed each time the configuration is committed. The
scripts can be programmed to check certain values in the configuration and ensure
critical components are not removed or do not exceed certain thresholds. A good ex-
ample could be that any interface that contains the word “CORE” in the description
must have an MTU of 4000 or the commit will fail. To learn more about Junos auto-
mation and commit scripts check out This Week: Applying Junos Automation (http://
www.juniper.net/us/en/community/junos/training-certification/day-one/automation-ser
ies/applying-junos-automation/) by Juniper Networks.

Chapter Review Questions
1. Can Virtual Chassis be used with DPC line cards?

a. Yes

b. No

2. Which routing engine will the ksyncd process be running on the VC-B?

a. Master routing engine

b. Backup routing engine

c. Both routing engines

d. None of the above

3. Can you login to routing engines in the virtual chassis through their respective
fxp0 interface?

a. Yes

b. No

4. Which unique identifier is used when configuring a preprovisioned virtual chassis?

a. System MAC address

b. Chassis serial number

c. Backplane serial number

d. Manually assigned

5. Assuming three Juniper MX960s were in a virtual chassis, what would be the FPC
number of a line card installed into slot 7 on member 2?

Chapter Review Questions | 585

www.it-ebooks.info

http://www.juniper.net/us/en/community/junos/training-certification/day-one/automation-series/applying-junos-automation/
http://www.juniper.net/us/en/community/junos/training-certification/day-one/automation-series/applying-junos-automation/
http://www.juniper.net/us/en/community/junos/training-certification/day-one/automation-series/applying-junos-automation/
http://www.it-ebooks.info/

a. 26

b. 27

c. 33

d. 34

6. Would there be a mastership election if the VC-Mb routing engine failed?

a. Yes

b. No

7. What’s the new apply-group naming format for routing engines in a virtual chassis?

a. member0-re0

b. VC-Mm

c. vc-mm

d. Member0-re0

8. How does the VCCP implementation on the Juniper MX build the SPF tree?

a. Per Trio chipset

b. Per chassis

c. Per system MAC address

d. Per loopback address

Chapter Review Answers
1. Answer: B. Virtual Chassis on the Juniper MX can only be used with Trio-based

MPC line cards.

2. Answer: C. The VC-B member of the virtual chassis has the privilege of running
the kernel synchronization process on both routing engines. Recall that the VC-B
will run ksyncd on the VC-Bm so that it can be synchronized with the VC-Mm. The
VC-Bb will also need to run another copy of ksyncd so that it can keep synchronized
with the VC-Bm in case there’s a failure.

3. Answer: B. Only the VC-Mm routing engine will respond on its fxp0 interface
while all other routing engines will not. You must use the console or the request
routing-engine login command to login to other routing engines.

4. Answer: B. The chassis serial number is used when configuring a preprovisioned
virtual chassis. No other serial number is valid.

5. Answer: C. Recall that the global FPC number = (member-id * 12) + local FPC.
In this case, the answer would be (2 * 12) + 7 = 33.

6. Answer: B. There’s no mastership election process when the VC-Mb fails. The
only two routing engines that would cause a mastership election process in the
event of a failure are the VC-Mm and VC-Bm.

586 | Chapter 6: MX Virtual Chassis

www.it-ebooks.info

http://www.it-ebooks.info/

7. Answer: A. The new apply-group naming convention for routing engines in a
virtual chassis is member0-re0, member0-re0, member1-re0, member1-re1, so on
and so forth.

8. Answer: B,C. Trick question. The Juniper MX VCCP implementation builds the
SPF tree per chassis and uses the system MAC address as the identifier.

Chapter Review Answers | 587

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Trio Inline Services

This chapter will cover Trio Inline Services and enumerate the different services that
are available through the power of Trio. Many Juniper MX customers often ask, “Why
is the bulk of the cost in the line cards?” The answer is because all of the awesome is in
the line cards! Think about all of the typical services in the line cards from Chapter 1:
line-rate forwarding, class of service, access lists, and much more. That’s just the tip of
the iceberg. Trio inline services go above and beyond and introduce sampling, network
address translation, port mirroring, and tunnel protocols.

What are Trio Inline Services?
Providing additional networking services on top of routing and switching is critical to
the success of any good network architecture. Networking services includes features
such as:

• Sampling information and statistics

• Network Address Translation (NAT)

• Port mirroring

• Generic Routing Encapsulation (GRE) and IP tunneling

• Logical tunnels

Historically, routers have required a separate Services Module to provide additional
features. One of the key differentiators of the Trio chipset is its ability to integrate
network services without the requirement of an additional Services Module. With each
new Junos release, it’s possible to add new features such as inline services within the
Trio chipset.

Providing network services as part of the MPC line cards, which use the Trio chipset,
offers some distinct advantages:

589

www.it-ebooks.info

http://www.it-ebooks.info/

Total Cost of Ownership
As network services become available through the Trio chipset, you are no longer
required to purchase an additional Services Module. However, the real cost savings
manifests itself in an additional FPC slot that is now available because the Services
Module isn’t required. This additional FPC can be used to provide additional WAN
ports to realize previously lost revenue.

Configuration
The configuration of inline Trio services is largely the same as services on the MS-
DPC. The largest difference is the requirement to set aside a specific amount of
bandwidth on the Trio chipset to be reserved for inline services.

Performance
Inline Trio services are processed directly on the Lookup Block, which enables near
line-rate performance of network services. The Trio chipset is responsible for for-
warding traffic; by being able to apply network services as part of the same work-
flow, it’s possible to provide near line-rate performance as opposed to having to
send the packet to a separate Services Module.

The biggest advantage is that enabling Trio inline services doesn’t require the loss of
any physical WAN ports. Configuring Trio inline services requires that a certain
amount of bandwidth to be specified for processing network services; this bandwidth
will be subtracted from the available WAN ports during congestion. For example, if
you were to configure 10 Gbps of bandwidth for Trio inline services on an MPC with
40 Gbps of WAN ports, during congestion only 30 Gbps would be available to the
WAN ports while 10 Gbps is available for Trio inline services. In summary, the WAN
ports and Trio inline services will share the available chipset bandwidth.

J-Flow
Perhaps one of the most popular network services is J-Flow. J-Flow allows you to sam-
ple a subset of traffic and collect flow statistics. Flows are identified by unidirectional
conversations. A flow is uniquely identified by the following fields:

• Source IP address

• Destination IP address

• Source port number

• Destination port number

• Protocol

• Type of service

• Ingress interface

Collecting flow information is critical for businesses to provide accounting and billing,
network capacity planning, and traffic profiling and analysis, and some countries re-

590 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

quire by law that all connections be collected. Flow information is created and trans-
mitted to an external collector for further processing.

J-Flow Evolution
J-Flow is used to describe many different variants of collecting flow statistics. Each
successive version of J-Flow provides more features and functionality than the previous
version.

J-Flow v5
This version of J-Flow supports only IPv4 and fixed fields that are not user-con-
figurable.

J-Flow v8
Flow aggregation was added with J-Flow v8. This enables the router to use less
bandwidth, sending flow statistics to collectors. Another benefit is that the aggre-
gation reduces the memory requirements of the collectors.

J-Flow v9
The introduction of RFC 3954 introduced new concepts into flow statistics. The
most notable was the introduction of predefined templates such as IPv4, IPv6,
MPLS, and IPv4 in MPLS. Templates allow the router and collector to describe the
flow fields in a common language. This allows the protocol to be scaled to support
new applications with a new template to describe the flow fields.

IP Flow Export Information/J-Flow v10
The latest version of flow statistics is IP Flow Export Information (IPFIX), which
is based on RFC 5101, 5102, and 5103. IPFIX is the official IETF protocol that was
created based on the need for a common and universal standard of exporting flow
information. There’s little change between IPFIX and J-Flow v9 aside from some
cosmetic message headers and the introduction of variable-length fields.

Inline IPFIX Performance
Because inline IPFIX is implemented within the Trio chipset, the performance is near
line rate. As traffic moves through the Trio chipset, it’s able to be inspected and sampled
locally without having to take a longer path to a Service Module and back. Being able
to keep the packet within the Trio chipset speeds up the operations and lowers the
latency.

Table 7-1. Inline IPFIX Performance Chart.

What MPC1 MPC2 MPC3E

Max flow records 4 M 8 M 16 M

Flow setup rate 150 K flows/second 300 K flows/second 600 K flows/second

Flow export rate 100K flows/second 200 K flows/second 400 K flows/second

J-Flow | 591

www.it-ebooks.info

http://www.it-ebooks.info/

What MPC1 MPC2 MPC3E

Throughput 20 Gbps 40 Gbps 80 Gbps

Maximum Packets Per Second 15 Mpps 30 Mpps 60 Mpps

Trio Lookup Blocks 1 2 4

The performance of inline IPFIX is directly related to how many Lookup Blocks are
available for processing. In the MPC1, there’s only a single Trio chipset available; the
MPC2 has two Trio chipsets, so effectively doubles the performance. The most inter-
esting is the MPC3E line card; it has a single Trio chipset, but within the chipset has
four Lookup Blocks. Because the MPC3E has four Lookup Blocks, it effectively has
four times the performance of the MPC1.

The performance numbers listed in Table 7-1 are current as of Junos
11.4 on current generation hardware. These numbers are subject to
change with new code releases and hardware. Please consult http://www
.juniper.net/ or your account team for more accurate numbers.

Inline IPFIX Configuration
The configuration of inline IPFIX has four major parts: chassis FPC, flow monitoring,
sampling instance, and firewall filters. Each component is responsible for a unique set
of items, that when combined produce a working model to sample traffic.

Each component is used like building blocks to build an inline IPFIX. Figure 7-1 illus-
trates that FPCs within a chassis are associated with a particular sampling instance.
Each sampling instance is associated with an IPFIX template. Multiple FPCs can share
the same sampling instance, and multiple sampling instances can share the same tem-
plate. The only restriction is that a FPC can only be associated with one sampling
instance.

592 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.juniper.net/
http://www.juniper.net/
http://www.it-ebooks.info/

Figure 7-1. Inline IPFIX Configuration Components.

Chassis Configuration

The first step in configuring inline IPFIX is to define which FPC requires sampling.
Inline IPFIX is implemented on a per-FPC basis and must follow a couple rules:

• One FPC can support only a single instance.

• Multiple families can be configured per instance.

Let’s review a sample inline IPFIX chassis configuration as illustrated in Figure 7-1:

chassis {
 fpc 0 {
 sampling-instance PEERING;
 }
 fpc 1 {
 sampling-instance PEERING;
 }
 fpc 4 {
 sampling-instance TRANSIT;
 }
}

This effectively binds the sampling-instance PEERING with FPC0 and FPC1 and sam
pling-instance TRANSIT FPC4. The instance and template information will be assigned
and downloaded to the Lookup Block on each respective FPC. Now that the FPC to
sampling-instance association has been made, the next step is to configure the flow
monitoring.

Flow Monitoring

Because IPFIX was based on J-Flow v9, templates are required because they must be
associated with a collector. To define IPFIX templates, the configuration will be placed

J-Flow | 593

www.it-ebooks.info

http://www.it-ebooks.info/

into the [services flow-monitoring version-ipfix] stanza. Let’s review an example
template called TEMPLATEv4 that has been configured for IPv4:

services {

 flow-monitoring {

 version-ipfix {

 template TEMPLATEv4 {
 flow-active-timeout 150;
 flow-inactive-timeout 100;
 template-refresh-rate {
 seconds 10;
 }

 option-refresh-rate {
 seconds 10;
 }

 ipv4-template;
 }
 }
 }
}

The creation of templates allows for customized settings that can be associated with
different collectors. There are four major settings that are available when creating a
template:

Active Flow Timeout
This option is adjusted with the flow-active-timeout knob. Use this setting to
specify the number of seconds between export updates. This can be useful to break
up the reporting of long lived sessions.

Inactive Flow Timeout
This option is adjusted with the flow-inactive-timeout knob. This option is used
to determine when a particular flow is considered inactive and can be purged from
the flow table. For example, if flow-inactive-timeout is configured for 100, the
router will wait for 100 seconds of inactivity on a particular flow; once a flow has
been inactive for 100 seconds, the router will send a final flow export to the col-
lector and purge the flow.

Template Refresh Rate and Option Refresh Rate
Every so often, the template data needs to be refreshed and transmitted to the
collector. The template-refresh-rate and option-refresh-rate knobs give you
choices for setting the frequency: seconds or packets. By using the seconds keyword,
the router will transmit the template data to the collector at the specified interval.
The packets keyword will transmit the template every N packets. Setting both
template-refresh-rate and option-refresh-rate is required when adjusting the
template update frequency.

594 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Template
The final piece of information is what type of template should be used and sent to
the collector. As of Junos 11.4, the only template type available for inline IPFIX is
ipv4-template.

Once the flow monitoring templates have been configured, they can be used as a ref-
erence when building the sampling instance. The next step is to configure the sampling
instances, which bridge together the FPC and templates.

Sampling Instance

The sampling instances are the glue that brings together all the different pieces of the
inline IPFIX configuration. A sampling instance can have multiple families and each
family can reference a different template, as shown in Figure 7-2.

Figure 7-2. Inline IPFIX Sampling Instance Family to Template.

Although sampling instances and templates don’t support IPv6 as of
Junos 11.4, it’s important to visualize how the sampling instance refer-
ences families and how families are associated with a template.

There are many components when configuring a sampling instance. The components
work together to define how flows are sampled and exported to a collector. Let’s step
through each component one by one:

J-Flow | 595

www.it-ebooks.info

http://www.it-ebooks.info/

Input Rate
This option defines the sampling rate. Other methods of sampling such as with the
routing engine or MS-DPC required that the rate and run-length be defined, as
shown in Figure 7-3.

Figure 7-3. Packets Sampled Formula for Routing Engine and MS-DPC Sampling.

When using inline IPFIX, the only valid rate is 1. The option run-length isn’t
configurable, because there’s no need to sample data from the perspective of the
microcode in the Trio Lookup Block. Every packet will be inspected and subject
to flow export.

Family
Multiple families can be configured inside of a sampling instance. However, as of
Junos 11.4, the only supported family is inet. Each family allows the configuration
of collectors and associated options.

Flow Server
This option specifies a collector to which the flows will be exported. This can be
in either IPv4 or IPv6 format.

Port
This option specifies which UDP port to use when exporting flows.

IPFIX Template
Templates are required when exporting flows to a collector. Recall that templates
were created previously in this chapter. This option associates a template with the
collector of the specified family.

Source Address
Because inline IPFIX uses UDP to export the flows, this value is considered cos-
metic. Insert any source IP address that you would like to see; however, a common
practice is to use the router’s loopback address.

Now let’s put all of the components together and build an example sampling instance
that accurately reflects Figure 7-1. There needs to be two sampling instances created:
PEERING and TRANSIT. Each sampling instance will be associated with the TEMPLATEv4.

forwarding-options {
 sampling {
 instance {
 PEERING {
 input {
 rate 1;
 }
 family inet {

596 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 output {
 flow-server 192.0.2.122 {
 port 2055;
 version-ipfix {
 template {
 TEMPLATEv4;
 }
 }
 }
 inline-jflow {
 source-address 10.7.255.3;
 }
 }
 }
 }
 TRANSIT {
 input {
 rate 1;
 }
 family inet {
 output {
 flow-server 192.0.2.123 {
 port 2055;
 version-ipfix {
 template {
 TEMPLATEv4;
 }
 }
 }
 inline-jflow {
 source-address 10.7.255.3;
 }
 }
 }
 }
 }
 }
}

In this example, the only difference between the two sampling instances PEERING and
TRANSIT is the inline-jflow source-address. Now that the chassis configuration, flow
monitoring, and sampling instances have been configured, traffic still isn’t subject to
being sampled. The last remaining piece of configuration to trigger the sampling of
traffic is a firewall filter.

Firewall Filter

With all of the major inline IPFIX configuration components in place, the last step is
to identify which traffic needs to be sampled. If you think of the chassis configuration,
flow monitoring, and sampling instances as just a big machine for inline IPFIX, it’s easy
to imagine feeding packets into this machine to be sampled; the beauty of Junos is that
building firewall filters is an excellent tool to do just this.

J-Flow | 597

www.it-ebooks.info

http://www.it-ebooks.info/

Leveraging firewall filters to identify traffic opens up a lot of possibilities. Imagine being
able to selectively sample customer traffic or only traffic with a certain class of service.
Perhaps you require a bigger hammer and want to sample all traffic flowing through
an interface. For simplicity, let’s stick with the big hammer approach and sample ev-
erything:

firewall {
 family inet {
 filter SAMPLE-ALL {
 term 1 {
 then sample;
 }
 }
 }
}

The firewall filter SAMPLE-ALL can be used to sample all IPv4 traffic. The last step is to
apply it to an interface to which you want to sample traffic from. Recall that in the
example, inline IPFIX configurations that FPC0, FPC1, and FPC4 were associated with
sampling instances, so only interfaces on these FPCs can be sampled. If you wish to
sample traffic on an interface that lives on a different FPC, it’s required to associate
that FPC with a sampling instance.

interfaces {
 xe-0/0/0 {
 vlan-tagging;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 unit 1 {
 vlan-id 1000;
 family inet {
 filter {
 input SAMPLE-ALL;
 output SAMPLE-ALL;
 }
 address 10.8.0.0/31;
 }
 family iso;
 }
 }
}

In this example, any IPv4 traffic that enters or leaves the interface xe-0/0/0.1 will be
subject to sampling, whereas any bridged traffic on xe-0/0/0.0 isn’t sampled.

598 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Inline IPFIX Verification
Now that inline IPFIX has been configured and traffic is being sampled, the next step
is to verify that flows are being created and that sampling instances are correctly asso-
ciated with FPCs.

Let’s begin by checking to see if the sampling instance has been associated with the FPC:

1 {master}
2 dhanks@R1-RE0> request pfe execute target fpc0 command "show sample instance
 association"
3 SENT: Ukern command: show sample instance association
4 GOT:
5 GOT: Sampler Parameters
6 GOT: Global Sampler Association: "&global_instance"
7 GOT: FPC Bindings :
8 GOT: sampling : PEERING
9 GOT: port-mirroring 0 :
10 GOT: port-mirroring 1 :
11 GOT: PIC[0]Sampler Association:
12 GOT: sampling :
13 GOT: port-mirroring 0 :
14 GOT: port-mirroring 1 :
15 GOT: PIC[1]Sampler Association:
16 GOT: sampling :
17 GOT: port-mirroring 0 :
18 GOT: port-mirroring 1 :
19 GOT: Sampler Association
20 GOT: PFE[0]-[0]Sampler Association: "PEERING":class 1 proto 0 instance id 2
21 GOT: PFE[1]-[0]Sampler Association: "PEERING":class 1 proto 0 instance id 2
22 LOCAL: End of file

Lines 8 and 19 to 21 show that the sampling instance PEERING has been successfully
associated with the PFE. Now let’s check to see if a connection to the flow collector
has been made:

1 {master}
2 dhanks@R1-RE0>
request pfe execute target fpc0 command "show pfe manager service_thread jflow stat"
3 SENT: Ukern command: show pfe manager service_thread jflow stat
4 GOT:
5 GOT:
6 GOT: Sampled Connection Status : 1
7 GOT: Sampled Connection Retry Count : 0
8 GOT: Msgs received : 69
9 GOT: UI Requests received : 0
10 GOT: Active Config : 1
11 GOT: Queue Enque Retry Count : 0
12 LOCAL: End of file

Line 6 indicates that the FPC has created a connection to the collector. A status of “1”
indicates open, whereas a status of “0” indicates closed. Now that the FPC and con-
nection to the collector have been verified, let’s review the inline IPFIX summary:

J-Flow | 599

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
dhanks@R1-RE0>
request pfe execute target fpc0 command "show services inline-jflow summary"
SENT: Ukern command: show services inline-jflow summary
GOT:
GOT:
GOT: Inline Jflow Sampling Instances:
GOT:
GOT: Inline Instance Name : PEERING
GOT: Inline Instance Class : 1
GOT: Inline Instance Proto : 0
GOT:
GOT: Template Refresh Time :10
GOT: Option Refresh Time :10
GOT: Template Refresh Packets :4800
GOT: Option Refresh Packets :4800
GOT:
GOT: Inline Jflow Template & Option Refresh Stats:
GOT:
GOT: Timer Expirt Counts:
GOT: ====================
GOT: Template Refresh Timer Expiry Cnt : 52
GOT: Option Refresh Timer Expiry Cnt : 52
GOT: Pkt Refresh Timer Expiry Cnt : 4
GOT: Packet Sent Count:
GOT: ===================
GOT: Template Refresh Sent Cnt : 0
GOT: Option Refresh Sent Cnt : 0
GOT: Template Refresh Pkt Sent Cnt : 0
GOT: Option Refresh Pkt Sent Cnt : 0
GOT:
LOCAL: End of file

A review of the output with the configuration verifies that the values do indeed match:
the template will be refreshed every 10 seconds. Let’s move out of the PFE and back
into the CLI. There are a few commands to let you gauge the status and flows being
generated by inline IPFIX:

{master}
dhanks@R1-RE0> show services accounting status inline-jflow fpc-slot 0
 Status information
 FPC Slot: 0
 Export format: IP-FIX
 Route record count: 23, AS count: 2
 Route record set: Yes, Configuration set: Yes

This verifies the inline IPFIX configuration on FPC0. The export format is indeed IPFIX,
and you can see the number of route records generated so far. Let’s dig a little bit deeper
and review how many flows have been found:

{master}
dhanks@R1-RE0> show services accounting flow inline-jflow fpc-slot 0
 Flow information
 FPC Slot: 0
 Flow packets: 214881, Flow bytes: 12708080

600 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 Active flows: 4, Total flows: 4
 Flows exported: 4, Flows packets exported: 4
 Flows inactive timed out: 0, Flows active timed out: 4

Much better. You can see that nearly a quarter of a million packets have been sampled
and there are a total of four active flows.

IPFIX Summary
Using inline IPFIX is an excellent method to generate basic flow statistics with the
Juniper MX Series; the only drawback is that the number of families supported as of
Junos 11.4 is currently limited to IPv4. However, the benefits are that it doesn’t require
a MS-DPC services line card and the performance and scale of inline IPFIX is much
better because it runs directly in the microcode of the Trio Lookup Block.

As of Junos 11.4, there are two software licenses that enable the use of inline IPFIX:

S-ACCT-JFLOW-CHASSIS
This license will enable J-Flow for the entire chassis. For example, an MX960 with
12 line cards would be able to use J-Flow on every line card.

S-ACCT-JFLOW-IN
This license will enable J-Flow for a single MPC. For example, in an MX960 with
12 line cards, only a single FPC such as FPC3 can use J-Flow.

Network Address Translation
The Trio chipset supports inline Network Address Translation (NAT). The Lookup
Block as of Junos 11.4 only supports simple 1:1 NAT with no port address translation.
Simple NAT includes the following: source NAT, destination NAT, and two-way NAT.
The primary driver for inline NAT is performance and low latency. Inline NAT is per-
formed in the microcode of the Trio Lookup Block and doesn’t require moving the
packet through a dedicated Services Module.

Types of NAT
Inline Trio supports 1:1 NAT; this specifically means that IP address #1 can be trans-
lated into IP address #2. There’s no port translation available, as this would require
keeping track of flows and state. 1:1 NAT can be expressed in three different methods:
source NAT, destination NAT, and twice NAT. In implementation, all three methods
are the same; the only differences between them are the direction and number of trans-
lations.

Source NAT will inspect egress traffic from H1 and change the source address upon
translation to H2, as shown in Figure 7-4.

Network Address Translation | 601

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-4. Inline Trio Source NAT.

Destination NAT will inspect egress traffic from H2 and change the destination address
upon translation to H1, as shown in Figure 7-5.

Figure 7-5. Inline Trio Destination NAT.

Twice NAT simply combines source and destination NAT together to create a scenario
where both the source and destination addresses are translated. Twice NAT is helpful
in use cases where the source and destination represent different customers but with
the same IP address space. Egress traffic from H1 is translated and sent to H2 with a new
source and destination address; egress traffic from H2 is translated again and sent back
to H1 with the original source and destination IP addresses, as shown in Figure 7-6.

602 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-6. Inline Trio Twice NAT.

Even though Trio inline NAT is limited to a scale of 1:1 as of Junos 11.4, it’s still able
to scale and be flexible enough to satisfy several different use cases. For example, source
NAT can be used to translate private customer VPN traffic that’s destined to the In-
ternet, and twice NAT can be used between two different customer VPNs that have
conflicting address space.

Services Inline Interface
Prior to the Trio chipset, the only other method to implement NAT was through the
MS-DPC services card. The use of the MS-DPC created a dedicated service processor
logical interface called sp-FPC/PIC/PORT; this interface was used as an input/output
device to perform services such as NAT.

With the introduction of Trio and inline NAT services, the same architecture is still in
place. The only change is that inline services have introduced a new logical interface
called si-FPC/PIC/PORT. The creation of the new si- interface is similar to sp- but re-
quires bandwidth be set aside in a specific Trio Lookup Block.

chassis {
 fpc 2 {
 pic 0 {
 inline-services {
 bandwidth 1g;
 }
 }
 pic 1 {
 inline-services {
 bandwidth 1g;
 }
 }
 }
}

Network Address Translation | 603

www.it-ebooks.info

http://www.it-ebooks.info/

An si- interface can be created for each Trio Lookup Block. In this example, FPC2 is
a MPC2 line card, which has two Trio chipsets. The example chassis configuration
created two service inline interfaces: si-2/0/0 and si-2/1/0. Let’s verify:

dhanks@R3> show interfaces terse | match si-
si-2/0/0 up up
si-2/1/0 up up

Just as expected. The service inline interfaces followed the naming format of si-FPC/
PIC/PORT. In the example, the FPC is 2, the PIC represents the Trio Lookup Block,
and the port will always be 0. Let’s take a closer look at the interfaces:

dhanks@R3> show interfaces si-2/0/0
Physical interface: si-2/0/0, Enabled, Physical link is Up
 Interface index: 145, SNMP ifIndex: 819
 Type: Adaptive-Services, Link-level type: Adaptive-Services, MTU: 9192, Speed:
1000mbps
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps Internal: 0x4000
 Link type : Full-Duplex
 Link flags : None
 Last flapped : Never
 Input rate : 1344 bps (2 pps)
 Output rate : 0 bps (0 pps)

Although si-2/0/0 is a pseudo interface, it’s apparent that this interface is being used
for service processing by taking note of the Type: Adaptive-Services. With the services
inline interface up and running, the next step is understand how to use this new inter-
face.

Service Sets
The first step in configuring the router to handle services is through service sets; they
define how the router applies services to packets. There are three major components
required to create a service set:

Service Rules
Similar to firewall rules, service rules match specific traffic and apply a specific
action.

Type of Service Set
Service sets have two types: next-hop style and interface style. Next-hop style relies
on using the route table to forward packets into the service inline interface, and
the interface style relies on defining service-sets directly on interfaces to forward
packets into the service inline interface.

Service Interfaces
If using the interface style approach, defining which service inline interface to use
is required.

604 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

The service set implementation is located in the [services service-set] stanza of the
configuration. Inline NAT supports both next-hop style and interface style configura-
tion of service sets. Let’s walk through each of the styles in detail.

Next-Hop Style Service Sets

The next-hop style service set depends on the route table to forward packets to the
service inline interface. This is typically referred to as the “big hammer” approach as
all traffic forwarded via the route table to the service inline interface will be subject to
service rules. For example, consider the following static route:

routing-instances {
 CUSTOMER_A {
 instance-type vrf;
 interface si-2/0/0.1;
 interface xe-2/0/1.0;
 routing-options {
 static {
 route 10.5.0.10/32 {
 next-hop si-2/0/0.1;
 }
 }
 }
 }
}

Any traffic inside of the CUSTOMER_A routing instance that’s destined to the address
10.5.0.10/32 will be forwarded directly to the service inline interface si-2/0/0.1 and be
subject to any service rules inside of the service set, as illustrated in Figure 7-7.

Network Address Translation | 605

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-7. Illustration of Next-Hop Style Service Set Workflow.

Ingress traffic on xe-2/0/1.0 is part of the routing instance CUSTOMER_A and will be subject
to the typical gauntlet of classification, filtering, policing, and route look up. Any traffic
destined to 10.5.0.10/32 will be forwarded to si-2/0/0.1 as part of the CUSTOMER_A static
route. Once the traffic enters the service inline interface, it will be subject to service
rules. If the traffic matches any service rules, it will be processed. The traffic then exits
the other side of the service inline interface si-2/0/0.2. The interface si-2/0/0.2 is part
of the default routing instance and is subject to the typical output filter, policer, sched-
uling, and class of service rewriting before being transmitted as egress traffic.

Now that you have a better understanding of how traffic can be routed through the
service inline interface, let’s take a look at how to configure a service set using the next-
hop style configuration.

services {
 service-set SS1 {

606 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 nat-rules SNAT;
 next-hop-service {
 inside-service-interface si-2/0/0.1;
 outside-service-interface si-2/0/0.2;
 }
 }
}

The service set SS1 represents a next-hop style implementation as indicated by the
nexthop-service option. The next-hop style requires explicit definition of an inside and
outside service interface, as shown in Figure 7-8.

Figure 7-8. Service Set Inside and Outside Interfaces.

At this point, the service set SS1 has become an I/O machine. Traffic can enter SS1 from
either si-2/0/0.1 or si-2/0/0.2. The important thing to remember is the notation of inside
and outside; the service set will use inside and outside to determine the direction of
traffic during the creation of service rules. For example, if the inside interface is used
to route the packet, the packet direction is input, and if the outside interface is used to
direct the packet to the service inline interface, the packet direction is output.

Reviewing the SS1 configuration, there’s only a single service configured: nat-rules
SNAT. Any traffic entering and leaving the service set will be subject to the NAT rules of
SNAT:

services {

 service-set SS1 {
 nat-rules SNAT;
 next-hop-service {
 inside-service-interface si-2/0/0.1;
 outside-service-interface si-2/0/0.2;
 }
 }

 nat {
 pool POOL1 {
 address 20.0.0.0/24;
 }

 rule SNAT {
 match-direction input;

Network Address Translation | 607

www.it-ebooks.info

http://www.it-ebooks.info/

 term T1 {
 from {
 source-address {
 10.4.0.0/24;
 }
 }

 then {
 translated {
 source-pool POOL1;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
 }
}

Now the configuration has come full circle. The service set SS1 will use the NAT rule
SNAT to determine if NAT services need to be applied. When creating a NAT rule,
there are three major components:

Match Direction
The direction of traffic is expressed as either input or output. When using next-
hop style services, any traffic destined to the outside interface is considered output
and any traffic destined to the inside interface is considered input.

From
Just like policy statements and firewall filters, the from statement builds a set of
conditions that must be met in order to apply an action.

Then
Once traffic has been matched with the from statement, the traffic is subject to any
type of action and processing indicated in the then statement.

In the example, the NAT rule SNAT has a match-direction of input; because the service
set is using a next-hop style implementation, this will match all traffic arriving on the
inside interface si-2/0/0.1. The from statement only has a single match condition; any
traffic that has a source address 10.4.0.0/24 will be subject to services. The then state-
ment specifies that the source pool POOL1 should be used and the traffic should be
translated using basic-nat44.

Trio inline NAT supports the concept of NAT pools. These are pools of addresses that
can be used when translating source and destination addresses. In this example,
POOL1 contains a pool of 256 addresses in the 20.0.0.0/24 network. The basic-nat44 is
an option that tells the router to use basic NAT for IPv4 traffic to IPv4 traffic. Basic
NAT is defined as no network address port translation (NAPT).

This example builds a service set that will match traffic from 10.4.0.0/24 that’s destined
to 10.5.0.10/32 and change the source address to an address in the 20.0.0.0/24 range.

608 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s review the topology of this example, as shown in Figure 7-9. S3 and S4 represent
switches whereas H3 and H4 represent hosts. R3 is a Juniper MX240 with a MPC2 line
card in FPC2.

Figure 7-9. Example Trio Inline SNAT with Next-Hop Style Service Sets.

In this example, host H3 sends a ping to 10.5.0.10, and the service set SS1 on R3 matches
this traffic and applies the source NAT. R3 sends the ping destined to H4, but with a
new source address in the 20.0.0.0/24 pool. H4 receives the ping and replies back; the
ping packet has a source address in the range of 20.0.0.0/24, and H4 has a static route
of 0/0 pointing back to 10.5.0.1 via R3. S4 forwards the frame back to R3 where it matches
the service set; the source NAT is undone and the response is sent back to H3.

Let’s take the example to the next level and walk through each component step by step.
Starting with the creation of the service inline interface:

chassis {
 fpc 2 {
 pic 0 {
 inline-services {
 bandwidth 1g;
 }
 }
 }
}

The chassis configuration will create a si-2/0/0 interface. Now let’s define the inside
and outside service domains and configure R3’s interfaces to S3 and S4:

interfaces {

 si-2/0/0 {
 unit 1 {
 family inet;
 service-domain inside;
 }
 unit 2 {

Network Address Translation | 609

www.it-ebooks.info

http://www.it-ebooks.info/

 family inet;
 service-domain outside;
 }
 }

 xe-2/0/1 {
 unit 0 {
 family inet {
 address 10.4.0.1/24;
 }
 }
 }

 xe-2/1/1 {
 unit 0 {
 family inet {
 address 10.5.0.1/24;
 }
 }
 }
}

Just as illustrated in Figure 7-9, si-2/0/0.1 will have a service domain of inside while
si-2/0/0.2 will have a service domain of outside. R3’s xe-2/0/1.0 interface has an IP of
10.4.0.1/24 while xe-2/1/1.0 has an IP of 10.5.0.1/24.

The next step is to create a routing instance on R3 to contain the inside service domain
and interface connected to S3. This routing instance will force traffic arriving from S3
to be placed into a separate routing table that can forward traffic to si-2/0/0.1; this
interface represents the inside service domain and will expose the traffic to service sets:

routing-instances {
 CUSTOMER_A {
 instance-type vrf;
 interface si-2/0/0.1;
 interface xe-2/0/1.0;
 routing-options {
 static {
 route 10.5.0.10/32 {
 next-hop si-2/0/0.1;
 }
 }
 }
 }
}

Now let’s review the services configuration in its entirety:

services {
 service-set SS1 {
 nat-rules SNAT;
 next-hop-service {
 inside-service-interface si-2/0/0.1;
 outside-service-interface si-2/0/0.2;

610 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }

The next-hop style service set SS1 is created by defining the inside and outside service
interfaces. SS1 only has a single service: nat-rules SNAT. Let’s step through the NAT
configuration:

 nat {
 pool POOL1 {
 address 20.0.0.0/24;
 }
 rule SNAT {
 match-direction input;
 term T1 {
 from {
 source-address {
 10.4.0.0/24;
 }
 }
 then {
 translated {
 source-pool POOL1;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
 }
}

The NAT rule SNAT matches traffic arriving on the inside service domain (si-2/0/0.1)
and will source NAT any traffic matching a source address of 10.4.0.0/24. The source
NAT has a pool of addresses from the 20.0.0.0/24 network to choose from.

With the Trio inline NAT configuration in place on R3, let’s take a look at the routing
table and see how traffic will flow through the router:

dhanks@R3> show route

inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.5.0.0/24 *[Direct/0] 08:25:29
 > via xe-2/1/1.0
10.5.0.1/32 *[Local/0] 08:25:32
 Local via xe-2/1/1.0
20.0.0.0/24 *[Static/1] 00:35:24
 > via si-2/0/0.2

CUSTOMER_A.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.4.0.0/24 *[Direct/0] 00:40:24

Network Address Translation | 611

www.it-ebooks.info

http://www.it-ebooks.info/

 > via xe-2/0/1.0
10.4.0.1/32 *[Local/0] 00:40:24
 Local via xe-2/0/1.0
10.5.0.10/32 *[Static/5] 00:35:24
 > via si-2/0/0.1

There are two routing tables, as expected: CUSTOMER_A and the default routing instance
inet.0. The default route table inet.0 has the Direct route 10.5/24 on xe-2/1/1.0 as
expected, and the CUSTOMER_A route table has the Direct route 10.4/24 on xe-2/0/1 and
a route for 10.5.0.10/32, pushing all traffic into the service inline interface for NAT
processing. However, the really interesting static route is 20.0.0.0/24 in the inet.0 route
table. This route wasn’t configured under routing-options, so where did it come from?
The answer is that the NAT pool POOL1 automatically injected this route into the same
routing instance as the output service domain interface si-2/0/0.2. Once the traffic
passes through R3 and is translated with a source address from the pool 20.0.0.0/24,
R3 still has to process the return traffic. The return traffic will have a destination address
from the 20.0.0.0/24 pool. R3 can push this return traffic back into the outside service
domain via this route to si-2/0/0.2. Once the return traffic is forwarded back into the
service domain, the NAT can be reversed and forward the traffic back to S3.

Armed with this new information, let’s verify that R3 has connectivity to S3 and S4:

dhanks@R3> ping 10.4.0.2 count 5 rapid routing-instance CUSTOMER_A
PING 10.4.0.2 (10.4.0.2): 56 data bytes
!!!!!
--- 10.4.0.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.701/1.600/3.652/1.100 ms

dhanks@R3> ping 10.5.0.2 count 5 rapid
PING 10.5.0.2 (10.5.0.2): 56 data bytes
!!!!!
--- 10.5.0.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.621/1.821/4.514/1.512 ms

Everything looks great. Now the real test is to verify that H3 can ping H4:

{master:0}
dhanks@H3> ping 10.5.0.10 count 5 rapid
PING 10.5.0.10 (10.5.0.10): 56 data bytes
!!!!!
--- 10.5.0.10 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.167/7.613/18.921/7.047 ms

The ping works and it appears that there is connectivity, but how can you be sure that
the traffic was actually subject to NAT? One method is to check H4:

{master:0}
dhanks@H4> monitor traffic interface xe-0/1/1
verbose output suppressed, use <detail> or <extensive> for full protocol decode
Address resolution is ON. Use <no-resolve> to avoid any reverse lookup delay.
Address resolution timeout is 4s.

612 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Listening on xe-0/1/1, capture size 96 bytes

07:29:47.274985 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
07:29:47.275024 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
07:29:47.276542 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
07:29:47.276568 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
07:29:47.295811 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
07:29:47.295853 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
07:29:47.308686 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
07:29:47.308723 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
07:29:47.311724 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
07:29:47.311758 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
10 packets received by filter
0 packets dropped by kernel

Very cool; the proof is in the pudding. Now you’re able to see the translated source
address of 20.0.0.2 sending a ping to 10.5.0.10. However, there is still another com-
mand that you can use on R3 to view the inline NAT pool:

dhanks@R3> show services inline nat pool
Interface: si-2/0/0, Service set: SS1
 NAT pool: POOL1, Translation type: BASIC NAT44
 Address range: 20.0.0.0-20.0.0.255
 NATed packets: 5, deNATed packets: 5, Errors: 0

The output confirms that the service set SS1 has the correct NAT pool and packets have
successfully been translated. With next-hop style service sets working, let’s move on
to interface style and mix it up a bit.

Interface Style Service Sets

The most common form of service sets is the interface style. Just like firewall filters, the
interface style service sets are applied directly to IFLs in the direction of input or output.
Figure 7-10 illustrates the workflow of an interface style service set. Interface xe-2/0/1.0
has a service set applied in the input direction, whereas interface xe-7/0/0.0 has a service
set applied in the output direction.

Network Address Translation | 613

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-10. Illustration of Interface-Style Service Set Workflow.

Interface style service sets are just another “bump in the wire” from the perspective of
the packet. There’s no longer the requirement to move traffic into a service interface;
all that’s needed is to simply reference a service set on an IFL and specify the direction.
Let’s review an example interface configuration using the interface style service sets:

interfaces {
 si-2/0/0 {
 unit 0 {
 family inet;
 }
 }
 xe-2/0/1 {
 unit 0 {
 family inet {
 service {
 input {
 service-set SS2;
 }
 output {
 service-set SS2;
 }
 }
 address 10.4.0.1/24;
 }
 }
 }

614 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 xe-2/1/1 {
 unit 0 {
 family inet {
 address 10.5.0.1/24;
 }
 }
 }
}

There are three major points of interest. The first noticeable difference is that the serv-
ices inline interface only requires the definition of unit 0 with the appropriate families
it needs to process. For example, interface xe-2/0/1.0 has a family of inet, thus
si-2/0/0.0 requires a family of inet as well. If a service set was applied to multiple
interfaces with families of inet and inet6, then both families would need to be applied
to si-2/0/0.0 as well. The second area of interest is interface xe-2/0/1. It has a service
set applied to both directions. Ingress traffic will be subject to NAT on xe-2/0/1 and
egress traffic will be subject to deNAT. The last interesting thing to note is the lack of
a service set on xe-2/1/1. This is because the NAT and deNAT happen on a single
interface. Because xe-2/0/1 is the ingress, as shown in Figure 7-11, the same interface
must be used to deNAT the return traffic.

Figure 7-11. Illustration of SNAT with Interface Style Service Sets.

The traffic flow is the same as last time. Figure 7-11 illustrates that H3 will ping 10.5.0.11
and R3 will service the traffic via interface style service sets and translate the traffic using
the 20.0.0.0/24 SNAT pool. Let’s review the services configuration with interface style
service sets:

services {
 inactive: service-set SS1 {
 nat-rules SNAT;
 next-hop-service {
 inside-service-interface si-2/0/0.1;
 outside-service-interface si-2/0/0.2;
 }
 }
 service-set SS2 {
 nat-rules SNAT;

Network Address Translation | 615

www.it-ebooks.info

http://www.it-ebooks.info/

 interface-service {
 service-interface si-2/0/0;
 }
 }
}

The previous service set SS1 has been deactivated and left in the configuration for the
purpose of comparison to the interface style service set SS2. Notice that the nat-rules
SNAT hasn’t changed, but instead using next-hop-service, you simply specify the service
inline interface with the service-interface keyword. No more routing instances and
input and output definitions. The NAT portion of the configuration remains the same
as well. Let’s review the interface style service set configuration in its entirety and test
it on the topology, as shown in Figure 7-11.

chassis {
 fpc 2 {
 pic 0 {
 inline-services {
 bandwidth 1g;
 }
 }
 }
}
interfaces {
 si-2/0/0 {
 unit 0 {
 family inet;
 }
 }
 xe-2/0/1 {
 unit 0 {
 family inet {
 service {
 input {
 service-set SS2;
 }
 output {
 service-set SS2;
 }
 }
 address 10.4.0.1/24;
 }
 }
 }
 xe-2/1/1 {
 unit 0 {
 family inet {
 address 10.5.0.1/24;
 }
 }
 }
}
services {
 service-set SS2 {

616 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 nat-rules SNAT;
 interface-service {
 service-interface si-2/0/0;
 }
 }
 nat {
 pool POOL1 {
 address 20.0.0.0/24;
 }
 rule SNAT {
 match-direction input;
 term 1 {
 from {
 source-address {
 10.4.0.0/24;
 }
 }
 then {
 translated {
 source-pool POOL1;
 translation-type {
 basic-nat44;
 }
 }
 }
 }
 }
 }
}

With the new configuration loaded on R3, let’s attempt to ping from H3 to H4 once again:

{master:0}
dhanks@H3> ping 10.5.0.10 rapid count 5
PING 10.5.0.10 (10.5.0.10): 56 data bytes
!!!!!
--- 10.5.0.10 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.025/3.638/8.136/3.038 ms

The ping was successful. Now let’s verify that R3 translated the traffic by monitoring
the traffic on H4:

{master:0}
dhanks@H4> monitor traffic interface xe-0/1/1
verbose output suppressed, use <detail> or <extensive> for full protocol decode
Address resolution is ON. Use <no-resolve> to avoid any reverse lookup delay.
Address resolution timeout is 4s.
Listening on xe-0/1/1, capture size 96 bytes

22:37:04.742892 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
22:37:04.742933 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
22:37:04.748307 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
22:37:04.748340 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
22:37:04.749876 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
22:37:04.749908 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply

Network Address Translation | 617

www.it-ebooks.info

http://www.it-ebooks.info/

22:37:04.753714 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
22:37:04.753747 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
22:37:04.757974 In IP 20.0.0.2 > 10.5.0.10: ICMP echo request
22:37:04.758002 Out IP 10.5.0.10 > 20.0.0.2: ICMP echo reply
10 packets received by filter
0 packets dropped by kernel

Perfect. You can see that the source address from the perspective of H4 is 20.0.0.2. The
last step of verification is to look at the NAT pool on R3:

dhanks@R3> show services inline nat pool
Interface: si-2/0/0, Service set: SS2
 NAT pool: POOL1, Translation type: BASIC NAT44
 Address range: 20.0.0.0-20.0.0.255
 NATed packets: 5, deNATed packets: 5, Errors: 0

Just as expected; five packets processed in each direction in the service set SS2. Every-
thing is in working order!

Traffic Directions

With next-hop style and interface style service sets out of the way, let’s circle back on
traffic directions. Each style uses a different method to determine the direction of traffic.
Recall that next-hop style requires that traffic be forwarded into the service interface
as if it were a point-to-point tunnel; there’s an inside and outside interface. The interface
style works with service sets just like a firewall filter and the direction is specified directly
on the IFL.

When the service interface processes a next-hop style ser-
vice set, it considers traffic direction from the perspective of the service interface’s inside
interface. Therefore, it considers traffic received on the outside interface to be output
traffic, and it considers traffic received on the inside interface to be input traffic.

When the service interface processes an interface style ser-
vice set, it considers traffic received on the interface where the service set is applied to
be input traffic. Likewise, it considers traffic that is about to be transmitted on the
interface to be output traffic.

One of the practical implications of this difference is that you must be careful when
trying to use service rules in both interface style and next-hop style service sets. In many
cases, the direction will be incorrect, and you will find that you must create different
rules for use with interface style and next-hop style service sets.

Destination NAT Configuration
Destination NAT (DNAT) is similar in configuration to SNAT, but the direction of
traffic is reversed and the service sets are applied on the egress interface of R3. Fig-
ure 7-12 illustrates that H3 will ping 30.0.0.10 and it will be translated to H4.

Next-Hop Style Traffic Directions.

Interface Style Traffic Directions.

618 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-12. Illustration of DNAT with Interface-Style Service Sets.

The other interesting thing to note is that previously with SNAT it required a pool of
source addresses to choose from as it performed the translation; with DNAT, the op-
posite is true. Instead of a pool of source addresses to choose from, DNAT requires a
pool of destination addresses that the incoming traffic is to be translated to. For ex-
ample, if H3 pinged the address 30.0.0.10, it should be translated to 10.5.0.10. Let’s
check out the configuration:

interfaces {
 si-2/0/0 {
 unit 0 {
 family inet;
 }
 }
 xe-2/0/1 {
 unit 0 {
 family inet {
 address 10.4.0.1/24;
 }
 }
 }
 xe-2/1/1 {
 unit 0 {
 family inet {
 service {
 input {
 service-set SS3;
 }
 output {
 service-set SS3;
 }
 }
 address 10.5.0.1/24;
 }
 }
 }
}
services {
 service-set SS3 {

Network Address Translation | 619

www.it-ebooks.info

http://www.it-ebooks.info/

 nat-rules DNAT;
 interface-service {
 service-interface si-2/0/0;
 }
 }
 nat {
 pool POOL1 {
 address 10.5.0.0/24;
 }
 rule DNAT {
 match-direction output;
 term 1 {
 from {
 source-address {
 10.4.0.0/24;
 }
 destination-address {
 30.0.0.0/24;
 }
 }
 then {
 translated {
 destination-pool POOL1;
 translation-type {
 dnat-44;
 }
 }
 }
 }
 }
 }
}

The first thing to note is that the service sets have been moved to the interface on R3
that’s facing the destination NAT pool of 10.5.0.0/24. Previously with the SNAT con-
figuration, it was on the ingress interface that was facing the source NAT pool. One
major difference is the match-direction; when using DNAT, it should be output. When
H3 pings 30.0.0.10, it will ultimately egress R3 on xe-2/1/1 and be forwarded toward
the destination NAT pool; thus, because the traffic is leaving the interface xe-2/1/1, the
direction is output.

The next step is to correctly configure the match conditions for rule DNAT. The source
address will be anything on the left side of 10.4.0.0/24, and the destination address will
be 30.0.0.0/24. The next step is to configure the then term correctly and make sure the
translation type is dnat-44 and to reference the destination pool POOL1.

Let’s see if H3 can ping 30.0.0.10. According to the service rules, 30.0.0.10 will be
translated to the destination NAT pool of 10.5.0.0/24. Because this is a static NAT
configuration, the translated address will be 10.5.0.10.

{master:0}
dhanks@H3> ping 30.0.0.10 count 5 rapid
PING 30.0.0.10 (30.0.0.10): 56 data bytes

620 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

!!!!!
--- 30.0.0.10 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.995/2.429/4.308/1.294 ms

Perfect. H3 has connectivity via DNAT to H4.

Network Address Translation Summary
Trio inline NAT is performed directly within the Lookup Block and offers near line-
rate performance, but at the expense of limited functionality when compared to the
MS-DPC. However, static NAT can have three variations: source NAT, destination
NAT, and twice NAT. Being able to provide inline NAT services without the MS-DPC
provides distinct performance and cost advantages; the icing on the cake is that the
configuration style between Trio inline and MS-DPC NAT is the same.

Tunnel Services
Junos makes working with encapsulation very easy and straightforward. Tunnel serv-
ices are a collection of encapsulation and decapsulation logical interfaces that are used
to help forward traffic. The types of tunnel services supported are as follows:

IP Tunnel (IPIP)
IPIP is a very basic IP tunneling protocol that simply encapsulates the original
packet in a new IP header. The interface name for IPIP in Junos is “ip-.”

Generic Routing Encapsulation (GRE)
GRE improves upon IPIP and adds the ability to enforce packet sequencing, specify
tunnel keys, and encapsulation any Layer 3 protocol without being limited to only
IP. The interface name for GRE in Junos is “gr-.”

Logical Tunnels
Logical tunnels are pseudointerfaces in Junos; they look and feel like regular in-
terfaces, but don’t consume any physical ports. A common use case is to use a
logical tunnel to interconnect two VRFs. The interface name for logical tunnels in
Junos is “lt-.”

Protocol Independent Multicast (PIM) Encapsulation and Decapsulation
These interfaces are used by PIM designated routers (DR) or rendezvous points
(RP) to encapsulate and decapsulate packets during the PIM JOIN and REGISTER
processes. The interface names for PIM encapsulation and decapsulation in Junos
are “pe-” and “pd-.”

In previous platforms, a special Tunnel PIC was required to enable these interfaces.
The DPC line cards also required that a single 10 G port be disabled when using tunnel
services; however, with the Trio-based line cards, the tunnel services are built into each
PFE and there’s no loss of revenue ports. Because the tunnel service processing happens

Tunnel Services | 621

www.it-ebooks.info

http://www.it-ebooks.info/

directly on the line card, the performance is near line-rate and keeps the latency to a
minimum.

Enabling Tunnel Services
Because tunnel services are enabled through the line card, the scale is directly propor-
tional to the number of PICs in the chassis. For example, the MPC1 supports one set
of tunnel services while the MPC2 supports two sets of tunnel services. To create the
tunnel services, you must select a FPC and PIC to bind it to:

chassis {
 fpc 2 {
 pic 0 {
 tunnel-services {
 bandwidth 1g;
 }
 }
 }
}

In this example, FPC 2 and PIC 0 are associated with an instance of tunnel services.
The last option when creating tunnel services is the amount of bandwidth required;
the values vary by line card, but the most common options are 1 g or 10 g for MPC1
and MPC2 line cards. The bandwidth option specifies the amount of bandwidth that
will be available to the encapsulation and decapsulation logical interfaces.

A good method to determine what type of interfaces are created by tunnel services is
to take a “snapshot” before and after the configuration change. Let’s start by taking a
snapshot of the current state:

[edit]
dhanks@R4# run show interfaces terse | save before-ts
Wrote 76 lines of output to 'before-ts'

This saves the output of show interfaces terse to a file called before-ts. This file will
be used as a reference to the number of interfaces before the change. Now let’s enable
tunnel services and commit:

[edit]
dhanks@R4# set chassis fpc 2 pic 0 tunnel-services bandwidth 10g

[edit]
dhanks@R4# commit
commit complete

Now let’s use the same method as before to capture the interface list and save it to a
file called after-ts:

[edit]
dhanks@R4# run show interfaces terse | save after-ts
Wrote 84 lines of output to 'after-ts'

622 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Perfect. Now there is a snapshot before and after enabling tunnel services. Let’s use the
file compare command to view the differences:

[edit]
dhanks@R4# run file compare files before-ts after-ts
> gr-2/0/0 up up
> ip-2/0/0 up up
> lt-2/0/0 up up
> mt-2/0/0 up up
> pd-2/0/0 up up
> pe-2/0/0 up up
> ut-2/0/0 up up
> vt-2/0/0 up up

Eight new interfaces have been created after enabling tunneling services on FPC 2 and
PIC 0. The interface naming convention is the typical name-FPC/PIC/PORT. For example,
the GRE interface is gr-2/0/0. If FPC2 and PIC 1 were to be used instead, the name
would have been gr-2/1/0. The port number is tied to the amount of bandwidth asso-
ciated with the tunnel services. The general rule of thumb is that bandwidth of 1g has a
port number of 10 while all other values higher than 1g have a port number of 0.

Table 7-2. Tunnel Services Bandwidth Port Assignment.

Bandwidth Port Number

1g 10

10g 0

20g 0

30g 0

40g 0

65g 0

The bandwidth knob is optional. If a bandwidth isn’t specified, it will default to the
highest possible setting. For MPC1 and MPC2, this will be 10g, and MPC3E will be 65g.

Given that the scale of tunnel services is directly proportional to the number of PICs,
it’s possible to have 48 instances of tunnel services using 480 Gbps of bandwidth,
assuming a fully loaded Juniper MX960 with 12 MPC-3D-16x10GE line cards. Each
MPC-3D-16x10GE line card has four PICs, thus 48 instances of tunnel services.

Tunnel Services Case Study
Having the ability to have tunnel services at your fingertips without having to purchase
additional hardware gives you the instant flexibility to solve interesting problems and
create interesting topologies. Let’s create a case study that uses a couple of different
tunnel services interfaces to forward traffic between routers.

Tunnel Services | 623

www.it-ebooks.info

http://www.it-ebooks.info/

This case study will use a mixture of logical systems, logical tunnels, and GRE tunnels
in a multiarea OSPF topology. Logical systems are simply a router within a router. A
logical system has its own interfaces, configuration, and routing protocols. It’s an easy
way to simulate a completely separate router without the additional hardware. The
reason this case study uses logical systems is that the logical router needs a method to
communicate with the physical router; this is where logical tunnels come in. Logical
tunnels can be paired together and create a virtual Ethernet cable between the two
routers.

The only physical routers in this case study are R1 and R3. Each router will have its own
logical system defined for a total of four routers: R1, R3, LS1, and LS3. Physical interfaces
such as xe-2/0/1 will connect R1 and R4, whereas logical tunnels will connect R1 and
LS1 and R3 to LS3, as shown in Figure 7-13.

Figure 7-13. Tunnel Services Case Study.

624 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s start from the top. R1 and R3 are directly connected via xe-2/0/1 on the 10.8.0.4/31
network. These physical interfaces do not participate in any sort of routing protocol:

interfaces {
 xe-2/1/0 {
 unit 0 {
 family inet {
 address 10.8.0.4/31;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.3.255.1/32;
 }
 }
}

This use case assumes there is some type of “network” between R1 and R3 that is out
of your control, and the only method to create a direct link between R1 and R3 is via a
GRE tunnel. Let’s review the GRE interface configuration on R1:

interfaces {
 gr-2/0/10 {
 unit 0 {
 tunnel {
 source 10.8.0.4;
 destination 10.8.0.5;
 }
 family inet {
 address 192.168.1.1/30;
 }
 }
 }
}

There are two things required for the creation of a GRE tunnel: the source and desti-
nation addresses of the two ends points creating the tunnel, and the actual addressing
information the tunnel will carry. As shown in Figure 7-13, the GRE tunnel between
R1 and R3 has the network 192.168.1.0/30.

Let’s verify that the GRE tunnel is up and has connectivity between R1 and R3:

dhanks@R1-RE0> ping count 5 rapid 192.168.100.2
PING 192.168.100.2 (192.168.100.2): 56 data bytes
!!!!!
--- 192.168.100.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.554/0.580/0.673/0.046 ms

Perfect; the gr-2/0/10.0 interface is up and forwarding traffic. Another great feature of
the Trio chipset is that it allows for inline operations, administration, and maintenance
(OAM) keepalive messages across the GRE tunnel:

Tunnel Services | 625

www.it-ebooks.info

http://www.it-ebooks.info/

protocols {
 oam {
 gre-tunnel {
 interface gr-2/0/10 {
 keepalive-time 1;
 hold-time 5;
 }
 }
 }
}

This configuration is required on each end of the GRE tunnel. The only options are the
keepalive time and hold timer. The keepalive-time is the time in seconds between
keepalive messages, and the hold-time determines how many seconds have to pass
without receiving a keepalive to render the neighbor dead. In this case, five keepalive
messages have to be missed before the tunnel is considered down. Let’s use the show
oam command to verify that the GRE keepalive messages are being sent and received:

dhanks@R1-RE0> show oam gre-keepalive interface-name gr-2/0/10.0
Interface name Sent Received Status
 gr-2/0/10.0 953 953 tunnel-oam-up

Now that the GRE tunnel is up on 192.168.1.100/30 and has been verified with OAM,
the next step to building the OSPF network is to define the backbone area between
R1 and R3. R1 and R3 will peer via OSPF in area 0.0.0.0 across the GRE tunnel:

protocols {
 ospf {
 reference-bandwidth 100g;
 area 0.0.0.0 {
 interface gr-2/0/10.0 {
 interface-type p2p;
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 interface lo0.0 {
 passive;
 }
 }
 }
}

The GRE interface gr-2/0/10.0 has been placed into OSPF area 0.0.0.0 on R1 and R3.
One trick to speed up the convergence when using point-to-point links is to determine
the interface-type as p2p. This will simply bypass the DR and BDR election process.
BFD will also be used across the GRE tunnel to quickly bring down the OSPF neighbor
upon the detection of a forwarding failure.

At this point R1 and R3 should have OSPF and BFD up and operational. Let’s verify
from the perspective of R1:

626 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

dhanks@R1-RE0> show ospf neighbor
Address Interface State ID Pri Dead
192.168.1.2 gr-2/0/10.0 Full 10.7.255.3 128 37

dhanks@R1-RE0> show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
192.168.1.2 Up gr-2/0/10.0 0.450 0.150 3

1 sessions, 1 clients
Cumulative transmit rate 6.7 pps, cumulative receive rate 6.7 pps

OSPF and BFD are up. Let’s check connectivity between R1 and R3 by sourcing a ping
from R1’s loopback and using R3’s loopback as the destination:

dhanks@R1-RE0> ping count 5 rapid source 10.3.255.1 10.7.255.3
PING 10.7.255.3 (10.7.255.3): 56 data bytes
!!!!!
--- 10.7.255.3 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.575/0.644/0.789/0.088 ms

Perfect. At this point GRE, OSPF, and BFD are up and able to forward traffic. The next
step is to build out the logical systems on R1 and R3. The configuration is very easy and
only requires the definition of interfaces and logical-systems:

interfaces {
 lt-2/0/10 {
 unit 0 {
 encapsulation ethernet;
 peer-unit 1;
 family inet {
 address 192.168.100.1/30;
 }
 }
 unit 1 {
 encapsulation ethernet;
 peer-unit 0;
 family inet {
 address 192.168.100.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.3.255.1/32;
 }
 }
 unit 1 {
 family inet {
 address 10.3.255.11/32;
 }
 }
 }
}

Tunnel Services | 627

www.it-ebooks.info

http://www.it-ebooks.info/

There are two new interfaces being added: logical tunnels and an additional loopback
address to be assigned to the new logical system. Logical tunnels are defined in pairs,
as they act as a virtual Ethernet wire inside of the router. The logical tunnel lt-2/0/10.0
will be assigned to R1, whereas lt-2/0/10.1 will be assigned to the logical system LS1.
The glue that ties these two IFLs together is the knob peer-unit. Each IFL needs to
point to the other IFL it wants to pair with. For example, lt-2/0/10.0 peer-unit points
to unit 1 and lt-2/0/10.1 peer-unit points to unit 0. Now the logical tunnel is built and
the two units are able to directly communicate via this virtual wire.

Because LS1 will be a new virtual router that will participate in OSPF, it will require its
own dedicated loopback to use as the OSPF router ID. The interface lo0.1 was created
and assigned the address 10.3.255.11/32. The next step is to create the logical system
LS1 and associate the interfaces with it:

logical-systems {
 LS1 {
 interfaces {
 lt-2/0/10 {
 unit 1;
 }
 lo0 {
 unit 1;
 }
 }
 }
}

In Junos, only a single loopback IFL can exist in a routing instance or
logical system. When creating the new LS1 logical system, a new IFL is
required, thus lo0.1. In situations where there need to be multiple loop-
backs in the same routing instance or logical system, simply add another
IFA to the loopback IFL. For example, lo0.0 could have 100 IPv4 ad-
dresses in the master routing instance.

Now the logical system LS1 has been created and has been assigned two interfaces: lo0.1
and lt-2/0/10.1. Let’s check the connectivity across the logical tunnel by sourcing a
ping from R1 and using LS1 as the destination via the 192.168.100/30 network:

dhanks@R1-RE0> ping count 5 rapid 192.168.100.2
PING 192.168.100.2 (192.168.100.2): 56 data bytes
!!!!!
--- 192.168.100.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.554/0.580/0.673/0.046 ms

Excellent. Now that R1 and LS1 have connectivity, the next step is to configure OSPF
on R1 and LS1 across the logical tunnel and place it into OSPF area 0.0.0.1. Let’s start
with R1:

628 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

1 protocols {
2 ospf {
3 reference-bandwidth 100g;
4 area 0.0.0.0 {
5 interface gr-2/0/10.0 {
6 interface-type p2p;
7 bfd-liveness-detection {
8 minimum-interval 150;
9 multiplier 3;
10 }
11 }
12 interface lo0.0 {
13 passive;
14 }
15 }
16 area 0.0.0.1 {
17 interface lt-2/0/10.0 {
18 interface-type p2p;
19 }
20 }
21 }
22 }

Lines 16 through 20 show the addition of OSPF area 0.0.0.1 and the logical tunnel that
connect R1 to LS1. Now let’s configure OSPF on LS1:

logical-systems {
 LS1 {
 protocols {
 ospf {
 reference-bandwidth 100g;
 area 0.0.0.1 {
 interface lt-2/0/10.1 {
 interface-type p2p;
 }
 interface lo0.1 {
 passive;
 }
 }
 }
 }
 }
}

The logical system LS1 has now been configured for OSPF in area 0.0.0.1 on the logical
tunnel lt-2/0/10.1. Let’s verify that OSPF has discovered its new neighbor:

dhanks@R1-RE0> show ospf neighbor
Address Interface State ID Pri Dead
192.168.1.2 gr-2/0/10.0 Full 10.7.255.3 128 37
192.168.100.2 lt-2/0/10.0 Full 10.3.255.0 128 35

Very cool. R1 is now showing both the GRE tunnel and logical tunnel in an OSPF state
of Full. However, let’s take a closer look at the logical systems before moving on. It’s
true that logical systems act as a virtual router, but Junos has a few tricks up its sleeve.

Tunnel Services | 629

www.it-ebooks.info

http://www.it-ebooks.info/

The set cli logical-system command will modify the CLI to operate from the per-
spective of the referenced logical system. Let’s try changing the CLI and login to LS1:

dhanks@R1-RE0> set cli logical-system LS1
Logical system: LS1

dhanks@R1-RE0:LS1> show ospf neighbor
Address Interface State ID Pri Dead
192.168.100.1 lt-2/0/10.1 Full 10.3.255.1 128 32

Interesting! Now every command executed will operate and respond as if you’re logged
into the logical system. Let’s test out this theory some more. What about show route?

dhanks@R1-RE0:LS1> show route

inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.255.0/32 *[Direct/0] 00:11:12
 > via lo0.1
10.3.255.1/32 *[OSPF/10] 00:05:55, metric 100
 > to 192.168.100.1 via lt-2/0/10.1
10.3.255.11/32 *[Direct/0] 00:11:12
 > via lo0.1
192.168.1.0/30 *[OSPF/10] 00:05:55, metric 200
 > to 192.168.100.1 via lt-2/0/10.1
192.168.100.0/30 *[Direct/0] 00:11:11
 > via lt-2/0/10.1
192.168.100.2/32 *[Local/0] 00:11:11
 Local via lt-2/0/10.1
224.0.0.5/32 *[OSPF/10] 00:11:12, metric 1
 MultiRecv

I’m sorry, but that’s way too cool! Even the route table looks and feels as if you’re logged
into another router. Given this new CLI tool, it makes using logical systems a breeze.
To logout of the router and go back to the physical router type:

dhanks@R1-RE0:LS1> clear cli logical-system
Cleared default logical system

dhanks@R1-RE0>

At this point, the left side of the topology as illustrated in Figure 7-13 has been config-
ured and tested. The only remaining tasks are to replicate the logical tunnels and logical
systems on R3 and LS3. The only difference is that the right side of the topology will use
OSPF area 0.0.0.3 and the logical tunnel will use the 192.168.1.4/30. This case study
will skip the configuration and verification of the connectivity between R3 and LS3 be-
cause it’s nearly identical to R1 and LS1.

630 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Tunnel Services Case Study Final Verification

Once R3 and LS3 have been configured and verified using the same process used with
R1 and LS1, there should be complete end-to-end connectivity, as illustrated in Fig-
ure 7-14.

Figure 7-14. Tunnel Services Case Study: Logical End-to-End Connectivity.

Each router is connected by a logical interface that is part of the tunnel services offered
by the Juniper MX. Let’s login to LS1 and verify the route table and see if the R3 and
LS3 routes show up:

dhanks@R1-RE0> set cli logical-system LS1
Logical system: LS1

dhanks@R1-RE0:LS1> show route

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.255.0/32 *[Direct/0] 00:11:12
 > via lo0.1
10.3.255.1/32 *[OSPF/10] 00:05:55, metric 100
 > to 192.168.100.1 via lt-2/0/10.1
10.3.255.11/32 *[Direct/0] 00:11:12
 > via lo0.1
10.7.255.3/32 *[OSPF/10] 00:05:55, metric 200
 > to 192.168.100.1 via lt-2/0/10.1
10.7.255.33/32 *[OSPF/10] 00:04:00, metric 300
 > to 192.168.100.1 via lt-2/0/10.1
192.168.1.0/30 *[OSPF/10] 00:05:55, metric 200
 > to 192.168.100.1 via lt-2/0/10.1
192.168.100.0/30 *[Direct/0] 00:11:11
 > via lt-2/0/10.1
192.168.100.2/32 *[Local/0] 00:11:11
 Local via lt-2/0/10.1
192.168.100.4/30 *[OSPF/10] 00:05:55, metric 300
 > to 192.168.100.1 via lt-2/0/10.1
224.0.0.5/32 *[OSPF/10] 00:11:12, metric 1
 MultiRecv

Very cool. Both R3 (10.7.255.3) and LS3 (10.7.255.33) are in the route table. For the
final step, let’s verify that LS1 (10.3.255.11) has connectivity to LS3 (10.7.255.33):

dhanks@R1-RE0:LS1> ping rapid count 5 source 10.3.255.11 10.7.255.33
PING 10.7.255.33 (10.7.255.33): 56 data bytes
!!!!!
--- 10.7.255.33 ping statistics ---

Tunnel Services | 631

www.it-ebooks.info

http://www.it-ebooks.info/

5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.591/0.683/1.037/0.177 ms

Everything works as expected and LS1 has full connectivity to LS2. It’s amazing to con-
sider that such a topology is possible and operate at near line rate via tunnel services
that originate from the line cards themselves. Previously, such features required a dedi-
cated Tunnel PIC and couldn’t offer the same performance.

Tunnel Services Summary
The Juniper MX packs a mean punch. Being able to offer GRE, IPIP, PIM, and logical
tunnels without a separate piece of hardware offers a significant advantage. Because
the Trio chipset processes the tunnel services and encapsulation/decapsulation in the
Lookup Block, the performance is near line rate and reduces the latency when compared
with having to send the packet to a services card and back.

The scale of tunnel services is directly proportional to the number of Trio Lookup
Blocks in a chassis. The amount of bandwidth used by tunnel services can be reserved
from 1g to 65g depending on the line card. The beauty of the Trio chipset is that ena-
bling tunnel services doesn’t waste a WAN port, because all of the processing is in the
Trio Lookup Block.

Port Mirroring
One of the most useful tools in the troubleshooting bag is port mirroring. It allows you
to specify traffic with a firewall filter and copy it to another interface. The copied traffic
can then be used for analysis or testing. One of the most interesting use cases I recall
is when a customer wanted to test a firewall’s throughput on production data, but
obviously not impact production traffic. Port mirroring was the perfect tool to match
the production data and send a copy of the traffic to the firewall under test, while the
original traffic was forwarded to its final destination on the production network.

Junos has supported port mirroring for a very long time, and the architecture is very
simple and flexible. There are four major components that make up port mirroring, as
shown in Figure 7-15: FPC, port mirroring instances, next-hop groups, and next-hops.

632 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-15. Port Mirroring Workflow.

Port mirroring instances are associated with FPCs, and up to two port mirroring in-
stances can be associated with a single FPC. This concept is similar to other Trio inline
functions where the FPC is associated to an instance or inline service. The next com-
ponent is a next-hop group; this is simply a collection of interfaces and associated next-
hops. The use of a next-hop group is optional. The last components are the next-hops
that reference a specific interface and next-hop.

However, no traffic will be subject to port mirroring until there’s a firewall filter to
match traffic and send a copy of it to the port mirroring instance, as illustrated in
Figure 7-16.

Port Mirroring | 633

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-16. Firewall Filter Matching Traffic for Port Mirroring.

Because regular firewall filters are used, port mirroring works either as an input or
output filter. This creates the possibility of copying the same traffic to the port mirroring
instance twice. For example, if the same firewall filter was applied to interface
xe-2/0/1.0 as an input filter and to the interface xe-7/0/0.0 as an output filter, the same
traffic will be matched and sent to the port mirroring instance. In such scenarios, Junos
offers an option to “mirror once” and ignore the duplicate match and only send a single
copy into the port mirroring instance.

Port Mirror Case Study
With the basics out of the way, let’s get down to business and learn how to configure
the different components of port mirroring and create an interesting case study, as
illustrated in Figure 7-17. The first step is to generate traffic that can be used for port
mirroring. The traffic flow will be basic IPv4 from S4 to S3. IS-IS is configured on all
routers for reachability. Traffic sourced from S4 and destined to S3 would put R3 in the
middle of the path, which is a perfect spot to set up port mirroring. Using the power
of a traffic generator, the author was able to generate 10,000 PPS from sourced from
S4 and destined to S3.

634 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 7-17. Case Study: Port Mirroring with Next-Hop Groups and GRE.

There are two GRE tunnels defined between R3 and R1 and between R3 and R2. These
GRE interfaces and next-hops will be used as part of the port mirroring instances. The
flexibility of Junos really shines when it comes to next-hops and port mirroring. It’s a
common misconception that a port mirror can only copy traffic to a local interface, but
this isn’t true. Using GRE tunnels, it’s possible to port mirror traffic across the data
center or the Internet to a remote Linux server.

Configuration

The first step is to configure the port mirroring instance, which is located in the
[forwarding-options] hierarchy of the configuration. The port mirroring instance also
needs to be associated with an FPC. In this example, the port mirroring instance will
be associated with FPC 2:

chassis {
 fpc 2 {
 port-mirror-instance to-R1-and-R2;
 }
}
forwarding-options {
 port-mirroring {
 instance {
 to-R1-and-R2 {
 input {
 rate 1;
 }
 family inet {

Port Mirroring | 635

www.it-ebooks.info

http://www.it-ebooks.info/

 output {
 next-hop-group R1-and-R2;
 }
 }
 }
 }
 }
}

There are only two components required when defining a port mirroring instance: input
and output. The input specifies the sampling rate, using the same formula as J-Flow
sampling, as illustrated in Figure 7-18.

Figure 7-18. Port Mirroring Input Rate Formula.

In the case study configuration, the run-length is omitted and the rate is set to 1; this
will mirror every single packet that’s copied into the port mirroring instance.

The next component is the output; this specifies the interface and next-hop to be used
to send the port mirror traffic to. The case study uses a next-hop group called R1-and-
R2:

forwarding-options {
 next-hop-group R1-and-R2 {
 group-type inet;
 interface gr-2/0/10.0 {
 next-hop 192.168.1.1;
 }
 interface gr-2/0/10.1 {
 next-hop 192.168.1.5;
 }
 }
}

Here, the individual interfaces and next-hops are defined. The interface gr-2/0/10.0
and next-hop of 192.168.1.1 will send mirrored traffic to R1, and the interface
gr-2/0/10.1 and next-hop of 192.168.1.5 will send the mirrored traffic to R2. Let’s verify
the creation of the next-hop group:

dhanks@R3> show forwarding-options next-hop-group detail
Next-hop-group: R1-and-R2
 Type: inet
 State: up
 Number of members configured : 2
 Number of members that are up : 2
 Number of subgroups configured : 0
 Number of subgroups that are up : 0

636 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

 Members Interfaces: State
 gr-2/0/10.0 next-hop 192.168.1.1 up
 gr-2/0/10.1 next-hop 192.168.1.5 up

The next-hop group R1-and-R2 is showing two members configured with the correct
interfaces and next-hops. Let’s check to see if the port mirroring instance is available:

dhanks@R3> show forwarding-options port-mirroring

Instance Name: to-R1-and-R2
 Instance Id: 5
 Input parameters:
 Rate : 1
 Run-length : 0
 Maximum-packet-length : 0
 Output parameters:
 Family State Destination Next-hop
 inet up R1-and-R2

The port mirroring instance to-R1-and-R2 is showing the correct input and output vales
as well. Everything is looking good so far. If you are feeling pedantic, there is a shell
command to verify that the port mirroring instance has been installed into the PFE on
FPC2:

1 dhanks@R3>
request pfe execute target fpc2 command "show sample instance association"
2 SENT: Ukern command: show sample instance association
3 GOT:
4 GOT: Sampler Parameters
5 GOT: Global Sampler Association: "&global_instance"
6 GOT: FPC Bindings :
7 GOT: sampling :
8 GOT: port-mirroring 0 : to-R1-and-R2
9 GOT: port-mirroring 1 :
10 GOT: PIC[0]Sampler Association:
11 GOT: sampling :
12 GOT: port-mirroring 0 :
13 GOT: port-mirroring 1 :
14 GOT: PIC[1]Sampler Association:
15 GOT: sampling :
16 GOT: port-mirroring 0 :
17 GOT: port-mirroring 1 :
18 GOT: Sampler Association
19 GOT: PFE[0]-[0]Sampler Association: "to-R1-and-R2":class 2 proto 0 instance id 5
20 GOT: PFE[1]-[0]Sampler Association: "to-R1-and-R2":class 2 proto 0 instance id 5
21 LOCAL: End of file

Using shell commands comes with the usual disclaimer of “do not use
this in production.”

Port Mirroring | 637

www.it-ebooks.info

http://www.it-ebooks.info/

The port mirror instance to-R1-and-R2 is now associated to FPC2 as shown by lines 18
through 20. The final piece of the puzzle is to create a firewall filter to match traffic and
place a copy into the port mirroring instance:

firewall {
 family inet {
 filter mirror-next-hop-group-R1-and-R2 {
 term 1 {
 then port-mirror-instance to-R1-and-R2;
 }
 }
 }
}

The firewall filter mirror-next-hop-group-R1-and-R2 simply matches all traffic and
sends a copy to the port mirroring instance to-R1-and-R2. As shown in Figure 7-17, this
filter will be applied to R3’s interface xe-2/0/1 in both input and output directions. As
traffic is flowing between S3 and S4, R3 will be able to match the transit traffic with the
firewall filter then send a copy of the matched traffic to both GRE tunnels which are
destined to R1 and R2.

Let’s take a peek at the packets per second on R3’s interface xe-2/0/1 to see how much
traffic is flowing through:

dhanks@R3> show interfaces xe-2/0/1 | match pps
 Input rate : 6659744 bps (9910 pps)
 Output rate : 6659744 bps (9910 pps)

Not bad; there’s about 10,000 PPS running through R3 on the interface facing S3. One
good method to check and see if port mirroring is working is to check the packets per
second on the next-hop group or output interfaces:

dhanks@R3> show interfaces gr-2/0/10 | match pps
 Input rate : 0 bps (0 pps)
 Output rate : 19546016 bps (29086 pps)

Wait a second, nearly 30,000 PPS on the output GRE tunnel is way too much traffic.
Something is wrong. Let’s run a simple ping command on S4 to double check the con-
nectivity to S3 (10.4.0.1):

dhanks@S4> ping 10.4.0.1
PING 10.4.0.1 (10.4.0.1): 56 data bytes
64 bytes from 10.4.0.1: TTL expired in transit.
64 bytes from 10.4.0.1: icmp_seq=0 ttl=64 time=0.737 ms (DUP!)
64 bytes from 10.4.0.1: icmp_seq=0 ttl=64 time=0.752 ms (DUP!)
64 bytes from 10.4.0.1: icmp_seq=0 ttl=64 time=0.764 ms (DUP!)
^C

Feeling a bit loopy there. What happened? Recall that the entire topology is running
IS-IS for reachability and that port mirroring is sending a copy of every packet down
to GRE tunnels destined for R1 and R2. Both R1 and R2 receive a copy of the packet and
forward it like a regular packet. In this case, the packet is destined to S4, so both R1 and
R2 will forward back to S4.

638 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

This obviously creates a routing loop. It’s important to remember that the device on
the other end of the port mirror must not have the ability to forward the mirrored traffic,
otherwise it will quickly cause problems on your network. The easiest solution to this
problem is to create an empty routing instance on R1 and R2 to house the GRE tunnel.
When R1 and R2 receive the mirrored packets, the new routing instance will have an
empty route table and just drop the packets.

With this routing instance solution in place on R1 and R2, let’s double check the con-
nectivity on S4 again:

dhanks@S4> ping count 5 rapid 10.4.0.1
PING 10.4.0.1 (10.4.0.1): 56 data bytes
!!!!!
--- 10.4.0.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.575/0.644/0.789/0.088 ms

Much better. No packet loss, no duplicates, and no loops! Let’s get back to the original
task and check the PPS on the port mirror instance interfaces:

{master}
dhanks@R3-RE0> show interfaces gr-2/0/10 | match pps
 Input rate : 13319488 bps (19820 pps)
 Output rate : 0 bps (0 pps)

The two GRE tunnels on R3 are definitely sending traffic at the same speed as being
mirrored on interface xe-2/0/1 on. Recall that interface xe-2/0/1 was measured at 9910
PPS. Because a copy of each packet received on interface xe-2/0/1 will be sent to both
GRE tunnels gr-2/0/10.0 (to R1) and gr-2/0/10.1 (to R2), the aggregate PPS on gr-2/0/10
makes sense.

Port Mirror Summary
Port mirroring is a very powerful and flexible tool that grants you the ability to perform
either local or remote traffic analysis. Always ensure that the device receiving the mir-
rored traffic doesn’t have a forwarding path to the destinations in the mirrored traffic,
otherwise a routing loop will occur and cause problems in the network.

Coupled with firewall filters, it’s possible to only mirror a certain subset of traffic such
as:

• Only HTTP traffic

• Only traffic from a specific customer

• Only traffic from a specific malicious user or botnet

This gives you surgical control over what traffic to port mirror; when performing traffic
analysis, the selective port mirroring will allow for faster data processing because un-
interesting traffic has already been filtered out.

Port Mirroring | 639

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
The Trio chipset offers line rate performance with the ability to offer inline services. As
new versions of Junos are released, the Trio chipset has the ability to be upgraded and
offer additional services as well. This new architecture of offering inline services in the
Trio chipset frees you from having to invest in additional hardware for service pro-
cessing. However, the Trio inline services are basic in nature as of Junos 11.4, and any
advanced features such as carrier-grade NAT (CGN) requires the MS-DPC.

It’s amazing to consider that inline services such as J-Flow, NAT, GRE, and port mir-
roring are available from the line card itself. One of the big benefits of keeping the
services within the Trio chipset is low-latency and near line rate performance. This is
because the packet doesn’t have to travel to a services card, be processed, and sent back
to the line card; everything is done locally within the Trio chipset.

Chapter Review Questions
1. Which versions of J-Flow are supported in Trio inline services as of Junos 11.4?

a. J-Flow v5

b. J-Flow v9

c. J-Flow v10

d. IPFIX

2. What types of NAT are not supported in Trio inline services as of Junos 11.4?

a. SNAT

b. SNAPT

c. Twice NAT

d. DNAPT

3. Which service set type allows you to bridge two routing instances?

a. Next-hop style

b. Interface style

4. Which interfaces are not part of Trio tunnel services?

a. gre-0/0/0

b. lt-2/0/10

c. vt-3/0/0

d. ge-0/0/0

5. What binds together logical tunnels?

a. Network address

b. Circuit ID

640 | Chapter 7: Trio Inline Services

www.it-ebooks.info

http://www.it-ebooks.info/

c. Peer unit

d. Encapsulation type

6. How many port mirroring instances can be associated with a FPC?

a. 1

b. 2

c. 3

d. 4

7. What percentage of packets would be sampled with a rate of 10 and run-length
of 3?

a. 10%

b. 30%

c. 40%

d. 100%

Chapter Review Answers
1. Answer: C,D. J-Flow v10 and IPFIX are synonymous. Trio supports both.

2. Answer: B,D. As of Junos 11.4, Trio only supports 1:1 SNAT, DNAT, and Twice
NAT.

3. Answer: A. The next-hop style service set creates an inside and outside service
interface that can be used to bridge routing instances.

4. Answer: A,D. The interfaces included in Trio tunnel services are gr-, ip-, lt-, mt-,
pd-, pe-, ut-, and vt-.

5. Answer: C. Logical tunnels require that two IFLs that are to be joined use the
peer-unit to reference the other. For example, lt-0/0/0.0 would use a peer-unit of
1, whereas lt-0/0/0.1 would use a peer-unit of 0.

6. Answer: B. Only two port mirroring instances can be associated to a single FPC.

7. Answer: C. The sampling formula is packets sampled = (run-length + 1) / rate.
With a rate of 10 and run-length of 3, this would be packets sampled = (3 + 1) /
10. Otherwise written as 0.40 = 4 /10.

Chapter Review Answers | 641

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

Multi-Chassis Link Aggregation

IEEE 802.3ad is a great way to remove spanning tree from your network. However,
IEEE 802.3ad doesn’t work very well if one end of the bundle is split across two routers.
Multi-Chassis Link Aggregation (MC-LAG) is a protocol that allows two routers to
appear as single logical router to the other end of the IEEE 802.3ad bundle.

The most typical use case for MC-LAG in a Service Provider network is to provide
customers both link-level and node-level redundancy. A good side effect of MC-LAG
is that it removes the need for VPLS multi-homing (MH). For example, if a Service
Provider had 4,000 VPLS instances that required node-level redundancy, one solution
would be to implement VPLS MH; however, if there were a node failure, all 4,000 VPLS
instances would have to signaled to move to the redundant PE router. The alternative
is to use MC-LAG to provide node-level redundancy and eliminate 4,000 instances of
VPLS MH; this method fails over the entire IFD in a single motion instead of every
single VPLS MH instance.

Enterprise environments find that MC-LAG is a great method for multiple core routers
to provide a single, logical IEEE 802.3ad interface to downstream switches and avoid
having spanning tree block interfaces. From the perspective of a downstream switch
the IEEE 802.3ad connection to the core is a single logical link, but in reality there are
multiple core routers providing node-level redundancy.

Multi-Chassis Link Aggregation
MC-LAG allows a client device to establish IEEE 802.3ad across two physically separate
chassis. A key differentiator is that MC-LAG maintains a separate control plane for
each chassis that participates in the MC-LAG, as opposed to MX-VC where there also
are two physical chassis, but the two control planes are virtualized into a single control
plane.

Typically, when you setup IEEE 802.3ad it’s only between two devices; the upside is
that you now have link-level redundancy and more bandwidth, but the downside is
that there isn’t node-level redundancy. MC-LAG allows you to split the IEEE 802.3ad

643

www.it-ebooks.info

http://www.it-ebooks.info/

across two chassis to provide the node-level redundancy that’s previously been missing
when using vanilla IEEE 802.3ad. Let’s take a look at a vanilla IEEE 802.3ad topology,
as shown in Figure 8-1.

Figure 8-1. Vanilla IEEE 802.3ad

You can see that CE1 is connected to PE1 via IEEE 802.3ad, which contains two child
links. The obvious benefit is that CE1 now has twice the bandwidth because there are
two child members and is able to survive a single link failure. If PE1 were to fail, un-
fortunately that would leave CE1 in the dark and unable to forward traffic to the core.
What’s needed is node-level redundancy on the provider side. The astute reader already
realizes that vanilla IEEE 802.3ad will not work across multiple devices; that is where
MC-LAG comes in.

If the provider were to install another router called PE2, this could provide the node-
level redundancy that CE1 is looking for. By running MC-LAG between PE1 and PE2, the
provider could provide link-level and node-level redundancy to CE1 via IEEE 802.3ad.
Let’s take a look:

Figure 8-2. Simple Multi-Chassis Link Aggregation and IEEE 802.3ad.

Now the topology is becoming more interesting. Without getting into the details of
MC-LAG, you can see that the router CE1 has link-level redundancy via xe-1/0/0 and
xe-1/0/1, but also has node-level redundancy via routers PE1 and PE2. If the router
PE1 were to have a failure, CE1 would be able to forward traffic to the core via PE2.

Two of the great benefits of MC-LAG is that it is transparent to CE1 and it doesn’t
require spanning tree. All of the configuration for MC-LAG is on the provider side on

644 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

routers PE1 and PE2. The customer simply configures vanilla IEEE 802.3ad and isn’t
aware that there are actually two physical routers on the other side. Speaking of re-
dundancy, let’s go ahead and add node-level and link-level redundancy on the customer
side with a second router CE2, as shown in Figure 8-3.

Figure 8-3. Full Node-Level and Link-Level Redundancy with MC-LAG and IEEE 802.3ad.

Now this is getting somewhere. From the perspective of the customer and provider,
there’s no single point of failure. For example, if CE1 fails, the router CE2 could take
cover. On the flip side, if the provider router PE1 failed, the router PE2 will take cover
and continue forwarding traffic. A vanilla IEEE 802.3ad was added between CE1 and
CE2 as well as PE1 and PE2 to provide link-level redundancy between routers.

MC-LAG State Overview
When implementing MC-LAG into your network, one area of consideration is to decide
which MC-LAG state to operate in. At a high level, MC-LAG is able to operate in Active-
Standby or Active-Active state. When using the Active-Standby state, a nice benefit is
that traffic forwarding is deterministic; the drawback is that a CE can only use half of
the available links at any given time. The tradeoff with Active-Active is that the CE can
take advantage of the full bandwidth of all available links, but traffic forwarding is
nondeterministic.

MC-LAG Active-Standby

The MX-LAG Active-Standby state is similar to every other “active/[passive|standby|
backup]” protocol in networking. When operating in Active-Standby state, only one
of the routers in a MC-LAG redundancy group will be handling the data plane traffic
from the downstream CE; this is elegantly handled by changing the state of one of the

Multi-Chassis Link Aggregation | 645

www.it-ebooks.info

http://www.it-ebooks.info/

child links in the IEEE 802.3ad bundle to “Attached.” This forces the CE to forward
traffic down only one of the links.

Most users implement MC-LAG in Active-Standby state because it’s
easier to manage and the traffic forwarding is deterministic.

MC-LAG Active-Active

The alternative is to operate the MC-LAG in an Active-Active state, in which all CE
child links in the IEEE 802.3ad bundle are in a state of “Collecting distributing,” which
allows the CE to forward traffic down both links. When implementing MC-LAG in
Active-Active state, there’s an additional configuration item called an Inter-Chassis
Data Link (ICL). The ICL link is used to forward traffic between the PE chassis. For
example, if the CE was forwarding traffic to both PE1 and PE2 equally, but the final
egress port was on PE1 interface xe-0/0/0, any traffic that was forwarded to PE2 would
need to traverse the ICL link so that it could be forwarded out the interface xe-0/0/0
on PE1.

MC-LAG State Summary

Finding the right MC-LAG state is a bit of a balancing act, as there are many factors
that weigh into this decision. For example, are you building your network to operate
at line rate under failure conditions, or are you trying to provide as much bandwidth
as possible? MC-LAG state is covered in more detail later in the chapter, where ques-
tions like this will be discussed.

MC-LAG Family Support
As of Junos 11.4, MC-LAG only supports Layer 2 families. Layer 3 can be supported
indirectly through a routed interface and Virtual Router Redundancy Protocol (VRRP)
associated with a bridge domain.

Bridge
The most common use case is bridging Ethernet frames from a CE device. When
using the Enterprise-style CLI, family bridge must be used.

VPLS
Family VPLS and bridge are nearly identical from the vantage point of the Juniper
MX. The use cases, however, are different. VPLS is a VPN service that rides on top
of MPLS that provides a virtualized private LAN service. The only restriction is
that family vpls can only be used with MC-LAG in active-standby.

CCC
Cross-Connect Circuits (CCCs) are used to provide transparent point-to-point
connections. This can be in the form of interface to interface, LSP to LSP, interface

646 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

to LSP, or LSP to interface. It’s a bit misleading placing CCC in the MC-LAG Family
Support, because strictly speaking family ccc isn’t supported. However, encapsu
lation ethernet-ccc and encapsulation vlan-ccc are supported with MC-LAG.
This allows you to switch Ethernet frames between two interfaces without MAC
learning and minimal next-hop processing.

Multi-Chassis Link Aggregation versus MX Virtual-Chassis
MC-LAG and MX Virtual-Chassis (MX-VC) may appear to be the same at a high level.
They both allow you to span physically different chassis and provide IEEE 802.3ad
services to a CE, but there are some important differences that you should take into
consideration before designing your network.

Table 8-1. MC-LAG and MX-VC Comparison as of Junos 11.4.

Feature MC-LAG MX-VC

Number of Control Planes 2 1

Centralized Management No Yes

Maximum Chassisa 2 2

Feature Implementation Nondisruptive Disruptive

Transparent to CE Yes Yes

Require IEEE 802.3ad Yes. No

State Replication Protocol ICCP VCCP

Require Spanning Tree No No

Require Dual REs per Chassis No Yesb

FPC Support DPC and Trioc Trio only

Require Special Hardware No No

State Control Options Active-Passive and Active-Active Active-Active

ISSU Supported per chassis Roadmap

Scale Full routing engine scale per chassis Limited to single routing engine across all chassis
a There is plan for MC-LAG and MX-VC to support more than two chassis, but as of Junos 11.4 the maximum number of chassis in a MX-VC

or MC-LAG is two.
b The requirement for dual REs per chassis is currently in place because the maximum number of chassis in a MX-VC is two. As future releases

of Junos support more chassis in a MX-VC, this dual RE requirement per chassis could be removed.
c DPC line cards only support MC-LAG Active-Standby. The Trio line cards support both Active-Standby and Active-Active.

The largest differentiation between the two is that MC-LAG is a simple protocol that
runs between two routers to provide vanilla IEEE 802.3ad services whereas MX-VC is
a more robust protocol that virtualizes multiple chassis into a single instance and offers
more services beyond vanilla IEEE 802.3ad. On one hand, MC-LAG requires that two
chassis keep and maintain control plane state, whereas MX-VC this functionality is
built in as there is a single control plane, thus a single state; this difference will manifest

Multi-Chassis Link Aggregation | 647

www.it-ebooks.info

http://www.it-ebooks.info/

itself into feature velocity. MX-VC will be able to support new features more frequently
because of the architecture of a single control plane. However, MC-LAG will require
incremental steps to support new features, as the new features need to be integrated
into the MC-LAG protocol because of the requirement to keep and maintain state
between chassis.

MC-LAG would require that chassis be managed separately, whereas MX-VC would
virtualize the two chassis into a single virtual chassis and be managed as a single device.
Another aspect to consider is the implementation process of each protocol. The im-
plementation of MC-LAG can be done without major change and doesn’t require a
reboot of the chassis. In comparison, MX-VC requires a more in-depth configuration
and requires a reboot, which causes disruption to customers.

Both MC-LAG and MX-VC have different methods of handling scale that need to be
considered when designing your network. MC-LAG benefits from having two control
planes, thus a control plane per chassis. For example, with MC-LAG, each chassis could
have 64,000 IFLs and an IPv4 RIB capacity of 27 million. Because MX-VC has a single
control plane and two chassis, the scale would be reduced to roughly half. For example,
the two chassis in a MX-VC would share 64,000 IFLs and an IPv4 RIB capacity of 27
million.

MC-LAG Summary
Although similar to MX-VC, MC-LAG provides some key advantages depending on
the use case: no disruption in service during the implementation and the control plane
per chassis, which offers more scale, is retained. Each MC-LAG chassis is its own router
and control plane, and must be managed separately. Even though each chassis is man-
aged separately, MC-LAG provides a transparent and cross-chassis IEEE 802.3ad in-
terface to the client.

Even though MX-VC has redundancy features to provide high availability during a
failure scenario, it could be argued that MC-LAG provides an additional level of re-
dundancy as it isn’t subject to fate sharing. An example would be that if a network
operator misconfigured a feature on MX-VC, it could potentially impact all chassis in
the MX-VC, whereas if the same misconfiguration was on a router running MC-LAG,
it would only impact that particular router.

Inter-Chassis Control Protocol
The Inter-Chassis Control Protocol (ICCP) is a simple and lightweight protocol that
rides on top of TCP/IP that’s used to maintain state, trigger failover, and ensure the
MC-LAG configuration matches between the two chassis:

648 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

MC-LAG Configuration
ICCP is able to check the following attributes to ensure that the MC-LAG config-
urations between chassis are sane: MC-LAG port priority, system ID, aggregator
ID, and port ID offset. If a misconfiguration is detected, MC-LAG will not come
up properly; this is very helpful in quickly identifying and isolating operational
MC-LAG problems.

State Information
In order to provide a transparent IEEE 802.3ad interface to a downstream CE, there
are runtime objects that need to be synchronized between the two separate chassis:
IGMP and DHCP snooping specific to interfaces participating in MC-LAG, MAC
addresses that are learned or installed between the different chassis, and MC-LAG
interfaces and their operational status.

Status Information
If the MC-LAG is running in an Active-Standby state, ICCP will need to keep track
of which chassis is currently active versus in standby state.

Change Request
As the topology changes during a network event such as an interface doing down,
ICCP will need to react accordingly; an example change request would be changing
the MC-LAG state of Active from PE1 to PE2.

The ICCP protocol is required when creating a MC-LAG configuration. Keep in mind
that ICCP is just a simple control protocol and doesn’t actually forward traffic between
chassis; if traffic needs to be forwarded between chassis, it will be done with revenue
ports between the chassis.

ICCP Hierarchy
As you design your MC-LAG network, there are a couple of guidelines that need to be
followed. ICCP and MC-LAG are constructed in a hierarchy that has to match between
routers participating in MC-LAG, as shown in Figure 8-4.

Inter-Chassis Control Protocol | 649

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-4. ICCP Hierarchy.

There are several major components that are used to construct the ICCP hierarchy:
ICCP, PE routers, redundancy groups, multi-chassis aggregated Ethernet IDs, and ag-
gregated Ethernet interfaces:

ICCP
The root of the hierarchy is ICCP. It’s the control mechanism that provides a com-
munication channel between PE routers.

Service Identifier
Because ICCP was designed to be scalable from the ground up, it was anticipated
that ICCP may need to exist within a routing instance or logical system. The
service-id is used to tie instances together across physical chassis. As of the writing
of this book, MC-LAG is only supported in the default instance. Thus the service-
id must match between chassis.

PE Routers
Routers that participate in MC-LAG need to establish a peering relationship with
each other via ICCP.

650 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Redundancy Groups
Redundancy groups are a collection of Multi-Chassis Aggregated Ethernet (MC-
AE) IDs that share the same VLAN IDs. Redundancy groups act as a broadcast
medium between PE routers so that application messages are concise and efficient.
Notice that in Figure 8-4 PE1 has a redundancy group ID of 1. This redundancy
group contains MC-AE IDs 1 and 2, which share the same VLAN configuration of
1 through 999. If there was a new MAC address learned on PE1 MC-AE ID 1, ICCP
simply updates PE2 redundancy group 1, instead of updating every single MC-AE
ID with overlapping VLAN IDs. Each PE router is responsible for receiving ICCP
updates, inspecting the redundancy group, then updating all MC-AE IDs that are
part of the same redundancy group.

Multi-Chassis Aggregated Ethernet ID
MC-AE IDs are the operational glue between PE routers. In Figure 8-4, CE1 is con-
nected via IEEE 802.3ad to PE1:ae1 and PE1:ae2. When configuring a logical MC-
LAG interface that spans different PE routers, the MC-AE ID must match. When
configuring multiple logical MC-LAG interfaces, you can use the mc-ae-id as a
unique identifier to separate the logical interfaces. For example, all MC-LAG in-
terfaces associated with CE1 use mc-ae-id 1, whereas all MC-LAG interfaces asso-
ciated CE2 use mc-ae-id 2.

Chassis Identifier
The chassis-id is used by ICCP to uniquely identify each PE router when pro-
cessing control packets. Each PE router that’s configured for MC-LAG must have
a unique chassis-id.

Aggregated Ethernet
Aggregated Ethernet (AE) interfaces are simply mapped on a 1:1 basis to MC-AE
IDs. They follow the same peering rules as MC-AE IDs. The AE interfaces are where
the actual client-facing configuration is constructed; this includes IEEE 802.3ad
and Layer 2 configuration.

LACP System ID and Admin Key
Because two separate PE routers are being presented as a single logical router to
the PE, two LACP attributes need to be synchronized across the PE routers: system-
id and admin-key. The actual values aren’t particularly important; all that matters
is that they match across PE routers.

Status Control
This setting is used in the scenario where, if both of the PE routers boot up simul-
taneously, a particular router should become active. One chassis must be set to
active, while the other chassis must be set to standby.

Keeping this simple hierarchy in mind when configuring MC-LAG will make life much
easier. The design of ICCP allows for high-scale and complex topologies between PE
and CE routers. Later in the chapter is a laboratory that will explore the depths of MC-
LAG and show case the different topologies and ICCP control plane mechanisms.

Inter-Chassis Control Protocol | 651

www.it-ebooks.info

http://www.it-ebooks.info/

ICCP Topology Guidelines
As of the writing of this book, the only supported topology for MC-LAG is between
two PE routers. Although the ICCP protocol itself was designed to support additional
scale, the support isn’t there today. Figure 8-5 shows the MC-LAG topologies that are
not supported.

Figure 8-5. Unsupported MC-LAG Topologies.

Various forms of invalid MC-LAG topologies are shown in Figure 8-5. Each example
has some form of three PE routers and a mixture of CE routers. The key point being
that anything more than two PE routers will not be supported by MC-LAG, as of the
writing of this book.

How to Configure ICCP
The configuration of ICCP is very straightforward. The only requirement is that the
two routers have some sort of reachability, whether it’s Layer 2 or Layer 3. The rec-
ommended method is to have both Layer 2 and Layer 3 reachability and use loopback
or interface address peering. This method obviously requires an IEEE 802.1Q trunk

652 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

between the two routers and some sort of IGP running between the routers advertising
the loopbacks for reachability. Let’s review a basic ICCP configuration example, as
shown in Figure 8-6.

Figure 8-6. Vanilla ICCP Configuration

First things first. Let’s make sure that the service-id is configured on both PE1 and
PE2. Recall that the service-id serves as a unique identifier for ICCP in the context of
instances. In order to associate instances together, the service-id must match.

switch-options {
 service-id 1;
}

The service-id is set to 1 on both routers. This is an easy step to forget and leads to
problems further down the road.

Routers PE1 and PE2 are connected via interface ae0, which has both Layer 2 and Layer
3 configurations. Let’s review the configuration from the point of view of router PE1:

interfaces {
 ae0 {
 vlan-tagging;
 aggregated-ether-options {
 lacp {
 active;
 system-priority 100;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-999;
 }
 }
 unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }
 family iso;
 }
 }
}

ICCP will be configured using the ae0.1 addresses:

Inter-Chassis Control Protocol | 653

www.it-ebooks.info

http://www.it-ebooks.info/

protocols {
 iccp {
 local-ip-addr 10.8.0.0;
 peer 10.8.0.1 {
 redundancy-group-id-list [1 2];
 liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 }
}

ICCP really only requires three arguments: local IP address, peer IP address, and which
redundancy groups are in scope for this peer. In this example, the local-ip-addr is the
interface address of PE1: 10.8.0.0. The peer is the interface address of router PE2:
10.8.0.1.

This book has standardized on /31 addressing between point-to-point
interfaces, but don’t let the fancy /31 addressing fool you. PE1 has an IP
address of 10.8.0.0/31 and PE2 has an IP address of 10.8.0.1/31.
The /31 addressing isn’t required for ICCP at all. Recall that ICCP only
needs some sort of TCP/IP reachability to the peer.

Because ICCP supports multiple peers, the configuration items are nested under each
peer; this includes the redundancy group information and keepalive settings. The astute
reader will recognize the liveness-detection as a setting for BFD. When designing the
ICCP protocol, there was no need to reinvent the wheel, and using existing simple
methods such as TCP/IP for transport and BFD for liveness detection make a lot of
sense because they’re well understood, easy to support, and work very well.

To help understand the redundancy group, let’s take a look at the topology once more
but add the CE, as shown in Figure 8-7.

654 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-7. Adding CE1 to the Topology.

The ICCP protocol is illustrated with the dotted line going between routers PE1 and
PE2; recall that ICCP is using the routers’ ae0.1 interface for transport.

Now that ICCP is properly configured, let’s verify that ICCP is up and operational.

{master}
dhanks@PE1-RE0>show iccp

Redundancy Group Information for peer 10.8.0.1
 TCP Connection : Established
 Liveliness Detection : Up
 Redundancy Group ID Status
 1 Up

Client Application: lacpd
 Redundancy Group IDs Joined: 1

Client Application: l2ald_iccpd_client
 Redundancy Group IDs Joined: None

Client Application: MCSNOOPD
 Redundancy Group IDs Joined: None

The three most important items to look for are the TCP Connection, Liveliness Detec-
tion, and Redundancy Group Status. Recall that ICCP uses TCP/IP to transport the
control packets. It’s expected to see Established in the TCP Connection information.
Any other status would indicate that there is a reachability problem between the two
routers using the local-ip-addr and peer addresses given in the ICCP configuration.
When using BFD liveliness detection with ICCP, the status will show up in the show
iccp command as well. You can also verify this with show bfd session detail:

{master}
dhanks@PE1-RE0>show bfd session detail

Inter-Chassis Control Protocol | 655

www.it-ebooks.info

http://www.it-ebooks.info/

 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up 0.450 0.150 3
 Client ICCP realm 10.8.0.1, TX interval 0.150, RX interval 0.150
 Session up time 23:23:20
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
 Client ISIS L2, TX interval 0.150, RX interval 0.150
 Session up time 1d 00:44, previous down time 00:00:04
 Local diagnostic NbrSignal, remote diagnostic AdminDown
 Remote state Up, version 1
 Replicated

2 sessions, 2 clients
Cumulative transmit rate 13.3 pps, cumulative receive rate 13.3 pps

It’s interesting that show bfd sessions is indicating there are two sessions. Let’s take a
closer look with the extensive knob:

{master}
dhanks@PE1-RE0>show bfd session extensive
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up 0.450 0.150 3
 Client ICCP realm 10.8.0.1, TX interval 0.150, RX interval 0.150
 Session up time 23:23:28
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated
 Min async interval 0.150, min slow interval 1.000
 Adaptive async TX interval 0.150, RX interval 0.150
 Local min TX interval 0.150, minimum RX interval 0.150, multiplier 3
 Remote min TX interval 0.150, min RX interval 0.150, multiplier 3
 Local discriminator 10, remote discriminator 5
 Echo mode disabled/inactive
 Multi-hop route table 0, local-address 10.8.0.0

 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
 Client ISIS L2, TX interval 0.150, RX interval 0.150
 Session up time 1d 00:44, previous down time 00:00:04
 Local diagnostic NbrSignal, remote diagnostic AdminDown
 Remote state Up, version 1
 Replicated
 Min async interval 0.150, min slow interval 1.000
 Adaptive async TX interval 0.150, RX interval 0.150
 Local min TX interval 0.150, minimum RX interval 0.150, multiplier 3
 Remote min TX interval 0.150, min RX interval 0.150, multiplier 3
 Local discriminator 6, remote discriminator 1
 Echo mode disabled/inactive
 Remote is control-plane independent

656 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

2 sessions, 2 clients
Cumulative transmit rate 13.3 pps, cumulative receive rate 13.3 pps

It now becomes clear as to why there are two BFD sessions. The ICCP client is config-
ured for multi-hop, whereas the IS-IS client is configured as single-hop and is control
plane independent. You can verify if BFD is running on the PFE or routing engine with
the show ppm command:

{master}
dhanks@PE1-RE0>show ppm transmissions detail

Destination: 10.8.0.1, Protocol: BFD, Transmission interval: 150

Destination: 10.8.0.1, Protocol: BFD, Transmission interval: 150
Distributed, Distribution handle: 178, Distribution address: fpc2

Just as expected. The ICCP client is running on the routing engine while the IS-IS client
is running on FPC2.

Let’s use the single-hop knob under liveness-detection to change the ICCP client
from multi-hop to single-hop. This will push the ICCP client down to FPC2 with the
IS-IS client and reduce the load on the routing engine.

{master}[edit]
dhanks@PE1-RE0# set protocols iccp peer 10.8.0.1 liveness-detection single-hop

{master}[edit]
dhanks@R1-RE0# commit and-quit
re0:
configuration check succeeds
re1:
commit complete
re0:
commit complete
Exiting configuration mode

Don’t forget to add the same configuration on PE2. Let’s review the BFD sessions again
and see if there is any change:

{master}
dhanks@PE1-RE0>show bfd session extensive
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
 Client ISIS L2, TX interval 0.150, RX interval 0.150
 Client ICCP realm 10.8.0.1, TX interval 0.150, RX interval 0.150
 Session up time 1d 00:46, previous down time 00:00:04
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated
 Min async interval 0.150, min slow interval 1.000
 Adaptive async TX interval 0.150, RX interval 0.150
 Local min TX interval 0.150, minimum RX interval 0.150, multiplier 3
 Remote min TX interval 0.150, min RX interval 0.150, multiplier 3

Inter-Chassis Control Protocol | 657

www.it-ebooks.info

http://www.it-ebooks.info/

 Local discriminator 6, remote discriminator 1
 Echo mode disabled/inactive
 Remote is control-plane independent

1 sessions, 2 clients
Cumulative transmit rate 6.7 pps, cumulative receive rate 6.7 pps

Very cool; now both ICCP and IS-IS are clients of the same BFD session. Let’s also
verify that BFD has been pushed down to the PFE:

{master}
dhanks@PE1-RE0>show ppm transmissions detail

Destination: 10.8.0.1, Protocol: BFD, Transmission interval: 150
Distributed, Distribution handle: 178, Distribution address: fpc2

Perfect. BFD is now being handled by FPC2 and has relieved the routing engine from
processing the BFD packets for both ICCP and IS-IS.

That was a nice detour with BFD, but let’s get back on track. Recall that redundancy
groups must match between PE routers; let’s take a look at the configuration of the
interfaces xe-2/2/0 and ae1 on router PE1:

interfaces {
 xe-2/2/0 {
 gigether-options {
 802.3ad ae1;
 }
 }
 ae1 {
 flexible-vlan-tagging;
 aggregated-ether-options {
 lacp {
 active;
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-standby;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
 }
}

658 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

The two routers PE1 and PE2 are comprised of the IEEE 802.3ad interface that’s con-
nected to the router CE1. On PE1, the interface xe-2/2/0 is a member of the aggregate
interface ae1; on router PE2, the interface xe-2/3/0 is a member of the aggregate interface
ae1. The glue that ties PE1:ae1 and PE2:ae1 together is the MC-AE ID, which in this
example is mc-ae-id 1. Using this unique ID, the two routers PE1 and PE2 provide a
common IEEE 802.3ad interface to CE1.

ICCP Configuration Guidelines
ICCP is designed using a strict hierarchy of objects that allow for high scale, flexibility,
and future expansion of the protocol. As such, there are a few guidelines that need to
be followed to ensure the proper configuration of ICCP.

• The service-id must match between the two PEs.

• The redundancy-group-id-list must match between the two PEs.

Any misconfiguration will result in ICCP or MC-LAG not operating properly. If you
experience problems when configuring ICCP, be sure to check the service-id and
redundancy-group-id-list as these two items must match between PE routers. It’s easy
to overlook, and time might be wasted troubleshooting other areas.

• Each PE router must have a unique chassis-id. This is used as a chassis identifier
in the ICCP protocol.

• When assigning a mc-ae-id to an aggregated Ethernet interface, it must match on
both PE routers so that the same mc-ae-id is presented to the CE.

• Although the same mc-ae-id is required on both PE routers, there’s no requirement
that the aggregated Ethernet match. For example, PE1 can have interface ae2 and
PE2 can have interface ae3, but the mc-ae-id must be the same.

• When assigning the mc-ae-id to aggregated Ethernet interfaces on both routers, it
must be part of the same redundancy-group.

• A single bridge-domain cannot correspond to two different redundancy groups.
Recall that a redundancy group acts as a broadcast medium for a collection of MC-
LAG interfaces. Thus a single bridge-domain can span multiple MC-LAG inter-
faces, but must be part of the same redundancy group.

• MC-LAG interfaces belonging to the same mc-ae-id need to have matching LACP
system-id and admin-key.

Valid Configurations

Let’s take a look at a couple of correct examples using the ICCP configuration guide-
lines.

Inter-Chassis Control Protocol | 659

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8-1. Vanilla MC-LAG Configuration.

PE1
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}
PE2
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 1;
 mode active-active;
 status-control standby;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}

The most common configuration technique, as shown in Example 8-1, is to have
matching aggregated Ethernet interface names between PE1 and PE2. This makes net-
work operations much easier when having to troubleshoot an issue.

However, it isn’t required that the aggregated Ethernet interface names match between
the two PE routers. Let’s take a look:

660 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Example 8-2. Correct MC-LAG Configuration with Different Interface Names.

PE1
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}
PE2
ae9 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 1;
 mode active-active;
 status-control standby;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}

There’s no requirement that PE1 and PE2 have matching interface names. In Exam-
ple 8-2, the router PE1 uses an interface name of ae1 while the router PE2 uses an interface
name of ae9. This isn’t recommended, but it’s a valid configuration.

Inter-Chassis Control Protocol | 661

www.it-ebooks.info

http://www.it-ebooks.info/

Invalid Configurations

Unfortunately, there are many ways to incorrectly configure MC-LAG, and they would
be too numerous to list in this chapter. Let’s review the most common mistakes:

Example 8-3. Invalid MC-LAG Configuration: chassis-id.

PE1
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}
PE2
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control standby;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}

The most common mistake is to use the same value for chassis-id. Because ICCP needs
to uniquely identify each PE router, the chassis-id is required to be unique. Exam-

662 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

ple 8-3 shows PE1:ae1 and PE2:ae1 with a chassis-id of 0. To correct this issue,
PE2:ae1chassis-id needs to be changed to another value besides 0.

Let’s move on to another example of an invalid configuration. Can you spot the prob-
lem?

Example 8-4. Invalid MC-LAG Configuration: mc-ae-id, redundancy-group, and status-control.

PE1
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}
PE2
ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 2;
 redundancy-group 2;
 chassis-id 1;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 100;
 }
 }
}

If you noticed that the mc-ae-id does not match between PE1 and PE2, you would be
correct. In Example 8-4, PE1 has a mc-ae-id of 1 and PE2 has a mc-ae-id of 2. These

Inter-Chassis Control Protocol | 663

www.it-ebooks.info

http://www.it-ebooks.info/

values need to match in order for the CE to successfully establish IEEE 802.3ad to
PE1 and PE2. However, there are two other subtle issues that are causing MC-LAG
problems.

Notice that PE1:ae1 and PE2:ae1 are both configured for IEEE 802.1Q for only VLAN
ID 100. Recall that when two PE routers have a MC-LAG interface that share the same
broadcast domain, it’s required that the redundancy-group be the same.

The last problem in the configuration is that the status-control on both routers is set
to active. This will cause ICCP to fail to negotiate the MC-LAG interfaces. Each router
is mutually exclusive and has to be designated as either active or standby. To correct
this problem, PE2:ae1 needs to change the status-control to standby.

ICCP Split Brain
There are various kinds of failures—such as link and node failures—that could cause
MC-LAG to change which PE is the active. Another failure scenario is that the com-
munication of ICCP has failed, but each PE router is still operational and thinks its
neighbor is down; this is referred to as a split brain scenario.

The first line of defense is to always be sure that ICCP peering is performed over loop-
back addresses. Loopback peering can survive link failures, assuming there’s an alter-
nate path between the two PE routers. The second line of defense is to explicitly define
what happens when there’s an ICCP failure.

The last line of defense is to explicitly configure how the two PE routers will behave in
the event of a split brain failure. The goal is to deterministically identify the MC-LAG
member that remains active in the event of a split brain. Each MCAE interface has an
option to configure a feature called prefer-status-control-active. This option can
only be configured on the MC-LAG member that is also configured for status-control
active. The preferred MC-LAG member retains the configured LACP System ID while
the other MC-LAG member falls back to its local LACP System ID.

Let’s take the example that both PE routers are up and operational, but ICCP is down,
and the result is a split brain scenario. The status-control active member will continue
to use the configured LACP System ID on the MCAE interface that faces the CE. The
other MC-LAG member will fall back and use its local LACP System ID. The result is
that the CE receives different LACP System IDs; the CE will detach from the new peer
who is sending the new LACP System ID and only forward traffic to the MC-LAG
member that was configured with status-control active.

The matrix of information in Figure 8-8 describes which MC-LAG member remains
active. U represents “Up” and D represents “Down.”

664 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-8. MC-LAG Prefer Status Control Matrix

For example, if both the active and standby MC-LAG members are up, but the ICCP
is down and the ICL is up, the MC-LAG member configured as status-control
active will remain as active.

ICCP Summary
ICCP is the glue that holds MC-LAG together. It’s responsible for signaling changes
within MC-LAG, updating state between the PE devices, and detecting MC-AE con-
figuration issues. New users will find learning ICCP very easy, as it’s based on simple
protocol such as TCP/IP and BFD; this is evident by the three lines of configuration
required to configure ICCP. Although ICCP can only support two PE routers as of Junos
11.4, the design of the protocol is so simple and extensible that it can easily allow for
the addition of multiple PE devices in the future if required.

MC-LAG Modes
This chapter has touched on the two different MC-LAG modes: active-standby and
active-active. When MC-LAG was first released, the only available mode was active-
standby, which works on both DPC and MPC line cards. Because it was the first mode
to be released and because of the simplicity of its design, the active-standby mode is
generally more common. With the introduction of Trio and MPC line cards, MC-LAG
was upgraded to support an active-active mode. This new mode will only work using
Trio-based line cards such as the MPC.

MC-LAG Modes | 665

www.it-ebooks.info

http://www.it-ebooks.info/

Active-Standby
The active-standby mode works by selecting a PE router to be the active node while
the other PE router is the standby node. Only one of the PE routers can be active at any
given time. When a PE router is active, it will signal via LACP to the CE router its child
link is available for forwarding.

Figure 8-9. MC-LAG Mode Active-Standby.

Figure 8-9 illustrates MC-LAG in the active-standby mode. In this example, router
PE1 is active and PE2 is the standby node. This mode forces all traffic through the active
node PE1. For example, a frame destined to VLAN 100 would be forwarded to PE1 and
then directly to H1. A frame destined to VLAN 200 would also be forwarded to PE1,
then to PE2, and finally to H2.

Let’s take a look at the LACP information from the vantage point of CE1:

{master:0}
dhanks@CE1-RE0>show lacp interfaces
Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-0/0/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-0/0/2 Actor No No No No Yes Yes Fast Active
 xe-0/0/2 Partner No No No No No Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-0/0/0 Current Fast periodic Collecting distributing
 xe-0/0/2 Current Fast periodic Attached

Notice how interface xe-0/0/0 has a Mux State of Collecting distributing while the
interface xe-0/0/2 shows Attached. Such an elegant design for a simple concept; this
method ensures that CE devices only need to speak LACP while the control packets
and synchronization happen on the PE routers.

666 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s take a look at the MC-LAG configuration on PE1:

ae1 {
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-standby;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
}

As expected, the router PE1 is configured in the active-standby mode and has been
explicitly configured to by the active node. This can be verified through show com-
mands as well:

{master}
dhanks@PE1-RE0>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : standby
 Peer State : up
 Logical Interface : ae1.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : N/A

The local state of PE1 shows active whereas the peer (PE2) shows as standby. Everything
seems in order. Let’s check PE2 as well:

{master}
dhanks@PE2-RE0>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae standby state
 Local Status : standby
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae1.0
 Topology Type : bridge
 Local State : up

MC-LAG Modes | 667

www.it-ebooks.info

http://www.it-ebooks.info/

 Peer State : up
 Peer Ip/MCP/State : N/A

Just as expected. PE2 is showing the opposite of PE1. The local status is standby whereas
the peer (PE1) is active.

Active-Active
The latest addition to the MC-LAG modes is active-active. This was introduced along
with the Trio-based MPC line cards. As such, there is a restriction that MC-LAG op-
erating in active-active mode must use MPC line cards; there’s no support on older
DPC line cards.

The active-active mode is very similar to active-standby with the exception that all
child links on the CE device are active and can forward traffic to both PE routers. From
the vantage point of the CE router, all child links will be in the Mux State of Collecting
distributing. Figure 8-10 illustrates the possible traffic patterns given the two desti-
nations of VLAN 100 and 200. Frames can be forwarded to either PE1 or PE2 and then
to the final destination.

Figure 8-10. MC-LAG Active-Active

The active-active mode introduces a new component called Inter-Chassis Link (ICL).
Although an ICL link isn’t necessary with active-standby, it’s required for active-
active. The ICL link is simply an IEEE 802.1Q link between the two PE routers that
are able to bridge all of the collective bridge domains on any interfaces participating in
MC-LAG.

668 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

ICL Configuration

The configuration of the ICL link between the two PE routers is very simple. It’s a
standard IEEE 802.1Q IFL that contains all bridge domains that need to be protected.
Figure 8-10 shows that VLANs 100 and 200 are being used. In this example, the ICL
link on both PE1 and PE2 will need to include both VLANs 100 and 200:

ae0 {
 vlan-tagging;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
}

The next step is to reference this newly defined ICL link within each MC-LAG interface.
There are two methods to reference the ICL link: on the IFD or IFL of the MC-LAG
interface.

Let’s take a look at how to define the ICL protection at the IFD level on a MC-LAG
interface on PE1:

interfaces {
 ae1 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.1 {
 interface ae0;
 }
 encapsulation flexible-ethernet-services;
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

The IFD method will provide ICL protection for the entire interface device of ae1. The
only requirement is that the number of IFLs and the attributes must match. For exam-

MC-LAG Modes | 669

www.it-ebooks.info

http://www.it-ebooks.info/

ple, the MC-LAG interface ae1.0 has VLANs 100 and 200, thus the ICL interface
ae0.0 must have VLANs 100 and 200 as well. The IFD method serves as shortcut if the
MC-LAG and ICL interfaces have the same number of IFLs, the same unit numbers,
and the same VLAN definitions.

When defining the multi-chassis-protection, you must use the IP address of the ICCP
peer. In this example, the peer is PE2 with an IP address of 10.8.0.1. The same is true
for PE2; it must reference the ICCP address of PE1:

interfaces {
 ae1 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.0 {
 interface ae0;
 }
 encapsulation flexible-ethernet-services;
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

If it isn’t possible to have matching MC-LAG and ICL interfaces, the alternative is to
use a per IFL ICL protection. Let’s take a look:

interfaces {
 ae1 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 aggregated-ether-options {
 lacp {
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;

670 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 status-control active;
 }
 }
 unit 99 {
 multi-chassis-protection 10.8.0.1 {
 interface ae0.0;
 }
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

The only difference is that the multi-chassis-protection has moved from the IFD level
into each IFL under the unit number. If the interface has multiple IFLs, the multi-
chassis-protection must be defined for every IFL.

To verify that the ICL protection is up and running, use the show interfaces mc-ae
command on router PE1:

{master}
dhanks@PE1-RE0>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae1.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : 10.8.0.1 ae0.0 up

The last section of the output indicates that the multi-chassis-protection is up and
operational. Let’s take a look at the same command but on router PE2 instead:

{master}
dhanks@PE2-RE0>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae1.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : 10.8.0.0 ae0.0 up

Just as expected; the multi-chassis-protection is up and the only difference is the peer
address, which from the vantage point of PE2 is 10.8.0.0.

MC-LAG Modes | 671

www.it-ebooks.info

http://www.it-ebooks.info/

MAC Address Synchronization

When MC-LAG is operating in active-active mode, the CE is able to forward frames
to both PE routers. This creates an interesting challenge with MAC learning. Fig-
ure 8-11 illustrates an example frame sourced from CE1 that’s destined to H2. Let’s
assume that CE1 forwards the ARP request for H2 on xe-0/0/2 that’s connected to PE2.

• PE2 broadcasts the ARP request for H2 out all interfaces that are associated with
that bridge domain.

• H2 responds back to PE2 with an ARP reply.

• PE2 uses ICCP to install the H2 MAC address on PE1.

• PE2 forwards the ARP reply from H2 to CE1.

Figure 8-11. MC-LAG Active-Active MAC Address Synchronization.

Using ICCP to synchronize MAC addresses across both PE routers allows for an effi-
cient flow of subsequent frames destined to H2. If CE1 forwarded a frame to xe-0/0/0
that was destined to H2, PE1 now has the MAC address of H2 installed and doesn’t have
to perform another ARP. PE1 can now forward any Ethernet frames to the ICL link that
are destined to H2.

Chapter 2 showed you how to see the MAC address learning within broadcast domains.
When using MC-LAG in active-active, it’s possible to see how MAC addresses are
installed remotely with show commands:

{master}
dhanks@PE1-RE0>show bridge mac-table

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

672 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Routing instance : default-switch
 Bridging domain : VLAN100, VLAN : 100
 MAC MAC Logical
 address flags interface
 2c:6b:f5:38:de:c0 DR ae2.0
 5c:5e:ab:6c:da:80 DL ae1.0

Notice that each MAC address has a set of flags. Regarding MC-LAG active-active,
the relevant flag is Remote PE MAC (R). In this example, the MAC address 2c:
6b:f5:38:de:c0 was learned from PE2 via ICCP. To get more information about this
MAC address, let’s use a different show command:

{master}
dhanks@PE1-RE0>show l2-learning redundancy-groups remote-macs

Redundancy Group ID : 1 Flags : Local Connect,Remote Connect

Service-id Peer-Addr VLAN MAC MCAE-ID Subunit Opcode Flags Status
1 10.8.0.1 100 2c:6b:f5:38:de:c0 2 0 1 0 Installed

The show l2-learning command shows every detail from which the MAC address came.
The MAC address 2c:6b:f5:38:de:c0 was learned from PE2, service-id 1, on VLAN
100. The MCAE-ID is the mc-ae-id on the remote PE router from which the MAC address
was learned. If the MAC address was learned from an interface that doesn’t participate
in MC-LAG, the MCAE-ID will be omitted.

MC-LAG Modes Summary
MC-LAG can be configured to operate in an active-active or active-standby mode.
Each mode has its own benefits and tradeoffs that have to be weighed carefully before
being implemented in your network. The active-active mode allows you to fully utilize
all available links and bandwidth, while at the same time providing high availability.
The tradeoff is that it requires a higher degree of troubleshooting because of the MAC
learning and the CE being able to hash traffic across both PE routers. The active-
standby mode allows you to have deterministic traffic from the CE that’s easy to trou-
bleshoot. The tradeoff is that it will leave half of the available links in standby mode
and unable to be utilized until there is a failure.

Case Study
The best way to apply the concepts in this chapter is to create a case study that integrates
many of the MC-LAG features in a real-world scenario. Using the book’s laboratory
topology, it’s possible to create a two pairs of PE routers and CE routers, as illustrated
in Figure 8-12.

Case Study | 673

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-12. MC-LAG Case Study Topology.

This case study will create two pairs of MC-LAG routers and two pairs of switches:

MC-LAG-1
Routers R1 and R2 will be in the active-active mode. These are MX240 routers
acting as the PE nodes.

MC-LAG-2
Routers R3 and R4 will be in the active-standby mode. These are MX240 routers
acting as the PE nodes.

Switch Pair 1
Switches S1 and S2 will be running vanilla IEEE 802.3ad and IEEE 802.1Q. These
are EX4500s acting as the CE nodes.

Switch Pair 2
Switches S3 and S4 will be running vanilla IEEE 802.3ad and IEEE 802.1Q. These
are EX4200s acting as the CE nodes.

On the far left and right are switches S1 through S4. These switches are acting as
vanilla CE devices connecting into their own MC-LAG instance. From the vantage
point of each CE switch, it believes that it has a single IEEE 802.3ad connection

674 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

going into the core of the topology. To mix things up, each MC-LAG instance will
operate in a different mode. The MC-LAG instance for S1 and S2 will be active-
active, whereas the MC-LAG instance for S3 and S4 will be active-standby.

This case study will move through all the different levels of the design starting with
Layer 2 and working up all the way to higher level protocols such as ICCP. Once you
have a full understanding of the design, the chapter will verify the design with show
commands and provide commentary on what you see. Nearing the end of the case
study, you will review several different verification scenarios to understand each step
of MC-LAG and how the packet moves through each component.

Logical Interfaces and Loopback Addressing
To make the logical interface names easy to remember, the interface number matches
the respective mc-ae-id. For example, on R1 the MC-LAG instance going to S1 uses mc-
ae-id 1, thus the aggregated Ethernet interface on both S1 and R1 would be ae1.

Figure 8-13. MC-LAG Case Study Logical Interfaces.

The astute reader will notice that some aggregated Ethernet interfaces contain two links
whereas other interfaces contain only a single link. There are two scenarios in which
the aggregated Ethernet interfaces contain only a single link:

MC-LAG Interfaces
Although it isn’t a requirement, this case study uses a single interface per router to
construct a MC-LAG interface. For example, R1 has a single interface in both ae1
and ae2, while their complement is on R2. From the perspective of S1, the ae1
aggregated interface has two links, each going to R1 and R2.

Case Study | 675

www.it-ebooks.info

http://www.it-ebooks.info/

Routed Interfaces
In an effort to make the interface topology less complex, the routed links that
connect R1 to R3 and R2 to R4 are an aggregated interface. Interface ae3 is used to
refer to the set of interfaces that connect the two sides of the topology together. So
regardless of which vantage point is used, the interface ae3 will always refer to the
router on the other side. For example, from the vantage point of R3, the interface
ae3 will point toward R1. From the vantage point of R2, the interface ae3 will point
toward R4.

Layer 2
There are two VLAN IDs per side with four VLAN IDs: 100, 200, 300, and 400. Each
VLAN is associated with a particular network, as illustrated in Figure 8-14.

Figure 8-14. MC-LAG Case Study Layer 2 Topology.

The VLANs are split into two major groups: (S1, S2, R1, R2) and (R3, R4, S3, S4). Each
group represents an island of Layer 2, which is common in multiple data center archi-
tecture.

Table 8-2. MC-LAG Case Study VLAN and IRB Assignments.

VLAN Device IRB

100 VRRP 192.0.2.1/26

100 R1 192.0.2.2/26

100 R2 192.0.2.3/26

100 S1 192.0.2.4/26

100 S2 192.0.2.5/26

676 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

VLAN Device IRB

200 VRRP 192.0.2.65/26

200 R1 192.0.2.66/26

200 R2 192.0.2.67/26

200 S1 192.0.2.68/26

200 S2 192.0.2.69/26

300 VRRP 192.0.2.129/26

300 R3 192.0.2.130/26

300 R4 192.0.2.131/26

300 S3 192.0.2.132/26

300 S4 192.0.2.133/26

400 VRRP 192.0.2.193/26

400 R3 192.0.2.194/26

400 R4 192.0.2.195/26

400 S3 192.0.2.196/26

400 S4 192.0.2.197/26

In summary, S1, S2, R1, and R2 are assigned VLANs 100 and 200 while R3, R4, S3, and
S4 are assigned VLANs 300 and 400. Note that the VRRP addresses are running between
(R1, R2) and (R3, R4). The VRRP addresses are used as the default gateway for down-
stream devices such as S1 through S4.

The Layer 2 stops in the middle of the topology. R1 to R3 and R2 to R4 are separated by /
31 routed interfaces. This effectively creates two islands of Layer 2 connectivity sepa-
rated by two routed interfaces.

The interfaces between R1 to R2 and R3 to R4 have both family inet and bridge to
support both Layer 2 and 3. It’s common to combine Layer 2 and 3 on the same ag-
gregate interface between core routers.

Loop Prevention

When using even the most basic MC-LAG configuration, there exists the physical pos-
sibility of a Layer 2 loop. For example, Figure 8-15 illustrates that from the perspective
of a single instance of MC-LAG, the physical topology creates a triangle. It would seem
logical that given this physical loop that some sort of loop prevention is required.

It’s a common misconception that spanning tree is required when using
MC-LAG because of the physical loop. However, MC-LAG has built-in
loop prevention.

Case Study | 677

www.it-ebooks.info

http://www.it-ebooks.info/

MC-LAG has loop prevention built into the protocol, thus traditional loop prevention
protocols such as spanning tree aren’t required.

Figure 8-15. MC-LAG Case Study: Potential Layer 2 Loop.

MC-LAG places loop prevention in two places: ingress on the ICL link and egress on
the MC-AE interfaces. The Trio chipset supports software features installed into the
interfaces for both input and output. The feature for MC-LAG loop prevention is called
mclag-color and check-mclag-color.

When using MC-LAG in an active-active mode, the ICL must apply in-
gress loop prevention. This case study has an active-active MC-LAG configuration
between PE routers R1 and R2. Let’s review the ICL link configuration between R1 and
R2:

interfaces {
 ae0 {
 flexible-vlan-tagging;
 aggregated-ether-options {
 minimum-links 1;
 lacp {
 active;
 periodic fast;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }

Input Feature.

678 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 family iso;
 }
 }
}

It’s important to note that the IFL ae0.0 is used for the ICL as it can protect the VLAN
IDs 100 and 200. The IFL ae0.1 isn’t bridged and acts as a routed IFL for Layer 3
connectivity between R1 and R2.

In order to look at the mclag-color feature on the interface ae0.0, the use of PFE com-
mands are required. The first step is to find the IFL index number for the interface ae0.0:

{master}
dhanks@R1-RE0>request pfe execute target fpc2 command "show interfaces" | match ae0
GOT: 128 ae0 Ethernet 0x0000000000008000 local Up
GOT: 324 ae0.0 VLAN Tagged VPLS/Ethernet 0x000000002002c000
GOT: 325 ae0.1 VLAN Tagged Ethernet 0x000000000000c000
GOT: 326 ae0.32767 VLAN Tagged Ethernet 0x000000000400c000

The IFL index for the ae0.0 interface is 324. Using this index number, you can look at
the IFL input features to verify MC-LAG loop prevention:

1 {master}
2 dhanks@R1-RE0>request pfe execute target fpc2 command "show jnh if 324 input"
3 SENT: Ukern command: show jnh if 324 input
4 GOT:
5 GOT: ------- Input Features----------
6 GOT: Topology: ifl(324)
7 GOT: Flavor: Input-IFL (49), Refcount 0, Flags 0x1
8 GOT: Addr: 0x4ef91770, Next: 0x4e52c3e0, Context 0x144
9 GOT: Link 0: b8a6cd41:c0000000, Offset 12, Next: 08a6cd60:00030000
10 GOT: Link 1: b8a6cc81:c0000000, Offset 12, Next: 08a6cca0:00030000
11 GOT: Link 2: 00000000:00000000, Offset 12, Next: 00000000:00000000
12 GOT: Link 3: 00000000:00000000, Offset 12, Next: 00000000:00000000
13 GOT:
14 GOT: Topology Neighbors:
15 GOT: [none]-> ifl(324)-> flist-master(iif)
16 GOT: Feature List: iif
17 GOT: [pfe-0]: 0x08a6cd6000030000;
18 GOT: [pfe-1]: 0x08a6cca000030000;
19 GOT: f_mask:0x08005100; c_mask:0xf0000000; f_num:24; c_num:4, inst:-1
20 GOT: Idx#4 set-iif:
21 GOT: [pfe-0]: 0xa80003fffff00144
22 GOT: [pfe-1]: 0xa80003fffff00144
23 GOT:
24 GOT: Idx#17 mclag-color:
25 GOT: [pfe-0]: 0x43687fffff800022
26 GOT: [pfe-1]: 0x43687fffff800022
27 GOT:
28 GOT: Idx#19 ptype-mux:
29 GOT: [pfe-0]: 0xda000a6ca0000804
30 GOT: [pfe-1]: 0xda000a6cbb800804
31 GOT:
32 GOT: Idx#23 fabric-output:
33 GOT: [pfe-0]: 0x2000000000000009
34 GOT: [pfe-1]: 0x2000000000000009

Case Study | 679

www.it-ebooks.info

http://www.it-ebooks.info/

35 GOT:
36 GOT: -------- Input Families --------
37 GOT:
38 GOT: BRIDGE:
39 GOT: Feature List: iff
40 GOT: [pfe-0]: 0x0e011ef000020000;
41 GOT: [pfe-1]: 0x0e017cf000020000;
42 GOT: f_mask:0x00008000; c_mask:0x80000000; f_num:18; c_num:1, inst:-1
43 GOT: Idx#16 fwd-lookup:
44 GOT: [pfe-0]: 0x0e011ef000020000
45 GOT: [pfe-1]: 0x0e017cf000020000
46 GOT:
47 LOCAL: End of file

As shown on lines 24 through 26, the mclag-color feature is installed on index #17 in
the feature list. This feature prevents any Ethernet frames from forming a loop over the
ICL interface between R1 and R2.

Any type of MC-LAG MC-AE interfaces requires egress loop prevention.
A similar process is used to view the check-mclag-color feature. In this case study, one
of the MC-AE interfaces is ae1. Let’s review the MC-LAG configuration for this inter-
face:

interfaces {
 xe-2/2/0 {
 gigether-options {
 802.3ad ae1;
 }
 }
 ae1 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.1 {
 interface ae0;
 }
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }

Output Feature.

680 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 }
}

When viewing the egress MC-AE loop prevention feature, it’s a similar process as
viewing the ingress ICL feature. The exception is that the aggregated Ethernet interface
cannot be used as an IFL index, but instead use the child interface. In this case, the
child interface for ae1 is xe-2/2/0. Let’s determine the IFL index for xe-2/2/0:

{master}
dhanks@R1-
RE0>request pfe execute target fpc2 command "show interfaces" | match xe-2/2/0
GOT: 152 xe-2/2/0 Ethernet 0x0000000000008000 2 Up
GOT: 347 xe-2/2/0.0 VLAN Tagged VPLS/Ethernet 0x000000002002c000
GOT: 346 xe-2/2/0.32767 VLAN Tagged Ethernet 0x000000000400c000

In this case, the IFL index needed to view the check-mclag-color is 357. The same show
command can be used, but this time the output option needs to be used:

1 {master}
2 dhanks@R1-RE0>request pfe execute target fpc2 command "show jnh if 347 output"
3 SENT: Ukern command: show jnh if 347 output
4 GOT:
5 GOT: -------- Output Features ---------
6 GOT: Topology: ifl(347)
7 GOT: Flavor: Output-IFL (50), Refcount 2, Flags 0x1
8 GOT: Addr: 0x4eec1050, Next: 0x4e871450, Context 0x15b
9 GOT: Link 0: 00000000:00000000, Offset 12, Next: 00000000:00000000
10 GOT: Link 1: 08a8e180:00030000, Offset 12, Next: 08a8e180:00030000
11 GOT: Link 2: 00000000:00000000, Offset 12, Next: 00000000:00000000
12 GOT: Link 3: 00000000:00000000, Offset 12, Next: 00000000:00000000
13 GOT:
14 GOT: Topology Neighbors:
15 GOT: flist(IFBD EDMEM)-child(1)-> ifl(347)-> flist-master(oif)
16 GOT: flist(IFBD EDMEM)-child(1)-+
17 GOT: Feature List: oif
18 GOT: [pfe-1]: 0x08a8e18000030000;
19 GOT: f_mask:0x00a02080; c_mask:0xf0000000; f_num:26; c_num:4, inst:1
20 GOT: Idx#8 set-oif:
21 GOT: [pfe-1]: 0x12e000200056ffff
22 GOT:
23 GOT: Idx#10 ptype-mux:
24 GOT: [pfe-1]: 0xda000a8dfb800804
25 GOT:
26 GOT: Idx#18 check-mclag-color:
27 GOT: [pfe-1]: 0x4b680040d3c00022
28 GOT:
29 GOT: Idx#24 wan-output:
30 GOT: [pfe-1]: 0x2400286000000000
31 GOT:
32 GOT: --------- Output Families --------
33 GOT: BRIDGE:
34 GOT: Feature List: off
35 GOT: [pfe-1]: 0x08a6d71000010000;
36 GOT: f_mask:0x80800000; c_mask:0xc0000000; f_num:11; c_num:2, inst:1
37 GOT: Idx#0 set-ifl-state:

Case Study | 681

www.it-ebooks.info

http://www.it-ebooks.info/

38 GOT: [pfe-1]: 0x12e000200056c5f2
39 GOT:
40 GOT: Idx#8 redirect-check:
41 GOT: [pfe-1]: 0x27fffff80000000c
42 GOT:
43 LOCAL: End of file

Lines 26 and 27 illustrate that the check-mclag-color feature is installed in the feature
list at index #18. This specific feature prevents Ethernet loops that would be destined
toward the CE.

It’s a good idea to see if the MC-LAG loop prevention features
are installed, but actually seeing a counter of discarded packets is even better. There’s
an exception table stored in the PFE that contains a list of counters:

dhanks@R1-RE0>request pfe execute target fpc2 command "show jnh 0 exceptions"
SENT: Ukern command: show jnh 0 exceptions
GOT:
GOT: Reason Type Packets Bytes
GOT: ===
GOT:
GOT: PFE State Invalid
GOT: ----------------------
GOT: sw error DISC(64) 0 0
GOT: child ifl nonlocal to pfe DISC(85) 0 0
GOT: invalid fabric token DISC(75) 0 0
GOT: unknown family DISC(73) 6363 699302
GOT: unknown vrf DISC(77) 0 0
GOT: iif down DISC(87) 23 2596
GOT: unknown iif DISC(1)
GOT: invalid stream DISC(72) 0 0
GOT: egress pfe unspecified DISC(19) 0 0
GOT: invalid L2 token DISC(86) 0 0
GOT: mc lag color DISC(88) 79608 4620268
GOT: dest interface non-local to pfe DISC(27) 0 0
GOT: invalid inline-svcs state DISC(90) 0 0
GOT: nh id out of range DISC(93) 0 0
GOT: invalid encap DISC(96) 0 0

Throughout the life of this case study, the MC-LAG loop prevention has detected and
discarded 79,608 packets.

It’s unfortunate that PFE commands have to be used to see these MC-
LAG loop prevention features and data. Until a CLI method of viewing
this data becomes available, there’s no other option.

R1 and R2

The PE routers R1 and R2 will host the VLANs 100 and 200 as well as the integrated
routing and bridging interfaces. The great thing about MC-LAG is that it doesn’t require
the spanning tree protocol (STP). The two PE routers act as a single logical router, so
in essence there’s a single logical connection from the CE to the PE.

Loop Prevention Verification.

682 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

bridge-domains {
 VLAN100 {
 vlan-id 100;
 routing-interface irb.100;
 }
 VLAN200 {
 vlan-id 200;
 routing-interface irb.200;
 }
}
interfaces {
 irb {
 unit 100 {
 family inet {
 address 192.0.2.2/26 {
 vrrp-group 0 {
 virtual-address 192.0.2.1;
 priority 101;
 preempt;
 accept-data;
 }
 }
 }
 }
 unit 200 {
 family inet {
 address 192.0.2.66/26 {
 vrrp-group 1 {
 virtual-address 192.0.2.65;
 priority 10;
 accept-data;
 }
 }
 }
 }
 }
}

Two very basic bridge domains are defined on R1 and R2 for VLAN 100 and 200; each
VLAN has its respective irb interface. Two IFLs are defined on the irb interface and
define the VRRP addresses, as illustrated in Table 8-2. The subtle difference is that
VLAN 100 is master on R1 and VLAN 200 is master on R2; this allows the traffic to be
load balanced between the two PE routers.

Both R1 and R2 have three aggregatedPAGE RANGE W/ 2 SUBs:
Ethernet interfaces that participate in both bridging and IEEE 802.1Q: ae0, ae1, and
ae2. The first IFL on each of the interfaces is configured identically to support family
bridge and vlan-id-list [100 200]:

interfaces {
 ae0 {
 flexible-vlan-tagging;
 aggregated-ether-options {
 minimum-links 1;

Bridging and IEEE 802.1Q.

Case Study | 683

www.it-ebooks.info

http://www.it-ebooks.info/

 lacp {
 active;
 periodic fast;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }
 family iso;
 }
 }
 ae1 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.1 {
 interface ae0;
 }
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
 ae2 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.1 {
 interface ae0;
 }
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;

684 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 2;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

To verify that the Enterprise-style bridging configuration has successfully placed each
interface into the appropriate bridge domain, the show command must be used:

{master}
dhanks@R1-RE0>show bridge domain

Routing instance Bridge domain VLAN ID Interfaces
default-switch VLAN100 100 ae0.0
 ae1.0
 ae2.0
default-switch VLAN200 200 ae0.0
 ae1.0
 ae2.0

R1 has successfully found each of the three aggregated Ethernet interface and placed
them both into bridge-domains VLAN100 and VLAN200.

R1 and R2 have several interfaces that are part of IEEE 802.3ad. Recall the
aggregated Ethernet interface naming convention, as shown in Table 8-3: the number
of the aggregated Ethernet interface refers to the mc-ae-id of the CE. The interface
ae3 always refers to the other PE router on the other side of the data center, and interface
ae0 always connects the two PE routers within the same data center together.

Table 8-3. MC-LAG Case Study Aggregated Ethernet Matrix.

Device Interface Connected To

R1 ae0 R2

R2 ae0 R1

R1 ae1 S1

R2 ae1 S1

R1 ae2 S2

IEEE 802.3ad.

Case Study | 685

www.it-ebooks.info

http://www.it-ebooks.info/

Device Interface Connected To

R2 ae2 S2

R1 ae3 R3

R2 ae3 R4

With a single command, it’s possible to view the aggregated Ethernet interfaces, the
LACP status, and child interfaces:

{master}
dhanks@R1-RE0>show lacp interfaces
Aggregated interface: ae0
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/0/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/0/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-2/0/1 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/0/1 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/0/0 Current Fast periodic Collecting distributing
 xe-2/0/1 Current Fast periodic Collecting distributing

Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/2/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/2/0 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/2/0 Current Fast periodic Collecting distributing

Aggregated interface: ae2
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/3/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/3/0 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/3/0 Current Fast periodic Collecting distributing

Aggregated interface: ae3
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/1/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/1/0 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/1/0 Current Fast periodic Collecting distributing

The only aggregated Ethernet interface that has two members is the link between R1
and R2; interface ae0 is comprised of child interfaces xe-2/0/0 and xe-2/0/1. Interfaces
ae1 and ae2 on R1 only have a single child interface going to their respective CE switches,
because R2 contains the other redundant connection. For example, S1 has a single ag-
gregated Ethernet interface ae0 that connects to both R1 and R2.

686 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

S1 and S2

As the switches S1 and S2 act as the CE devices, their configuration is much less com-
plicated. From their vantage point, there’s a single aggregated Ethernet interface that
provides connectivity into the core of the network.

There are only two VLANs defined on S1 and S2: VLAN100 and
VLAN200.

interfaces {
 ae1 {
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 }
 }
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members all;
 }
 }
 }
 }
}
vlans {
 VLAN100 {
 vlan-id 100;
 l3-interface vlan.100;
 }
 VLAN200 {
 vlan-id 200;
 l3-interface vlan.200;
 }
}

Each VLAN has a Routed VLAN Interface (RVI)—which is the same thing as an IRB
interface in MX-speak—defined to the vlan interface with its respective unit number
that matches the VLAN ID.

interfaces {
 vlan {
 unit 100 {
 family inet {
 address 192.0.2.4/26;
 }
 }
 }
 vlan {
 unit 200 {
 family inet {
 address 192.0.2.68/26;
 }

Bridging and IEEE 802.1Q.

Case Study | 687

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
}

Each IFL has its own address in a /26 network that’s associated with its respective
VLAN ID. Later in the case study, these addresses will be used as part of the connectivity
demonstration and failure scenarios.

Let’s take a look at the VLANs to verify that the appropriate interfaces are associated
with both VLAN IDs:

{master:0}
dhanks@S1-RE0>show vlans
Name Tag Interfaces
default
 None
VLAN100 100
 ae1.0*
VLAN200 200
 ae1.0*

Just as expected, interface ae1.0 is part of both VLANs and showing the proper VLAN
ID.

The IEEE 802.1Q configurations for S3 and S4 are identical except for the VLAN def-
initions. In the case of S3 and S4, VLAN 100 is replaced with VLAN 300 and VLAN
200 is replaced with VLAN 400.

S1 and S2 have a single aggregated Ethernet interface that points into the
core of the network; to be more specific, each of the child links xe-0/0/0 and
xe-0/0/2 are connected to R1 and R2.

interfaces {
 xe-0/0/0 {
 ether-options {
 802.3ad ae1;
 }
 }
 xe-0/0/2 {
 ether-options {
 802.3ad ae1;
 }
 }
 ae1 {
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 }
 }
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members all;

IEEE 802.3ad.

688 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 }
 }
}

From the vantage point of S1 and S2, there’s just a single interface that connects to a
single logical router. One of the largest strengths of MC-LAG is that it allows the CE
to be happily unaware that it’s connected to two PE routers and doesn’t require any
special configuration.

{master:0}
dhanks@S1-RE0>show lacp interfaces
Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-0/0/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-0/0/2 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/2 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-0/0/0 Current Fast periodic Collecting distributing
 xe-0/0/2 Current Fast periodic Collecting distributing

All packets on S1 entering or leaving the core are bridged over interface ae1. The inter-
face xe-0/0/0 is connected to R1, whereas xe-0/0/2 is connected to R2. The Mux State
of Collecting distributing on S1 indicates that both R1 and R2 are configured to be in
a MC-LAG active-active state and are currently accepting traffic on both interfaces.

Layer 3
In this MC-LAG case study, various Layer 3 features are used to establish connectivity,
distribute prefixes, and determine reachability. The PE nodes need to be able to provide
gateway services to the CE switches, detect reachability errors, and provide cross data
center connectivity. This section will cover IS-IS, VRRP, and BFD.

Interior Gateway Protocol—IS-IS

Each of the PE routers needs a method to advertise and distribute prefixes. This case
study will use the IS-IS routing protocol. At a high level, all four of the PE routers will
be part of a Level 2-only IS-IS area 49.0001. Let’s review the IS-IS configuration of R1
and R2:

protocols {
 isis {
 reference-bandwidth 100g;
 level 1 disable;
 interface ae0.1 {
 point-to-point;
 }
 interface ae3.0 {
 point-to-point;
 }

Case Study | 689

www.it-ebooks.info

http://www.it-ebooks.info/

 interface irb.100 {
 passive;
 }
 interface irb.200 {
 passive;
 }
 interface lo0.0 {
 passive;
 }
 }
}

The irb IFLs are included in the IS-IS configuration and set to passive. This method
will include the IFAs into the link-state database (LSDB) but will not attempt to estab-
lish an adjacency over the interface. The IS-IS configuration for R3 and R4 are the same
except interfaces irb.100 and irb.200 are replaced with irb.300 and irb.400.

Figure 8-16. MC-LAG Case Study: IS-IS Area Design.

Given the IS-IS configuration of R1, there are two neighbors: R2 and R3. Let’s verify with
the show command:

{master}
dhanks@R1-RE0>show isis adjacency
Interface System L State Hold (secs) SNPA

690 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

ae0.1 R2-RE0 2 Up 23
ae3.0 R3 2 Up 24

Each of the adjacencies is Up and operational. Let’s take a look at the interfaces that are
part of the IS-IS configuration:

{master}
dhanks@R1-RE0>show isis interface
IS-IS interface database:
Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
ae0.1 2 0x1 Disabled Point to Point 5/5
ae3.0 2 0x1 Disabled Point to Point 10/10
irb.100 0 0x1 Passive Passive 100/100
irb.200 0 0x1 Passive Passive 100/100
lo0.0 0 0x1 Passive Passive 0/0

As expected, the interfaces ae0.1 and ae3.0 are participating in IS-IS as Level 2 only.
There are also three interfaces defined as passive: irb.100, irb.200, and lo0.0. This will
allow R1 to advertise the IRB and loopback addresses to its neighbors, but not attempt
to establish an adjacency on these interfaces.

From the perspective of R1, there should be at least three other loopback addresses in
the RIB: R2, R3, and R4.

dhanks@R1-RE0>show route protocols isis

inet.0: 22 destinations, 22 routes (22 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.8.0.6/31 *[IS-IS/18] 03:09:17, metric 20
> to 10.8.0.5 via ae3.0
10.3.255.2/32 *[IS-IS/18] 6d 06:06:52, metric 5
> to 10.8.0.1 via ae0.1
10.7.255.3/32 *[IS-IS/18] 03:09:17, metric 10
> to 10.8.0.5 via ae3.0
10.7.255.4/32 *[IS-IS/18] 6d 06:06:42, metric 15
> to 10.8.0.1 via ae0.1
10.8.0.2/31 *[IS-IS/18] 6d 06:06:52, metric 15
> to 10.8.0.1 via ae0.1
192.0.2.128/26 *[IS-IS/18] 02:53:55, metric 73
> to 10.8.0.5 via ae3.0
192.0.2.192/26 *[IS-IS/18] 02:53:55, metric 73
> to 10.8.0.5 via ae3.0

As expected, the three router loopbacks of R2, R3, and R4 are present. There are also
additional IS-IS routes: two /31 and two /26 networks. Recall that in Figure 8-16, there
are /31 networks connecting the PE routers together. The 10.8.0.6/31 ties together R3
to R4 and 10.8.0.2/31 ties together R2 to R4. The two /26 networks are the irb.300 and
irb.400 interfaces on R3 and R4.

Bidirectional Forwarding Detection

BFD is a very simple echo protocol that is routing protocol independent that enables
subsecond failover. One of the major benefits to using BFD is that multiple clients such

Case Study | 691

www.it-ebooks.info

http://www.it-ebooks.info/

as IS-IS and ICCP can use a single BFD session in order to detect forwarding errors.
This eliminates having to set and manage multiple timers with different clients that
may or may not support subsecond failure detection.

Using Junos apply-groups is an easy way to make sure that every aggregated Ethernet
interface configured in protocols isis is configured to use BFD.

groups {
 bfd {
 protocols {
 isis {
 interface <ae*> {
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 }
 }
 }
}
apply-groups [bfd];

This apply-group will walk down into the protocols isis interface level and attempt
to find any interfaces matching <ae*> and apply a generic BFD configuration to each
interface match. The display inheritance option is used to display which interfaces
were affected by the apply-group bfd:

{master}
dhanks@R1-RE0>show configuration protocols isis | display inheritance
reference-bandwidth 100g;
level 1 disable;
interface ae0.1 {
 point-to-point;
 ##
 ## 'bfd-liveness-detection' was inherited from group 'bfd'
 ##
 bfd-liveness-detection {
 ##
 ## '150' was inherited from group 'bfd'
 ##
 minimum-interval 150;
 ##
 ## '3' was inherited from group 'bfd'
 ##
 multiplier 3;
 }
}
interface ae3.0 {
 point-to-point;
 ##
 ## 'bfd-liveness-detection' was inherited from group 'bfd'
 ##
 bfd-liveness-detection {
 ##

692 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 ## '150' was inherited from group 'bfd'
 ##
 minimum-interval 150;
 ##
 ## '3' was inherited from group 'bfd'
 ##
 multiplier 3;
 }
}
interface irb.100 {
 passive;
}
interface irb.200 {
 passive;
}
interface lo0.0 {
 passive;
}

This example shows that interfaces ae0.1 and ae3.0 inherited the BFD configuration
automatically because their interfaces names matched <ae*>. Let’s also verify the BFD
configuration with show bfd sessions to ensure connectivity to other neighbors:

{master}
dhanks@R1-RE0>show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
10.8.0.5 Up ae3.0 0.450 0.150 3

2 sessions, 3 clients
Cumulative transmit rate 13.3 pps, cumulative receive rate 13.3 pps

The two sessions are to be expected: a session going to R3 and another going to R4. The
interesting thing to note is that there are three clients. Because IS-IS is the only BFD
client we’ve configured so far, it’s safe to assume that there should only be two clients.
Where is the third client coming from? Let’s use the extensive option to see more detail:

1 {master}
2 dhanks@R1-RE0>show bfd session extensive | no-more
3 Detect Transmit
4 Address State Interface Time Interval Multiplier
5 10.8.0.1 Up ae0.1 0.450 0.150 3
6 Client ICCP realm 10.8.0.1, TX interval 0.150, RX interval 0.150
7 Client ISIS L2, TX interval 0.150, RX interval 0.150
8 Session up time 6d 02:41, previous down time 00:04:17
9 Local diagnostic CtlExpire, remote diagnostic CtlExpire
10 Remote state Up, version 1
11 Replicated
12 Min async interval 0.150, min slow interval 1.000
13 Adaptive async TX interval 0.150, RX interval 0.150
14 Local min TX interval 0.150, minimum RX interval 0.150, multiplier 3
15 Remote min TX interval 0.150, min RX interval 0.150, multiplier 3
16 Local discriminator 4, remote discriminator 6
17 Echo mode disabled/inactive

Case Study | 693

www.it-ebooks.info

http://www.it-ebooks.info/

18 Remote is control-plane independent
19
20 Detect Transmit
21 Address State Interface Time Interval Multiplier
22 10.8.0.5 Up ae3.0 0.450 0.150 3
23 Client ISIS L2, TX interval 0.150, RX interval 0.150
24 Session up time 6d 02:40
25 Local diagnostic None, remote diagnostic None
26 Remote state Up, version 1
27 Replicated
28 Min async interval 0.150, min slow interval 1.000
29 Adaptive async TX interval 0.150, RX interval 0.150
30 Local min TX interval 0.150, minimum RX interval 0.150, multiplier 3
31 Remote min TX interval 0.150, min RX interval 0.150, multiplier 3
32 Local discriminator 8, remote discriminator 3
33 Echo mode disabled/inactive
34 Remote is control-plane independent
35
36 2 sessions, 3 clients
37 Cumulative transmit rate 13.3 pps, cumulative receive rate 13.3 pps

Aha! Line 6 indicates that the third client is ICCP. Recall previously in the chapter that
ICCP uses BFD for failure detection and that BFD is able to support multiple clients per
session. The session associated with interface ae0.1 has two clients: ICCP and ISIS. This
makes sense because both ISIS and ICCP are configured between R1 and R2.

Virtual Router Redundancy Protocol

In order for R1 and R2 to provide consistent gateway services to S1 and S2, a common
gateway address needs to be used that will survive a PE failure. The most common
method to provide gateway services between routers is VRRP.

interfaces {
 irb {
 unit 100 {
 family inet {
 address 192.0.2.2/26 {
 vrrp-group 0 {
 virtual-address 192.0.2.1;
 priority 101;
 preempt;
 accept-data;
 }
 }
 }
 }
 unit 200 {
 family inet {
 address 192.0.2.66/26 {
 vrrp-group 1 {
 virtual-address 192.0.2.65;
 priority 10;
 accept-data;
 }

694 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 }
 }
 }
}

The VRRP address for VLAN100 is 192.0.2.1/26, and the VRRP address for VLAN200 is
192.0.2.65/26. The configuration is very easy and only requires the addition of a vrrp-
group followed by the virtual-address and an appropriate priority. In this MC-LAG
case study, R1 will be the VRRP master for 192.0.2.1 while R2 will be the VRRP master
for 192.0.2.65. Let’s verify with the show vrrp command:

{master}
dhanks@R1-RE0>show vrrp
Interface State Group VR state VR Mode Timer Type Address
irb.100 up 0 master Active A 0.239 lcl 192.0.2.2
 vip 192.0.2.1
irb.200 up 1 backup Active D 3.636 lcl 192.0.2.66
 vip 192.0.2.65
 mas 192.0.2.67

Each VRRP address is in an up state, and R1 proves to be the VRRP master for 192.0.2.1
while R2 is the VRRP master for 192.0.2.65. Let’s verify connectivity from S1 to the
VRRP address 192.0.2.1:

{master:0}
dhanks@S1-RE0>ping source 192.0.2.4 192.0.2.1
PING 192.0.2.1 (192.0.2.1): 56 data bytes
64 bytes from 192.0.2.1: icmp_seq=0 ttl=62 time=1.972 ms
64 bytes from 192.0.2.1: icmp_seq=1 ttl=62 time=4.222 ms
64 bytes from 192.0.2.1: icmp_seq=2 ttl=62 time=4.113 ms
64 bytes from 192.0.2.1: icmp_seq=3 ttl=62 time=1.556 ms
64 bytes from 192.0.2.1: icmp_seq=4 ttl=62 time=1.549 ms
64 bytes from 192.0.2.1: icmp_seq=5 ttl=62 time=1.293 ms

Outstanding. Now that connectivity has been verified let’s begin to review the higher-
level protocols such as ICCP and MC-LAG.

MC-LAG Configuration
At a high level, there are two pairs of PE routers that participate in MC-LAG. Each PE
pair has two MC-AE interfaces that correspond to each of the CE devices. In Fig-
ure 8-17, the first pair of PE routers are R1 and R2; they have two MC-AE instances that
correspond to S1 and S2.

Case Study | 695

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-17. MC-LAG Case Study: MC-LAG Topology.

The second pair of PE routers are R3 and R4, which contain two MC-AE instances that
correspond to S3 and S4. The only difference between the two PE pairs is that R1 and
R2 are configured to be active-active, whereas R3 and R4 are configured to be active-
standby.

ICCP

The first step to building out the MC-LAG case study is to configure ICCP. There are
two locations where ICCP needs to be installed: between R1 and R2 and between R3 and
R4. As described previously, these are the two pairs of PE routers and will require state
synchronization with ICCP to provide IEEE 802.3ad services to CE devices.

Recall that ICCP rides on top of TCP/IP, a good method for establishing
connectivity between R1 and R2 would be to use the 10.8.0.0/31 network. Let’s review
the ICCP configuration on R1 to learn more:

protocols {
 iccp {
 local-ip-addr 10.8.0.0;

R1 and R2.

696 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 peer 10.8.0.1 {
 redundancy-group-id-list 1;
 liveness-detection {
 minimum-interval 150;
 multiplier 3;
 single-hop;
 }
 authentication-key "9dzw2ajHmFnCZUnCtuEhVwY"; ## SECRET-DATA
 }
 }
}

There are three major components that are required when configuring ICCP. This case
study will use an additional two components to improve failure detection and security:

Local IP Address
The local-ip-addr is a required component. This is the IP address that is used to
source the ICCP traffic. The IP address must be present on the local router such as
an interface address or loopback address.

Peer IP Address
The peer is a required component. This is the destination IP address of the peer
router. It’s required that this IP address be present on the peer router such as an
interface address or loopback address.

Redundancy Group ID List
The redundancy-group-id-list is a required component. Every redundancy-group
used in the configuration of MC-AE interfaces must be installed into ICCP. This
case study will use multiple MC-AE interfaces but only a single redundancy-group.

Liveness Detection
The liveness-detection is an optional component. This will invoke a BFD session
to the peer router and install ICCP as a client. This example will use a minimum-
interval of 150 and a multiplier of 3. These options will be able to detect a for-
warding error in 450 ms. The hidden option single-hop will force BFD to not use
multi-hop; this enables the distribution of BFD down to the line cards and away
from the routing engine CPU.

Authentication
The authentication-key is an optional component. This will force the ICCP pro-
tocol to require authentication when establishing a connection. It’s considered a
best practice to use authentication with any type of control protocol. Authentica-
tion will prevent accidental peerings and make the environment more secure.

The configuration of R3 and R4 is nearly identical except for the change of IP
addresses. Let’s review the ICCP configuration of R3:

protocols {
 iccp {
 local-ip-addr 10.8.0.6;
 peer 10.8.0.7 {
 redundancy-group-id-list 1;

R3 and R4.

Case Study | 697

www.it-ebooks.info

http://www.it-ebooks.info/

 liveness-detection {
 minimum-interval 150;
 multiplier 3;
 single-hop;
 }
 authentication-key "9GXjkPFnCBIc5QIcylLXUjH"; ## SECRET-DATA
 }
 }
}

All of the ICCP components remain the same on R3 and R4 with the same redundancy-
group-id-list, liveness-detection, and authentication-key. The only difference is
that the local-ip-addr and peer have been changed to use the 10.8.0.6/31 network that
sits between R3 and R4.

Now that ICCP has been configured, let’s verify that it is up and opera-
tional. The show iccp will show more detail:

{master}
dhanks@R1-RE0>show iccp

Redundancy Group Information for peer 10.8.0.1
 TCP Connection : Established
 Liveliness Detection : Up
 Redundancy Group ID Status
 1 Up

Client Application: l2ald_iccpd_client
 Redundancy Group IDs Joined: 1

Client Application: lacpd
 Redundancy Group IDs Joined: 1

Client Application: MCSNOOPD
 Redundancy Group IDs Joined: None

The TCP connection has been Established and ICCP is working properly. The Liveli-
ness detection is showing Up as well. Another way to verify that BFD is up is via the
show bfd sessions command:

{master}
dhanks@R1-RE0>show bfd session extensive
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
 Client ICCP realm 10.8.0.1, TX interval 0.150, RX interval 0.150
 Client ISIS L2, TX interval 0.150, RX interval 0.150
 Session up time 6d 02:41, previous down time 00:04:17
 Local diagnostic CtlExpire, remote diagnostic CtlExpire
 Remote state Up, version 1
 Replicated
 Min async interval 0.150, min slow interval 1.000
 Adaptive async TX interval 0.150, RX interval 0.150
 Local min TX interval 0.150, minimum RX interval 0.150, multiplier 3
 Remote min TX interval 0.150, min RX interval 0.150, multiplier 3

ICCP Verification.

698 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 Local discriminator 4, remote discriminator 6
 Echo mode disabled/inactive
 Remote is control-plane independent

The BFD session between R1 and R2 is Up and has two clients: ICCP and ISIS. At this
point, we can feel assured that ICCP is configured correctly and operational.

Multi-Chassis Aggregated Ethernet Interfaces

The real fun is configuring the MC-AE interfaces because this is where all of the design
work comes in. Recall that Data Center 1 houses the PE routers R1 and R2, which need
to be configured as active-active, and that Data Center 2 houses the PE routers R3 and
R4, which need to be configured as active-standby. Each MC-AE configuration is a bit
different because of the MC-LAG mode and different CE devices.

R1 and R2 need to be able to support an active-active configuration with two
CE devices: S1 and S2. This configuration is broken down into four sections:

R1:ae1
Figure 8-18 illustrates that the interface on R1 that is providing IEEE 802.3ad serv-
ices to S1. The interface ae1 will need to be configured as active-active with a
status-control of active. The mc-ae-id for S1 will be 1. Let’s review the configu-
ration for the interface ae1 on R1:

interfaces {
 ae1 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.1 {
 interface ae0;
 }
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

R1 and R2.

Case Study | 699

www.it-ebooks.info

http://www.it-ebooks.info/

R2:ae1
Figure 8-18 illustrates that the interface on R2 that is providing IEEE 802.3ad serv-
ices to S1. The interface ae1 will need to be configured as active-active with a
status-control of standby. The mc-ae-id for S1 will be 1. Let’s review the config-
uration for the interface ae1 on R2:

interfaces {
 ae1 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.0 {
 interface ae0;
 }
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 1;
 mode active-active;
 status-control standby;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

700 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 8-18. MC-LAG Case Study: R1 and R2 MC-AE-ID 1.

The only difference in the interface ae1 MC-AE configuration between R1 and R2 are
two components: chassis-id and multi-chassis-protection. Recall that the chassis-
id is what separates the two PE routers in a MC-LAG configuration. One router must
have a chassis-id of 0 while the other PE router has chassis-id of 1.

The multi-chassis-protection (MCP) must be used in an active-active configuration.
Recall that when specifying a protected interface, it must be able to bridge the same
VLAN IDs as installed on the MC-AE interface. In the case of R1 and R2, each router
will use its ae0 interface which is able to bridge VLAN IDs 100 and 200:

interfaces {
 ae0 {
 flexible-vlan-tagging;
 aggregated-ether-options {
 minimum-links 1;
 lacp {
 active;
 periodic fast;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 unit 1 {
 vlan-id 1000;
 family inet {
 address 10.8.0.0/31;
 }

Case Study | 701

www.it-ebooks.info

http://www.it-ebooks.info/

 family iso;
 }
 }
}

The MCP interface will provide an Ethernet bridge between R1 and R2 in the event that
frames received on R2 need to be bridged through R1 and vice versa. Don’t forget that
when using MC-LAG in an active-active mode, the CE device will send Ethernet
frames down each link of the IEEE 802.3ad bundle; in summary, R1 and R2 will receive
an equal number of frames assuming uniform distribution.

R1:ae2
Figure 8-19 illustrates that the interface on R1 that is providing IEEE 802.3ad serv-
ices to S2. The interface ae2 will need to be configured as active-active with a
status-control of active. The mc-ae-id for S2 will be 2.

R2:ae2
Figure 8-19 illustrates that the interface on R2 that is providing IEEE 802.3ad serv-
ices to S2. The interface ae2 will need to be configured as active-active with a
status-control of standby. The mc-ae-id for S2 will be 2.

Figure 8-19. MC-LAG Case Study: R1 and R2 MC-AE-ID 2.

The MC-AE configuration for the interface ae2 and R1 and R2 is identical to configura-
tion of interface ae1 except one component: mc-ae-id. Let’s review the interface ae2
configuration of R1:

interfaces {
 ae2 {
 flexible-vlan-tagging;
 multi-chassis-protection 10.8.0.1 {
 interface ae0;

702 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 }
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 system-id 00:00:00:00:00:01;
 admin-key 1;
 }
 mc-ae {
 mc-ae-id 2;
 redundancy-group 1;
 chassis-id 0;
 mode active-active;
 status-control active;
 }
 }
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [100 200];
 }
 }
 }
}

Because the interface ae2 on R1 and R2 is connected to a different CE, a different mc-ae-
id is required to create a new MC-LAG instance. Table 8-4 shows a matrix of various
MC-LAG settings required for R1 and R2 considering there are two CE nodes, S1 and S2.

Table 8-4. MC-LAG Case Study: Data Center 2 MC-AE Values.

CE PE Interface MC-AE Chassis ID Mode Status Control

S1 R1 ae1 1 0 active-active active

S1 R2 ae1 1 1 active-active standby

S2 R1 ae2 2 0 active-active active

S2 R2 ae2 2 1 active-active standby

Now that the MC-LAG interfaces are configured and in place, let’s verify that they’re
up and operational. There are a couple of ways to verify. The first method it to use the
show interfaces mc-ae command to check each of the MC-LAG interfaces:

{master}
dhanks@R1-RE0>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae1.0
 Topology Type : bridge
 Local State : up

Case Study | 703

www.it-ebooks.info

http://www.it-ebooks.info/

 Peer State : up
 Peer Ip/MCP/State : 10.8.0.1 ae0.0 up

 Member Link : ae2
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae2.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : 10.8.0.1 ae0.0 up

The output of the show interfaces mc-ae shows the status of each MC-LAG interface.
As expected, the local and peer status is active with a state of up. The most important
thing to verify when using an active-active mode is the MCP state; in this output, it’s
showing the peer IP address of 10.8.0.1, the correct MCP interface of ae0.0, and a state
of up.

The second method is to view the status of the IEEE 802.3ad logical interfaces with
show lacp interfaces command for the MC-LAG interface ae1 on R1:

{master}
dhanks@R1-RE0>show lacp interfaces ae1

Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/2/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/2/0 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/2/0 Current Fast periodic Collecting distributing

Now let’s do this again for R2:

{master}
dhanks@R2-RE0>show lacp interfaces ae1
Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/3/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/3/0 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/3/0 Current Fast periodic Collecting distributing

The Mux State of Collecting distributing indicates that IEEE 802.3ad has negotiated
properly and that the logical interfaces are up. Extending the same method of verifica-
tion to the CE, it’s expected that S1 should have a similar IEEE 802.3ad state:

{master:0}
dhanks@S1-RE0>show lacp interfaces
Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-0/0/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/0 Partner No No Yes Yes Yes Yes Fast Active

704 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 xe-0/0/2 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/2 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-0/0/0 Current Fast periodic Collecting distributing
 xe-0/0/2 Current Fast periodic Collecting distributing

The CE node S1 shows the logical interface ae1 in the same IEEE 802.3ad state as R1
and R2. Because of the active-active MC-LAG mode, S1 shows both child interfaces
xe-0/0/0 and xe-0/0/2 as Collecting distributing. Ethernet frames will be sent to both
interfaces according to the hashing characteristics of the switch. In the next example
with R3 and R4, the MC-LAG will be in an active-standby state and one of the CE links
will be in an Attached state; this will force Ethernet frames to egress only the active link
of the IEEE 802.3ad bundle.

With such an exhaustive review of the R1 and R2 configurations, there’s no
need to repeat the same for R3 and R4. Instead let’s focus on the differences of R3 and R4:

• R3 and R4 will use a MC-LAG mode of active-standby.

• The VLAN IDs will be 300 and 400.

Table 8-5. MC-LAG Case Study: Data Center 2 MC-AE Values.

CE PE Interface MC-AE Chassis ID Mode Status Control

S3 R3 ae1 1 0 active-standby active

S3 R4 ae1 1 1 active-standby standby

S4 R3 ae2 2 0 active-standby active

S4 R4 ae2 2 1 active-standby standby

The good thing about using a completely different pair of PE routers is that you can
recycle the MC-AE numbers. Notice that the MC-AE numbers are exactly the same
from the previous configuration of R1 and R2. The only difference is the MC-LAG mode
is now active-standby. Let’s take a look at the interface ae1 configuration on R3:

interfaces {
 ae1 {
 aggregated-ether-options {
 lacp {
 active;
 periodic fast;
 system-id 00:00:00:00:00:02;
 admin-key 2;
 }
 mc-ae {
 mc-ae-id 1;
 redundancy-group 1;
 chassis-id 0;
 mode active-standby;
 status-control active;
 }
 }

R3 and R4.

Case Study | 705

www.it-ebooks.info

http://www.it-ebooks.info/

 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list [300 400];
 }
 }
 }
}

There are some other operational differences such as the lacp system-id, admin-key
and vlan-id-list, but the real change is putting the R3 and R4 pair into a MC-LAG
mode of active-standby.

Using the same MC-LAG verification commands as before, let’s inspect the state of the
MC-AE interfaces on R3:

dhanks@R3>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : standby
 Peer State : up
 Logical Interface : ae1.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : N/A

 Member Link : ae2
 Current State Machine's State: mcae active state
 Local Status : active
 Local State : up
 Peer Status : standby
 Peer State : up
 Logical Interface : ae2.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : N/A

Both MC-AE interfaces ae1 and ae2 are up and active from the perspective of R3. The
big difference is the lack of MCP state due to the active-standby mode. Another artifact
of the active-standby mode is Peer Status of standby. When verifying the MC-AE
status from the point of view of the active PE router, the Peer Status should always be
standby. Thus the opposite behavior should be present on R4:

dhanks@R4>show interfaces mc-ae
 Member Link : ae1
 Current State Machine's State: mcae standby state
 Local Status : standby
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae1.0

706 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : N/A

 Member Link : ae2
 Current State Machine's State: mcae standby state
 Local Status : standby
 Local State : up
 Peer Status : active
 Peer State : up
 Logical Interface : ae2.0
 Topology Type : bridge
 Local State : up
 Peer State : up
 Peer Ip/MCP/State : N/A

Just as suspected. R4 shows the MC-AE interfaces ae1 and ae2 with a Local Status of
standby with a Peer Status of active.

Given that R3 is active and R4 is standby, it’s logical to assume that only one of the child
links from the point of view of S3 would be capable of forwarding traffic. This can be
easily verified with show lacp interfaces ae1:

{master:0}
dhanks@S3>show lacp interfaces ae1
Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-0/1/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/1/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-0/1/1 Actor No No No No Yes Yes Fast Active
 xe-0/1/1 Partner No No No No No Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-0/1/0 Current Fast periodic Collecting distributing
 xe-0/1/1 Current Fast periodic Attached

Recall that in an active-standby MC-LAG configuration, one of the child links in an
IEEE 802.3ad bundle has a Mux State of Attached, which signals the CE not to forward
traffic on that particular interface. In the example output from S3, it’s apparent that
interface xe-0/1/1 is connected to the MC-LAG standby node R4.

Connectivity Verification
At this point, the case study topology has been constructed and the MC-LAG compo-
nents have been verified. Now would be a good time to create a baseline and verify
connectivity throughout the topology. A simple but effective method to test connec-
tivity is using the ping command sourced and destined to different CE devices. For
example, to test connectivity within Data Center 1, the ping would be sourced from
S1 (192.0.2.4) and destined to S2 (192.0.2.5). Another example is to test connectivity
from Data Center 1 to Data Center 2; the ping would be sourced from S1 (192.0.2.4)

Case Study | 707

www.it-ebooks.info

http://www.it-ebooks.info/

and destined to S4 (192.0.2.133). Let’s take a closer look at intradata center and inter-
data center traffic flows.

Intradata Center Verification

The first test will source ping traffic from S1 and have a destination of S2. This will keep
the traffic within the same broadcast domain and data center. There are a few things
to keep in mind before starting the test:

• Data Center 1 uses an active-active MC-LAG configuration.

• S1 has two forwarding paths from the point of view of interface ae1: one link goes
to R1, whereas the other goes to R2.

• R1 and R2 will use ICCP to facilitate MAC address learning.

Armed with this information, it’s logical to assume that S1 will hash all egress traffic
and it will be split uniformly between R1 and R2. Figure 8-20 illustrates the two possible
paths for frames egressing S1: the frame could be transmitted to either R1 or R2. From
the point of view of MC-LAG, each operation is a per-hop behavior; there’s no local
bias. For example, if R1 received an Ethernet frame from S1, R1 will bridge the frame
according to its local forwarding table. Likewise, if R2 received an Ethernet frame from
S1, R2 will bridge the frame according to its local forwarding table.

Figure 8-20. MC-LAG Case Study: Intradata Center Packet Paths.

708 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s begin the test on S1 and initiate a ping destined to S2. To keep things simple, a
ping count of five will be used along with the rapid option:

{master:0}
dhanks@S1-RE0>ping 192.0.2.5 count 5 rapid
PING 192.0.2.5 (192.0.2.5): 56 data bytes
!!!!!
--- 192.0.2.5 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.399/2.476/6.034/1.790 ms

Obviously, the ping was successful, but the more interesting question is how did R1
and R2 respond? Let’s investigate each step of the way starting with S1 and moving all
the way to S2.

When sourcing a ping from S1, it will use the system default MAC address as the source.
Let’s investigate and find this value:

{master:0}
dhanks@S1-RE0>show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 5c:5e:ab:6c:da:80
 Public count 64

S1 will use the source MAC address of 5c:5e:ab:6c:da:80. Let’s investigate and see what
the destination MAC address of S2 (192.0.2.5) is:

dhanks@S1-RE0>show arp
MAC Address Address Name Interface Flags
ec:9e:cd:04:d5:d2 172.19.90.53 172.19.90.53 me0.0 none
00:10:db:c6:a7:ad 172.19.91.254 172.19.91.254 me0.0 none
00:00:5e:00:01:00 192.0.2.1 192.0.2.1 vlan.100 none
00:00:5e:00:01:00 192.0.2.2 192.0.2.2 vlan.100 none
00:00:5e:00:01:00 192.0.2.3 192.0.2.3 vlan.100 none
2c:6b:f5:38:de:c0 192.0.2.5 192.0.2.5 vlan.100 none
Total entries: 6

S1 believes that the MAC address for 192.0.2.5 is 2c:6b:f5:38:de:c0. Let’s verify the
system default MAC address for S2:

dhanks@SW2-RE0>show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 2c:6b:f5:38:de:c0
 Public count 64

Cross-checking has verified the source and destination MAC addresses of S1 and S2.

• S1 MAC address is 5c:5e:ab:6c:da:80.

• S2 MAC address is 2c:6b:f5:38:de:c0.

Armed with this data, let’s see how the per-hop behavior is working from the perspec-
tive of R1. The best method is to look at the MAC address table and see which MAC
address were learned locally and remotely:

Case Study | 709

www.it-ebooks.info

http://www.it-ebooks.info/

1 {master}
2 dhanks@R1-RE0>show bridge mac-table
3
4 MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
5 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)
6
7 Routing instance : default-switch
8 Bridging domain : VLAN100, VLAN : 100
9 MAC MAC Logical
10 address flags interface
11 2c:6b:f5:38:de:c0 DR ae2.0
12 2c:6b:f5:38:de:c2 DR ae2.0
13 5c:5e:ab:6c:da:80 DL ae1.0
14
15 MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
16 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

From the perspective of R1, line 11 indicates that the destination MAC address of 2c:
6b:f5:38:de:c0 was learned remotely. Line 13 indicates that the source MAC address
of 5c:5e:ab:6c:da:80 was learned locally.

Let’s view the same MAC table, but from the perspective of R2:

1 {master}
2 dhanks@R2-RE0>show bridge mac-table
3
4 MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
5 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)
6
7 Routing instance : default-switch
8 Bridging domain : VLAN100, VLAN : 100
9 MAC MAC Logical
10 address flags interface
11 2c:6b:f5:38:de:c0 DL ae2.0
12 2c:6b:f5:38:de:c2 DL ae2.0
13 5c:5e:ab:6c:da:80 DR ae1.0
14
15 MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
16 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

From the perspective of R2, line 11 indicates that the destination MAC address of 2c:
6b:f5:38:de:c0 was learned locally. This makes sense as S2 is directly attached to R2.
Line 13 indicates that the source MAC address of 5c:5e:ab:6c:da:80 was learned re-
motely. In summary, the MAC learning of R1 and R2 are perfectly asymmetric.

To further investigate and confirm the remote MAC learning, let’s take a look at what
ICCP is reporting for MAC learning. Let’s start with R1:

{master}
dhanks@R1-RE0>show l2-learning redundancy-groups remote-macs

Redundancy Group ID : 1 Flags : Local Connect,Remote Connect

Service-id Peer-Addr VLAN MAC MCAE-ID Subunit Opcode Flags
Status

710 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

1 10.8.0.1 100 2c:6b:f5:38:de:c0 2 0 1 0 Installed
1 10.8.0.1 100 2c:6b:f5:38:de:c2 2 0 1 0
Installed

This confirms that the MAC address 2c:6b:f5:38:de:c0 was learned via ICCP from R2
and showing as Installed on R1.

Now let’s confirm the remote MAC learning from the perspective of R2:

{master}
dhanks@R2-RE0>show l2-learning redundancy-groups remote-macs

Redundancy Group ID : 1 Flags : Local Connect,Remote Connect

Service-id Peer-Addr VLAN MAC MCAE-ID Subunit Opcode Flags
Status
1 10.8.0.0 100 5c:5e:ab:6c:da:80 1 0 1 0
Installed

Just as suspected. The MAC address 5c:5e:ab:6c:da:80 was learned via ICCP from R1
and shows as Installed on R2.

Figure 8-21. MC-LAG Case Study: Intradata Center Packet Flow Test Results.

As shown in Figure 8-21, this evidence indicates the following chain of events:

• R1 installed the MAC address 5c:5e:ab:6c:da:80 via ICCP to R2.

• R2 installed the MAC address 2c:6b:f5:38:de:c0 via ICCP to R1.

• S1 hashed the ICMP traffic destined to S2 via R1.

• R1 received an Ethernet frame destined to 2c:6b:f5:38:de:c0. This MAC address
exists in the forwarding table because it was learned via ICCP from R2.

Case Study | 711

www.it-ebooks.info

http://www.it-ebooks.info/

• R1 bridges the Ethernet frame destined to 2c:6b:f5:38:de:c0 to R2.

• R2 receives the Ethernet frame destined to 2c:6b:f5:38:de:c0. This MAC address
exists in the forwarding table because it was learned locally from S2.

• R2 bridges the Ethernet frame destined to 2c:6b:f5:38:de:c0 to S2.

• S2 receives the Ethernet frame.

Although it’s possible for S1 to hash Ethernet frames to R2, this example illustrates that
the hashing function of S1 decided to only use R1 during the ping test. With a more
diverse set of flows, the hashing function on S1 would have more data to work with
and would thus ultimately have uniform traffic distribution between R1 and R2.

Interdata Center Verification

The final piece of verification is testing the interdata center connectivity. This scenario
will require the packet to be sourced from a CE in Data Center 1 and be destined to a
CE in Data Center 2. This creates an interesting test case as the packet can take different
paths at different sections in the topology based on hashing algorithms, as illustrated
in Figure 8-22.

Figure 8-22. MC-LAG Case Study: Interdata Center Possible Packet Flows.

In this specific test case, traffic will be sourced from S1 (192.0.2.4) and destined to S4
(192.0.2.133). Having the source and destination on opposite ends of the topology and
diagonally opposed creates an interesting packet flow. Recall that MC-LAG on R3 and
R4 are configured for active-standby. Because in this example the destination is S4, it
creates an interesting bifurcation between R3 and R4. If R3 receives an Ethernet frame
destined to S4, it’s able to forward the frame directly to S4. However, if R4 receives an

712 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Ethernet frame destined to S4—because of the nature of active-standby MC-LAG—
R4 will have to forward the frame to R3, because R4’s link to S4 is in standby. Once R4
forwards the frame to R3, it can then be forwarded to its final destination of S4.

Let’s begin the test case and execute the ping from S1. Just like the previous intradata
center test, the rapid option will be used with a count of five:

master:0}
dhanks@S1-RE0>ping source 192.0.2.4 192.0.2.133 count 5 rapid
PING 192.0.2.133 (192.0.2.133): 56 data bytes
!!!!!
--- 192.0.2.133 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.175/2.255/3.436/0.956 ms

No surprise that the ping worked. Let’s begin to break it down. Because the destination
address of 192.0.2.133 is on a different subnet than the source address of 192.0.2.4, S1
will have to route the traffic. Let’s take a look at the RIB:

{master:0}
dhanks@S1-RE0>show route 192.0.2.133

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.0.2.128/26 *[Static/5] 00:53:52
 > to 192.0.2.1 via vlan.100

There’s a static route 192.0.2.128/26 that points to the next-hop of 192.0.2.1. Let’s
find the MAC address and egress interface of 192.0.2.1:

1 {master:0}
2 dhanks@S1-RE0>show arp
3 MAC Address Address Name Interface Flags
4 ec:9e:cd:04:d5:d2 172.19.90.53 172.19.90.53 me0.0 none
5 00:10:db:c6:a7:ad 172.19.91.254 172.19.91.254 me0.0 none
6 00:00:5e:00:01:00 192.0.2.1 192.0.2.1 vlan.100 none
7 00:00:5e:00:01:00 192.0.2.2 192.0.2.2 vlan.100 none
8 00:00:5e:00:01:00 192.0.2.3 192.0.2.3 vlan.100 none
9 2c:6b:f5:38:de:c0 192.0.2.5 192.0.2.5 vlan.100 none
10 Total entries: 6

As shown on line 6, the MAC address for 192.0.2.1 is 00:00:5e:00:01:00. Now let’s
find which interface will be used for egress:

1 {master:0}
2 dhanks@S1-RE0>show ethernet-switching table
3 Ethernet-switching table: 6 entries, 4 learned
4 VLAN MAC address Type Age Interfaces
5 vlan_100 * Flood - All-members
6 vlan_100 00:00:5e:00:01:00 Learn 0 ae1.0
7 vlan_100 00:1f:12:b8:8f:f0 Learn 0 ae1.0
8 vlan_100 2c:6b:f5:38:de:c0 Learn 3:27 ae1.0
9 vlan_100 2c:6b:f5:38:de:c2 Learn 0 ae1.0
10 vlan_100 5c:5e:ab:6c:da:80 Static - Router

Case Study | 713

www.it-ebooks.info

http://www.it-ebooks.info/

Again, line 6 shows that the egress interface for Ethernet frames destined to 00:00:5e:
00:01:00 will egress interface ae1.0. Recall that interface ae1 on S1 has two member
links; one link is connected to R1, while the other link is connected to R2.

{master:0}
dhanks@S1-RE0>show lacp interfaces
Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-0/0/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-0/0/2 Actor No No Yes Yes Yes Yes Fast Active
 xe-0/0/2 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-0/0/0 Current Fast periodic Collecting distributing
 xe-0/0/2 Current Fast periodic Collecting distributing

Without being able to predict if the ping traffic was destined to R1 or R2, let’s use the
traceroute command to see which routers are between S1 and S4:

{master:0}
dhanks@S1-RE0>traceroute source 192.0.2.4 192.0.2.133
traceroute to 192.0.2.133 (192.0.2.133) from 192.0.2.4, 30 hops max, 40 byte packets
 1 192.0.2.3 (192.0.2.3) 3.841 ms 4.931 ms 0.678 ms
 2 10.8.0.3 (10.8.0.3) 1.417 ms 7.274 ms 0.737 ms
 3 192.0.2.133 (192.0.2.133) 1.705 ms 1.486 ms 1.493 ms

Using the traceroute test, it’s evident that the path used is S1 → R2 → R4 → S4. However,
looks can be deceiving. Let’s continue investigating the path of traffic flow from S1 to S4.

Assuming that traffic from S1 was sent to R2, let’s view the RIB of R2 to find the next-hop:

{master}
dhanks@R2-RE0>show route 192.0.2.133

inet.0: 22 destinations, 22 routes (22 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.0.2.128/26 *[IS-IS/18] 00:56:34, metric 73
 > to 10.8.0.3 via ae3.0

Recall that the 192.0.2.128/26 network is advertised by both R3 and R4 and that the
shortest path to 192.0.2.128/26 is via 10.8.0.3 to R4. Let’s move to R4 and look at the
MAC address table, but first the MAC address of 192.0.2.133 must be found:

{master:0}
dhanks@S4>show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 00:19:e2:57:b6:40
 Public count 128

Recall that the traceroute indicated R4 was the last router before arriving at the final
destination of 192.0.2.133. Now that the MAC address of S4 has been identified, let’s
take a look at the MAC table of R4:

dhanks@R4>show bridge mac-table 00:19:e2:57:b6:40

714 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : VLAN300, VLAN : 300
 MAC MAC Logical
 address flags interface
 00:19:e2:57:b6:40 D ae0.0

Now that’s interesting. According to the previous traceroute, the path from S1 to S4
was S1 → R2 → R4 → S4. But clearly through investigation and verification, the path was
actually S1 → R2 → R4 → R3 → S4. Recall that R4’s link to S4 is in standby mode and cannot
be used for forwarding:

dhanks@R4>show lacp interfaces ae2
Aggregated interface: ae2
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/0/1 Actor No No No No No Yes Fast Active
 xe-2/0/1 Partner No No No No Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/0/1 Current Fast periodic Waiting

The interface xe-2/0/1 on R4 is in a Mux State of Waiting; this state indicates that the
interface xe-2/0/1 isn’t available to forward traffic. Because the interface xe-2/0/1 isn’t
available to forward traffic, the only other option is to use the link between R3 and R4.
In this example, R4 must use the interface ae0.0 to forward Ethernet frames destined
to 00:19:e2:57:b6:40. The interface ae0.0 on R4 is directly connected to R3. Let’s take
a look at the MAC table on R3 to find the forwarding path for 00:19:e2:57:b6:40:

dhanks@R3>show bridge mac-table 00:19:e2:57:b6:40

MAC flags (S -static MAC, D -dynamic MAC, L -locally learned
 SE -Statistics enabled, NM -Non configured MAC, R -Remote PE MAC)

Routing instance : default-switch
 Bridging domain : VLAN300, VLAN : 300
 MAC MAC Logical
 address flags interface
 00:19:e2:57:b6:40 D ae2.0

R3 has an entry for 00:19:e2:57:b6:40 that points to the ae2.0 interface; this interface
is directly connected to S4 and is able to successfully deliver the Ethernet frame. This
concludes the verification and investigation of sourcing a ping from S1 to S4. At first
glance, one would assume that the path would be S1 → R2 → R4 → S4, but with careful
inspection it was determined that the actual traffic path was S1 → R2 → R4 → R3 → S4.
This is due to R4 being in standby mode and having to use R3 to bridge Ethernet frames
destined to the CE.

Case Study | 715

www.it-ebooks.info

http://www.it-ebooks.info/

Case Study Summary
The MC-LAG case study is an interesting journey. It starts out with a basic topology,
but quickly builds multiple facets of MC-LAG. R1 and R2 were configured as active-
active, whereas R3 and R4 were configured as active-standby. This creates an interest-
ing topology as packets move through the network. As demonstrated in the interdata
center verification, things aren’t always what they seem.

As you think about implementing MC-LAG in your network, consider the details of
this case study. What problems will MC-LAG solve? What MC-LAG is more suited to
your network?

Summary
MC-LAG is a simple but yet effective feature that can be used to increase the perfor-
mance and resiliency in your network. You’re able to choose between an active-
active or active-standby topology that best fits your use case. For example, when
creating full mesh topology of IEEE 802.1Q links between different tiers of a network,
it would make sense to use an active-active topology to fully utilize each of the links
and also provide resiliency during a failure scenario.

ICCP is the heart and soul of MC-LAG; it leverages existing and well-understood tech-
nologies such as TCP/IP and BFD, which make the configuration and troubleshooting
very easy for new users. ICCP serves as a very simple and extendable protocol that keeps
track of state changes, configuration changes, and signal information between routers.

One of the most common use cases for MC-LAG is to dual-home CE devices. This
comes in the form of top-of-rack switches or providing node redundancy for customer
routers in a WAN environment. The benefits of MC-LAG are:

• No spanning tree is required; MC-LAG has built-in features in the PFE to detect
and prevent Layer 2 loops.

• The CE implementation is transparent and only requires IEEE 802.3ad.

• The PE implementation of MC-LAG doesn’t require a reboot and is less disruptive
to the network.

• The design of MC-LAG allows each PE to operate independently from the other.
In the event of a misconfiguration of a PE, the error would be isolated to that
particular PE router and not impact the other PE. This inherently provides an ad-
ditional level of high availability.

The design of MC-LAG inherently forces a per-hop behavior in a network. The advan-
tage is that you are able to view and troubleshoot problems at every hop in a packet’s
journey. For example, if you are trying to determine which interface a MC-LAG router
will use to forward an Ethernet frame, you can use standard tools such as viewing the
forwarding table of the router.

716 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter Review Questions
1. What’s the maximum number of PE routers that can participate in MC-LAG?

a. 1

b. 2

c. 3

d. 4

2. Can active-active MC-LAG be used with DPC line cards?

a. Yes

b. No

3. Does the service-id have to match between PE routers?

a. Yes

b. No

4. Does the chassis-id have to match between PE routers?

a. Yes

b. No

5. What’s the purpose of mc-ae-id?

a. A unique identifier to partition different MC-LAG interfaces

b. A unique identifier to group together interfaces across different PE routers to
form a single logical interface facing towards the CE

c. A unique identifier for each physical interface

d. A unique identifier for each routing instance

6. What is a redundancy-group?

a. A collection of MC-LAG interfaces

b. Serves as a broadcast medium for applications between PE routers

c. Provides physical interface redundancy

d. Used by ICCP to update MAC addresses

7. Which MC-LAG mode requires an ICL?

a. active-active

b. active-standby

8. How does MC-LAG active-standby influence how the CE forwards traffic?

a. Administratively disables one of the interfaces

b. Physically shuts down one of the interfaces

c. Removes one of the interfaces from the LACP bundle

d. Places one of the interfaces of the CE into a Mux State of “Attached”

Chapter Review Questions | 717

www.it-ebooks.info

http://www.it-ebooks.info/

9. Which feature provides more routing engine scale?

a. MC-LAG

b. MX-VC

10. What IFFs are supported on MC-LAG interfaces (as of Junos 11.4)?

a. inet

b. bridge

c. vpls

d. ccc

Chapter Review Answers
1. Answer: B. As of Junos 11.4, only two PE routers can participate in MC-LAG.

2. Answer: B. When using MC-LAG in active-active mode, you must use the Trio-
based MPC line cards.

3. Answer: A. Recall that the service-id is used to uniquely identify routing instances
across PE routers when forming a MC-LAG instance. Although as of Junos 11.4,
MC-LAG d doesn’t support routing instances; the service-id must match between
both PE routers under [switch-options service-id].

4. Answer: B. The chassis-id is used to uniquely identify each PE router when
forming a MC-LAG instance. Each PE router needs a different chassis-id.

5. Answer: A,B. The mc-ae-id has two purposes: glue together MC-LAG interfaces
across different PE routers and uniquely identify different logical MC-LAG inter-
faces. For example, if CE1 was connected to PE1:xe-0/0/0 and PE2:xe-0/0/0, the
mc-ae-id would be 1. If CE2 was connected to PE1:xe-0/0/1 and PE2:xe-0/0/1, the
mc-ae-id would be 2.

6. Answer: A,B,D. Redundancy groups are a collection of MC-AE IDs that share the
same VLAN IDs. Redundancy groups act as a broadcast medium between PE rout-
ers so that application messages are concise and efficient. In this example, the
application would be MAC address updates.

7. Answer: A. Only MC-LAG in active-active mode requires an ICL. The ICL is
used as a Layer 2 link between the two PE routers so that as frames arrive from the
CE, both the PE routers can handle the frames efficiently.

8. Answer: D. The MC-LAG node that’s currently in the state of standby will signal
to the CE to place its member link in the Mux State of Attached. This will prevent
the CE from forwarding frames to the standby link.

9. Answer: A. Because MC-LAG requires a control plane per chassis, it will inherently
offer more scale per chassis. On the other hand, MX-VC creates a single logical
control plane and the scale per chassis is reduced.

718 | Chapter 8: Multi-Chassis Link Aggregation

www.it-ebooks.info

http://www.it-ebooks.info/

10. Answer: B,C. As of Junos 11.4, only the bridge and VPLS interface families are
supported. CCC is supported, but only as an encapsulation type. Recall that family
ccc is for LSP stitching.

Chapter Review Answers | 719

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Junos High Availability on MX Routers

This chapter covers Junos software high-availability (HA) features supported on MX
routers. These HA features serve to lessen, if not negate, the impacts of software or
routing engine (RE) faults that would otherwise disrupt network operators and poten-
tial impact revenue.

The topics discussed in this chapter include:

• Junos HA feature Overview

• Graceful Routing Engine Switchover

• Graceful Restart

• Nonstop Routing and Nonstop Bridging

• In-Service Software Upgrades

• ISSU demonstration

Junos High-Availability Feature Overview
Numerous HA features have been added to Junos software in the 13 years since its first
commercial release. These enhancements were in keeping with the ever more critical
role that networks play in the infrastructure of modern society. As competition in-
creased in the networking industry, both Enterprise and Service Providers demanded
HA features so that they, in turn, could offer premium services that included network
reliability as a critical component of their Service Level Agreements (SLAs).

Gone are the days of hit-and-miss network availability, whether caused by failing hard-
ware or faulty software; people just can’t get their jobs done without computers, and
for most people, a computer these days is only as useful as its network connection. This
is the era of “five nines” reliability and achieving that goal on a yearly basis can be
demanding. When luck is simply not enough, it’s good to know that MX routers have
inherited the complete suite of field-proven Junos HA features, which, when combined
with sound network design principals, enable HA.

721

www.it-ebooks.info

http://www.it-ebooks.info/

This chapter starts with a brief overview of the HA features available on all MX routers;
subsequent sections will detail the operation, configuration, and usage of these features.

Graceful Routing Engine Switchover
Graceful Routing Engine Switchover (GRES) is the foundation upon which most
other Junos HA features are stacked. The feature is only supported on platforms
that have support for dual REs. Here, the term graceful refers to the ability to
support a change in RE mastership without forcing a reboot of the PFE compo-
nents. Without GRES, the new master RE reboots the various PFE components to
ensure it has consistent PFE state. A PFE reboot forces disruptions to the data
plane, a hit that can last several minutes while the component reboots and is then
repopulated with current routing state.

Graceful Restart
Graceful Restart (GR) is a term used to describe protocol enhancements designed
to allow continued dataplane forwarding in the face of a routing fault. GR requires
a stable network topology (for reasons described in the following), requires pro-
tocol modifications, and expects neighboring routers to be aware of the restart and
to assist the restarting router back into full operation. As a result, GR is not trans-
parent and is losing favor to Nonstop Routing. Despite these shortcomings, it’s
common to see GR on platforms with a single RE as GR is the only HA feature that
does not rely on GRES.

Nonstop Routing
Nonstop Routing (NSR) is the preferred method for providing hitless RE switch-
over. NSR is a completely internal solution, which means it requires no protocol
extensions or interactions from neighboring nodes. When all goes to the NSR plan,
RE mastership switches with no dataplane hit or externally visible protocol reset;
to the rest of the network, everything just keeps working as before the failover.

Because GR requires external assistance and protocol modifications, whereas NSR
does not, the two solutions are somewhat diametrically opposed. This means you
must choose either GR or NSR as you cannot configure full implementations of
both simultaneously. It’s no surprise when one considers that GR announces the
control plane reset and asks its peers for help in ramping back up, while NSR seeks
to hide such events from the rest of the world, that it simply makes no sense to try
and do both at the same time!

Nonstop Bridging
Nonstop Bridging (NSB) adds hitless failover to Layer 2 functions such as MAC
learning and to Layer 2 control protocols like spanning tree and LLDP. Currently,
NSB is available on MX and supported EX platforms.

In-Service Software Upgrades
In-Service Software Upgrades (ISSU) is the capstone of Junos HA. The feature is
based on NSR and GRES, and is designed to allow the user to perform software
upgrades that are virtually hitless to the dataplane while being completely trans-
parent in the control plane. Unlike a NSR, a small dataplane hit (less than five

722 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

seconds) is expected during an ISSU as new software is loaded into the PFE com-
ponents during the process.

Graceful Routing Engine Switchover
As noted previously, GRES is a feature that permits Juniper routers with dual REs to
perform a switch in RE mastership without forcing a PFE reset. This permits uninter-
rupted dataplane forwarding, but unless combined with GR or NSR, does not in itself
preserve control plane or forwarding state.

The foundation of GRES is kernel synchronization between the master and backup
routing engines using Inter-Process Calls (IPC). Any updates to kernel state that occur
on the master RE, for example to reflect a changed interface state or the installation of
a new next-hop, are replicated to the backup RE as soon as they occur and before
pushing the updates down into other parts of the system, for example, to the FPCs. If
the kernel on the master RE stops operating, experiences a hardware failure, a config-
ured process is determined to be thrashing, or the administrator initiates a manual
switchover, mastership switches to the backup RE.

Performing a switchover before the system has synchronized leads to an all-bets-off
situation. Those PFE components that are synchronized are not reset, while the rest of
the components are. Junos enforces a GRES holddown timer that prevents rapid back-
to-back switchovers, which seems to be all the rage in laboratory testing. The 240-
second (4-minute) timer between manually triggered GRES events is usually long
enough to allow for complete synchronization, and therefore helps to ensure a suc-
cessful GRES event. The holddown timer is not enforced for automatic GRES triggers
such as a hardware failure on the current master RE. If you see the following, it means
you need to cool your GRES jets for a bit to allow things to stabilize after an initial
reboot or after a recent mastership change:

{backup}
jnpr@R1-RE0>request chassis routing-engine master acquire no-confirm
Command aborted. Not ready for mastership switch, try after 234 secs.

The GRES Process
The GRES feature has three main components: synchronization, switchover, and re-
covery.

Synchronization

GRES begins with synchronization between the master and backup RE. By default after
a reboot, the RE in slot 0 becomes the master. You can alter this behavior, or disable a
given RE if you feel it’s suffering from a hardware malfunction or software corruption,
at the [edit chassis redundancy] hierarchy:

Graceful Routing Engine Switchover | 723

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE1# set chassis redundancy routing-engine 1 ?
Possible completions:
 backup Backup Routing Enguine
 disabled Routing Engine disabled
 master Master Routing Engine
{master}[edit]
jnpr@R1-RE1# set chassis redundancy routing-engine 1

When the BU RE boots, it starts the kernel synchronization daemon called ksyncd. The
ksyncd process registers as a peer with the master kernel and uses IPC messages to carry
routing table socket (rtsock) messages that represent current master kernel state. Syn-
chronization is considered complete when the BU RE has matching kernel state. Once
synchronized, ongoing state changes in the master kernel are first propagated to the
backup kernel before being sent to other system components. This process helps ensure
tight coupling between the master and BU kernels as consistent kernel state is critical
to the success of a GRES. Figure 9-1 shows the kernel synchronization process between
a master and BU RE.

Figure 9-1. GRES and Kernel Synchronization.

The steps in Figure 9-1 show the major GRES processing steps after a reboot.

1. The master RE starts. As noted previously, by default this is RE0 but can be altered
via configuration.

2. The various routing platform processes, such as the chassis process (chassisd),
start.

3. The Packet Forwarding Engine starts and connects to the master RE.

4. All state information is updated in the system.

724 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

5. The backup RE starts.

6. The system determines whether graceful RE switchover has been enabled.

7. The kernel synchronization process (ksyncd) synchronizes the backup RE with the
master RE.

8. After ksyncd completes the synchronization, all state information and the forward-
ing table are updated.

Routing Engine Switchover

RE switchover can occur for a variety of reasons. These include the following:

• By having the chassid process monitor for loss of keepalive messages from master
RE for 2 seconds (4 seconds on the now long-in-the-tooth M20 routers). The keep-
alive process functions to ensure that a kernel crash or RE hardware failure on the
current master is rapidly detected without need for manual intervention.

• Rebooting the current master.

• By having the chassid process on the BU RE monitor chassis FPGA mastership
state and becoming master whenever the chassis FPGA indicates there is no current
master.

• By detecting a failed hard disk or a thrashing software process, when so configured,
as neither is a default switchover trigger.

• When instructed to perform a mastership change by the operating issuing a request
chassis routing-engine switchover command. This command is the preferred
way to force a mastership change during planned maintenance windows, and for
GRES feature testing in general.

See the section on NSR for details on other methods that can be used to
induce a GRES event when testing HA features.

Upon seizing mastership, the new master’s chassisd does not restart FPCs. During the
switchover, protocol peers may detect a lack of protocol hello/keepalive messages, but
this window is normally too short to force a protocol reset; for example, BGP needs to
miss three keepalives before its hold-time expires. In addition, the trend in Junos is to
move protocol-based peer messages, such as OSPF’s hello packets, into the PFE via the
ppmd daemon, where they are generated independently of the RE. PFE-based message
generation not only improves scaling and accommodates lower hello times, but also
ensures that protocol hello messages continue to be sent through a successful GRES
event. However, despite the lack of PFE reset, protocol sessions may still be reset de-
pending on whether GR or NSR is also configured in addition to basic GRES. Stating
this again, GRES alone cannot prevent session reset, but it does provide the infrastruc-

Graceful Routing Engine Switchover | 725

www.it-ebooks.info

http://www.it-ebooks.info/

ture needed to allow GR and NSR control plane protection, as described in later sec-
tions.

After the switchover, the new master uses the BSD init process to start/restart daemons
that wish to run only when the RE is a master and the PFEs reestablish their connections
with chassisd. The chassisd process then relearns and validates PFE state as needed
by querying its peers in the PFE.

Figure 9-2 shows the result of the switchover process.

Figure 9-2. The Routing Engine Switchover Process.

The numbers in Figure 9-2 call out the primary sequence of events that occur as part
of a GRES-based RE switchover:

1. Loss of keepalives (or other stimulus) causes chassid to gracefully switch control
to the current backup RE.

2. The Packet Forwarding Engine components reconnect to the new master RE.

3. Routing platform processes that are not part of graceful RE switchover, and which
only run on a master RE, such as the routing protocol process (rpd) when NSR is
not in effect, restart.

4. Any in-flight kernel state information from the point of the switchover is replayed,
and the system state is once again made consistent. Packet forwarding and FIB
state is not altered, and traffic continues to flow as it was on the old master before
the switchover occurred.

726 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

5. When enabled, Graceful Restart (GR) protocol extensions collect and restore rout-
ing information from neighboring peer helper routers. The role of helper routers
in the GR process is covered in a later section.

What Can I Expect after a GRES?

Table 9-1 details the expected outcome for a RE switchover as a function of what mix
of HA features are, or are not, configured at the time.

Table 9-1. Expected GRES Results.

Feature Effect Notes

Redundant
RE, no HA
features

PFE reboot and the control plane reconverges
on new master

All physical interfaces are taken offline, Packet Forwarding En-
gines restart, the standby routing engine restarts the routing
protocol process (rpd), and all hardware and interfaces are
discovered by the new master RE. The switchover takes several
minutes and all of the router’s adjacencies are aware of the
physical (interface alarms) and routing (topology) change.

GRES only During the switchover, interface and kernel
information is preserved. The switchover is
faster because the Packet Forwarding En-
gines are not restarted.

The new master RE restarts the routing protocol process (rpd).
All hardware and interfaces are acquired by a process that is
similar to a warm restart. All adjacencies are aware of the router’s
change in state due to control plane reset.

GRES plus
Graceful
Restart

Traffic is not interrupted during the switch-
over. Interface and kernel information is pre-
served. Graceful restart protocol extensions
quickly collect and restore routing informa-
tion from the neighboring routers.

Neighbors are required to support graceful restart, and a wait
interval is required. The routing protocol process (rpd) restarts.
For certain protocols, a significant change in the network can
cause graceful restart to stop.

GRES plus
NSR/NSB

Traffic is not interrupted during the switch-
over. Interface, kernel, and routing protocol
information is preserved for NSR/NSB sup-
ported protocols and options.

Unsupported protocols must be refreshed using the normal re-
covery mechanisms inherent in each protocol.

The table shows that NSR, with its zero packet loss and lack of any external control
plane flap (for supported protocols), represents the best case. In the worst case, when
no HA features are enabled, you can expect a full MPC (PFE) reset, and several minutes
of outage (typically ranging from 4 to 15 minutes as a function of system scale), as the
control plane converges and forwarding state is again pushed down into the PFE after
a RE mastership change. The projected outcomes assume that the system, and the
related protocols, have all converged and completed any synchronization, as needed
for NSR, before a switchover occurs.

The outcome of a switchover that occurs while synchronization is still underway is
unpredictable, but will generally result in dataplane and possible control plane resets,
making it critical that the operator know when it’s safe to perform a switchover. Know-
ing when its “safe to switch” is a topic that’s explored in detail later in this chapter.

Graceful Routing Engine Switchover | 727

www.it-ebooks.info

http://www.it-ebooks.info/

Though not strictly required, ruining the same Junos version on both
REs is a good way to improve the odds of a successful GRES.

Configure GRES
GRES is very straightforward to configure and requires only a set chassis redundancy
graceful-switchover statement to place it into effect. Though not required, it’s rec-
ommended that you use commit synchronize whenever GRES is in effect to ensure con-
sistency between the master and backup REs to avoid inconsistent operation after a RE
switchover.

When you enable GRES, the system automatically sets the chassis redundancy keepa
live-time to 2 seconds, which is the lowest supported interval; attempting to modify
the keepalive value when GRES is in effect results in a commit fail, as shown.

jnpr@R1-RE1# show chassis
redundancy {
 ##
 ## Warning: Graceful switchover configured, cannot change the default keepalive
interval
 ##
 keepalive-time 25;
 graceful-switchover;
}

When GRES is disabled, you can set the keepalive timer to the range of 2 to 10,000
seconds, with 300 seconds being the non-GRES default. When GRES is disabled, you
can also specify whether a failover should occur when the keepalive interval times out
with the set chassis redundancy failover on-loss-of-keepalives statement.

However, simply enabling GRES results in two-second-fast keepalive along with auto-
matic failover. With the minimal GRES configuration shown, you can expect automatic
failover when a hardware or kernel fault occurs on the master RE resulting in a lack of
keepalives for two seconds:

 [edit]
jnpr@R1-RE1# show chassis
redundancy {
 graceful-switchover;
}

Note how the banner changes to reflect master or backup status once GRES is com-
mitted:

[edit]
jnpr@R1-RE1# commit
commit complete

{master}[edit]
jnpr@R1-RE1#

728 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

And, once in effect, expect complaints when you don’t use commit synchronize. Again,
it’s not mandatory with GRES, but it’s recommended as a best practice:

{master}[edit]
jnpr@R1-RE1# commit
warning: graceful-switchover is enabled, commit synchronize should be used
commit complete

{master}[edit]
jnpr@R1-RE1# commit synchronize
re1:
configuration check succeeds
re0:
commit complete
re1:
commit complete

You can avoid this nag by setting commit synchronize as a default, which is a feature
that is mandatory for NSR:

jnpr@R1-RE1# set system commit synchronize

{master}[edit]
jnpr@R1-RE1# commit
re1:
configuration check succeeds
re0:
commit complete
re1:
commit complete

GRES itself does not mandate synchronized configurations. There can
be specific reasons as to why you want to have different configurations
between the two REs. It should be obvious that pronounced differences
can impact on the relative success of a GRES event, so if you have no
specific need for a different configuration it’s best practice to use commit
synchronize to ensure the current active configuration is mirrored to the
BU RE, thus avoiding surprises at some future switchover, perhaps long
after the configuration was modified but not synchronized.

GRES Options

The GRES feature has a few configuration options that add additional failover triggers.
This section examines the various mechanisms that can trigger a GRES.

You can configure whether a switchover should occur upon detection of a disk
failure using the on-disk-failure statement at the [edit chassis redundancy fail
over] hierarchy:

jnpr@R1-RE1# set chassis redundancy failover ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups

Disk Fail.

Graceful Routing Engine Switchover | 729

www.it-ebooks.info

http://www.it-ebooks.info/

 on-disk-failure Failover on disk failure
 on-loss-of-keepalives Failover on loss of keepalive

The RE has its own configuration for actions to be taken upon a hard
disk failure. These include reboot or halt. You should not try and con-
figure both actions for the same hard disk fail. When GRES is in effect,
you should use set chassis redundancy failover on-disk-failure.
Otherwise, use the set chassis routing-engine on-disk-failure disk-
failure-action [reset | halt] statement when GRES is off. Note that
having the RE with the disk problem perform a shutdown will trigger a
GRES (if configured), given that keepalives will stop, but this method
adds delay over the more direct approach of using the set chassis
redundancy failover on-disk-failure statement.

Storage Media Failures
The failure of storage media is handled differently based on whether the primary of
alternate media fails, and where the failure occurs on the master or backup RE:

• If the primary media on the master RE fails, the master reboots, and the backup
assumes mastership. The level of service interruption is dependent on which HA
features (GRES, NSR, GR, etc.) are enabled. The old master will attempt to restart
from the alternate media, and if successful, will come back online as the backup
RE. It will not become the master unless the new master fails or a manual switch
is requested by the operator.

• If the alternate media on the master RE fails, the master will remain online and
continue to operate as master unless set chassis redundancy failover on-disk-
failure option is applied to the configuration. If this option is configured, the
backup will assume mastership, and the old master will reboot. As before, the level
of service interruption is dependent on which HA features are enabled. If the old
master reboots successfully, it will come back online as the backup RE and will
not become the master unless the new master fails or a manual switch is requested
by the operator.

• If any media on the backup RE fails, the backup RE will reboot. If it boots suc-
cessfully, it will remain the backup RE and will not become the master unless the
master fails or a manual switch is requested by the operator.

You can also configure whether a switchover should oc-
cur upon detection of thrashing software processes at the [edit system processes]
hierarchy. This configuration triggers a GRES if the related process, rpd in this case, is
found to be thrashing, which is to say the daemon has started and stopped several times
over a short interval (two or more times in approximately five seconds):

jnpr@R1-RE1# show system processes
routing failover other-routing-engine;

The effect of this setting is demonstrated by restarting the routing daemon a few times:

Process Failure Induced Switchovers.

730 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE0# run restart routing immediately
error: Routing protocols process is not running
Routing protocols process started, pid 2236

{master}[edit]
jnpr@R1-RE0# run restart routing immediately

{master}[edit]
jnpr@R1-RE0# run restart routing immediately
error: Routing protocols process is not running

On the last restart attempt, an error is returned, indicating that the RPD process is no
longer running, indicating it was not restarted due to thrashing. Also, note that after
the previous process restart the local master has switched to the BU role:

{backup}[edit]
jnpr@R1-RE0# run restart routing immediately
error: Routing protocols process is not running

Verify GRES Operation

One you configure GRES, you want to make sure that after a commit synchronize both
REs reflect either a master or BU status. In this section, the following GRES baseline is
used:

{master}[edit]
jnpr@R1-RE0# show chassis
redundancy {
 graceful-switchover;
}

Things start with confirmation of a master and BU prompt on the two routing engines.
There should never be two masters or two slaves. The prompt is confirmed to change
for RE1 at R1, which is now in a backup role.

{backup}[edit]
jnpr@R1-RE1#

Next, you confirm that the BU RE is running the kernel synchronization daemon
ksyncd:

{backup}
jnpr@R1-RE1>show system processes | match ksyncd
 5022 ?? S 0:00.15 /usr/sbin/ksyncd -N
 5034 ?? S 0:00.19 /usr/sbin/clksyncd -N

The output also shows the clksyncd daemon, responsible for precision time synchro-
nization over Ethernet to support Synchronous Ethernet and other mobile backhaul
technologies. With all looking good, the final indication that GRES is operation comes
from a show system switchover command. This command is only valid on the BU RE,
as it is the one doing all the synchronizing from the master:

{backup}
jnpr@R1-RE1>show system switchover

Graceful Routing Engine Switchover | 731

www.it-ebooks.info

http://www.it-ebooks.info/

Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

The output confirms that graceful switchover is on, that the configuration and kernel
databases are currently synchronized, and that IPC connection to the master RE kernel
is stable. This output indicates the system is ready to perform a GRES. You can get the
master’s RE view of the synchronization process with the show database-replication
command:

{master}[edit]
jnpr@R1-RE0# run show database-replication ?
Possible completions:
 statistics Show database replication statistics
 summary Show database replication summary
{master}[edit]
jnpr@R1-RE0# run show database-replication

{master}[edit]
jnpr@R1-RE0# run show database-replication summary

General:
 Graceful Restart Enabled
 Mastership Master
 Connection Up
 Database Synchronized
 Message Queue Ready

{master}[edit]
jnpr@R1-RE0# run show database-replication statistics

General:
 Dropped connections 2
 Max buffer count 3
Message received:
 Size (bytes) 10320
 Processed 162
Message sent:
 Size (bytes) 11805507
 Processed 263
Message queue:
 Queue full 0
 Max queue size 144032

Use the CLI’s restart kernel-replication command to restart the ksyncd daemon on
the current BU RE if it displays an error or is failing to complete synchronization in a
reasonable period of time, which can vary according to scale but should not exceed 10
minutes. If the condition persists, you should confirm matched software versions on
both REs, which is always a good idea when using GRES anyway.

732 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

While not strictly necessary, you always have your best chances of a
GRES (or NSR) success when you have matched software versions on
both REs. The exception is ISSU, as discussed in a later section.

If a persistent replication error is found even with matched versions, you may consider
enabling ksyncd tracing, which is currently hidden and the only known use for the
[edit system kernel-replication] hierarchy; as a hidden command, the results are
undocumented and use is suggested only under guidance from JTAC:

jnpr@R1-RE0# set system kernel-replication ?
Possible completions:
<[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 | Pipe through a command
{master}[edit]
jnpr@R1-RE0# set system kernel-replication

As a hidden command, you have to type out traceoptions in its entirety, at which point
help is again provided.

{master}[edit system kernel-replication]
jnpr@R1-RE0# set traceoptions flag ?
Possible completions:
 all Trace all events
 asp Trace ASP configuration events
 bd Trace bridge domain events
 config Trace UI events and configuration changes
 cos Trace Class of Service events
 eventhandler Trace event handler events
 firewall Trace firewall events
 ifbd Trace ifbd events
 interface Trace interface events
 ipc Trace IPC events
 monitor Trace monitor events
 nexthop Trace next-hop database events
 pfe Trace Packet Forwarding Engine events
 pic Trace PIC state events
 route Trace route events
 rtsock Trace routing socket events
 sample Trace sample events
 stp Trace spanning tree protocol events
 sysconf Trace system configurables events
{master}[edit system kernel-replication]
jnpr@R1-RE0# set traceoptions flag

A sample GRES trace file is shown, note the nondefault severity level in effect:

{master}[edit]
jnpr@R1-RE0# show system kernel-replication
traceoptions {
 level detail;
 flag stp;

Graceful Routing Engine Switchover | 733

www.it-ebooks.info

http://www.it-ebooks.info/

 flag route;
 flag pfe;
 flag interface;
 flag bd;
}

With these settings, the interfaces stanza on the master RE is deactivated:

{master}[edit]
jnpr@R1-RE0# deactivate interfaces

{master}[edit]
jnpr@R1-RE0# commit
re0:
configuration check succeeds
. . .
And the folowing ksyncd trace is observed on the BU RE:
{backup}[edit]
jnpr@R1-RE1# Feb 22 10:47:57 write: op change ksync cookie seq
 0x10016, cookie 0xc8a3fd80:
Feb 22 10:47:57 send: slave ack cookie 0xc8a409c0 seqno 0x39 flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:47:57 send: slave ack cookie 0xc8a409c0 seqno 0x3a flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:47:57 send: slave ack cookie 0xc8a409c0 seqno 0x3b flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:47:57 send: slave ack cookie 0xc8a3fd80 seqno 0x10016 flags
 0x3 cookie64 0xc8a3fd80
Feb 22 10:48:01 write: op change ksync cookie seq 0x10017, cookie
 0xc8a3fd80:
Feb 22 10:48:01 send: slave ack cookie 0xc8a409c0 seqno 0x3c flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:48:01 send: slave ack cookie 0xc8a409c0 seqno 0x3d flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:48:01 send: slave ack cookie 0xc8a409c0 seqno 0x3e flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:48:01 send: slave ack cookie 0xc8a3fd80 seqno 0x10017 flags
 0x3 cookie64 0xc8a3fd80
Feb 22 10:48:02 write: op change ksync cookie seq 0x10018, cookie
 0xc8a3fd80:
Feb 22 10:48:02 send: slave ack cookie 0xc8a409c0 seqno 0x3f flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:48:02 send: slave ack cookie 0xc8a409c0 seqno 0x40 flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:48:02 send: slave ack cookie 0xc8a409c0 seqno 0x41 flags
 0x1 cookie64 0xc8a409c0
Feb 22 10:48:02 send: slave ack cookie 0xc8a3fd80 seqno 0x10018 flags
 0x3 cookie64 0xc8a3fd80
Feb 22 10:48:03 output_queue : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q1 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q2 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q3 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q4 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q1 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q2 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q3 : 0x00000000

734 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Feb 22 10:48:03 rewrite.no_plp_Q4 : 0x00000000
Feb 22 10:48:03 IFTLV_TYPE_ID_INDEX_TUPLE :
Feb 22 10:48:03 type : 0x00000006
Feb 22 10:48:03 id : 0x0000001a
Feb 22 10:48:03 idx : 0x00000000
Feb 22 10:48:03 type : 0x00000006
Feb 22 10:48:03 id : 0x0000001b
Feb 22 10:48:03 idx : 0x00000000
Feb 22 10:48:03 type : 0x00000006
Feb 22 10:48:03 id : 0x0000001c
Feb 22 10:48:03 idx : 0x00000000
Feb 22 10:48:03 write: op change ifl irb unit 100 idx 329:
Feb 22 10:48:03 output_queue : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q1 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q2 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q3 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q4 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q1 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q2 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q3 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q4 : 0x00000000
Feb 22 10:48:03 IFTLV_TYPE_ID_INDEX_TUPLE :
Feb 22 10:48:03 type : 0x00000006
Feb 22 10:48:03 id : 0x0000001a
Feb 22 10:48:03 idx : 0x00000000
Feb 22 10:48:03 type : 0x00000006
Feb 22 10:48:03 id : 0x0000001b
Feb 22 10:48:03 idx : 0x00000000
Feb 22 10:48:03 type : 0x00000006
Feb 22 10:48:03 id : 0x0000001c
Feb 22 10:48:03 idx : 0x00000000
Feb 22 10:48:03 write: op change ifl irb unit 200 idx 330:
Feb 22 10:48:03 write op delete route prefix 224.0.0.18 nhidx 608:
Feb 22 10:48:03 output_queue : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q1 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q2 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q3 : 0x00000000
Feb 22 10:48:03 rewrite.plp_Q4 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q1 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q2 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q3 : 0x00000000
Feb 22 10:48:03 rewrite.no_plp_Q4 : 0x00000000
Feb 22 10:48:03 IFTLV_TYPE_ID_I
. . .
Feb 22 10:48:04 write op delete route prefix 120.120.35.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 send: slave ack cookie 0xc8a409c0 seqno 0x4a flags 0x1
 cookie64 0xc8a409c0
Feb 22 10:48:04 write op delete route prefix 120.120.34.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.33.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.32.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.31.0 rttype user

Graceful Routing Engine Switchover | 735

www.it-ebooks.info

http://www.it-ebooks.info/

 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.30.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.29.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.28.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.27.0 rttype user
 nhidx 1048575 nhtype indr:
Feb 22 10:48:04 write op delete route prefix 120.120.26.0 rttype user
 nhidx 1048575 nhtype indr:
. . .

Be sure to remove any tracing you have added when it’s no longer needed. At scale, the
additional burden of tracing kernel replication can lead to long delays in completing
replication.

To finish this section, we provide a quick demonstration of the net
payoff you get with GRES. Things begin with disabling of GRES at R1, where RE0 is
the current master:

{master}[edit]
jnpr@R1-RE0# delete chassis redundancy graceful-switchover

{master}[edit]
jnpr@R1-RE0# commit
re0:
configuration check succeeds
re1:
commit complete
re0:
commit complete

[edit]
jnpr@R1-RE0#

Note again how after disabling GRES, the CLI banner no longer displays a master/
backup designation.

Even when the banner does not display master or backup, you can al-
ways tell which RE is master with a show chassis hardware command,
as only the master can access chassis information. Alternatively, the
show chassis routing-engine command also displays mastership state.

With GRES off, you confirm that all FPCs are up and that a given interface used in the
test topology, in this case the xe-2/1/1 interface, is configured and operational:

jnpr@R1-RE0# run show interfaces xe-2/1/1
Physical interface: xe-2/1/1, Enabled, Physical link is Up
 Interface index: 199, SNMP ifIndex: 5516
 Link-level type: Ethernet, MTU: 1514, LAN-PHY mode, Speed: 10Gbps,
 Loopback: None, Source filtering: Disabled,
 Flow control: Enabled

GRES, Before and After.

736 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x4000
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Schedulers : 0
 Current address: 00:1f:12:b8:8d:d0, Hardware address: 00:1f:12:b8:8d:d0
. . .

[edit]
jnpr@R1-RE0# run show chassis fpc
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Empty
 1 Online 40 21 0 2048 12 13
 2 Online 38 24 0 2048 11 13

Also, at this time, you issue a show switchover on the BU RE to confirm GRES is off:

jnpr@R1-RE1# run show system switchover
Graceful switchover: Off
Peer state: Steady State

And now, you perform an Ungraceful routing engine switchover (UGRES):

[edit]
jnpr@R1-RE1# run request chassis routing-engine master acquire no-confirm
Resolving mastership...
Complete. The local routing engine becomes the master.

Immediately after the switch, you confirm that the various chassis components have
been reset; this is expected: given the lack of kernel synchronization the new master
has no alternative but to start fresh to ensure internal consistency between the control
and dataplane.

[edit]
jnpr@R1-RE1# run show chassis fpc
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Empty
 1 Present Testing
 2 Present Testing

[edit]
jnpr@R1-RE1# run show interfaces xe-2/1/1
error: device xe-2/1/1 not found

You have to admit that was most ungraceful. To show the contrast, GRES is again
enabled (recall that commit synchronize has been left in place), and the change is com-
mitted:

[edit]
jnpr@R1-RE0# set chassis redundancy graceful-switchover

[edit]
jnpr@R1-RE0# commit
re0:

Graceful Routing Engine Switchover | 737

www.it-ebooks.info

http://www.it-ebooks.info/

configuration check succeeds
re1:
commit complete
re0:
commit complete

Before performing another switchover, synchronization is confirmed on the backup RE:

[edit]
jnpr@R1-RE1# run show system switchover
Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

The synchronization state is good, so you quickly confirm PFE state as in the non-GRES
switchover case:

{master}[edit]
jnpr@R1-RE0# run show chassis fpc
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Empty
 1 Online 40 21 0 2048 12 13
 2 Online 39 23 0 2048 11 13

{master}[edit]
jnpr@R1-RE0# run show interfaces xe-2/1/1 terse
Interface Admin Link Proto Local Remote
xe-2/1/1 up up
xe-2/1/1.0 up up inet 192.168.0.2/30
 multiservice

And now, a graceful switchover is performed. The CLI timestamp function is evoked
first (not shown) to help give a sense of the time base in which the various commands
were executed:

{backup}[edit]
jnpr@R1-RE1# run request chassis routing-engine master acquire no-confirm
Feb 01 11:21:45
Resolving mastership...
Complete. The local routing engine becomes the master.

{master}[edit]
jnpr@R1-RE1# run show chassis fpc
Feb 01 11:21:56
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Empty
 1 Online Testing 27 0 2048 12 13
 2 Online Testing 27 0 2048 11 13

As expected, the new master has not reset any FPCs, though it does have to probe them
for current state such as temperature. The test interface also remains and continues to
use its preswitchover configuration. This is both due to lack of reset and because the
two REs had the same configuration as a result of using commit synchronize.

738 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE1# run show interfaces xe-2/1/1 terse
Feb 01 11:22:03
Interface Admin Link Proto Local Remote
xe-2/1/1 up up
xe-2/1/1.0 up up inet 192.168.0.2/30
 multiservice

A bit later, the chassis component state is updated in the new master:

{master}[edit]
jnpr@R1-RE1# run show chassis fpc
Feb 01 11:22:12
 Temp CPU Utilization (%) Memory Utilization (%)
Slot State (C) Total Interrupt DRAM (MB) Heap Buffer
 0 Empty
 1 Online 39 23 0 2048 12 13
 2 Online 38 29 0 2048 11 13

The results confirm a successful GRES event. While the FPCs and interfaces persisted
through the switchover, it must be stressed that none of the control plane protocols
did. Any BGP, OSPF, ISIS, LDP, STP, etc., sessions were reset and then reestablished
on the new master. Also, as Graceful Restart (GR) is not in effect, peering routers will
immediately begin removing any FIB entries that relate to the reset sessions, which
means that traffic forwarding stops. Even so, not having to wait for FPC reboot and
interface initialization means that recover will be faster than in the non GRES case.

You must run peer-to-peer periodic protocols such as BFD and LACP
in distributed mode (the default) to ensure sessions do not flap at GRES
by having their periodic hello needs handled by the ppmd process in the
PFE itself. Note that even when running in distributed mode, certain
sessions, such as OSPF, multi-hop BFD, or IPv6 link local–based pro-
tocols such as OSPF3, remain RE based in the 11.4 release, and therefore
need to run relatively long timers to ensure the sessions remain up
through a GRES event. For multi-hop BFD, the minimum interval
should be at least 2,500 ms.

GRES and Software Upgrade/Downgrades

When testing, the author routinely upgrades or downgrades both REs at the same time,
while NSR/GRES is in effect via the force and no-validate switches to the request
system software add command. However, this approach is not officially supported,
and tends to increase network disruption as both REs go offline at nearly the same time
to load the new software, leaving the router inoperable for 15 minutes or so.

If you omit the no-validate switch, a software installation aborts when GRES is found
to be in effect:

Using jservices-crypto-11.4R1.9.tgz
Hardware Database regeneration succeeded
Validating against /config/juniper.conf.gz
Chassis control process: [edit chassis redundancy]

Graceful Routing Engine Switchover | 739

www.it-ebooks.info

http://www.it-ebooks.info/

Chassis control process: 'graceful-switchover'
Chassis control process: Graceful switchover configured!
mgd: error: configuration check-out failed
Validation failed
WARNING: Current configuration not compatible with /var/home/jnpr/
 jinstall-11.4R1.9-domestic-signed.tgz

The official upgrade (or downgrade) procedure for 11.4 when GRES is in effect is doc-
umented at http://www.juniper.net/techpubs/en_US/junos11.4/information-products/
topic-collections/software-installation-and-upgrade-guide/swconfig-install.pdf#search=
%22Junos%20OS%20Installation%20and%20Upgrade%20Guide.%22.

The summary is as following:

1. Disable GRES (and NSR if enabled), commit and synchronize the changes to both
REs.

2. Upgrade (or downgrade) the current BU RE.

3. After completion, and when all appears to be OK, switch control to the former BU
RE, which becomes the new master. Note this is an ungraceful switch given that
GRES is off. There is a hit to both control and data plane as the PFE is rebooted, etc.

4. Upgrade (or downgrade) the new BU/old master.

5. After completion, and when all appears to be OK, restore the original GRES (and
potentially NSR) config with a rollback 1 on the new master RE. This puts GRES
(and NSR if so configured) back into effect and leaves the system on RE1 as the
current master.

6. If desired, you can perform a graceful switchover to make RE0 the new master. If
NSR or GR is in effect, this switchover can bit hitless to the control and dataplane,
or to just the dataplane, respectively.

GRES Summary
GRES can be used as a standalone feature on any Junos router with redundant REs. In
most cases, GRES is used as the building block for additional HA features such as GR
or NSR. The next section builds upon the GRES foundation by adding GR to provide
dataplane resiliency through a switchover.

Graceful Restart
Graceful Restart (GR) is also referred to as Nonstop Forwarding (NSF) and describes
a router’s ability to maintaining forwarding state through a protocol-level restart or
GRES event, leveraging the fact that modern routers use a separated control and data-
plane, which in turn allows decoupling such that a restart of one no longer forces the
restart of the other.

740 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.juniper.net/techpubs/en_US/junos11.4/information-products/topic-collections/software-installation-and-upgrade-guide/swconfig-install.pdf#search=%22Junos%20OS%20Installation%20and%20Upgrade%20Guide.%22
http://www.juniper.net/techpubs/en_US/junos11.4/information-products/topic-collections/software-installation-and-upgrade-guide/swconfig-install.pdf#search=%22Junos%20OS%20Installation%20and%20Upgrade%20Guide.%22
http://www.juniper.net/techpubs/en_US/junos11.4/information-products/topic-collections/software-installation-and-upgrade-guide/swconfig-install.pdf#search=%22Junos%20OS%20Installation%20and%20Upgrade%20Guide.%22
http://www.it-ebooks.info/

A protocol restart can occur due to intentional or unintentional reasons. For example,
an operator choosing to restart the routing process, rebooting the router, or upgrading
its software are examples of the former, whereas a routing process crash or hardware-
induced RE switchover fall into the latter category.

GR is not a panacea of guaranteed success, and as mentioned previously the trend is
to move to Nonstop Routing as support for the protocol you need in your network
becomes available. One upside to GR is that it can be used on routers with a single RE;
both GRES and NSR require redundant REs to work.

GR Shortcomings
The primary drawback to GR is the need for protocol extensions and helper support
in neighboring routers, and a stable network topology. If any neighbors do not support
GR, or if other changes occur in the network, GR ends up aborting and loss results in
the dataplane. Even when all goes to plan and the GR event succeeds, which means
there is zero loss in the data plane, there is still control plane flap and a subsequent
need for protocol reconvergence between the restarting router and its helpers, both of
which are avoided with NSR.

Currently, there is no GR support for Layer 2 control protocols (i.e., STP). Currently,
Layer 2 HA is available only as nonstop bridging (NSB), as discussed in a later section.
Note this restriction extends to the BFD protocol, which should not be combined with
GR, for reasons described in a later section.

Lastly, GR is predicated on the network being stable during the restart event, which
can easily be several minutes long. During this time, if any other (relevant) reconver-
gence is detected by either the restarting or helper nodes, the GR process is aborted.
This is because a loop-free topology can no longer be assumed through the restart when
topology changes are occurring. Note that in this context, relevant refers to the receipt
of a newly flooded LSA that requires processing and reflooding.

Unlike NSR, GR itself does not require that dual REs be present or that
GRES be enabled. However, GR works best with GRES to provide GR
support in the event of an RE failure.

Graceful Restart Operation: OSPF
Many protocols support GR, and each have their own specifics as to how GR is im-
plemented. However, as with most things in life, there are many general truths that
apply to all things GR. This section describes GR in the context of OSPF, but does so
in a manner that also exposes the reader to general GR terminology and working prin-
cipals that apply to all supported protocols. OSPF GR is documented in RFC 3623
“Graceful OSPF Restart,” with modern implementations also using enhanced proce-

Graceful Restart | 741

www.it-ebooks.info

http://www.it-ebooks.info/

dures defined in RFC 4812 “OSPF Restart Signaling,” as described in the following.
Figure 9-3 provides a sample topology to help ground the discussion.

Figure 9-3. Sample OSPF Network for Graceful Restarting.

The figure shows a three router network with simplified Routing and Forwarding In-
formation Bases (RIB/FIB), based on the networks and interfaces shown. While based
on OSPF, other protocols perform GR in a similar manner. Things begin with a stable
network with complete routing information in all nodes. Recall that in OSPF each node
uses a router LSA to advertise its direct links, and to identify the link type as stub or
transit (attached to a neighboring router). In addition, the OSPF hello packets sent on
multiaccess networks indicate the current DR, BDR, and list all neighbors for which
two-way communications has been seen. The figure shows the (greatly simplified)
router LSAs at the bottom, and the hello packet from R2 near the top. Recall also that
in OSPF hello packets are used by OSPF to dynamically locate other OSPF speakers,
which can then lead to adjacency formation; adjacencies are not formed to all neighbors
in OSPF, for example on a broadcast LAN where DR-Other routers only form full
adjacencies to the Designated and Backup Designated Routers (DR/BDR).

In this example, R1 is the LAN segment’s Designated Router (DR) and its neighbor R2
is the Backup DR (BDR). R2’s hello packet is listing R1 as the DR, and as a neighbor,
and the flooding of the type 1 LSAs has given all routers knowledge of the various
subnets, as shown by the RIBs/FIBs shown for each router.

Before getting all GR with-it, let’s start with some terminology and concepts.

742 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Restarting Router

The restarting router, as its name implies, is the router that undergoes some form of
protocol restart. This can be planned, as in the case of a maintenance action, or un-
planned, as a result of a software crash. The procedure can vary for each, and a suc-
cessful GR is never guaranteed.

In the case of OSPF, there is no a priori confirmation that a given neighbor is willing
to perform the helper role. Nonetheless, at restart, or if not possible, after the restart,
OSPF sends a Grace LSA to all neighbors informing them of the restart and the maxi-
mum period of time they should wait for the process to complete.

After a restart, the restarting router reforms its adjacencies but does not flood any LSAs;
instead, it uses its helpers to download it with its pre-restart RIB state. In the case of
OSPF, this means reflooding from the helper router to the restarting router the various
LSAs that make up the area’s LSDB. As a result, the restarting router receives copies of
its own LSAs (all routers have the same LSDB, which includes their own self-originated
LSAs, which also helps to ensure that new sequence numbers aren’t generated for these
LSAs) and uses them to determine which adjacencies it previously had so that it can
determine when all pre-restart adjacencies have been reformed. On multiaccess seg-
ments, the restarting router uses the hello packets sent by its helpers to determine if it
was the segment’s DR, and if so, it recovers that functionality as well.

When all adjacencies have been reformed, and no reason for an abort has been found,
GR is exited by purging the Grace LSA (restarting router refloods the Grace LSA with
age set near max-age/3,600 seconds). Only now does the restarting router use its RIB
to make any necessary updates to its FIB, which has remained frozen throughout the
restart event. At the end of the restart, successful or not, both the restarting router and
helper reflood their Router (Type 1) and Network (Type 2) LSAs, the latter being a
function of whether one or the other is the segment’s DR.

The grace-LSA is a Type 9 Opaque LSA coded with an Opaque Type of 3 and
an Opaque ID equal to 0. Opaque LSAs are used to allow OSPF to transport information
that is not directly related to routing, or in some cases, not even intended for OSPF
(i.e., a TED that’s built by OSPF but used by CSPF in support of RSVP Traffic-Engi-
neering [TE]). This grace-LSA has a link-local scope, so it travels only to the restarting
routers’ immediate adjacencies. The age of the LSA is set to 0 so that later the LSA age
can be compared to the advertised restart duration to determine when the restart time
has expired. The body of the LSA is TLV-coded, with TLVs defined for a restart reason
as well as the maximum duration. For multipoint topologies, the restarting router also
codes the IP address of the sending interface for identification purposes. Restart reasons
include 0 (unknown), 1 (software restart), 2 (software reload/upgrade) or 3 (switch to
redundant control processor).

Grace LSA.

Graceful Restart | 743

www.it-ebooks.info

http://www.it-ebooks.info/

Helper Router

In the case of OSPF, the role of the helper router is rather straightforward. That is,
unless a reason for an abort is found, it continues to advertise LSA/hellos indicating an
ongoing adjacency with the restarting router as if nothing ever happened.

This behavior is the heart and soul of OSPF GR. In normal operation, the adjacency
will be lost during the restart and the neighbor will immediately remove the related
routes from its FIB while flooding updated Type 1/2 LSAs reporting the loss of the
restarting router. As a result, all other routers in the area also remove the restarting
router from their SPF tree and rerun their SPF calculation in an attempt to route around
the restarting router. Instead, when all goes to GR-plan, no FIB updates are made in
the helping or restarting routers, and no LSA updates are flooded by the helping routers,
which means the rest of the network continues to forward as it did before the restart,
hence the term Nonstop Forwarding (NSF).

In most cases, helper mode and graceful restart are independent. You can disable
graceful restart in the configuration but still allow the router to cooperate with a neigh-
bor attempting to restart gracefully, or you can enable GR and then on a protocol basis
chose to disable restart or helper mode as desired.

Aborting GR

GR can be aborted for many reasons. In all cases, the result is the same as if GR were
not in effect, which is to say the restarting router goes missing from the OSPF database,
LSAs are flooded through the area to report the change, FIBs are modified, and packets
destined to the restarting router’s direct connections begin hitting the floor. It’s a
bloody mess, but this is Earth, and as they say, “feces transpires.”

Combining BFD with GR is a great way to have GR abort, which in turn
results in disruption to the data plane. You can combine BFD with NSR
(or basic GRES) as described later.

In the case of OSPF, it’s better to abort and route around the restarting node than to
make assumptions that could lead to a forwarding loop. As such, any changes that are
relevant to the topology during the restart event (i.e., a new LSA that needs to be flooded
to the restarting router but cannot be because it’s restarting at the moment) are all just
cause for GR termination. Other reasons include a router that does not support or has
been configured not to support the GR helper mode, or the expiration of the advertised
grace period before the Grace LSA is purged by the restarting router.

A Graceful Restart, at Last

Having discussed all the theory, we can now revisit our sample OSPF network, now in
the context of an OSPF restart event. The reader is warned this will be anticlimatic; an
updated figure is provided in Figure 9-4.

744 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-4. An OSPF GR Event.

If you get the feeling that not much changed, then you get the point of GR. The figure
shows that R1, after sending its grace-LSA, has gone missing in the control plane. No
hellos are being sent from R1 to R2. Yet R2, being the good helper that it is, has taken
note of the grace-LSA, and for the remainder of the specified duration continues to send
hellos listing R1 as a neighbor and DR; specifically, it does not flood any LSA reporting
any change at the restarting router, so to remote router R3 nothing has changed at all.
Note also how R1 has kept its pre-restart FIB intact, allowing transit traffic to be routed
through it to reach network A, just as was the case in the pre-restart network. Assuming
that R1 can reform its adjacencies with R2 in the specified period of time, all ends well
with this story. If, on the other hand, R3 were to experience an OSPF interface outage,
and as a result has to reflood a modified type 1 router LSA, then R2 is forced to abort
the restart and begin admitting that R1 is also gone.

Unlike NSR, GR works through a restart of the routing process, such as
when the operator issues a restart routing command. In fact, in plain
old GRES/GR, where NSR is not enabled, rpd does not run on the BU
RE. As a result, after a switchover the RPD process is restarted on the
new master, which again is not a problem for GR. A later section details
how NSR differs in this regard.

A Fly in the Ointment—And an Improved GR for OSPF

The original specification forPAGE RANGE W/ 1 SUB: OSPF GR, as laid out in RFC
3632, was a bit vague when it stated in section 2 that, “After the router restarts/reloads,

Graceful Restart | 745

www.it-ebooks.info

http://www.it-ebooks.info/

it must change its OSPF processing somewhat until it re-establishes full adjacencies
with all its former fully-adjacent neighbors.” Seems simple enough, but to do this the
restarting router has to send hello packets.

And therein lies the rub. Those hello packets may not list any neighbors, given the
restarting router has, well, just restarted. As it turned out, some implementations of
OSPF GR would abort a GR as part of the two-way connectivity check with the an-
nouncing neighbor (i.e., the router would generate a 1-way Received event for the
neighbor if it does not find its own router ID in the list of neighbors, as described in
shttp://tools.ietf.org/html/rfc2328#section-10.5), which resulted in adjacency termina-
tion and, as a result, a most ungraceful restart.

As it happens, independent work was also
being done on a way to provide OSPF with a type of Out of Band (OoB) communica-
tions channel that could be used for a variety of purposes. Known as OSPF Link Local
Signaling (LLS), the mechanism was first defined in RFC 4813, which was later obso-
leted by RFC 5613. Rather than define a new OSPF packet type, the choice was made
to make use of TLV extensions to OSPF hello and Database Description (DD) packets
to convey arbitrary information. The data included in the LLS block attached to a hello
packet may be used for dynamic signaling given that hello packets may be sent at any
time, albeit without any delivery guarantees. In contrast, data sent with DD packets is
guaranteed to be delivered as part of the adjacency formation process. A new OSPF
LLS options bit, referred to as the “L-bit”, is set to indicate whether a given hello or
DD packet contains an LLS data block. In other words, the LLS data block is only
examined if the L-bit is set.

While LLS was being defined in 4813 (now 5613), work was also under way to define
a mechanism for OSPF to resynchronize its LSDB without forcing a transition to the
exchange-start state. Once again, such a transition could force an abort of a graceful
restart. This work is defined in RFC 4811 “OSPF Out-of-Band LinkState Database
(LSDB) Resynchronization” and makes use of OSPF DD packets with LLS TLVs at-
tached. Specifically, a new LR bit (LSDB Resynchronization) is defined for use in LLS
Extended Options TLV. Routers set the LR-bit to announce OOB LSDB resynchroni-
zation capability in both hello and DBD packets.

Of primary interest in this discussion is RFC 4812 “OSPF Restart Signaling,” which
conveniently sits (numerically) between the LLS and LSDB resynchronization RFCs
just discussed. RFC 4812 defines a Restart-Signal (RS) bit conveyed in the Extended
Options (EO) TLV in the Link-Local Signaling (LLS) block of hello packets sent by the
restarting router. Upon reception of the RS option, the helpers skip the two-way con-
nectivity check, thereby solving the issue of premature termination due to a helper
receiving hellos with an empty neighbor list. In addition, RFC 4812 specifies use of the
LLS-based method of LSDB resynchronization, as specified in RFC 4811.

RFC 4812 introduces two new fields in the neighbor data structure: the RestartState
flag and ResyncTimeout timer. The RestartState flag indicates that a hello packet with

OSPF Restart Signaling RFCs 4811, 4812, and 4813.

746 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://tools.ietf.org/html/rfc2328#section-10.5
http://www.it-ebooks.info/

the RS-bit set has been received and that the local router expects its neighbor to go
through the LSDB resynchronization procedure specified in RFC 4813/5613 (using
LLS). When that is the case, the ResyncTimeout timer is used to determine how long
the helper will wait for the LLS based LSDB resynch to begin before it declares one-
way state, aborting the restart.

After a restart, an RFC 4812-compliant router sets the RS-bit in the EO-TLV of their
hello packets when it’s not sure that all neighbors are listed in the hello packet but the
restarting router wants them to preserve their adjacencies anyway. When an OSPF
router receives a hello packet that contains the LLS block with the EO-TLV that has
the RS-bit set, the router should skip the two-way connectivity check, as mentioned
previously. The helper should also send a unicast hello back to the restarting router to
speed up learning of previously known neighbors. These unicast hello packets don’t
have the RS-bit set.

Graceful Restart and other Routing Protocols
Junos offers GR support for virtually all routing protocols. While complete coverage
of all things GR is beyond the scope of this chapter, a brief summary is provided for
each major protocol.

BGP
When a router enabled for BGP graceful restart restarts, it retains BGP peer routes
in its forwarding table and marks them as stale. However, it continues to forward
traffic to other peers (or receiving peers) during the restart. To reestablish sessions,
the restarting router sets the “restart state” bit in the BGP OPEN message and sends
it to all participating peers. The receiving peers reply to the restarting router with
messages containing end-of-routing-table markers. When the restarting router re-
ceives all replies from the receiving peers, the restarting router performs route se-
lection, the forwarding table is updated, and the routes previously marked as stale
are discarded. At this point, all BGP sessions are reestablished and the restarting
peer can receive and process BGP messages as usual.

While the restarting router does its processing, the receiving peers also temporarily
retain routing information. When a receiving peer detects a TCP transport reset, it
retains the routes received and marks the routes as stale. After the session is reestab-
lished with the restarting router, the stale routes are replaced with updated route in-
formation.

Restart procedures for BGP are defined in RFC 4724 “Graceful Restart Mechanism for
BGP.”

ES-IS
When graceful restart for ES-IS is enabled, the routes-to-end systems or intermedi-
ate systems are not removed from the forwarding table. The adjacencies are rees-
tablished after restart is complete. Note: ES-IS is supported only on the J-Series

Graceful Restart | 747

www.it-ebooks.info

http://tools.ietf.org/html/rfc4724
http://tools.ietf.org/html/rfc4724
http://www.it-ebooks.info/

Services Router as well as SRX Branch platforms and starting with release v11.2,
Trio-based MX platforms.

IS-IS
Normally, IS-IS routers move neighbor adjacencies to the down state when changes
occur. However, a router enabled for IS-IS graceful restart sends out hello messages
with the Restart Request (RR) bit set in a restart type length value (TLV) message.
This indicates to neighboring routers that a graceful restart is in progress and to
leave the IS-IS adjacency intact. Besides maintaining the adjacency, the neighbors
send complete sequence number PDUs (CSNPs) to the restarting router and flood
their entire database.

The restarting router never floods any of its own link-state PDUs (LSPs), including
pseudonode LSPs, to IS-IS neighbors while undergoing graceful restart. This ena-
bles neighbors to reestablish their adjacencies without transitioning to the down
state and enables the restarting router to reinitiate database synchronization.

IS-IS restart mechanisms are defined in RFC 5306 “Restart Signaling for IS-IS.”

OSPF and OSPFv3
While the focus of the previous discussion on general GR mechanism, a review
never hurts. When a router enabled for OSPF graceful restart restarts, it retains
routes learned before the restart in its forwarding table. The router does not allow
new OSPF link-state advertisements (LSAs) to update the routing table.

To begin the process, the restarting router sends a grace LSA to all neighbors. In
response, the helper routers enter helper mode and send an acknowledgement back
to the restarting router. If there are no topology changes, the helper routers con-
tinue to advertise LSAs as if the restarting router had remained in continuous OSPF
operation.

When the restarting router reforms adjacencies with all its pre-restart helper rout-
ers, it resumes normal operation and begins selecting routes and performing up-
dates to the forwarding table. The restart ends when the Grace LSA is flushed, the
restart timer expires, or the process aborts because topology change is detected.

Junos supports both standard and restart signaling-based helper modes, and both
are enabled by default whether or not GR is enabled globally. Currently, restart
signaling-based graceful restart helper mode is not supported for OSPFv3 config-
urations.

PIM Sparse Mode
PIM sparse mode uses a mechanism called a generation identifier to indicate the
need for graceful restart. Generation identifiers are included by default in PIM hello
messages. An initial generation identifier is created by each PIM neighbor to es-
tablish device capabilities. When one of the PIM neighbors restarts, it sends a new
generation identifier to its neighbors. All neighbors that support graceful restart
and are connected by point-to-point links assist by sending multicast updates to
the restarting neighbor.

748 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

The restart phase completes when either the PIM state becomes stable or when the
restart interval timer expires. If the neighbors do not support graceful restart or
connect to each other using multipoint interfaces, the restarting router uses the
restart interval timer to define the restart period.

RIP and RIPng
There is no restart specification for RIP as its built-in, so to speak. When a router
enabled for RIP graceful restart restarts, routes that have been installed in the FIB
are simply not deleted. Because no helper router assists in the restart, these routes
are retained in the forwarding table while the router restarts (rather than being
discarded or refreshed).

RSVP
RSVP graceful restart is described in RFC 3473 “Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic Engineering
(RSVP-TE) Extensions” (only Section 9, “Fault Handling”). For the restarting
router, RSVP graceful restart attempts to maintain the routes installed by RSVP
and the allocated labels, so that traffic continues to be forwarded without disrup-
tion. RSVP graceful restart is done quickly enough to reduce or eliminate the impact
on neighboring nodes. The neighboring routers must have RSVP graceful restart
helper mode enabled, thus allowing them to assist a router attempting to restart
RSVP.

An object called Restart Cap is sent in RSVP hello messages to advertise a node’s
restart capability. The neighboring node sends a Recover Label object to the re-
starting node to recover its forwarding state. This object is essentially the old label
that the restarting node advertised before the node restarted. The following as-
sumptions are made about a neighbor based on the Restart Cap object:

A neighbor that does not advertise the Restart Cap object in its hello messages
cannot assist a router with state or label recovery, nor can it perform an RSVP
graceful restart.

After a restart, a neighbor advertising a Restart Cap object with a restart time equal
to any value and a recovery time equal to 0 has not preserved its forwarding state.
When a recovery time equals 0, the neighbor is considered dead and any states
related to this neighbor are purged, regardless of the value of the restart time.

After a restart, a neighbor advertising its recovery time with a value other than 0
can keep or has kept the forwarding state. If the local router is helping its neighbor
with restart or recovery procedures, it sends a Recover Label object to this neighbor.

LDP
During session initialization, a router advertises its ability to perform LDP graceful
restart or to take advantage of a neighbor performing LDP graceful restart by send-
ing the graceful restart TLV. This TLV contains two fields relevant to LDP graceful
restart: the reconnect time and the recovery time. The values of the reconnect and
recovery times indicate the graceful restart capabilities supported by the router.

Graceful Restart | 749

www.it-ebooks.info

http://www.it-ebooks.info/

When a router discovers that a neighboring router is restarting, it waits until the
end of the recovery time before attempting to reconnect. The recovery time is the
length of time a router waits for LDP to restart gracefully. The recovery time period
begins when an initialization message is sent or received. This time period is also
typically the length of time that a neighboring router maintains its information
about the restarting router, allowing it to continue to forward traffic.

The following are some of the behaviors associated with LDP graceful restart:

• Outgoing labels are not maintained in restarts. New outgoing labels are allo-
cated.

• When a router is restarting, no label-map messages are sent to neighbors that
support graceful restart until the restarting router has stabilized (label-map
messages are immediately sent to neighbors that do not support graceful re-
start). However, all other messages (keepalive, address-message, notification,
and release) are sent as usual. Distributing these other messages prevents the
router from distributing incomplete information.

• Helper mode and graceful restart are independent. You can disable graceful
restart in the configuration, but still allow the router to cooperate with a
neighbor attempting to restart gracefully.

• In Junos, the defaults have graceful restart helper mode enabled while graceful
restart is disabled. Thus, the default behavior of a router is to assist neighboring
routers attempting a graceful restart, but not to attempt a graceful restart itself.

• LDP Graceful restart is defined in RFC 3478, “Graceful Restart Mechanism
for Label Distribution Protocol.”

Junos GR Support by Release

Junos offers restart support for virtually all protocols, and starting as far back as release
v5.3, GR is clearly a rather mature technology. GR support and version requirements
as of this writing are:

Release v5.3 for aggregate route, BGP, IS-IS, OSPF, RIP, RIPng, or static routes
Release v5.5 for RSVP on egress provider edge (PE) routers
Release v5.5 for LDP graceful restart
Release v5.6 for the CCC, TCC, Layer 2 VPN, or Layer 3 VPN implementations of
graceful restart
Release v6.1 for RSVP graceful restart on ingress PE routers
Release v6.4 for PIM sparse mode graceful restart
Release v7.4 for ES-IS graceful restart (J-Series Services Routers)
Release v8.5 for BFD session (helper mode only)—If a node is undergoing a graceful
restart and its BFD sessions are distributed to the Packet Forwarding Engine, the
peer node can help the peer with the graceful restart
Release v9.2 for BGP to support helper mode without requiring that graceful restart
be configured

750 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Release v11.3 Support for restart signaling-based helper mode for OSPF graceful
restart

Configure and Verify OSPF GR
This section details GR configuration and operation for the OSPF protocol in Junos,
but the concepts and operation are similar for all GR-supported protocols. Configuring
GR in Junos is quite trivial; in fact, for most protocols, helper mode is enabled with no
explicit GR configuration, which means you have to explicitly disable helper mode for
those protocols when a complete absence of GR is required.

Enable Graceful-Restart Globally

To enable restart for all supported protocols in the main routing instance, all that is
required is a single set routing-options graceful-restart statement. At that point,
you can then configure various restart and helper mode attributes for each specific
protocol as desired. You can also enable restart in routing instances, and logical sys-
tems, a point that is often overlooked on provider-edge (PE) routers, where you gen-
erally want HA in both the main and VRF instances. As shown in the following, there
are very few options to the graceful-restart statement:

{master}[edit]
jnpr@R1-RE0# set routing-options graceful-restart ?
Possible completions:
<[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable graceful restart
 restart-duration Maximum time for which router is in graceful restart (120..900)
 | Pipe through a command

Setting disable is the same as not enabling GR. Note again that this statement controls
the local node’s ability to perform a graceful restart; helper modes are generally enabled
with no explicit configuration. The restart-duration parameter is somewhat signifi-
cant. The value specified places a maximum limit on how long any restart event can
last, so it’s critical this value be longer than that used by any specific protocol. Note
also that some protocols can only begin their restart as a result of a lower-level protocol
completing its restart. For example, LDP restart is dependent on the underlying IGP,
typically IS-IS or OSPF, completing its restart successfully.

As an example, the global default for restart duration is 300 seconds while the default
restart duration for OSPF is only 180 seconds.

Graceful Restart | 751

www.it-ebooks.info

http://www.it-ebooks.info/

You must ensure that the global restart duration is longer than that
needed by any protocol or GR will abort. Note that some protocols are
dependent upon others, so it’s not always a simple case of setting global
restart duration to be longer than the value used by any individual pro-
tocol. For scaled configuration, consider setting the value longer, but in
general is best not to set a value less than the default.

OSPF GR Options

There’s not a whole lot to configure as far as OSPF and GR goes. Once enabled globally,
OSPF restart and helper modes are enabled by default. The GR options for OSPF are
shown:

{master}[edit]
jnpr@R1-RE0# set protocols ospf graceful-restart ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable OSPF graceful restart capability
> helper-disable Disable graceful restart helper capability
 no-strict-lsa-checking Do not abort graceful helper mode upon LSA changes
 notify-duration Time to send all max-aged grace LSAs (1..3600 seconds)
 restart-duration Time for all neighbors to become full (1..3600 seconds)
{master}[edit]
jnpr@R1-RE0# set protocols ospf graceful-restart

The no-strict-lsa-checking option is designed to work around the issue of a helping
router aborting GR when it receives a hello from a restarting router that does not list
the helper as a neighbor. By default, strict LSA checking is enabled. You should enable
this option when helper routers don’t support the newer graceful restart signaling ap-
proach, which is designed to solve this very issue. The restart-duration parameter
specifies how long the restart event can last, and becomes the value that the restarting
router places into its grace-LSA to begin a restart. The default is 180 seconds. The
notify-duration specifies how long after the restart-duration has expired that the re-
starting router should announce the restart is complete by continuing to flush its grace-
LSA. By default, this parameter is 30 seconds longer that the restart duration, or 220
seconds.

Use the disable statement to disable restarting functionality when GR is enabled glob-
ally. Note that helper functionality continues to work unless you specifically disable it
with the helper-disable statement. Both standard (RFC 3623-based) and restart sig-
naling-based helper modes are enabled by default, and you can optionally disable one,
the other, or both helper modes:

{master}[edit]
jnpr@R1-RE0# show protocols ospf graceful-restart helper-disable ?
Possible completions:
<[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 both Disable helper mode for both the types of GR

752 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 restart-signaling Disable helper mode for restart-signaling
 standard Disable helper-mode for rfc3623 based GR
 | Pipe through a command

Verify OSPF GR

Operational verification of OSPF GR starts with the simplified OSPF network shown
in Figure 9-5.

Figure 9-5. OSPF GR Topology.

To best show the benefits of GR, we begin with graceful restart off on all routers; the
result is a bunch of routers that can perform the helper function but none that can
actually do a graceful restart. The configuration of R2 is shown:

{master}[edit]
jnpr@R2-RE0# show routing-options

{master}[edit]
jnpr@R2-RE0# show protocols ospf
traceoptions {
 file ospf_trace size 10m;
 flag lsa-update detail;
 flag graceful-restart detail;
 flag route detail;
}
area 0.0.0.0 {
 interface lo0.0 {
 passive;
 }
 interface ae0.1 {

Graceful Restart | 753

www.it-ebooks.info

http://www.it-ebooks.info/

 interface-type p2p;
 hello-interval 1;
 }
 interface ae2.0 {
 interface-type p2p;
 hello-interval 1;
 }
}

Of note is the absence of any global or OSPF-specific restart configuration. In other
words, this is factory default from a GR perspective. In this example, the interfaces have
been designated as type point-to-point, which dispenses with all that DR/BDR stuff,
and a very short hello timer of 1 second is set to ensure rapid neighbor detection and
adjacency formation when things are up and an equally rapid loss of adjacencies when
things are down.

Keep in mind that BFD is not enabled in this scenario; normally, you would use BFD
if such rapid failure detection is desired, but BFD is not compatible with GR, as de-
scribed later in the section on NSR. These settings also work to make recovery faster
due to rapid neighbor discovery and the ability to bypass the wait period to determine
if a DR/BDR already exists, so this configuration cuts both ways, so to speak.

Note that tracing is enabled at R2 (and S2) to allow monitoring of key events related
to LSA flooding, GR, and OSPF route changes.

We begin with confirmation of the expected OSPF adjacencies and LSDB contents at
R2:

{master}[edit]
jnpr@R2-RE0# run show ospf neighbor
Address Interface State ID Pri Dead
10.8.0.0 ae0.1 Full 10.3.255.1 128 3
10.0.0.2 ae2.0 Full 10.3.255.21 128 3

{master}[edit]
jnpr@R2-RE0# run show ospf database

 OSPF database, Area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Router 10.3.255.1 10.3.255.1 0x80000006 664 0x22 0xba6 60
Router *10.3.255.2 10.3.255.2 0x800000a1 172 0x22 0xd5eb 84
Router 10.3.255.21 10.3.255.21 0x80000065 2879 0x22 0xa367 72

As expected, both adjacencies are up, and the single area OSPF network with all point-
to-point interface types results in a single type 1 Router LSA for each OSPF node.

The stage is now set to demonstrate the effects of a routing restart
when GR is not enabled. You begin by verifying GR is disabled at R1:

{master}[edit]
jnpr@R1-RE0# run show route instance detail master
master:
 Router ID: 10.3.255.1
 Type: forwarding State: Active

An Ungraceful Restart.

754 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 Tables:
 inet.0 : 21 routes (21 active, 0 holddown, 0 hidden)

The master instance does not display any restart duration, thus confirming GR is dis-
abled globally. In addition, the OSPF overview at R1 does not list any GR information
(but likely should, as helper mode is in effect):

{master}[edit]
jnpr@R1-RE0# run show ospf overview
Instance: master
 Router ID: 10.3.255.1
 Route table index: 0
 LSA refresh time: 50 minutes
 Area: 0.0.0.0
 Stub type: Not Stub
 Authentication Type: None
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 4
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
 Backup SPF: Not Needed

Pings are started at S2 to R1’s lo0, as learned via OSPF:

{master:0}[edit]
jnpr@SW2-RE0# run show route 10.3.255.1

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.255.1/32 *[OSPF/10] 00:38:47, metric 2
> to 10.0.0.3 via ae2.0

jnpr@SW2-RE0# run ping 10.3.255.1 rapid count 2000
PING 10.3.255.1 (10.3.255.1): 56 data bytes
!!<ommitted for brievity>

With pings under way, the routing process on R1 is restarted. Note at this time you are
also monitoring the OSPF trace log at R2, which is now empty given the network is still
stable:

{master}[edit]
jnpr@R2-RE0#
*** 'ospf_trace' has been truncated - rewinding ***

*** monitor and syslog output enabled, press ESC-Q to disable ***

R1 has its routing restarted:

{master}[edit]
jnpr@R1-RE0# run restart routing
Routing protocols process started, pid 22832

Graceful Restart | 755

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE0#

R2 is quick to notice the change and floods an updated router LSA:

jnpr@R2-RE0#
*** ospf_trace ***
Feb 6 13:33:00.561870 RPD_OSPF_NBRDOWN: OSPF neighbor 10.8.0.0 (realm ospf-v2 ae0.1
 area 0.0.0.0) state changed from Full to Down due to InActiveTimer
 (event reason: neighbor was inactive and declared dead)
Feb 6 13:33:00.562098 ospf_set_lsdb_state: Router LSA 10.3.255.2 adv-rtr 10.3.255.2
 state QUIET->GEN_PENDING
Feb 6 13:33:00.562107 OSPF trigger router LSA 0x93201d0 build for area 0.0.0.0
 lsa-id 10.3.255.2
Feb 6 13:33:00.562113 ospf_trigger_build_telink_lsas : No peer found
Feb 6 13:33:00.562185 OSPF restart siganling: Add LLS data for Hello packet on
 interface ae0.1.
Feb 6 13:33:00.612268 ospf_set_lsdb_state: Router LSA 10.3.255.2 adv-rtr 10.3.255.2
 state GEN_PENDING->QUIET
Feb 6 13:33:00.612295 OSPF built router LSA, area 0.0.0.0, link count 4
Feb 6 13:33:00.612367 OSPF sent LSUpdate 10.0.0.3 -> 224.0.0.5 (ae2.0 IFL 329
 area 0.0.0.0)
Feb 6 13:33:00.612375 Version 2, length 100, ID 10.3.255.2, area 0.0.0.0
Feb 6 13:33:00.612380 adv count 1
Feb 6 13:33:00.814328 CHANGE 10.3.255.1/32 nhid 579 gw 10.8.0.0
 OSPF pref 10/0 metric 1/0 ae0.1 <Delete Int>
Feb 6 13:33:00.814365 rt_close: 1/1 route proto OSPF
Feb 6 13:33:00.814365
Feb 6 13:33:00.814416 rt_flash_update_callback: flash OSPF (inet.0) start
Feb 6 13:33:00.814422 Starting flash processing for topology default
Feb 6 13:33:00.814431 Finished flash processing for topology default
Feb 6 13:33:00.814438 rt_flash_update_callback: flash OSPF (inet.0) done

And the expected OSPF connectivity outage at S2 is confirmed:

!........ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.........ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.ping: sendto: No route to host
.!!<results ommitted for brievity>

756 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

It’s pretty clear that with GR the loss of R1’s adjacency to R2 was quickly noted, and
the dataplane took the hit.

The network is now altered to enable GR at R1. In most cases, you will
want to enable GR on all routers, but in this case we know that only R1 is expected to
restart anytime soon, so we rely on the default helper mode in the other routers, as
enabled by default:

{master}[edit]
jnpr@R1-RE0# set routing-options graceful-restart

{master}[edit]
jnpr@R1-RE0# commit
re0:
. . .

Simple enough, right? You again confirm global and OSPF-level GR status:

{master}[edit]
jnpr@R1-RE0# run show route instance detail master
master:
 Router ID: 10.3.255.1
 Type: forwarding State: Active
 Restart State: Pending Path selection timeout: 300
 Tables:
 inet.0 : 21 routes (21 active, 0 holddown, 0 hidden)
 Restart Complete

{master}[edit]
jnpr@R1-RE0# run show ospf overview
Instance: master
 Router ID: 10.3.255.1
 Route table index: 0
 LSA refresh time: 50 minutes
 Restart: Enabled
 Restart duration: 180 sec
 Restart grace period: 210 sec
 Graceful restart helper mode: Enabled
 Restart-signaling helper mode: Enabled
 Area: 0.0.0.0
 Stub type: Not Stub
 Authentication Type: None
 Area border routers: 0, AS boundary routers: 0
 Neighbors
 Up (in full state): 1
 Topology: default (ID 0)
 Prefix export count: 0
 Full SPF runs: 5
 SPF delay: 0.200000 sec, SPF holddown: 5 sec, SPF rapid runs: 3
 Backup SPF: Not Needed

The displays confirm that restart is now in effect and also show the main instance is
pending the completion of its global restart timer. The master instance goes complete
after initial GR activation 300 seconds later:

A Graceful Restart.

Graceful Restart | 757

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE0# run show route instance detail master
master:
 Router ID: 10.3.255.1
 Type: forwarding State: Active
 Restart State: Complete Path selection timeout: 300
 Tables:
 inet.0 : 21 routes (21 active, 0 holddown, 0 hidden)
 Restart Complete

A quick traffic monitor on the ae0 interface at R1 confirms that restart signaling is in
effect, as indicated by the presence of the LLS TLV. Note that R2 is sending the same
options, confirming that GR helper mode is enabled there (by default):

13:42:26.028961 In IP (tos 0xc0, ttl 1, id 33165, offset 0, flags [none],
 proto: OSPF (89), length: 80) 10.8.0.1 > ospf-all.mcast.net: OSPFv2, Hello,
 length 60 [len 48]
 Router-ID 10.3.255.2, Backbone Area, Authentication Type: none (0)
 Options [External, LLS]
 Hello Timer 1s, Dead Timer 4s, Mask 255.255.255.254, Priority 128
 Neighbor List:
 10.3.255.1
 LLS: checksum: 0xfff6, length: 3
 Extended Options (1), length: 4
 Options: 0x00000001 [LSDB resync]
13:42:26.344602 Out IP (tos 0xc0, ttl 1, id 16159, offset 0, flags [none],
 proto: OSPF (89), length: 80) 10.8.0.0 > ospf-all.mcast.net: OSPFv2,
 Hello, length 60 [len 48]
 Router-ID 10.3.255.1, Backbone Area, Authentication Type: none (0)
 Options [External, LLS]
 Hello Timer 1s, Dead Timer 4s, Mask 255.255.255.254, Priority 128
 Neighbor List:
 10.3.255.2
 LLS: checksum: 0xfff6, length: 3
 Extended Options (1), length: 4
 Options: 0x00000001 [LSDB resync]

The graceful restart tracing in effect at R2 also confirms LLS-based GR, as the following
is noted during adjacency formation:

Feb 6 15:09:19.250125 RPD_OSPF_NBRUP: OSPF neighbor 10.0.0.2 (realm ospf-v2 ae2.0
 area 0.0.0.0) state changed from Init to ExStart due to 2WayRcvd
 (event reason: neighbor detected this router)
Feb 6 15:09:19.250140 OSPF restart siganling: Send DBD with LR bit on to nbr
 ip=10.0.0.2 id=10.3.255.21.
Feb 6 15:09:19.250161 OSPF restart siganling: Add LLS data for Hello packet on
 interface ae2.0.
Feb 6 15:09:19.250193 OSPF restart siganling: Add LLS data for Hello packet on
 interface ae2.0.

With GR now enabled and confirmed, we once again perform a restart routing at R1.
As before, the OSPF trace file is monitored at R2 and S2 is generating traffic to a des-
tination on R1 that is learned through OSPF.

{master}
jnpr@R1-RE0>restart routing immediately

758 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

{master}
jnpr@R1-RE0>

And at R2 trace activities confirms the LLS-based GR event:

{master}[edit]
jnpr@R2-RE0#
*** 'ospf_trace' has been truncated - rewinding ***

*** ospf_trace ***
Feb 6 15:11:32 R2-RE0 clear-log[8549]: logfile cleared
Feb 6 15:12:13.042243 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:13.042446 Version 2, length 64, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:13.042451 checksum 0x0, authtype 0
Feb 6 15:12:13.042456 adv count 1
Feb 6 15:12:13.042488 OSPF LSA OpaqLoc 3.0.0.0 10.3.255.1 from 10.8.0.0 newer
 than db
Feb 6 15:12:13.042510 ospf_set_lsdb_state: OpaqLoc LSA 3.0.0.0 adv-rtr
 10.3.255.1 state QUIET->QUIET
Feb 6 15:12:13.042518 OSPF Restart: starting helper mode for neighbor 10.3.255.1
 on intf ae0.1 area 0.0.0.0
Feb 6 15:12:13.042524 OSPF Restart: grace timer updated to expire after
 208 seconds
Feb 6 15:12:14.042899 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1
 IFL 326 area 0.0.0.0)
Feb 6 15:12:14.043079 Version 2, length 64, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:14.043084 checksum 0x0, authtype 0
Feb 6 15:12:14.043088 adv count 1
Feb 6 15:12:14.043113 Same as db copy
Feb 6 15:12:15.043627 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:15.043818 Version 2, length 64, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:15.043823 checksum 0x0, authtype 0
Feb 6 15:12:15.043827 adv count 1
Feb 6 15:12:16.045085 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:16.045259 Version 2, length 64, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:16.045264 checksum 0x0, authtype 0
Feb 6 15:12:16.045268 adv count 1
Feb 6 15:12:17.043150 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:17.043348 Version 2, length 64, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:17.043353 checksum 0x0, authtype 0
Feb 6 15:12:17.043357 adv count 1
Feb 6 15:12:18.042974 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:18.043182 Version 2, length 64, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:18.043187 checksum 0x0, authtype 0
Feb 6 15:12:18.043191 adv count 1
Feb 6 15:12:19.045018 OSPF restart siganling: Add LLS data for Hello packet
 on interface ae0.1.
Feb 6 15:12:19.046180 OSPF restart siganling: Send DBD with LR bit on to nbr
 ip=10.8.0.0 id=10.3.255.1.
Feb 6 15:12:19.046201 OSPF restart siganling: Add LLS data for DbD packet on

Graceful Restart | 759

www.it-ebooks.info

http://www.it-ebooks.info/

 interface ae0.1.
Feb 6 15:12:19.046285 OSPF restart siganling: Received DBD with LLS data from
 nbr ip=10.8.0.0 id=10.3.255.1.
Feb 6 15:12:19.088271 OSPF restart siganling: Received DBD with LLS data from
 nbr ip=10.8.0.0 id=10.3.255.1.
Feb 6 15:12:19.088309 OSPF restart siganling: Send DBD with LR bit on to nbr
 ip=10.8.0.0 id=10.3.255.1.
Feb 6 15:12:19.088331 OSPF restart siganling: Add LLS data for DbD packet on
 interface ae0.1.
Feb 6 15:12:19.127630 OSPF restart siganling: Received DBD with LLS data from
 nbr ip=10.8.0.0 id=10.3.255.1.
Feb 6 15:12:19.127726 OSPF sent LSUpdate 10.8.0.1 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:19.127735 Version 2, length 244, ID 10.3.255.2, area 0.0.0.0
Feb 6 15:12:19.127740 adv count 3
Feb 6 15:12:31.131050 OSPF rcvd LSUpdate 10.8.0.0 -> 224.0.0.5 (ae0.1 IFL
 326 area 0.0.0.0)
Feb 6 15:12:31.131249 Version 2, length 124, ID 10.3.255.1, area 0.0.0.0
Feb 6 15:12:31.131254 checksum 0x0, authtype 0
Feb 6 15:12:31.131258 adv count 2
Feb 6 15:12:31.131322 OSPF LSA OpaqLoc 3.0.0.0 10.3.255.1 from 10.8.0.0 newer
 than db
Feb 6 15:12:31.131336 ospf_set_lsdb_state: OpaqLoc LSA 3.0.0.0 adv-rtr 10.3.255.1
 state QUIET->QUIET
Feb 6 15:12:31.131343 OSPF Restart: exiting helper mode on Grace LSA purge for nbr
 10.3.255.1 (intf ae0.1 area 0.0.0.0)
Feb 6 15:12:31.131359 ospf_set_lsdb_state: OpaqLoc LSA 3.0.0.0 adv-rtr 10.3.255.1
 state QUIET->PURGE_PENDING
Feb 6 15:12:31.131391 OSPF LSA Router 10.3.255.1 10.3.255.1 from 10.8.0.0 newer
 than db
Feb 6 15:12:31.131407 ospf_set_lsdb_state: Router LSA 10.3.255.1 adv-rtr
 10.3.255.1 state QUIET->QUIET
Feb 6 15:12:33.132916 OSPF sent LSUpdate 10.0.0.3 -> 224.0.0.5 (ae2.0 IFL
 329 area 0.0.0.0)
Feb 6 15:12:33.133108 Version 2, length 88, ID 10.3.255.2, area 0.0.0.0
Feb 6 15:12:33.133113 adv count 1
Feb 6 15:12:41.132244 ospf_set_lsdb_state: OpaqLoc LSA 3.0.0.0 adv-rtr 10.3.255.1
 state PURGE_PENDING->QUIET

The “restart signaling” typo in the previous was already reported in
PR-577297 and corrected in the v12.1 Junos release.

Given the GR was successful, it’s a case of “look to see what didn’t happen” over at S2,
where no traffic is lost despite the restart of routing at R1. Given this, you can see where
GR is often referred to as Nonstop Forwarding (NSF).

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^C!
--- 10.3.255.1 ping statistics ---
36571 packets transmitted, 36571 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.609/1.601/76.257/2.700 ms

760 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Graceful Restart Summary
GR, or NSF, helps improve availability by allowing uninterrupted dataplane forwarding
through a control plane restart event. The restart helper routers assist the restarting
routing in rebuilding its pre-restart RIB, so it can resume normal operation as soon as
possible after a restart.

GR has the drawbacks of requiring protocol extensions, peer-router support in the form
of helpers, and abortion if the helpers detect network instability during the restart. In
addition, GR does not work well with BFD, so it’s not a panacea all things HA. GR
does have the advantage of not requiring dual REs/GRES, but is also capable of working
with GRES for tolerance of RE failure as well as control plane resets.

Most networks today skip GR so they can instead deploy the next stage in routing HA
known as Nonstop Routing (NSR). The next section picks up where GR leaves off with
an in-depth exploration of NSR and NSB operation on MX routers.

Nonstop Routing and Bridging
NSR and NSB represent the current state of the HA art for Junos. The general concepts
of NSR and NSB are very similar, so unless calling out specifics, the terms NSR and
NSB are used interchangeably. While any dual RE router can avail itself of NSR, cur-
rently only MX platforms support NSB.

Unlike GR, which makes no bones about announcing a control plane restart, with the
full expectation of gaining help from its neighbors, NSR is a completely self-contained
solution. A successful NSR event has no externally visible symptoms. NSR does not
require any protocol extensions, and there is no need for the helper role associated with
GR; while the attached neighbors may well be GR capable and therefore able to provide
a helper role, the nature of NSR’s self-contained solution means that restart helper
services are simply never needed.

In addition, a successful NSR event is not predicated on network stability during a
switchover, a fact that greatly improves the chances of hitless switchover, when com-
pared to GR.

NSR is the foundation upon which the In-Service Software Upgrade (ISSU) feature is
built. If you plan on using ISSU, you need to have NSR configured also.

On routers that have logical systems configured on them, only the mas-
ter logical system supports nonstop active routing.

Nonstop Routing and Bridging | 761

www.it-ebooks.info

http://www.it-ebooks.info/

Replication, the Magic That Keeps Protocols Running
The heart and soul of NSR in Junos is protocol replication. The basic concept is to
replicate the actual protocol messages between the master and BU RE, including TCP
connection state for BGP, so that at any given time both REs have the same protocol
view. This requires that the BU RE run rpd, the routing daemon, on the replicated
protocol messages to independently maintain a shadow copy of the RIB. The part about
independence in the last sentence is a key point: it’s not just a mirror of the master’s
state, which has the potential to mirror any bugs or defects that may have occurred due
to corrupted memory/hardware, or perhaps just bad timing. Instead it’s the actual
protocol messages themselves that are replicated with the BU RE running its own rout-
ing daemon, and therefore its own SPF and BGP route selection algorithms, effectively
eliminating the fate sharing that would exist if the state was simply mirrored.

Given the replicated protocol messages and common routing behavior on both REs,
one generally expects that with NSR the active route selection will match between
master and BU, but this is not always so. In some cases, a different LB hash decision
may be made or a different equal cost route might be preferred based on message timing
or whatever tie-breaking criteria are used. This can lead to a forwarding change at
switchover, which is not to say there will be packet loss, so much as use of a different
forwarding next-hop. To help avoid this behavior with BGP, which by default can use
the relative time that a route was learned as a tie breaker, Juniper recommends that you
add the path-selection external-router-ID statement at the [edit protocolsbgp] hi-
erarchy to ensure consistent BGP path selection between the master and backup REs.

When all goes to plan in the event of an NSR-based GRES, the new master literally
picks up where the old one left off, for example, by generating a TCP ACK for a BGP
update that had just been received right as the old master failed. From the viewpoint
of direct and remote protocol neighbors, nothing happens, thus the switchover is
transparent and therefore a nonevent; technically speaking, and depending on scale,
some peers may note a delay, or possibly miss a hello or protocol keepalive, but such
events are normal in protocol operation and do not in themselves force tear down of a
routing adjacency.

To help hide all signs of a switchover, Junos now defaults to distributed processing
mode for most periodic protocol hello functions, whereby the hellos are generated
within the PFE itself via the ppmd process. Running in distributed mode is especially
critical for protocols like BFD or LACP, which tend to have rapid failure detection times
and therefore don’t take kindly to delayed hellos during an NSR or GRES event. With
hellos autonomously generated by the PFE during the RE switchover window, when
the RE itself cannot generate such packets, it lends itself to making NSR truly unde-
tectable for the router’s neighbors as (distributed) hellos are not even delayed, let alone
missed.

762 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

The delegate-processing statement at the [edit routing-options
ppm] hierarchy, which was used to enable distributed ppmd in Junos OS
release v9.3 and earlier, has been deprecated. The ppmd process is dis-
tributed to the PFE by default in Junos OS release v9.4 and later. How-
ever, if you want the PPM process to run on the RE instead of the Packet
Forwarding Engine, you can do so by including the no-delegate-pro
cessing statement at the [edit routing-options ppm] hierarchy level.
Note that LACP can be forced to run in a centralized mode even though
ppmd is set to distributed with a set protocols lacp ppm centralized,
which if set will lead to LACP flap at GRES.

When an MX is part of a virtual chassis, you should configure a longer
PPM distribution timer using a set routing-options ppm redistribu
tion-timer 120 statement to ensure proper PPM processing during a VC
GRES event. Refer to Chapter 6 for details. Note that the redistribu
tion-timer statement is hidden in the 11.4 release.

Figure 9-6 begins the overview of BGP replication, which begins with TCP connection
establishment.

Figure 9-6. BGP Replication Part 1: TCP Socket State.

It’s useful to review what actually happens in every step shown in the replication dia-
gram:

Nonstop Routing and Bridging | 763

www.it-ebooks.info

http://www.it-ebooks.info/

• Step 1 in the figure represents an incoming TCP connection request (SYN Flag) to
the BGP port (179).

• Step 2 shows the master kernel preparing the resulting SYN + ACK segment (shown
simply as “ACK” in the figure), but does not actually place the ACK onto the wire
because at this stage the backup RE kernel has not yet acknowledged the new
socket state. At the same time, a kernel socket replication function is used to convey
the SYN segment to the kernel on the backup RE, where matching state can now
be established.

• Step 3 shows the backup RE kernel ACK message sent back to the master RE kernel.

• Step 4 shows the master kernel can, once it has received the ACK message from
backup RE, transmit the ACK segment back to the connection’s originator, thus
completing step 2 of the TCP three-way handshake for connection establishment.

Waiting for the BU RE to catch up before moving forward is a key aspect of Juniper’s
NSR solution.

By ensuring that any traffic to be transmitted is replicated before it’s actually placed on
the wire, and that all received traffic is replicated before it’s acknowledged by the master
TCP socket, ensures that in all cases of failover, the secondary application is as informed
about the state of the network as any remote peer it ends up communicating with.

Once the TCP connection is established, BGP traffic can be sent and received by the
routing process on the master RE through its TCP socket. Meanwhile, the BU routing
process eavesdrops on these BGP messages through its read-only replicated sockets, as
shown in Figure 9-7.

764 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-7. BGP Replication Part 2: Transmit Side Snooping and Replication.

The figure focuses on how a BGP update message is ultimately transmitted to a remote
peer. Again, it’s useful to walk every step through the process to fully understand what
happens behind the curtains:

• Step 1 (as they are wont to do): Where a RIB update results in the master routing
process creating a BGP update message, perhaps to withdraw a route that has
become unreachable, or maybe to update the route’s attributes due to a policy
change that indicates a community should now be attached.

• Step 2: The BGP update enters the socket replication layer, which redirects the
update to the read-only copy of the transmit socket maintained on the backup RE.

• Step 3: The secondary RPD process snoops the transmitted BGP messages, so it
can keep in lock-step with the master by performing any updates on its internal
BGP data structures or to its copies of the RIB/FIB. For example, it might update
its BGP RIB-OUT to indicate that a new community is attached to the correspond-
ing NLRI for the related peer. As a result, the operator can expect to see the same
results in the output of a show route advertising-protocol bgp <peer> command
for that prefix on both the master and backup REs. This is critical, as the backup
could find itself active at any given time and it must have identical copies of both

Nonstop Routing and Bridging | 765

www.it-ebooks.info

http://www.it-ebooks.info/

the BGP-IN and BGP-OUT RIBs to ensure the mastership change remains unde-
tected.

• Step 4: The socket replication layer updates the TCP transmit socket state on both
REs.

• Step 5: The primary kernel waits for the replication acknowledgment; once re-
ceived, the master kernel will be able to send the actual BGP update to the remote
peer.

• Step 6: After successful reception of the replication ack as per step 5, the master
kernel proceeds to send the actual BGP update to the remote peer.

This process ensures that when a switchover occurs, the new primary is guaranteed to
have as much information as the remote peer, again a necessary state to ensure a suc-
cessful hitless switch in mastership. While the details are beyond our scope, it’s noted
that the replication process supports flow control and that each replicated protocol
uses its own sockets and native messages as part of its replication process. This allows
each protocol to replicate at its own pace, and ensures no messages are lost during
periods of heavy CPU usage and/or when a large volume of protocol updates are oc-
curring, such as when a network is undergoing reconvergence.

While not detailed, a similar process occurs for received BGP updates, including a
packet replication function, which is independent of the socket replication layer’s job
of keeping the TCP layer’s connection parameters synchronized. The replication pro-
cess for transmitted BGP traffic ensures that the snooping process is synchronized be-
fore updates are transmitted to remote peers. In a similar fashion, the receive replication
process ensures that the BU routing and replication functions have acknowledged re-
ceived updates before the related TCP acknowledgement is sent by the master RE’s
kernel. With this multiple synchronization point mechanism, any packets or replication
traffic that are lost due to being “in-flight” as the switchover occurs are naturally re-
covered by the built-in protocol mechanisms. For example, if the actual BGP update
shown at step 6 happens to be corrupted at the moment of switchover, the effect is no
different than any other lost TCP segment (or acknowledgement). In this case, the new
master has already seen and acknowledged both the traffic and resulting sending socket
state via replication before the failover. Therefore, its TCP socket is running the same
ACK timer as was in effect on the previous master. Should the timer expire, the new
master retransmits any unacknowledged traffic, which this time makes it to the remote
peer, who returns the expected TCP ACK and all is well. To the remote peers, this is
simply another case of best-effort IP dropping traffic, something that TCP is well-
equipped to deal with.

Figure 9-8 shows the state of affairs after a failure in the primary RE has resulted in an
NSR-based GRES.

766 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-8. BGP Replication Part 3: Meet the New Boss.

The figure shows the former BU RE now functioning as master. Its previously read-
only RPD sockets are now able to be written to, and the new master’s kernel is allowed
to send traffic onto the wire, allowing it to pick up where the last master left off. When
all goes to plan, no protocol sessions are reset. In fact, remote peers never even notice
they are now communicating with a different RE. With no control plane perturbance,
there is no need to alter the dataplane, so packet forwarding continues as before the
switchover, which in most cases means 0 packet loss through the switchover event as
well.

Though not strictly required, running the same Junos version on both
REs when NSR is enabled is recommended and helps to reduce the
chances of a version-based replication incompatibility that could cause
NSR to fail during a GRES.

Nonstop Bridging
Juniper’s NSR and GRES features have proven successful in the field. As the company
expanded into the Enterprise and Layer 2 switching markets, it was only a matter of
time before customers would demand similar HA features for switched networks. Enter
Nonstop Bridging (NSB), a feature currently only supported on the MX family of rout-
ers and EX switches. Figure 9-9 details key concepts of the Junos NSB implementation.

Nonstop Routing and Bridging | 767

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-9. Nonstop Bridging.

When you enable NSB, the Layer 2 Control Protocol Daemon (l2cpd) runs on both the
primary and BU REs, much as was the case with the routing daemon (rpd) for NSR.
The l2cpd process implements the various forms of Spanning Tree Protocol (STP),
making it the “Layer 2 bridging module” for Junos; this daemon also provides the LLDP
service on MX routers.

In NSB mode, l2cpd is started on the backup RE. Once running, it establishes a socket
connection to the l2cpd process running on master RE to synchronize xSTP protocol
state. For STP and RSTP, this state includes the root bridge ID, the root path cost, and
the STP state for each IFD/IFL in each L2 control instance (main or virtual-bridge). For
MSTP, the CIST root identifier, the CIST internal root path cost, the MSTI regional
root, the MSTI internal root path cost, the MSTI remaining hops, and the STP state for
each MSTI are mirrored. This information, when combined with other state, such as
interface information mirrored in the kernel via GRES, is enough for the Layer 2 control
process to begin forwarding in the same state as the former master immediately after a
switchover.

NSB Only Replicates Layer 2 State

Unlike the Layer 3 NSR implementation, where the same Layer 3 protocol state is
expected to be found on both REs, on the MX the Layer 2 protocol state machine is

768 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

not run in the backup RE. Instead, only the states are synchronized. This state primes
the initial starting condition for the various xSTP processes once a switchover occurs.
Just as with NSR, while the xSTP processes are being kickstarted on the new master,
the prior forwarding state in the PFE is preserved, meaning there should be no dataplane
hit for Layer 2 traffic. In contrast, when only GRES is configured, all xSTP ports are
initially placed into blocking as the l2cpd process starts on the new master post switch-
over. This is the only option if loops are to be avoided, given that without NSB the new
master cannot benefit from knowing the previous master’s Layer 2 state.

NSB and Other Layer 2 Functions

The figure shows how some other Layer 2 protocols functions, such as Ethernet OAM,
LACP, and the Layer 2 address learning daemon (l2ald), have their state replicated as
part of GRES infrastructure. The address learning daemon is used for bridge instance
and VPLS MAC address-related learning functions. Note that, even when NSR is con-
figured, l2ald runs only on the master RE. In contrast, the lacpd daemon runs on both
REs even when GRES/NSR is not configured, but hitless switchover when AE bundles
are present still requires an operational GRES infrastructure. It’s normal to get no out-
put from a show lacp interfaces command on the BU RE even when NSR and GRES
are in effect. LACP replication being handled as part of GRES is just one of those things
you have to take on faith with Junos.

When you combine GRES with NSB, you can expect hitless switchovers for LAG/LACP
bundles, MAC learning, and xSTP state. After a switchover, LLDP state is rebuilt, but
this does not cause any dataplane impact.

Current NSR/NSB Support
Junos currently offers NSR support for a wide range of protocols, and as a strategic
feature, NSR support is expected to continually evolve with a active development of
new features and improved functionality. As of the 11.4 release, NSR is broadly sup-
ported for:

Aggregate and static routes, RIP, RIPng, OSPF, OSPF3, IS-IS, MP-BGP (multiple
families)
RSVP on ingress, transit (and egress) provider edge (PE) routers, p2mp
LDP on ingress, transit, and egress PE routers
Layer 2 VPN, Layer 3 VPNs, 6VPE (Inet6 tunneling over MPLS)
PIM sparse and dense mode (main instance), IPv4/IPv6
IGMP/MLD
BFD for a number of different client protocols, to includes static route, OSPF,
OSFP3, BGP, IS-IS, RSVP, etc.
VPLS routing instances
VRRP (IPv4/IPv6)
LACP/LAG

Nonstop Routing and Bridging | 769

www.it-ebooks.info

http://www.it-ebooks.info/

Bridging (xSTP)
LLDP
Ethernet Operation, Administration, and Management (OAM) as defined 8.5 by
IEEE 802.3ah and IEEE 802.1ag 9.0

Table 9-2 lists key NSR feature support as a function of major Junos release.

Table 9-2. NSR Feature Support by Release.

Feature Release

Aggregated Ethernet interfaces with Link Aggregation Control
Protocol (LACP)

9.4 or later

Bidirectional forwarding detection (BFD) for BGP, IS-IS, OSPF/
OSPFv3, or PIM

8.5 or later (OSPF3 sessions are RE based)

BGP 8.4 or later

IS-IS 8.4 or later

LDP 8.4 or later

LDP-based virtual private LAN service (VPLS) 9.3 or later

LDP OAM (operation, administration, and management) fea-
tures

9.6 or later

Layer 2 circuits on LDP-based VPLS, 9.2 or later

on RSVP-TE LSP, 11.1 or later

Layer 2 VPNs 9.1 or later

Layer 3 VPNs * 9.2 or later (as of 11.4, Layer 3 VPN support does not include
dynamic GRE tunnels, multicast VPNs [NGEN MVPN], or BGP
flow routes)

OSPF/OSPFv3 8.4 or later

Protocol Independent Multicast (PIM) (for IPv4) 9.3 or later

(for IPv6) 10.4 or later

RIP and RIP next generation (RIPng) 9.0 or later

RSVP-TE LSP 9.5 or later

VPLS VPLS (LDP-based) 9.1 or later

(RSVP-TE-based) 11.2 or later

NSB (xSTP) 11.4

BFD and NSR/GRES Support

Nonstop active routing supports the bidirectional forwarding detection (BFD) proto-
col, which uses the topology discovered by routing protocols to confirm forwarding
state between protocol neighbors, with rapid failure detection and resulting protocol
session teardown in the event of faults. Generally speaking, the BFD protocol can be
run from the RE itself, or from within the PFE using distributed mode where its hellos

770 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

are handled by the ppmd process. Distributed mode offers the advantages of increased
BFD session counts that can in turn support reduced (shorter) detection timers and is
the default mode of BFD processing. When a BFD session is distributed to the Packet
Forwarding Engine (the default), BFD packets continue to be sent during a GRES event.
With NSR enabled and BFD in distributed mode, the BFD session states are not reset
during a GRES event.

However, not all BFD sessions can be distributed. If a nondistributed BFD session is
to be maintained through a switchover, you must ensure that failure detection time is
greater than the RE switchover time given that no BFD packets can be sent until the
new master has finished coming online. The following BFD sessions cannot be dis-
tributed to the Packet Forwarding Engine in release 11.4, so make sure you set appro-
priately long detection times to ensure they can survive a GRES:

All multihop sessions (i.e., BFD protecting loopback-based BGP sessions)
All tunnel-encapsulated sessions
Sessions that run over Integrated Routing and Bridging (IRB) interfaces
IPV6 sessions that use link local addresses (i.e., OSPF3)

BFD can be configured to run in an aggressive manner for really fast
error detection, but as with all things the compromise here is that faster sessions require
commensurately higher system resources for their support. Specifying a minimum in-
terval for BFD less than 100 ms for RE-based sessions and 10 ms for distributed BFD
sessions can cause undesired BFD flapping even when no switchovers are taking place.
Depending on your network environment, you may have to increase BFD detection
timers to ensure stability even during periods of heavy churn, such as when recovering
from a network failure. Carefully consider these points when selecting the BFD mini-
mum interval:

For large-scale network deployments with up to 300 BFD sessions per FPC, specify
a minimum interval of 100 ms for distributed BFD sessions and 300 ms for RE-
based sessions; note that per FPC counts don’t apply for RE based sessions. A
setting of 900 ms is suggested to support up to 900 BFD sessions per FPC (dis-
tributed mode). These numbers are based on a multiplier of three.
For RE-based BFD sessions to remain up during a GRES/NSR event, you must
specify a minimum interval of 2500 ms and a multiplier of at least three. Juniper
supports up to 7,500 RE-based sessions at the 2500 ms setting through a NSR.
Distributed sessions are not impacted by NSR and should have their minimum
intervals based on session scale, as noted previously.

Before moving on, it bears noting again that BFD
and GR are considered mutually exclusive. Juniper’s recommendation is that you not
run both at the same time; this was mentioned in the previous section on GR, but,
having reached this stage an explanation for this nonintuitive restriction can be offered.
The issue is somewhat akin to trying to run GR and NSR at the same time, which is
not possible as one seeks to announce a control plane fault while the other endeavors

BFD Scaling with NSR.

BFD and GR—They Don’t Play Well Together.

Nonstop Routing and Bridging | 771

www.it-ebooks.info

http://www.it-ebooks.info/

hide it. The same is true for BFD and GR. Here, GR is attempting to preserve the
dataplane while admitting to a control plane fault, whereas BFD exists to rapidly spot
any issue in the dataplane and then direct traffic away from the problem area by bring-
ing down the affected protocol sessions.

The basic problem when you combine GR and BFD is best understood with a specific
example of a BFD-protected IS-IS adjacency. Here, we have somewhat of a bootstrap
issue, where BFD learns its end points from the IS-IS adjacency itself. This is all well
and fine, until that adjacency is lost as part of a control plane restart, which is expected
with GR. The obvious problem is that the (expected) loss of IS-IS state in the restart
triggers the BFD adjacency to drop, which when detected by the remote peer forces a
topology change with resulting IS-IS LSP flooding, that in turns causes GR to abort. So
go the best laid plans, of mice and men . . . Note that with a NSR event the IS-IS
adjacency is not lost, and the ppmd process distributed in the PFE keeps hellos flowing
such that no flap at either the IS-IS or BFD layers is expected, making the switchover
transparent.

NSR and BGP

While BGP has been NSR supported for a long time, it’s one of the primary workhorses
behind Junos, and as such is often upgraded with new features or capabilities. For
example, the inet-mdt family that was added in release v9.4 for Rosen7 MVPN support
or the newer inet-mvpn family added for next-generation MVPNs both lacked NSR
support in their initial releases.

When you configure a BGP peer with a nonsupported address family, you can expect
the corresponding session to be idled on the BU RE. Upon switchover, the idled BGP
sessions have to be reestablished, and the result is a significant data plane hit for all
NLRI associated with the affected peering sessions until the network reconverges. As
an example, here the IBGP session at R1 is updated to include the NGEN MVPN related
inet-mvpn family:

jnpr@R1-RE1# show protocols bgp group int
type internal;
local-address 10.3.255.1;
family inet {
 unicast;
}
family inet-mvpn {
 signaling;
}
bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
}
neighbor 10.3.255.2;

The BGP session is up on the master RE:

772 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

{master}[edit]
jnpr@R1-RE1# run show bgp summary
Groups: 2 Peers: 2 Down peers: 1
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 100 100 0 0 0 0
bgp.mvpn.0 0 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
 #Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 12 12 0 1 4:15 Establ
 inet.0: 0/0/0/0
 bgp.mvpn.0: 0/0/0/0

But as predicted, the session is idle on the BU RE, confirming that a non-NSR-supported
protocol family is in effect. This state provides an invaluable clue to the operator that
this BGP session will flap at switchover, affecting all associated NLRI from all families
used on the peering:

{backup}[edit]
jnpr@R1-RE0# run show bgp summary
Groups: 2 Peers: 2 Down peers: 2
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 0 0 0 0 0 0
bgp.mvpn.0 0 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
 #Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 3 2 0 2 4:44 Idle

If that is not bad enough, consider that even when a family is NSR supported, that does
not in itself mean the related service is expected to be hitless. For example, consider
again the case of a rosen7-based MVPN and the related inet-mdt family. Initially in
v9.4, the use of this family would idle the session on the BU RE, as shown previously
for the inet-mvpn family in the 11.4R1.9 release. Sometime around v10.4, “NSR sup-
port” was added to the inet-mdt family, which meant that the BU RE no longer shows
the session as idle. However, the inet-mdt family is used to support MVPN (PIM in a
routing-instance), and as of 11.4 PIM in instances is not an NSR-supported feature.

So, what does all this mean? If you use 11.4 and have Rosen7 MVPN and NSR config-
ured, you can expect all BGP sessions to be replicated on the BU RE, and therefore no
session flap at switchover. Services like L3VPN unicast will be hitless, whereas the
MVPN service experiences an outage due to the loss of native multicast state (joins and
learned RP information) during the switchover. Current PIM NSR support is covered
in detail in a following section.

As of the 11.4 release, the following BGP address families are NSR supported:

inet unicast
inet labeled-unicast
inet multicast
inet6 labeled-unicast
inet6 unicast
route-target

Nonstop Routing and Bridging | 773

www.it-ebooks.info

http://www.it-ebooks.info/

l2vpn signaling
inet6-vpn unicast
inet-vpn unicast
inet-mdt
iso-vpn

Note that a draft-Rosen Multicast VPN (MVPN) configuration fails to
commit when nonstop active routing for PIM is enabled in the 11.4
release. You must disable nonstop active routing for PIM if you need to
configure a draft-Rosen MVPN.

Address families are supported only on the main instance of BGP; only
unicast is supported on VRF instances.

The list is long and includes most all the popular BGP families. The most noticeable
exceptions for support with NSR in the 11.4 release are inet flow, as used to support
the BGP flowspec feature, and the inet-mvpn and inet6-mvpn families, used for (BGP-
based) NGEN MVPNs.

Note that BGP route dampening does not work on the backup RE when NSR is enabled.
After an NSR event, damping calculations are rerun based on current flap state.

NSR and PIM

PIM is a complex protocol with many options. Nonstop active routing support varies
for different PIM features. The features fall into the following three categories: sup-
ported features, unsupported features, and incompatible features. As of the 11.4 re-
lease, PIM NSR support is as follows.

The following features are fully supported with NSR:

Auto-RP
BFD
Bootstrap router
Dense mode
Sparse mode (except for some subordinate features mentioned in the following list
of unsupported features)
Source-specific multicast (SSM)
Static RPs

You can configure the following PIM features on a router along
with nonstop active routing, but they function as if nonstop active routing is not en-
abled. In other words, during a GRES event, their state information is not preserved
and traffic loss is to be expected.

PIM Supported Features.

PIM Unsupported Features.

774 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Internet Group Management Protocol (IGMP) exclude mode
IGMP snooping
PIM for IPv6 and related features such as embedded RP and Multicast Listener
Discovery (MLD)
Policy features such as neighbor policy, bootstrap router export and import poli-
cies, scope policy, flow maps, and reverse path forwarding (RPF) check policies
Upstream assert synchronization

Nonstop active routing does not support the following features,
and you cannot configure them on a router enabled for PIM nonstop active routing.
The commit operation fails if the configuration includes both nonstop active routing
and one or more of these features:

Anycast RP
Draft-Rosen multicast VPNs (MVPNs)
Local RP
Next-generation MVPNs with PIM provider tunnels
PIM join load balancing

To work around the list of incompatible PIM features, Junos provides a configuration
statement to disable NSR for PIM only. With this option, you can activate incompatible
PIM features and continue to use nonstop active routing for the other protocols on the
router. Before activating an incompatible PIM feature, include the nonstop-routing
disable statement at the [edit protocols pim] hierarchy level. Note that in this case,
nonstop active routing is disabled for all PIM features, not just the incompatible fea-
tures.

NSR and RSVP-TE LSPs

Junos software extends NSR support to label-switching routers (LSR) that are part of
an RSVP-TE LSP. NSR support on LSRs ensures that an LSR remains transparent to
the network neighbors and that the LSP information remains unaltered during and after
the switchover. You can use the show rsvp version command to view the NSR mode
and state on an LSR. Similarly, you can use the show mpls lsp and show rsvp session
commands on the standby RE to view the state that is replicated there.

As of the 11.4 Junos release, the following RSVP features are not supported for NSR:

Point-to-multipoint LSPs
Generalized Multiprotocol Label Switching (GMPLS) and LSP hierarchy
Interdomain or loose-hop expansion LSPs
BFD liveness detection

Nonstop active routing support for RSVP-TE LSPs is subject to the following limitations
and restrictions:

PIM Incompatible Features.

Nonstop Routing and Bridging | 775

www.it-ebooks.info

http://www.it-ebooks.info/

• Control plane statistics corresponding to the show rsvp statistics and show rsvp
interface[detail | extensive] commands are not maintained across RE switch-
overs.

• Statistics from the backup RE are not reported for show mpls lsp statistics and
monitor mpls label-switched-path commands. However, if a switchover occurs,
the backup RE, after taking over as the master, starts reporting statistics. Note that
the clear statistics command issued on the old master does not have any effect
on the new master, which continues to report its uncleared statistics.

• State timeouts might take additional time during nonstop active routing switch-
over. For example, if a switchover occurs after a neighbor has missed sending two
Hello messages to the master, the new master RE waits for another three Hello
periods before timing out the neighbor.

• On the RSVP ingress router, if you configure auto-bandwidth functionality, the
bandwidth adjustment timers are set in the new master after the switchover. This
causes a one-time increase in the amount of time required for the bandwidth ad-
justment after the switchover occurs.

• Backup LSPs—LSPs that are established between the point of local repair (PLR)
and the merge point after a node or link failure—are not preserved during a RE
switchover.

NSR and VRRP

Currently, VRRP does not support stateful replication, and therefore sessions with
short hold times are expected to experience a VRRP mastership switch upon a GRES/
SNR event. This can be avoided with a longer VRRP timer, but this workaround also
increases normal failover times for non-NSR events such as a link down.

This NSR Thing Sounds Cool; So What Can Go Wrong?
Honestly? A lot.

Modern protocols are complex, and so is NSR. When a statement is made regarding
NSR-support for a protocol like PIM or BGP, it’s best to try and qualify the details.
Some protocol modes may be NSR supported, meaning no reset is expected, while
others are NSR-compatible, which means you can commit and run the configuration
but a reset is expected at NSR. In yet other cases, you may encounter a feature or
protocol mode that is incompatible with NSR. In those cases, you should see a commit
warning telling you where the conflict is. For example, here the operator tries to commit
an L3VPN with a Rosen6-based MVPN, while NSR is enabled in 11.4. A similar error
is reported for Rosen7:

{master}[edit]
regress@halfpint# commit check
re0:
[edit routing-instances vrf_1 protocols pim vpn-group-address]

776 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 'vpn-group-address 239.1.1.1'
 Vpn-group-address is not supported with PIM nonstop-routing in this JunOS release.
 Vpn-group-address configuration with PIM nonstop-routing will be supported in a
 future release. To configure vpn-group-address, PIM non-stop routing must be
disabled.

At least here the error message is helpful, but the result means that while waiting for
MVPN NSR support in some future release you can expect PIM (in all instances) to
take a hit at NSR, given you will have to disable PIM NSR support to commit this
configuration, or opt to forsake MVPN support in favor of a hitless switchover. Name
your poison. But, again, hitless or not, knowing what to expect at NSR can save a lot
of hassles. Who has time to waste “troubleshooting” a problem and filing a defect, only
to later find the feature is “working as designed”? Here, if you chose to retain MVPN
you know can expect a hitless switch for unicast only; meanwhile, multicast can take
several minutes of hit depending on variables such as the RP election method (static,
and by extension, anycast-RP is much faster than either Auto-RP or BSR) or the timeout
that’s in effect on joins.

As always, with anything as complex (and critical) as a modem IP network, it’s always
best to consult the documentation for your release to confirm NSR support status for
any specific set of features. Where possible, it’s a good idea to test failover behavior
with your specific configuration in effect. This allows you to spot any unexpected in-
compatibilities and then either redesign around the problem or adjust your network’s
SLAs accordingly. When making changes, always be on guard for any commit time
warnings or log errors reporting replication failures or problems to make sure you stay
aware of what features are or are not considered NSR-supported in any given release.

NSR, the good . . .

While trying not to sound too drunk on Juniper Kool-Aid, the capabilities described
in the previous paragraphs describe what this author considers to be a truly remarkable
technical feat. This author routinely tests NSR at considerable scale, in multiple di-
mensions, to see a hitless switchover on a PE router with 2,500 VRF EBGP Peers, 250
each OSPF and RIP peers, main instance PIM, OSPF, LDP/RSVP, COS, firewall filters,
etc., combining to generate some 1.2 million active IPv4 and IPv6 routes, is, simply
put, amazing.

That said, every network is different, and Junos NSR is constantly evolving to support
NSR for an ever-increasing number of protocols. As such your NSR mileage may vary,
significantly. The bottom line is you can see dramatically different NSR results based
on the release and the specific set of protocols enabled in your network, as well as
depending on whether a switchover occurs during or after the various replications
mechanisms have completed their work.

As a prime example of why NSR can be frustrating to customers, consider
the previously mentioned issues with PIM and the BGP MDT protocol family used to
support Rosen7 multicast in a routing instance (MVPN). NSR support for PIM in a

. . . And the bad.

Nonstop Routing and Bridging | 777

www.it-ebooks.info

http://www.it-ebooks.info/

routing instance is still not present in 11.4, and this requires that you disable NSR for
PIM in the main instance in order to commit a NSR configuration with MVPN. The
current lack of support for PIM NSR means you can expect to lose joins and learned
RP state at a NSR, which can result in several minutes of multicast traffic loss post-NSR.

In the initial v9.4 release of Rosen7, MVPN support for a new BGP protocol family
known as inet-mdt was added to Junos. Initially, this family was not NSR supported,
and the result was that any peers configured with the family would be idle (not repli-
cated) on the BU RE. While working as designed (WAD®), the result was BGP session
reset at NSR; this is particularly nasty given that the PE-PE sessions are typically con-
figured to support other protocol families that are NSR-supported, such as inet or
inet-vpn, and such connection reset results in a significant hit to the control plane, with
subsequent removal of FIB entries and data loss at NSR. Note this type of outage can
persist for several minutes, depending on scale; as it can only clear once, all the sessions
are reestablished and the FIB is completely repopulated.

While the specific case of NSR support for inet-mdt was addressed sometime back, it’s
a good example of the dark side of NSR. Here, the difference between a completely
hitless switchover, complete with requisite shock and awe, versus a significant blowup
and substantial network disruption, came down to whether or not the configuration
had the innocuous-looking statement needed to add inet-mdt support to a BGP peer.

However, even in this negative case, it bears mentioning that, unless you encounter a
NSR defect, you are almost always better off with NSR than without it. In the previous
case, parts of the switchover were still hitless. GRES kept the PFE from rebooting, and
only the IBGP sessions that had the unsupported family were reset. This means your
core IGP adjacencies, RSVP sessions, and VRF BGP sessions were maintained through
the switchover, all of which helps speed the recovery of the BGP sessions that were
affected, allowing the network to reconverge that much faster.

The only other options for this particular case would be to not offer MVPN services,
or to opt out of NSR, perhaps in favor of a GR/GRES solution. But, as with most things
in life, each workaround has its own set of drawbacks; in many cases, having to live
with a known to be partially supported NSR configuration may still be your best HA
option when all things are factored.

Practicing Safe NSRs

The good news is the previous MDT-related NSR incompatibility was documented,
and commands existed to alert the operator to the fact that there would be disruption
to BGP at switchover (i.e., the BGP connection state not being in sync between master
and BU REs).

The key to knowing what to expect when your network undergoes a NSR event involves
either being exceptionally well informed or in having done NSR testing in a lab envi-
ronment against your specific configuration. While there are too many details and

778 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

caveats for the average human to try and remember, the good news is that general
principles used to verify and confirm NSR operation are not that complex.

Or stated differently, once NSR is configured and all
is up and running, how does one trigger a GRES event in a way that realistically tests
the system’s NSR failover behavior? This is a valid question, and the best answer is to
use the CLI’s request chassis routing-engine command to force a current master to
relinquish its control or to force a current backup to seize power, the result being the
same regardless of the specific form used. The operational mode CLI commands used
to induce a switchover include the following:

A request chassis routing-engine master switch no-confirm on the current mas-
ter
A request chassis routing-engine master release no-confirm on the current
master
A request chassis routing-engine master acquire no-confirm on the current
backup

The CLI method of RE switchover is not only supported and documented, but testing
has proven there are no kid gloves associated with the command, and the ensuing GRES
event is as valid as any hardware-induced RE switchover, which is what the feature is
designed to protect against.

Rebooting the current master when GRES is enabled is also a valid way to test NSR
and GRES failover behavior. Use a request system reboot (or halt) operational mode
command on the current master RE to test this method.

It’s not recommended that you physically remove the RE from its slot, although the
technique has proven popular, if not a bit therapeutic, with some customers. Yes, a
switchover should happen, but in general if vandals stealing REs is the reason you
network has low HA, then honestly, you have bigger issues to deal with. In rare cases,
hardware damage can result from removing an RE without first performing a request
system halt, which can make this kind of NSR testing unintentionally destructive.

While on the topic of what not to do when testing NSR, recall that a routing restart
while under NSR is a negative test case. By this, it’s meant that you should expect all
sessions to flap, and that the system will eventually recover is pre-restart state. Again,
a valid test case, but in no way is this how you should test for a hitless NSR; it is a valid
method for GR testing, as noted previously.

These kernel-based switchover methods are listed for complete-
ness’ sake, as they have been known to be used for testing HA features. Remember the
shell is not officially supported and hidden commands should only be used under
guidance from JTAC. The following should only be considered for use in test labs when
you have console access. You have been warned.

If you have access to a root shell, you can use the BSD sysctl function to force the
kernel to panic on the master RE. As a result, the BU RE should note the lack of keep-

The Preferred Way to Induce Switchovers.

Other Switchover Methods.

Nonstop Routing and Bridging | 779

www.it-ebooks.info

http://www.it-ebooks.info/

alives and assert mastership over the chassis. Note the following is done from a root
shell.

root@Router% sysctl -w debug.kdb.panic=1
. . .

<telnet/ssh session dies>

At this time on the console you should see the Junos equivalent of a blue-screen-of-
death as the kernel dumps core:

login: panic: kdb_sysctl_panic
db_log_stack_trace_cmd(c0cd4600,c0cd4600,c0c4c6dc,fbe29b80,c05ca3c4) at
 db_log_stack_trace_cmd+0x36
panic(c0c4c6dc,fbe29b8c,0,fbe29be4,1) at panic+0x264
kdb_sysctl_panic(c0c84be0,0,0,fbe29be4,fbe29be4) at kdb_sysctl_panic+0x5f
sysctl_root(fbe29be4,0,1,c0587a75,c881f700) at sysctl_root+0x134
userland_sysctl(c8789000,fbe29c54,3,0,0) at userland_sysctl+0x136
__sysctl(c8789000,fbe29cfc,18,bfbec434,fbe29d2c) at __sysctl+0xdf
syscall(fbe29d38) at syscall+0x3ce
Xint0x80_syscall() at Xint0x80_syscall+0x20
--- syscall (202, FreeBSD ELF32, __sysctl), eip = 0x88139dbb,
 esp = 0xbfbed40c, ebp = 0xbfbed438 ---
Uptime: 2m11s
Physical memory: 3571 MB
. . .

Dumping 163 MB: 148 132 116 100 84 68 52 36 20
. . .

The use of sysctl -w debug.kdb.panic=1 command is disabled starting
in the 11.4R2 Junos release as part of security fixes to the FreeBSD kernel
that were picked up via PR 723798.

--- JUNOS 11.4R3-S1.1 built 2012-05-18 11:03:07 UTC
. . .
root@router% sysctl -w debug.kdb.panic=1
debug.kdb.panic: 0
sysctl: debug.kdb.panic: Operation not permitted
root@router%

Yet another method of inducing a kernel crash is to configure the hidden debugger-on-
break configuration statement and then send a break signal using the console. In most
cases, this can work remotely when using a console server by using the application’s
send break function after you form the connection. You may need console access to
the router to recover the now crashed kernel.

{master}[edit]
jnpr@R1-RE1# show system
debugger-on-break;

With the change committed and in a position to send a real break via direct serial line
connection, or a Telnet break to a consoler server, you are ready to force a switchover.

780 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Here, the latter method is used. Once connected, escape to the Telnet client’s command
mode. For most Unix-based command line Telnet clients, this is done with a cnt]
sequence:

{master}[edit]

jnpr@R1-RE0# cnt]
telnet>send brk
KDB: enter: Line break on console
[thread pid 11 tid 100005]
Stopped at kdb_enter+0x15f: movl $0xc0c4c757,0(%esp)
db>

And again, boom goes the switchover. Now at the kernel debug prompt, you can reboot
the router with a reset command:

db>reset

A third method of inducing a kernel-based GRES/NSR event is to generate a nonmask-
able interrupt (NMI) on the current master using sysctl at a root shell:

root@Router% sysctl -w debug.induce_watchdog_timeout=1

A related method is to disable the system watchdog timer, which in turn raises a NMI
a short while later, typically within 180 seconds:

root@Router% sysctl -w debug.induce_watchdog_timeout=2

The latter can also be achieved via the CLI by altering the configuration to disable the
watchdog process, but the configuration option can be tricky to remove after testing
as the ongoing watchdog timeouts will cause the kernel to reenter the debug state if
you cannot roll back the configuration change quickly enough after rebooting:

[edit system processes]
+ watchdog disable;

In both cases, the NMI current master kernel to panic and enter debug mode, wherein
the loss of keepalives signals the BU RE to become master inducing a GRES event.

Tips for a Hitless (and Happy) Switchover

Knowing how to induce a switchover is fine, but knowing when it’s safe to do so is
another matter. Here, the term safe refers to minimizing any disruption that might occur
by ensuring the system is completely converged with respect to the various GRES syn-
chronization and NSR replication tasks. On a highly scaled system, it might take 15
minutes or longer for all processes to reach a steady state in which all the GRES and
NSR components have completed their work. The default 240-second GRES back-to-
back switchover timer can easily expire long before a scaled system is truly ready for a
successful NSR. Keep these tips in mind when testing NSR behavior; most are demon-
strated and explained in detail in subsequent sections.

Nonstop Routing and Bridging | 781

www.it-ebooks.info

http://www.it-ebooks.info/

Wait for both master and BU REs to confirm GRES synchronization and NSR
replication is complete. Use the show task replication and show system switch-
over commands on the BU and master REs, respectively, to confirm GRES syn-
chronization and NSR replication state.
Wait for the RE to complete the download of the various next-hops into the PFE.
Performing a switchover when millions of next-hops are pending installation will
only delay control and dataplane convergence, given that the new master RE is
pretty busy for several minutes after a switchover makes it the boss. Use the (hid-
den) show krt queue command to gauge the status of queued NH changes.
If performing a graceful restart (GR)-based GRES, be sure to wait for all routing
tables to reach restart complete. Use a show route instance detail | match pend
ing command to spot any table that may be waiting. GR may abort for a given
instance if a GRES is performed while the instance is in a pending state.
Confirm that all IBGP and IGP sessions are in fact up/established and properly
replicated on the BU RE. In some cases, unsupported options or version mis-
matches can leave a session unreplicated, which results in flap when the old BU
becomes the new master. Consider a separate BGP session for non-NSR-supported
families, like NGEN MVPN’s inet-mvpn, to limit flap to only certain BGP sessions,
thereby minimizing any resulting disruption.
Make sure that no PPMD process such as LACP or BFD are set for centralized
operation (RE-based).
Run the ISSU validation check before a NSR. It can help report issues such as
centralized BFD sessions or hardware that may reset at switchover. For example,
stateful services PIC are generally reset during both an ISSU or NSR switchover
event.
If you have any BFD sessions that are RE-based (IBGP or other types of multihop
sessions), make sure the related timers can tolerate at least 15 seconds of inactivity
to ensure they can survive a GRES event.
Make sure there are no silly two-second hello/six-second hold time settings for RE-
based sessions such as OSPF or BGP. RE-based sessions can expect a period of
from 6 to 15 seconds during which keepalives cannot be sent.

The next section details the commands and techniques used to configure and then
confirm NSR in the context of BGP, IS-IS, and Layer 2 control protocols like LACP and
VSTP. You can adapt the techniques shown to the protocols used in your network to
confirm proper replication and that the system as a whole indicates NSR readiness,
ideally before anything fails and you are forced into a switchover, ready or not! Where
possible, you are always well advised to conduct actual NSR testing under your net-
work’s simulated conditions if you need to have a completely hitless NSR to meet your
network’s SLA guaranties. After all, educated predications can only go so far in matters
of such unfathomable complexity and with the huge range of configuration variance
that modern networks exhibit.

782 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Configure NSR and NSB
For such a complicated feature, NSR and NSB are deceptively easy to configure. Much
like GR, just a few global configuration statements and a router with dual REs is all
you need to get going with NSR.

Before enabling NSR, you should ensure that both REs are on the same version. Again,
this is not strictly necessary, but unless you are specifically directed by JTAC, or have
some specific need for mismatched software versions, then having the same version on
both REs is always good advice for GRES, NSR, and ISSU. In fact, the latter mandates
it!

Assuming you already have the requisite graceful-switchover statement at the edit
chassis redundancy hierarchy to enable GRES, then NSR and NSB can both be enabled
with one statement each:

{master}[edit]
jnpr@R1-RE0# show routing-options
##
Warning: Synchronized commits must be configured with nonstop routing
##
nonstop-routing;
autonomous-system 65000.65000 asdot-notation;

{master}[edit]
jnpr@R1-RE0# show protocols layer2-control
nonstop-bridging;

However, as noted in the show output warning, to commit this configuration you will
need to add the commit synchronize option to the configuration. Unlike GRES, which
encourages you to synchronize the configs across both REs at each commit, NSR man-
dates it, and this is enforced through the set system commit synchronize option:

{master}[edit]
jnpr@R1-RE0# set system commit synchronize

The warning is now removed and the NSR/NSB configuration can be committed:

{master}[edit]
jnpr@R1-RE0# show routing-options
nonstop-routing;
autonomous-system 65000.65000 asdot-notation;

{master}[edit]
jnpr@R1-RE0# commit
re0:
. . .

Note that you cannot commit a NSR configuration if you have graceful-restart in
effect, for reasons described in the following.

Nonstop Routing and Bridging | 783

www.it-ebooks.info

http://www.it-ebooks.info/

NSR and Graceful Restart: Not like Peanut Butter and Chocolate

Users are often surprised to learn that Junos does not allow you to configure both GR
and NSR at the same time. I mean, why not have your cake and grow fat while eating
it too? The simple answer is “because you can’t.” This is more than just a simple Junos
limitation, as the two HA approaches are somewhat diametrically opposed in how they
do their business. Think about it: GR open admits the control plane restart and expects
neighbors to help it recover, while the goal of NSR is to have no externally visible
indication of a restart. You simply can’t do both at the same time. However, enabling
NSR only prevents GR restart modes. By default, most protocols support GR helper
mode and can therefore assist a GR-configured neighbor through its restart even though
locally NSR is configured.

One big difference between GR and NSR is the ability to perform a
hitless restart routing on the local RE. The former supports a routing
restart as well as GRES-based failover testing, while the latter can only
be tested with GRES events. The bottom line is when NSR is running,
a restart routing causes all sessions to flap, which is, of course, the polar
opposite of hitless.

General NSR Debugging Tips

NSR and RE switchovers in a network with multiple complex protocols running, at
scale, can be a marvelous thing to behold when all goes to plan, and a daunting task to
troubleshoot when things don’t. When troubleshooting NSR issues, keep the following
tips in mind:

Confirm protocol state on master and backup REs. Mismatched state normally
spells a problem at switchover. Generally speaking, aside from flap count and up
time, you expect the same state for all NSR-supported protocols.
Use protocol-specific replication commands to help identify and troubleshoot rep-
lication problems. Some of these commands are hidden but most are documented.
Note that unlike protocol state, many of these replication-related commands return
different results depending on whether you execute the command on the master
or a BU RE.
Always confirm overall system-level GRES and replication state using the show sys
tem switchover command on the BU RE and the show task replication command
on the master, respectively, before requesting a switchover. Note that on a highly
scaled system, it can take several minutes for replication to even begin after a GRES
and upwards of 10 or more minutes for all protocols to complete replication. The
240-second back-to-back GRES hold-down time can easily expire before a scaled
system has completed replication from a previous switchover.
Watch out for any statements that disable distributed mode ppmd clients such as
LACP or BFD, and know whether any of your sessions are RE based, and if so, be
sure to set timeouts that are longer than the RE blackout during the switchover.

784 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

On MX routers with 11.4, you should assume the blackout window can last 7.5
seconds and maybe even longer on highly scaled systems.
Junos tracing is always a useful tool when troubleshooting. Don’t forget to add
NSR-, GRES-, and replication-related trace flags to any protocol tracing to help
spot issues relating to NSR. Also, make sure you look at both the old, preswitchover
logs on the new backup, as well as the post-NSR logs on the new master to make
sure you get the full picture. Tracing NSR for the first time, when you suspect there
is a problem, is a good way to get mislead and wind up filing a mistaken problem
report (PR). Whenever possible, its best to trace successful NSR events so you have
a baseline as to what is normal.
Try and isolate to the lowest layer that is showing an unexpected flap. For example,
if you are running a L3VPN service over LDP that’s in turn tunneled over RSVP
signaled LSPs, with BFD protection on IGP sessions, then just about anything going
wrong can be expected to disrupt the L3VPN service. Try and find the first layer
that flaps (e.g., OSPF for the sake of argument) and then ignore protocols and
services that ride on top such as IBGP and RSVP, at least until the OSPF issue is
sorted.

Verify NSR and NSB
Figure 9-10 shows the test topology used for verification of NSR and NSB.

Nonstop Routing and Bridging | 785

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-10. Nonstop Routing and Bridging Test Topology.

The test topology is based on the standard “hybrid L2/L3” data center design, as this
affords the opportunity to test and explore both routing and bridging operation through
an NSR event. The setup has been modified to place VLAN 100 into effect at S2’s
xe-0/0/6 interface so that Layer 2 test traffic can be sent through VLAN 100 using router
tester ports 201/1 and 201/2. The tester ports are assigned .6 and .7 host identifiers
from the 192.0.2.0/26 LIS associated with VLAN 100; the VLAN 100-related IP ad-
dresses assigned to the VLAN and IRB interfaces at both switches and routers are also
shown. The MAC addresses of both router tester ports are documented, as this infor-
mation is relevant to the Layer 2 domain’s learning and forwarding operation. Note
that while VLAN 200 is still provisioned, with R2 still the VSTP root for that VLAN as
before, in this example we focus only on VLAN 100 and the backbone routing behavior
through an NSR-based GRES event allowing us to omit VLAN 200 details from the
figure.

In this example, IS-IS level 2 is operating as the IGP between R1 and R2 over the ae0.1
link that serves as the network’s Layer 3 backbone. IBGP peering using a 32-bit ASN
has been established between the router’s lo0 addresses, as per best practices; in like
fashion, interface-based EBGP peering is in effect to external peers P1 and T1, who
advertise routes in the 130.130/16 and 120.120/16 ranges, respectively. Three aggre-
gate routes are defined at R1 and R2 that encompass the loopback, backbone, and

786 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

VLAN address space, along with a simple export policy at both routers to advertise all
three of the aggregates to their external peers.

The routing options and policy at R1 is shown:

{master}[edit]
jnpr@R1-RE0# show routing-options
nonstop-routing;
aggregate {
 route 192.0.2.0/25;
 route 10.8.0.0/24;
 route 10.3.255.0/24;
}
autonomous-system 65000.65000 asdot-notation;

{master}[edit]
jnpr@R1-RE0# show policy-options
policy-statement bgp_export {
 term 1 {
 from protocol aggregate;
 then accept;
 }
}

Again, note the use of a 32-bit ASN, which is becoming common in Enterprises due to
lack of ASN space in the 16-bit format. Here the asdot-notation switch causes such an
AS to be displayed as configured (i.e., 65000.65000, as opposed to the 4259905000
that would otherwise be shown). Moving on, the protocols stanza is shown, again at
R1; here the focus is on IS-IS and BGP, but the VSTP-related configuration is also
shown:

{master}[edit]
jnpr@R1-RE0# show protocols
bgp {
 path-selection external-router-id;
 log-updown;
 group p1 {
 type external;
 export bgp_export;
 peer-as 65222;
 neighbor 192.168.0.1;
 }
 group int {
 type internal;
 local-address 10.3.255.1;
 family inet {
 unicast;
 }
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 neighbor 10.3.255.2;
 }
}

Nonstop Routing and Bridging | 787

www.it-ebooks.info

http://www.it-ebooks.info/

isis {
 reference-bandwidth 100g;
 level 1 disable;
 interface xe-2/1/1.0 {
 passive;
 }
 interface ae0.1 {
 point-to-point;
 bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
 }
 }
 interface lo0.0 {
 passive;
 }
}
lldp {
 interface all;
}
layer2-control {
 nonstop-bridging;
}
vstp {
 interface xe-0/0/6;
 interface ae0;
 interface ae1;
 interface ae2;
 vlan 100 {
 bridge-priority 4k;
 interface xe-0/0/6;
 interface ae0;
 interface ae1;
 interface ae2;
 }
 vlan 200 {
 bridge-priority 8k;
 interface ae0;
 interface ae1;
 interface ae2;
 }
}

The example makes use of BFD session protection for both the IS-IS adjacency and the
IBGP session between R1 and R2, both using 150 ms as the minimum interval with a
multiplier of three. It’s not typical to see BFD protection for an IBGP session. The
configuration and functionality is supported in Junos, and the reason for this config-
uration will become clear a bit later on.

788 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

The use of BFD to protect IBGP sessions is not a current best practice.
Typically, IBGP is multihop loopback-based, and therefore benefits
from the IGP’s ability to reroute around failure while keeping the BGP
session alive as long as there is a restoration of connectivity within the
BGP session’s hold-timer, which is normally rather long at 90 seconds.
Adding BFD to an IBGP session results in session teardown basic on the
typically short duration BFD timer settings, which is a behavior that is
at odds with IBGP stability during an IGP reconvergance event. It’s bet-
ter practice to confine BFD to the IGP sessions, which in turn helps the
IGP detect faults and reconverge faster while leaving IBGP to its hold
timer.

Because EBGP is often based on direct interface peering that does not
require a IGP, the use of BFD to protect single-hop EBGP sessions is
reasonable.

Note the BGP stanza includes the path selection statement to ensure the same active
route decision is made by both the active and standby REs, as described previously.
Also note how passive IS-IS is specified to run on the EBGP links; this is a common
approach to solving EBGP next-hop reachability. The passive setting ensures no adja-
cency can form while still allowing IS-IS to advertise the related IP subnet as an internal
route. The other common approach here is a next-hop-self policy to overwrite the ex-
ternal NH with the IBGP speaker’s lo0 address, which again is reachable as an internal
IS-IS route.

Also of note is the absence of a LACP stanza, showing that the default distributed mode
is in effect. In distributed mode, the session keepalive functionality is distributed into
the PFE, which is extremely important for a successful NSR; if you use the ppm cen
tralized statement for LACP, as shown in the following, you will get LACP flap at
GRES, which in turn nets a less than desirable NSR result as generally speaking, any
protocols that ride over the affected interface will see the transition and follow shortly
thereafter with a flap of their own:

{master}[edit]
jnpr@R1-RE0# show protocols lacp
ppm centralized;

Confirm Pre-NSR Protocol State

Before doing anything NSR-specific, we quickly access the steady state of the network.
BGP and IS-IS is confirmed:

{master}[edit]
jnpr@R1-RE0# run show isis adjacency
Interface System L State Hold (secs) SNPA
ae0.1 R2-RE0 2 Up 21

{master}[edit]
jnpr@R1-RE0# run show route protocol isis

Nonstop Routing and Bridging | 789

www.it-ebooks.info

http://www.it-ebooks.info/

inet.0: 219 destinations, 219 routes (219 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.255.2/32 *[IS-IS/18] 20:16:56, metric 5
> to 10.8.0.1 via ae0.1
192.168.1.0/30 *[IS-IS/18] 00:29:02, metric 15
> to 10.8.0.1 via ae0.1
{master}[edit]
jnpr@R1-RE0# run show bgp summary
Groups: 2 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 200 200 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
 #Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 67 68 0 0
 29:04 100/100/100/0 0/0/0/0
192.168.0.1 65222 59 74 0 0
 29:08 100/100/100/0 0/0/0/0

{master}[edit]
jnpr@R1-RE0# run show route protocol bgp

inet.0: 219 destinations, 219 routes (219 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

120.120.0.0/24 *[BGP/170] 00:29:13, localpref 100, from 10.3.255.2
 AS path: 65050 ?
> to 10.8.0.1 via ae0.1
120.120.1.0/24 *[BGP/170] 00:29:13, localpref 100, from 10.3.255.2
 AS path: 65050 ?
> to 10.8.0.1 via ae0.1
120.120.2.0/24 *[BGP/170] 00:29:13, localpref 100, from 10.3.255.2
 AS path: 65050 ?
. . .

BGP and IS-IS are as expected, so we quickly look at Layer 2 protocols and functions.
A quick look at BFD:

{master}[edit]
jnpr@R1-RE0# run show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.3.255.2 Up 0.450 0.150 3
10.8.0.1 Up ae0.1 0.450 0.150 3

2 sessions, 2 clients
Cumulative transmit rate 7.7 pps, cumulative receive rate 7.7 pps

And now LACP:

{master}[edit]
jnpr@R1-RE0# run show lacp interfaces
Aggregated interface: ae0
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/0/0 Actor No No Yes Yes Yes Yes Fast Active

790 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 xe-2/0/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-2/0/1 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/0/1 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/0/0 Current Fast periodic Collecting distributing
 xe-2/0/1 Current Fast periodic Collecting distributing

Aggregated interface: ae1
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/2/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/2/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-2/2/1 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/2/1 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/2/0 Current Fast periodic Collecting distributing
 xe-2/2/1 Current Fast periodic Collecting distributing

Aggregated interface: ae2
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 xe-2/3/0 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/3/0 Partner No No Yes Yes Yes Yes Fast Active
 xe-2/3/1 Actor No No Yes Yes Yes Yes Fast Active
 xe-2/3/1 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 xe-2/3/0 Current Fast periodic Collecting distributing
 xe-2/3/1 Current Fast periodic Collecting distributing

As lastly, VSTP status for VLAN 100:

jnpr@R1-RE0# run show spanning-tree interface vlan-id 100

Spanning tree interface parameters for VLAN 100

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ae0 128:483 128:483 4196.001f12b88fd0 1000 FWD DESG
ae1 128:484 128:484 4196.001f12b88fd0 1000 FWD DESG
ae2 128:485 128:485 4196.001f12b88fd0 1000 FWD DESG

The Layer 2 and 3 control plane state are as expected. Data plane stimulation is started
by sending bidirectional Layer 2 and Layer 3 streams over VLAN 100 and between the
EBGP peers, respectively. All four streams generate 128-byte IP packets at a constant
rate. The Layer 2 streams are at 80% line rate (based on 10GE), whereas the Layer 3
streams are at 85% so they can be tracked separately on the tester’s throughput graphs.
The Layer 2 streams are sent to (and from) the MAC and IP addresses of the 201/1 and
202/1 tester ports; the presence of the bidirectional flows allows these MACs to be
learned so that we avoid unknown unicast flooding. The Layer 3 stream is sent to (and
from) the second EBGP route in each of the EBGP route pools, which is to say
130.130.1.1 and 120.120.1.1, respectively. The relatively high traffic rates and use of
a N2X router tester helps confirm that claims of hitless dataplane (and control plane)
operation are justified; after all, this is not your grandfather’s ping testing, which, hon-
estly, is not a very good way to test for data plane behavior in today’s high-speed world.

Nonstop Routing and Bridging | 791

www.it-ebooks.info

http://www.it-ebooks.info/

The monitor interface command is used to quickly confirm traffic volumes on key
interfaces. At R1, the ae1 interface carries the Layer 2 domain’s traffic:

Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'
R1-RE0 Seconds: 0 Time: 11:10:18
 Delay: 4/4/4
Interface: ae1, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 20000mbps
Traffic statistics: Current delta
 Input bytes: 72440901925378 (6919050752 bps) [0]
 Output bytes: 35921675228538 (6919051008 bps) [0]
 Input packets: 287143751453 (6756885 pps) [0]
 Output packets: 144496826189 (6756887 pps) [0]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Carrier transitions: 0 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]

While ae0 is transporting the BGP-based traffic:

Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'
R1-RE0 Seconds: 1 Time: 11:20:05
 Delay: 0/0/0
Interface: ae0, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 20000mbps
Traffic statistics: Current delta
 Input bytes: 6893931459049 (6317555336 bps) [0]
 Output bytes: 35708294654929 (6317555224 bps) [0]
 Input packets: 36863464745 (7179044 pps) [0]
 Output packets: 149832027353 (7179043 pps) [0]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Carrier transitions: 0 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]

The reported traffic loads on R1’s AE interfaces correspond nicely with the router tester
displays, as shown in Figure 9-11, and confirm flow symmetry in both the Layer 2 and
Layer 3 flows.

792 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-11. Pre-NSR (Instantaneous) Traffic Statistics

With the initial state confirmed, attention shifts to confirmation of NSR and NSB rep-
lication, as detailed in the next section.

Confirm Pre-NSR Replication State

We begin preswitchover confirmation with GRES readiness as it’s a prerequisite to a
successful NSR switchover.

{backup}
jnpr@R1-RE1>show system switchover
Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

The BU RE at R1 confirms that GRES replication has completed successfully, an aus-
picious first sign. Overall replication is now verified on the master RE:

{master}
jnpr@R1-RE0>show task replication
 Stateful Replication: Enabled
 RE mode: Master

 Protocol Synchronization Status
 BGP Complete
 IS-IS Complete

{master}
jnpr@R1-RE0>

Again, the output is as expected; you only expect replication status for NSR-supported
Layer 3 protocols, and here there are two such protocols running, namely IS-IS and
BGP.

Nonstop Routing and Bridging | 793

www.it-ebooks.info

http://www.it-ebooks.info/

BGP replication offers specific details through CLI show commands:

{master}
jnpr@R1-RE0>show bgp re?
Possible completions:
 replication BGP NSR replication state between master and backup

Details for BGP on the master RE are shown:

jnpr@R1-RE0>show bgp replication
Synchronization master:
 Session state: Up, Since: 2:03:47
 Flaps: 0
 Protocol state: Idle, Since: 2:03:47
 Synchronization state: Complete
 Number of peers waiting: AckWait: 0, SoWait: 0, Scheduled: 0
 Messages sent: Open 1, Establish 2, Update 0, Error 0, Complete 1
 Messages received: Open 1, Request 1 wildcard 0 targeted, EstablishAck 2,
 CompleteAck 1

The key information in the BGP replication displays is the confirmation of an estab-
lished session with 0 flaps, which shows the expected stability of the replication process.
Also good is the lack of queued messages pending, and the 0 error count. In summary,
the display confirms that BGP replication has completed with no errors and is stable,
just what you want to see. The same command can be run on the BU RE; while the
output is relatively terse, no errors are reported:

{backup}
jnpr@R1-RE1>show bgp replication
Synchronization backup:
 State: Established 2:04:21 ago

Given that all BGP replication appears to have completed normally, you expect to find
matching state between the REs for both BGP peers and routes. The master view of
overall BGP operation is displayed first:

{master}
jnpr@R1-RE0>show bgp summary
Groups: 2 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 200 200 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last
 Up/Dwn State|#Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 289 289 0 0
 2:09:28 100/100/100/0 0/0/0/0
192.168.0.1 65222 260 295 0 0
 2:09:32 100/100/100/0 0/0/0/

And the same on the BU:

{backup}
jnpr@R1-RE1>show bgp summary
Groups: 2 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 200 200 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn

BGP Replication.

794 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 State|#Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 290 289 100 0
 2:09:52 100/100/100/0 0/0/0/0
192.168.0.1 65222 260 294 103 0
 2:09:56 100/100/100/0 0/0/0/0

The master’s view of the external peer:

{master}
jnpr@R1-RE0>show bgp neighbor 192.168.0.1
Peer: 192.168.0.1+179 AS 65222 Local: 192.168.0.2+56140 AS 65000.65000
 Type: External State: Established Flags: <Sync RSync>
 Last State: EstabSync Last Event: RecvKeepAlive
 Last Error: None
 Export: [bgp_export]
 Options: <Preference LogUpDown PeerAS Refresh>
 Holdtime: 90 Preference: 170
 Number of flaps: 0
 Peer ID: 192.168.0.1 Local ID: 10.3.255.1 Active Holdtime: 90
 Keepalive Interval: 30 Peer index: 0
 BFD: disabled, down
 Local Interface: xe-2/1/1.0
 NLRI for restart configured on peer: inet-unicast
 NLRI advertised by peer: inet-unicast
 NLRI for this session: inet-unicast
 Peer does not support Refresh capability
 Stale routes from peer are kept for: 300
 Peer does not support Restarter functionality
 Peer does not support Receiver functionality
 Peer does not support 4 byte AS extension
 Peer does not support Addpath
 Table inet.0 Bit: 10000
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 100
 Received prefixes: 100
 Accepted prefixes: 100
 Suppressed due to damping: 0
 Advertised prefixes: 103
 Last traffic (seconds): Received 2 Sent 17 Checked 62
 Input messages: Total 263 Updates 1 Refreshes 0 Octets 5419
 Output messages: Total 298 Updates 7 Refreshes 0 Octets 6402
 Output Queue[0]: 0
 Trace options: graceful-restart
 Trace file: /var/log/bgp_trace size 10485760 files 1

And on the BU:

{backup}
jnpr@R1-RE1>show bgp neighbor 192.168.0.1
Peer: 192.168.0.1 AS 65222 Local: 192.168.0.2 AS 65000.65000
 Type: External State: Established Flags: <ImportEval Sync>
 Last State: Idle Last Event: RecvEstab
 Last Error: None
 Export: [bgp_export]
 Options: <Preference LogUpDown PeerAS Refresh>
 Holdtime: 90 Preference: 170

Nonstop Routing and Bridging | 795

www.it-ebooks.info

http://www.it-ebooks.info/

 Number of flaps: 0
 Peer ID: 192.168.0.1 Local ID: 10.3.255.1 Active Holdtime: 90
 Keepalive Interval: 30 Peer index: 0
 BFD: disabled, down
 Local Interface: xe-2/1/1.0
 NLRI for restart configured on peer: inet-unicast
 NLRI advertised by peer: inet-unicast
 NLRI for this session: inet-unicast
 Peer does not support Refresh capability
 Peer does not support Restarter functionality
 Peer does not support Receiver functionality
 Peer does not support 4 byte AS extension
 Peer does not support Addpath
 Table inet.0 Bit: 10000
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 100
 Received prefixes: 100
 Accepted prefixes: 100
 Suppressed due to damping: 0
 Advertised prefixes: 103
 Last traffic (seconds): Received 26 Sent 13 Checked 139043
 Input messages: Total 263 Updates 1 Refreshes 0 Octets 5419
 Output messages: Total 297 Updates 7 Refreshes 0 Octets 6343
 Output Queue[0]: 103
 Trace options: graceful-restart
 Trace file: /var/log/bgp_trace size 10485760 files 10

And last, a specific BGP route on the master:

{master}
jnpr@R1-RE0>show route 130.130.1.1

inet.0: 219 destinations, 219 routes (219 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

130.130.1.0/24 *[BGP/170] 02:13:09, localpref 100
 AS path: 65222 ?
> to 192.168.0.1 via xe-2/1/1.0

And again on the BU:

{backup}
jnpr@R1-RE1>show route 130.130.1.1

inet.0: 219 destinations, 426 routes (219 active, 0 holddown, 207 hidden)
+ = Active Route, - = Last Active, * = Both

130.130.1.0/24 *[BGP/170] 02:12:46, localpref 100
 AS path: 65222 ?
> to 192.168.0.1 via xe-2/1/1.0

At this point, you should be getting the idea with regard to seeing matching state for
supported protocols between REs, so the point is not belabored farther.

796 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

IS-IS replication commands are currently hidden in the CLI, likely due
to a lack of documentation and the belief that customers should not bother themselves
with such details.

{master}
jnpr@R1-RE0>show isis repl?
No valid completions
{master}
jnpr@R1-RE0> show isis repl

Completing the hidden argument allows the options to be viewed:

{master}
jnpr@R1-RE0>show isis replication ?
Possible completions:
 adjacency Show IS-IS adjacency replication information
 database Show IS-IS link-state database replication information
 interface Show IS-IS interface replication information
 statistics Show IS-IS replication statistics
 system-id Show IS-IS system-id replication information
{master}
jnpr@R1-RE0> show isis replication

A few of the hidden IS-IS replication command options are explored, again on both
master and BU, as always, starting with the current master:

{master}
jnpr@R1-RE0>show isis replication adjacency
IS-IS adjacency replication:
Interface System L State SNPA
ae0.1 R2-RE0 1 Up 0:1f:12:b7:df:c0
 Instance: master, Interface index: 325, References: 1
 Up/Down transitions: 3, 22:18:23 ago
 Last event: Seenself

{master}
jnpr@R1-RE0>show isis replication database
IS-IS level 1 link-state database replication:
Instance: master
 0 LSP Replication Entries

IS-IS level 2 link-state database replication:
Instance: master
LSP ID Sequence Checksum Lifetime Used
R1-RE0.00-00 0x40b 0x53af 1092 Yes
R2-RE0.00-00 0x38b 0x974 880 Yes
 2 LSP Replication Entries

And now the same on the BU:

{backup}
jnpr@R1-RE1>show isis replication adjacency
IS-IS adjacency replication:
Interface System L State SNPA
ae0.1 R2-RE0 1 Up 0:1f:12:b7:df:c0
 Instance: master, Interface index: 325, References: 1

IS-IS Replication.

Nonstop Routing and Bridging | 797

www.it-ebooks.info

http://www.it-ebooks.info/

 Up/Down transitions: 3, 22:19:29 ago
 Last event: Seenself

{backup}
jnpr@R1-RE1>show isis replication database
IS-IS level 1 link-state database replication:
Instance: master
 0 LSP Replication Entries

IS-IS level 2 link-state database replication:
Instance: master
LSP ID Sequence Checksum Lifetime Used
R1-RE1.00-00 0x40b 0x53af 1022 Yes
R2-RE0.00-00 0x38b 0x974 811 Yes
 2 LSP Replication Entries

The various (hidden) command displays for IS-IS replication are as expected. As with
BGP, the bottom line for IS-IS is the same as for any NSR-supported protocol: you
expect matching displays for the various show commands on both the REs. A few IS-
IS operational commands are executed on both master and BU RE to confirm, first on
the master:

{master}
jnpr@R1-RE0>show isis adjacency
Interface System L State Hold (secs) SNPA
ae0.1 R2-RE0 2 Up 22

{master}
jnpr@R1-RE0>show isis route
 IS-IS routing table Current version: L1: 0 L2: 112
IPv4/IPv6 Routes

Prefix L Version Metric Type Interface NH Via
10.3.255.2/32 2 112 5 int ae0.1 IPV4 R2-RE0
192.168.1.0/30 2 112 15 int ae0.1 IPV4 R2-RE0

And again on the BU:

{backup}
jnpr@R1-RE1>show isis adjacency
Interface System L State Hold (secs) SNPA
ae0.1 R2-RE0 2 Up 0

{backup}
jnpr@R1-RE1>show isis route
 IS-IS routing table Current version: L1: 0 L2: 84
IPv4/IPv6 Routes

Prefix L Version Metric Type Interface NH Via
10.3.255.2/32 2 84 5 int ae0.1 IPV4 R2-RE0
192.168.1.0/30 2 84 15 int ae0.1 IPV4 R2-RE0

While not a Layer 3 protocol, in this case BFD is used to protect
both IS-IS and BGP, so NSR confirmation is covered in this section. Things start with
confirmation of session status and their replication state on both REs. Recall that in

Confirm BFD Replication.

798 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

theory these sessions have their hellos distributed into the PFE, where they are handled
by the periodic packet management daemon (PPM), thus accommodating the relatively
short detection times that are in effect through a NSR:

jnpr@R1-RE0>show bfd session detail
 Detect Transmit
Address State Interface Time Interval Multiplier
10.3.255.2 Up 0.450 0.150 3
 Client BGP, TX interval 0.150, RX interval 0.150
 Session up time 03:41:43
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
 Client ISIS L2, TX interval 0.150, RX interval 0.150
 Session up time 23:40:32
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated

2 sessions, 2 clients
Cumulative transmit rate 13.3 pps, cumulative receive rate 13.3 pps

And on the BU:

{backup}
jnpr@R1-RE1>show bfd session detail
 Detect Transmit
Address State Interface Time Interval Multiplier
10.3.255.2 Up 0.450 0.150 3
 Client BGP, TX interval 0.150, RX interval 0.150
 Session up time 03:42:18
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated
 Detect Transmit
Address State Interface Time Interval Multiplier
10.8.0.1 Up ae0.1 0.450 0.150 3
 Client ISIS L2, TX interval 0.150, RX interval 0.150
 Session up time 23:41:07
 Local diagnostic None, remote diagnostic None
 Remote state Up, version 1
 Replicated

2 sessions, 2 clients
Cumulative transmit rate 13.3 pps, cumulative receive rate 13.3 pps

Note how the BGP-related BFD session, being multihop as the related session is formed
between router loopbacks, does not show an associated interface; the ability to survive
the failure of a network interface is the whole point of loopback-based peering, after
all. Once again, replication-specific commands are currently hidden for BFD, so be sure

Nonstop Routing and Bridging | 799

www.it-ebooks.info

http://www.it-ebooks.info/

to type out the complete replication keyword if you plan to use as part of NSR trou-
bleshooting.

{master}
jnpr@R1-RE0>show bfd replication ?
Possible completions:
 queue Show data-mirroring queues
 registered-database Show registered databases for mirroring
 session Show session replication database
 statistics Show replication statistics
{master}

A few of the BFD replication commands are executed on the master:

{master}
jnpr@R1-RE0>show bfd replication statistics
Connection resets: 1
Last connection close: At Tue Feb 14 20:02:42 2012
Last connection close: mirror_connect_peer:2009 errno 0
Database resyncs: 1
Bytes sent: 33832
Bytes received: 25768

{master}
jnpr@R1-RE0>show bfd replication session
Address Interface Discriminator Replication state
10.8.0.1 ae0.1 6 Synchronized
10.3.255.2 9 Synchronized

And now the BU:

{backup}
jnpr@R1-RE1>show bfd replication statistics
Connection resets: 0
Last connection close: At Tue Feb 14 20:02:44 2012
Last connection close: mirror_peer_connect_complete:1971 errno 0
Database resyncs: 0
Bytes sent: 25848
Bytes received: 33912

{backup}
jnpr@R1-RE1>show bfd replication session
Address Interface Discriminator Replication state
10.8.0.1 ae0.1 6 Target
10.3.255.2 9 Target

All indications are that BFD has completed replication normally with no issues or errors
that should jeopardize a NSR event. In fact, at this point all operational indications are
that Layer 3 NSR, in this case for IS-IS, BFD, and BGP, is working as designed. Both
GRES synchronization and NSR protocol-based replication have completed, and the
system appears NSR ready. At this stage, attention shifts to preswitchover confirmation
of NSB, as detailed in the following.

When performing NSB verification on the MX router, at least in
the 11.4 release, it’s pretty clear that different teams within Juniper worked on the NSR
Layer 2 NSB Verification.

800 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

and NSB feature sets, and again, between the MX and EX implementation of NSB. This
isn’t too surprising given the different maturity levels and the differences in hardware
architecture between the EX and MX platforms.

NSB is confirmed by the presence of the l2cpd running on both REs. Starting at the
master:

{master}
jnpr@R1-RE0>show l2cpd ?
Possible completions:
 task Show l2cpd per-task information
{master}
jnpr@R1-RE0> show l2cpd task
Pri Task Name Pro Port So Flags
 15 Memory
 20 RT
 40 FNP 18 <>
 40 MRPTXRX 17 <>
 40 LLDP IO 11 16 <>
 40 LLDPD_IF
 40 l2cpd issu
 40 Per IFD Feature 15 <>
 40 PNACTXRX 14 <>
 40 PNACAUTH 13 <Connect>
 40 PNACD
 40 STPD
 40 ERPD
 40 STP I/O./var/run/ppmd_control 8 <>
 41 MRPD
 50 MVRP l2ald ipc./var/run/l2ald_control
 25 <>
 50 L2CPD Filter
 60 Mirror Task.8.1.c3.a0.80.0.0.6 29 <>
 60 knl Ifstate 6 <>
 60 KNL
 70 MGMT.local 27 <>
 70 MGMT_Listen./var/run/l2cpd_mgmt 24 <Accept>
 70 SNMP Subagent./var/run/snmpd_agentx 26 <>

And now on the BU:

{backup}
jnpr@R1-RE1>show l2cpd task
Pri Task Name Pro Port So Flags
 15 Memory
 20 RT
 40 FNP 19 <>
 40 MRPTXRX 18 <>
 40 LLDP IO 11 17 <>
 40 LLDPD_IF
 40 l2cpd issu
 40 Per IFD Feature 16 <>
 40 PNACTXRX 15 <>
 40 PNACAUTH 14 <Connect>
 40 PNACD
 40 STPD

Nonstop Routing and Bridging | 801

www.it-ebooks.info

http://www.it-ebooks.info/

 40 ERPD
 40 STP I/O./var/run/ppmd_control 8 <>
 41 MRPD
 50 L2CPD Filter
 60 Mirror Task.8.1.18.f.80.0.0.4 27 <>
 60 knl Ifstate 6 <>
 60 KNL
 70 MGMT.local 28 <>
 70 MGMT_Listen./var/run/l2cpd_mgmt 26 <Accept>
 70 SNMP Subagent./var/run/snmpd_agentx 25 <>

So far, so good; the L2 control protocol daemon is running on both REs, which is not
the case when NSB is disabled. The differences between NSR and NSB operation be-
come apparent when the functional result of the l2cpd, namely xSTP and LLDP, are
compared between master and BU. In the MX implementation of NSB, you don’t expect
to see the same STP/LLDP state on both REs. As mentioned previously, for L2 only the
master state is replicated and the BU does not actually run copies of the various protocol
state machines; hence, for example, STP shows all interfaces as disabled on the current
BU. As always, we start at the master:

{master}
jnpr@R1-RE0>show lldp

LLDP : Enabled
Advertisement interval : 30 seconds
Transmit delay : 2 seconds
Hold timer : 4 seconds
Notification interval : 0 Second(s)
Config Trap Interval : 0 seconds
Connection Hold timer : 300 seconds

Interface LLDP
all Enabled

{master}
jnpr@R1-RE0>show lldp neighbors
Local Interface Chassis Id Port info System Name
xe-2/0/0 00:1f:12:b7:df:c0 xe-2/0/0 R2-RE0
xe-2/0/1 00:1f:12:b7:df:c0 xe-2/0/1 R2-RE0

{master}
jnpr@R1-RE0>show spanning-tree interface vlan-id 100

Spanning tree interface parameters for VLAN 100

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ae0 128:483 128:483 4196.001f12b88fd0 1000 FWD DESG
ae1 128:484 128:484 4196.001f12b88fd0 1000 FWD DESG
ae2 128:485 128:485 4196.001f12b88fd0 1000 FWD DESG

And now on the BU, where no LLDP neighbors are shown and the VSTP state is found
to differ from that found on the master:

802 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

{backup}
jnpr@R1-RE1>show lldp

LLDP : Enabled
Advertisement interval : 30 seconds
Transmit delay : 2 seconds
Hold timer : 4 seconds
Notification interval : 0 Second(s)
Config Trap Interval : 0 seconds
Connection Hold timer : 300 seconds

Interface LLDP
all Enabled

{backup}
jnpr@R1-RE1>show lldp neighbors

{backup}
jnpr@R1-RE1>show spanning-tree interface vlan-id 100

Spanning tree interface parameters for instance 100

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ae0 128:483 128:483 4196.000000000000 0 DIS DIS
ae1 128:484 128:484 4196.000000000000 0 DIS DIS
ae2 128:485 128:485 4196.000000000000 0 DIS DIS

While the state does differ, the lack of error message when executing these commands
on the BU RE also validates that NSB is in effect. Expect an error when NSB is not
enabled as the l2cpd process is not running on the BU RE. Here, only GRES is config-
ured and the BU RE returns the expected errors:

{backup}[edit]
jnpr@R1-RE1# run show lldp
error: the l2cpd-service subsystem is not running

{backup}[edit]
jnpr@R1-RE1# run show spanning-tree interface vlan-id 100
error: the l2cpd-service subsystem is not running

{backup}[edit]
jnpr@R1-RE1#

{backup}[edit]
jnpr@R1-RE1# run show system processes | match l2cpd

It bears repeating that in the case of NSB on MX, the STP Finite State Machine (FSM)
is not run on the BU, and therefore we expect to see the port states/role as disabled, as
shown previously. Recall that at switchover, the replicated state is used to bootstrap
the xSTP process on the new master and the result is hitless from the perspective of
STP speakers (i.e., there is no topology change flag seen or generated as a result of a
GRES event).

Nonstop Routing and Bridging | 803

www.it-ebooks.info

http://www.it-ebooks.info/

One Junos, Many Platforms, Multiple Behaviors
This book focuses on the MX. Most of the commands and concepts apply to EX
switches as they also run Junos. While there is one Junos, there are many flavors based
on the specific platform, As an example, the 11.4 HA documentation for EX switches
indicates that when verifying NSB, the BU RE should have matching STP state, which
is not the case for MX routing running 11.4 Junos, as shown in this chapter:

Verifying Nonstop Bridging on EX Series Switches

. . .

<previous steps omitted for brevity>

3. Log in to the backup RE.

4. Enter the same show command that you entered in Step 2 to collect the same infor-
mation about the NSB-supported Layer 2 protocol on the backup RE:

user@switch>show spanning-tree interface
Spanning tree interface parameters for instance 0
Interface Port ID Designated Designated Port State Role
port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 8192.0019e2500340 1000 FWD DESG
ge-0/0/2.0 128:515 128:515 8192.0019e2500340 1000 BLK DIS
ge-0/0/4.0 128:517 128:517 8192.0019e2500340 1000 FWD DESG
ge-0/0/23.0 128:536 128:536 8192.0019e2500340 1000 FWD DESG
. . .

In similar fashion, the operation of the periodic packet management daemon (ppmd) is
confirmed. Once again, verification involves use of a hidden show ppm CLI command;
once again, a case of hidden not due to any inherent danger to the router or its operator
per-se, but because the operational details of the daemon are not publicly documented
and such a display cannot, therefore, be officially supported:

{master}
jnpr@R1-RE0>show ppm ?
Possible completions:
 adjacencies Show PPM adjacencies
 connections Show PPM connections
 interfaces Show PPM interface entries
 objects Show PPM opaque objects
 rules Show PPM interface entries
 transmissions Show PPM transmission entries
{master}

First, the command output from the master:

{master}
jnpr@R1-RE0>show ppm connections detail
Protocol Logical system ID Adjacencies Transmissions
BFD All 2 2
ESMC None 0 0
STP None 0 5
ISIS None 1 1

804 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

PIM None 0 0
PFE (fpc2) 573 7 7
VRRP None 1 1
PFE (fpc1) 581 0 0
ESIS None 1 1
LACP None 6 6
OAMD None 0 0
LFM None 0 0
CFM None 0 0

Connections: 13, Remote connections: 2

The connection output is useful on a few fronts. First, it helps confirm the various
clients for which PPM-based hello generation is supported. Note the presence of BFD,
LACP, STP, VRRP, IS-IS, and Ethernet OAM. The display also confirms that ppmd has
two BFD connections/clients.

You may note the conspicuous absence of BGP and OSPF. This is because BGP hellos
are always RE-based; after all, the lowest supported hold timer is nine seconds, making
subsecond hello generation a nonissue. And besides, BGP keepalives are TCP-based,
and processing the related state is a lot to ask of a PFE. At this time, OSPF hellos are
also RE-based, but as with BGP, centralized handling (on the RE) of OSPF hellos are
not an issue as the default timers on a LAN interface support a 40-second dead timer
that means

Keep in mind that an OSPF hello or BGP keepalive is different than a BFD session that
supports OSPF or BGP as a client, in which case BFD provides rapid fault detection
while allowing the client protocols to use default timers that are long enouigh to permit
RE-based hello generation.

A listing of the distributed, nondistrubited, and non-BFD clients in the 11.4 Junos
release is provided.

Distributed PPMD clients:

BFD
STP
LFM
CFM
LACP
VRRP

Nondistributed PPMD clients:

OSPF2
OSPF3
ISIS
ESIS
LDP
OAMD

Nonstop Routing and Bridging | 805

www.it-ebooks.info

http://www.it-ebooks.info/

PIM

Non-PPMD clients:

BGP
RSVP

More details about the PPMD clients are seen with the transmissions detail switches:

{master}
jnpr@R1-RE0>show ppm transmissions detail

Destination: 10.3.255.2, Protocol: BFD, Transmission interval: 150

Destination: 10.8.0.1, Protocol: BFD, Transmission interval: 150
Distributed, Distribution handle: 3906, Distribution address: fpc2

Destination: N/A, Protocol: STP, Transmission interval: 2000

Destination: N/A, Protocol: STP, Transmission interval: 2000

Destination: N/A, Protocol: STP, Transmission interval: 2000

Destination: N/A, Protocol: STP, Transmission interval: 2000

Destination: N/A, Protocol: STP, Transmission interval: 2000

Destination: N/A, Protocol: ISIS, Transmission interval: 9000

Destination: N/A, Protocol: VRRP, Transmission interval: 1000

Destination: N/A, Protocol: ESIS, Transmission interval: 60000

Destination: N/A, Protocol: LACP, Transmission interval: 1000
Distributed, Distribution handle: 4001, Distribution address: fpc2

Destination: N/A, Protocol: LACP, Transmission interval: 1000
Distributed, Distribution handle: 4002, Distribution address: fpc2

Destination: N/A, Protocol: LACP, Transmission interval: 1000
Distributed, Distribution handle: 4017, Distribution address: fpc2

Destination: N/A, Protocol: LACP, Transmission interval: 1000
Distributed, Distribution handle: 4023, Distribution address: fpc2

Destination: N/A, Protocol: LACP, Transmission interval: 1000
Distributed, Distribution handle: 4027, Distribution address: fpc2

Destination: N/A, Protocol: LACP, Transmission interval: 1000
Distributed, Distribution handle: 4033, Distribution address: fpc2

Transmission entries: 16, Remote transmission entries:

The output confirms that the two BFD connections shown by ppmd are, in fact, the two
used in this example to protect the IS-IS adjacency and the IBGP session between the

806 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

two routers. This output is also quite useful for making it clear the former is distributed
to FPC2 while the latter is not, meaning it is an RE-based BFD session. There’s more
detail on this a little later.

The final display shows the various clients that the ppmd process is aware of. In this
example, most have their hello functions handled by the ppmd process itself, as con-
firmed in the previous command output for those connections shown as being dis-
tributed to a FPC. Those that are not distributed have their hellos handled by the RE,
but the ppmd process is still aware of these sessions and monitors their state.

{master}
jnpr@R1-RE0>show ppm adjacencies
Protocol Hold time (msec)
BFD 450
BFD 450
ISIS 27000
VRRP 3960
ESIS 180000
LACP 3000
LACP 3000
LACP 3000
LACP 3000
LACP 3000
LACP 3000

And now, the same commands executed on the BU:

{backup}
jnpr@R1-RE1>show ppm connections
Protocol Logical system ID
BFD All
ESMC None
ISIS None
PIM None
STP None

Connections: 5, Remote connections: 0

{backup}
jnpr@R1-RE1>show ppm adjacencies
Protocol Hold time (msec)
BFD 450
BFD 450

Adjacencies: 2, Remote adjacencies: 0

These displays contain some real gold. The reader is encouraged to study the BFD and
PPM-related output carefully while mulling back over all the NSR points made thus
far; perhaps there is a landmine in addition to any gold mines, but again, more on that
later.

Nonstop Routing and Bridging | 807

www.it-ebooks.info

http://www.it-ebooks.info/

Perform a NSR

Well, come on, what are you waiting for? Are you chicken? Everyone else is doing NSRs,
and all indications to this point are that the system is ready. Here, the typical method
of inducing a GRES event is used, shown with the acquire form executed on the current
BU. The same result can be had on the current master with the request chassis rout
ing-engine master release no-confirm form.

{backup}
jnpr@R1-RE1>request chassis routing-engine master acquire no-confirm
Resolving mastership...
Complete. The local routing engine becomes the master.

Initially, the NSR appears to have gone well, but they always do. Your heart sinks as
you see traffic loss begin tallying on the router tester, and soon thereafter it’s confirmed
that the IBGP session has flapped on the new master:

{master}
jnpr@R1-RE1>show bgp summary
Groups: 2 Peers: 2 Down peers: 1
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 200 200 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State
 |#Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 1012 1012 0 1 7 Active
192.168.0.1 65222 915 1021 0 0 7:37:10 100/100/100/0
 0/0/0/0

{master}

That was certainly not expected, at least not in terms of what was hoped to be a hitless
event to both control and dataplane. Thinking quickly, you can confirm that IS-IS
appears unaffected by the switchover, as should be the case for any NSR-supported
protocol. Taking it where you can get it, this means you are batting 500; at least the
NSR was not a complete disaster:

jnpr@R1-RE1>show isis adjacency
Interface System L State Hold (secs) SNPA
ae0.1 R2-RE0 2 Up 21

Though not shown, the IBGP flap and loss at NSR is con-
sistently observed on subsequent NSRs, confirming it was not a one-of fluke. Oddly,
the careful checks of replication state prior to the NSR would seem to indicate this is
not an issue of unsupported NSR protocols; IS-IS and BGP have long been NSR sup-
ported, and so too has NSB for xSTP, distributed PPM, and GRES synchronization for
all the other bits.

While the potential for a blatant NSR bug is always possible, given the rather vanilla
nature of the configuration, and aforementioned indications of successful replication
and general NSR readiness, it seems more likely this is somehow a configuration-related
issue. In such cases, it’s always good troubleshooting advice to reduce system com-

Troubleshoot a NSR/NSB Problem.

808 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

plexity, or to eliminate areas that are known to be working so time is not wasted on
the wrong protocol.

Figure 9-12 shows the nature of the loss observed during the NSR event.

Figure 9-12. A Not-so-Hitless NSR.

The figure makes it clear the NSR was not hitless to the dataplane, but interestingly
also exposes the fact that loss was limited to the Layer 3 portion of the network. Though
not shown, previous testing with STP tracing on the switches confirmed that no TCN
or other STP changes happened during a switchover, which also confirms that NSB is
working as expected in this case. Combine this with the observation of 0 loss for Layer
2 traffic, and it seems you have already narrowed this down to a NSR as opposed to
NSB issue, a fact that in itself is a major step in landing on the actual solution to this
problem. Recall also that a previous display pointed to an issue with IBGP session,
given that the EBGP sessions remained up through the NSR, as did the IS-IS adjacency.

While no specific protocol tracing was in effect, the BGP configuration did have the
log-updown statement, and Junos is pretty good about logging things anyway. The syslog
will have lots of entries after a GRES/NSR event. Junos has great pipe to match capa-
bility that makes it easy to find entries of interest. In this case, the following entries are
found, shown here in chronological order:

Feb 15 20:34:30 R1-RE1 clear-log[10808]: logfile cleared
. .

Nonstop Routing and Bridging | 809

www.it-ebooks.info

http://www.it-ebooks.info/

Feb 15 20:34:40 R1-RE1 /kernel: mastership: sent other RE mastership loss signal
Feb 15 20:34:40 R1-RE1 /kernel: mastership: routing engine 1 becoming master
Feb 15 20:34:40 R1-RE1 /kernel: mastership: routing engine 1 became master
. . .
Feb 15 20:34:41 R1-RE1 rpd[10253]: RPD_BGP_NEIGHBOR_STATE_CHANGED: BGP peer 10.3.255.2
 (Internal AS 65000.65000) changed state from Established to Idle (event Restart)
. . .
Feb 15 20:34:41 R1-RE1 bfdd[10250]: BFDD_TRAP_MHOP_STATE_DOWN: local discriminator:
12,
 new state: down, peer addr: 10.3.255.2

The logs indicate the time of the GRES event and go on to confirm the idling of the
IBGP connection to R2 lo0 address because of a restart event. It’s quite the coincidence
that the BFD session to the same lo0 address is also shown going down at the same
time. Given both are shown to have occurred at the same time, it helps to recall that
BFD’s role is to rapidly detect failures and then notify its client, IBGP in this case, of
the event to promote rapid reconvergence. As such, attention shifts to this being a BFD
issue at NSR, rather than a BGP flap at NSR, which is, again, another significant step
toward reaching the correct solution to a rather complex set of symptoms.

Given there were no log entries indicating interface/LACP flap during the NSR, and
that the other BFD session that protects IS-IS (supported over the same link used to
support the flapped IBGP session), remained up, the indication is this is not a link flap
issue, which would point toward a possible GRES problem. It was also previously noted
that the EBGP session did not flap, but it’s not using BFD.

Factoring all this information shifts focus to what is so special about the IBGP BFD
session. Then the answer strikes like a ton of bricks. Multihop BFD sessions are RE-
based!

RE-based sessions cannot avail themselves of PFE-based uninterrupted packet gener-
ation through a GRES event, and therefore require a considerably longer hold time to
be stable over a NSR. You recall that in previous PPM-related displays, only one of the
BFD sessions was shown as distributed, which means the other must have been RE-
based. Earlier in this chapter, at the end of the GRES section, there was a warning about
this, stating that a minimum of 2,500 ms is recommended for RE-based sessions. You
quickly look at the BGP configuration and confirm the issue:

{master}[edit]
jnpr@R1-RE1# show protocols bgp group int
type internal;
local-address 10.3.255.1;
family inet {
 unicast;
}
bfd-liveness-detection {
 minimum-interval 150;
 multiplier 3;
}
neighbor 10.3.255.2;

810 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

A quick change is made:

{master}[edit]
jnpr@R1-RE1# set protocols bgp group int bfd-liveness-detection minimum-interval 2500

{master}[edit]
jnpr@R1-RE1# commit
re1:
configuration check succeeds
re0:
commit complete
re1:
commit complete

{master}[edit]
jnpr@R1-RE1# run show bfd session address 10.3.255.2
 Detect Transmit
Address State Interface Time Interval Multiplier
10.3.255.2 Up 7.500 2.500 3

1 sessions, 1 clients
Cumulative transmit rate 0.4 pps, cumulative receive rate 0.4 pps

With the change confirmed, the traffic generator is restarted in preparation for that
hitless switchover you have been promised. Though not shown, the tester reports no
loss, just as before. Meanwhile, the log is cleared on the soon-to-be-new master, and
you begin monitoring the log in real time using the CLI’s matching function to spot
any changes to BGP or BFD.

{backup}
jnpr@R1-RE0>clear log messages

{backup}
jnpr@R1-RE0>monitor start messages | match "(bfd|bgp)"

And for the second time in a day, you have an opportunity to wield power that most
humans cannot even begin to fathom. You pull the trigger on a NSR, this time switching
control back to RE0. Drumroll, please:

{backup}
jnpr@R1-RE0>request chassis routing-engine master acquire no-confirm
Resolving mastership...
Complete. The local routing engine becomes the master.

{master}
. . .

And it’s truly a case of “look to see what does not happen.” That’s part of the problem
with Juniper’s NSR. When it works, it works so well that customers have been known
to make accusations that some form of trickery is at play; perhaps this misguided belief
can account for the odd fetish some have developed regarding the yanking of a master
RE from the chassis while emitting a brutish grunt?

Nonstop Routing and Bridging | 811

www.it-ebooks.info

http://www.it-ebooks.info/

With the RE-based BFD session now running, the recommended long-duration timer
all went to plan. No BFD, IS-IS, or BGP flap was detected on any peer or in the local
syslog. All appears just as it did preswitchover on the old master:

jnpr@R1-RE0>show bgp summary
Groups: 2 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 200 200 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn
 State|#Active/Received/Accepted/Damped...
10.3.255.2 65000.65000 94 94 0 0 40:46
 100/100/100/0 0/0/0/0
192.168.0.1 65222 82 95 0 0 40:51
 100/100/100/0 0/0/0/0

{master}
jnpr@R1-RE0>show bfd session
 Detect Transmit
Address State Interface Time Interval Multiplier
10.3.255.2 Up 7.500 2.500 3
10.8.0.1 Up ae0.1 0.450 0.150 3

2 sessions, 2 clients
Cumulative transmit rate 7.1 pps, cumulative receive rate 7.1 pps

{master}
jnpr@R1-RE0>show isis adjacency
Interface System L State Hold (secs) SNPA
ae0.1 R2-RE0 2 Up 22

{master}
jnpr@R1-RE0>show spanning-tree interface vlan-id 100

Spanning tree interface parameters for VLAN 100

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ae0 128:483 128:483 4196.001f12b88fd0 1000 FWD DESG
ae1 128:484 128:484 4196.001f12b88fd0 1000 FWD DESG
ae2 128:485 128:485 4196.001f12b88fd0 1000 FWD DESG

Sometime after the GRES event, the only syslog entries displayed are the expected
reconnection of the ppmd process to the various FPCs. Part of the new master settling
in to the new digs, as it were. This adds yet more proof that there was no BFD or BGP
flap in this NSR event:

{master}
jnpr@R1-RE0>
*** messages ***
Feb 15 21:15:55 R1-RE0 fpc2 PPMAN: bfd conn ready
Feb 15 21:15:56 R1-RE0 fpc1 PPMAN: bfd conn ready

Figure 9-13 shows the traffic statistics for the final NSR.

812 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-13. The Hitless NSR, Truly a Thing of Beauty.

As advertised, there was absolutely zero, none, nada, zilch, zip loss, and that was for
both bridges and routed traffic, as well as their associated protocols. That is the power
of Junos-based NSR and NSB on the MX platform. A working NSR is truly a pleasure
to behold.

NSR Summary
Given the grand success of the NSR case study, what more can be said? NSR is very
cool and pretty darned impressive, even at this admittedly low scale. You can expect
the same even with thousands of interfaces and protocol peers, as long as you practice
the safe switchover guidelines covered in this section. There are many reasons for an
NSR event to go less than gracefully. Bugs aside, most are documented, and most can
be spotted before any switchover actually happens, if you know what to look for. If
things do go bad, don’t panic. NSR rarely makes things worse than if it were not enabled
(granted, there can be NSR-specific bugs early on, but the technology has now had
more than four years to mature), and if you keep a cool head and take some time to
spot the lowest layer showing issues, you can usually quickly identify the protocol that
is not behaving well and go from there.

Try to isolate issues as being GRES, GR, or NSR/NSB-related. Interface or LACP/BFD
flaps tend to indicate issues with GRES- or centralized/RE-based sessions. In contrast,

Nonstop Routing and Bridging | 813

www.it-ebooks.info

http://www.it-ebooks.info/

mismatched state on master versus backup tends to point to either an unsupported
protocol or a replication error.

Remember to use NSR tracing when you feel replication is not completing or may be
unstable, and be sure to make sure all replication tasks are complete before impressing
your friends with your network’s NSR Prowse. Premature back-to-back switchovers on
a highly scaled system is a common reason for NSR to fail in random ways that can
never be reproduced; given the high MTBF of Juniper REs, rapid or repeated switch-
overs are rarely expected in a production network.

NSR is the state of the art for network HA and is an enabling foundation for In-Service
Software Upgrades (ISSU), the topic of the next section.

In-Service Software Upgrades
The Junos ISSU feature allows for a virtually hitless upgrade from one supported ISSU
release to another. As mentioned previously, the foundation of ISSU is NSR, as during
the ISSU process a GRES switchover occurs as the original standby becomes master to
allow the old master (new backup) to be upgraded. Like GRES and NSR, ISSU can only
be used on systems with redundant REs.

What is a supported ISSU release? In most cases, you are limited to no more than three
major releases, and in theory any extended End-of-Life (EEOL) release to a current
release should work. This section details current ISSU operation and restrictions for
Trio-based MX routers running Junos 11.4.

ISSU Operation
At a high level, ISSU operation is pretty straightforward. Things begin when you include
the in-service-upgrade switch rather than add when using the request system soft
ware command. The current master then pushes the new software bundle to the BU
RE, where it’s installed. After the BU RE reboots with the new software, the current
master upgrades the PFE components in a sequential manner, which induces a brief
dataplane outage known as a dark window. Next, a GRES event is triggered to make
the old BU the new master, at which point the new BU (old master) begins installing
the new software. When all goes to plan, you are left with both REs on the new software,
now with RE1 as the master, all with no control plane hit and only a brief period of
disruption to the data plane.

Figure 9-14 begins a sequence of figures that illustrate ISSU behavior on Trio-based
MX routers.

814 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-14. The ISSU Process.

Figure 9-14 shows the pre-ISSU state, with NSR and GRES in effect, and RE0 as the
master (m) and RE1 as backup (b). Note that the master RE maintains two different
types of chassis connections to each PFE in the system, namely a high-speed PFE man-
ager link (pfeman) and a low-speed chassis management (CM) link. The CM thread
supports the chassisd process and is used to bring up FPCs and to take PIC online/
offline. The pfeman thread is responsible for handling IFD/IFL config messages and
forwarding table updates from the RE.

Normal NSR and GRES replication and synchronization processes ensure that both
REs have the same protocol and kernel state, and to begin both REs and the chassis are
on the same version. At this point, the operator issues the request system software in-
service-upgrade <pkg> command to initiate an ISSU, which begins a compatibility
check to confirm the following:

This is an upgrade
That GRES, NSR, and NSB are in effect
Both REs are on the same version and that it’s an ISSU supported release
The configuration is ISSU-supported
The hardware is ISSU-supported
No PPM or LACP processes are set to centralized

The ISSU process aborts if any are found to be false. In addition, the operator is warned
when features or hardware are found that are known to result in control plane hits, for
example when a PIC offline is required or when an unsupported BGP family is detected.
In these cases, the operator is prompted to confirm if he or she wishes to proceed with
an ISSU, as shown for the case of the inet-mvpn family in the 11.4 release:

. . .
Hardware Database regeneration succeeded
Validating against /config/juniper.conf.gz
mgd: commit complete
Validation succeeded
[edit protocols bgp group int family inet-mvpn]:

In-Service Software Upgrades | 815

www.it-ebooks.info

http://www.it-ebooks.info/

NSR is not supported; packet loss is expected
[edit protocols bgp group int family inet-mvpn]:
NSR is not supported; packet loss is expected
Do you want to continue with these actions being taken ? [yes,no] (no) no

error: ISSU Aborted!
Chassis ISSU Aborted
ISSU: IDLE

{master}
jnpr@R2-RE0>

Figure 9-15 shows the system state after the compatibility checks have passed and the
new software bundle is pushed to RE1, which still functions in the BU role.

Figure 9-15. The ISSU Process Continued.

In Figure 9-15, RE1 has completed the reboot required to load its new software and is
now on the new version, at which point it resynchronizes with the current master. After
both REs are synchronized, the current master (RE0) begins upgrading the PFE com-
ponents with the new software. On redundant systems, this is done in sequential fash-
ion to minimize dataplane impact; otherwise, all components are upgraded in parallel.
When the FPCs reboot, they too are now on the new code. Each upgraded PFE com-
ponent now maintains a connection to each RE. The slow-speed CM connection is
reformed to the current master (RE0) whereas the high-speed pfeman link is established
to the current BU (RE1), which is running matched upgraded software. In Fig-
ure 9-15, only the first PFE has been loaded with the new software.

The next stage of the ISSU process is shown in Figure 9-16.

816 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-16. A Completed ISSU.

At this point, all PFE components are running the new software and a GRES event has
occurred, placing RE1 into the master role. All FPCs reform their CM connections to
the new master, and the old master, RE0, now in the BU role, has finished its installation
and reboot, now on the same version as all other parts of the system. After booting, the
new BU performs NSR/GRES replication and synchronization with RE1, the new mas-
ter.

During this process, interface-specific and firewall filter statistics are preserved across
an ISSU for Trio-based MX MPC/MIC interfaces; however, during the ISSU, counter
and policer operations are disabled. The period of time the policers remain disabled is
configuration dependant; note that all DDoS/host-bound policers remain in effect at
all times. The pre-ISSU statistics are stored as binary large objects and then restored
after the ISSU complete, a process that prevents statistics collection during the ISSU
process.

ISSU Dark Windows

ISSU should be completely hitless to the control plane, but unlike a regular NSR, the
need to push new code into the FPC forces two dark windows that are traffic-affecting:

• The first dark window affects only the host packet path from/to the RE and should
last no longer than two seconds. This dark window is the result of the host to PFE
path being temporarily unavailable while the PFE performs a reboot onto the new
code.

• The second window impacts both the host packet and transit packet paths, and is
expected to be no more than a few seconds per PFE; due to various Trio PFE
optimizations, the actual dark windows can be far less. The second dark window
results from the time necessary for the PFE to perform hardware synchronization
with the new master RE. Trio PFEs have been optimized to reduce the duration of
each dark window to an absolute minimum. Internal testing has shown that with
one million routes, an I-chip PFE is expected to have up to seven seconds of dark

In-Service Software Upgrades | 817

www.it-ebooks.info

http://www.it-ebooks.info/

window while at this same scale a Trio-based PFE is expected to close its dark
window within 700 ms, which is an order of magnitude improvement over the I-
chip-based ADPCs.

• While short, the second window can disrupt Ethernet OAM sessions, which are
rebuilt after the dark window. In contrast, the lack of dataplane hit in a conven-
tional NSR event allows OAM session to remain operational through the switch-
over.

Given that Bidirectional Forwarding Detection (BFD) is de-
signed to rapidly detect forwarding plane problems, sessions with short timers can be
disrupted during the ISSU dark window. This is prevented by temporarily increasing
session detection and transmission timers during an ISSU event. After the upgrade,
these timers revert to the values in use before the unified ISSU started.

Although it’s not clear why you would want to, you can disable the BFD timer rene-
gotiation feature by including the no-issu-timer-negotiation statement at the [edit
protocols bfd] hierarchy level. When so configured, the BFD timers maintain their
original values during the ISSU. You should expect BFD session flap and a resulting
protocol and control plane disruption during the ISSU dark windows as a result. You
can monitor the renegotiation behavior of BFD timers with ISSU tracing for BFD by
including the issu statement at the [edit protocols bfd traceoptions flag] hierarchy.

Use of the no-issu-timer-negotiation in conjunction with ISSU is not
recommended. Depending on the detection intervals, some or all BFD
sessions might flap during ISSU.

To demonstrate this adaptive BFD behavior, ISSU tracing is configured for BFD and
an ISSU is started:

{master}[edit]
jnpr@R2-RE1# show protocols bfd
traceoptions {
 file bfd_issu_trace size 10m;
 flag issu;
}

The following BFD trace is observed on the new master shortly after the GRES:

{master}[edit]
jnpr@R2-RE1# run show log bfd_issu_trace

Feb 22 14:12:07 Check the Daemon ISSU state in the kernel
Feb 22 14:12:07 Daemon ISSU State <UNKNOWN>.
Feb 22 14:12:07 Chassisd ISSU State <IDLE>.
Feb 22 14:12:07 Handle mastership change
Feb 22 14:12:22 Sending the next session for ISSU timer negotiation 11
Feb 22 14:12:22 Revert session (discr 11) timers back to original values
Feb 22 14:12:22 Tx timer before is 20000000
Feb 22 14:12:22 Tx timer reverted back to 150000
Feb 22 14:12:22 Rx timer reverted back to 150000

BFD and the Dark Window.

818 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Feb 22 14:12:22 Sending the next session for ISSU timer negotiation 13
Feb 22 14:12:22 Revert session (discr 13) timers back to original values
Feb 22 14:12:22 Tx timer before is 20000000
Feb 22 14:12:22 Tx timer reverted back to 2500000
Feb 22 14:12:22 Rx timer reverted back to 2500000

The trace confirms that both BFD sessions had their timers temporally increased to
20,000 ms (the trace output is in microseconds) to allow them to survive the ISSU dark
windows, before being restored to their original values of 150 and 2,500 ms, respec-
tively.

ISSU Layer 3 Protocol Support
Table 9-3 lists Layer 3 ISSU protocols support by release for Junos.

Trio-based MX routers do not support ISSU until release v11.2.

Table 9-3. Layer 3 ISSU Support by Release.

Protocol/Service Minimum Junos Version

DHCP access model (subscriber access) 11.2 or later

IS-IS 9.0 or later

LDP 9.0 or later

LDP-based virtual private LAN service (VPLS) 9.3 or later

Layer 2 circuits 9.2 or later

Layer 3 VPNs using LDP 9.2 or later

Link Aggregation Control Protocol (LACP) on MX Routers 9.4 or later

OSPF/OSPFv3 9.0 or later

PPPoE access model (subscriber access) 11.4 or later

Protocol Independent Multicast (PIM) 9.3 or later

Routing Information Protocol (RIP) /RIPng 9.1 or later

Resource Reservation Protocol (RSVP) Ingress and Transit, L2/L3 VPN 10.2 or later

ISSU Layer 2 Support
Unified ISSU supports the Layer 2 Control Protocol process (l2cpd) on Trio-based MX
routers. Recall that in Layer 2 bridge environment, spanning tree protocols (STP) share
information about port roles, bridge IDs, and root path costs between bridges using
special data frames called Bridge Protocol Data Units (BPDUs). The transmission of
BPDUs is controlled by the l2cpd process. Transmission of hello BPDUs is important

In-Service Software Upgrades | 819

www.it-ebooks.info

http://www.it-ebooks.info/

in maintaining STP adjacencies on the peer systems. The transmission of periodic
packets on behalf of the l2cpd process is carried out by periodic packet management
(PPM), which, by default, is configured to run on the PFE so that BPDUs are transmitted
on time, even when the l2cpd process control plane is unavailable, a capability that
keeps the STP topology stable during unified ISSU.

ISSU combined with NSB support for the l2cpd process ensures that the new master
RE is able to take control during an ISSU without any disruptions in the Layer 2 control
plane.

MX MIC/MPC ISSU Support
As of 11.4, ISSU on Trio-based MX routers is supported for the Modular Port Con-
centrators (MPCs) and Modular Interface Cards (MICs) listed in Table 9-4.

Table 9-4. MX Trio MPC/MIC ISSU Support in 11.4.

Type Type (MPC or MIC) Model

30-Gigabit Ethernet MPC MX-MPC1-3D

30-Gigabit Ethernet Queuing MPC MX-MPC1-3D-Q

60-Gigabit Ethernet MPC MX-MPC2-3D

60-Gigabit Ethernet Queuing MPC MX-MPC2-3D-Q

10-Gigabit Ethernet with SFP+, 16 ports MPC MPC-3D-16XGE-SFPP

Gigabit Ethernet MIC with SFP, 20 ports MIC MIC-3D-20GE-SFP

10-Gigabit Ethernet MICs with XFP, 2 ports MIC MIC-3D-2XGE-XFP

10-Gigabit Ethernet MICs with XFP, 4 ports MIC MIC-3D-4XGE-XFP

Tri-Rate Copper Ethernet MIC, 40 ports MIC MIC-3D-40GE-TX

ISSU: A Double-Edged Knife
Customers often state ISSU is really great feature, when it works. And that is the
issue (to use a pun), with ISSU. It can almost seem impossible to predict the level of hit
that you will experience in your next ISSU. In ideal situations, an ISSU completes with
no control plane flap and only a small hit to the data plane known as a “dark window,”
which occurs as new software is pushed into the PFE. The small hit that stems from
the need to upgrade the PFE is why ISSU is said to be nearly hitless, as opposed to a
basic NSR event, which as shown previously can be completely hitless.

The basic problem here is sheer complexity of the task at hand, which is akin to trying
to change a car’s tires while it’s operating at high speed on an autobahn. The list of
complicating factors includes:

Varying levels of protocol support by release and platform.
Varying levels of hardware (FPC/PIC) support by release and platform.

820 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Relies on a successful GRES event with support that varies by release and platform.
Relies on a successful NSR event with support that varies by release and platform.
Even if bugs are found and fixed, the inherent nature of ISSU means that you will
have to undergo a disruptive upgrade just to get on a version that contains a fix.
Taking an upgrade hit just so that later you may upgrade nondisruptively makes
little sense. Juniper does not currently provide hot-fix patch support for such up-
grades. So, if there is a bug in your current code that affects ISSU, there is no hitless
way out.
All of these are complicated as a function of the number of releases spanned by the
ISSU. Performing an ISSU from and to the same version almost always works; going
from an EEOL to a current release, well, maybe.

ISSU Restrictions

ISSU inherits all the caveats of GRES and NSR, and then adds a few of its own. As of
the 11.4 Junos release, these restrictions include the following:

For Trio-based MX routers, v11.2 is the minimum supported ISSU release.
The ISSU procedure is not supported while upgrading from the 32-bit version of
the Junos OS to the 64-bit version of the Junos OS. Currently, there is no hitless
way to upgrade from a 32-bit to a 64-bit version of Junos.
ISSU only supports upgrades. There is currently no hitless downgrade method in
Junos.
The master RE and backup RE must be running the same software version before
you can perform an ISSU.
You cannot take any PICs online or offline during a unified ISSU.
On MX routers, ISSU does not support IEEE 802.1ag OAM and IEEE 802.3ah
protocols. When an RE switchover occurs, the OAM hello times out during the
dark window, which triggers a protocol convergence.
On MX routers, ISSU is not supported when clock synchronization is configured
for Precision Time Protocol (PTP) and Synchronous Ethernet.
ISSU will abort if unsupported hardware, software, or protocols are found during
the process.
PICs that are not ISSU-compatible (but are ISSU-supported) are brought offline
during the ISSU process and then re-enabled at the end. The dark windows for
these PICs can last several minutes.
In some cases, certain PIC combinations are not supported. This is because in a
newer Junos version, a given feature or service may require additional PFE micro-
code memory and some configuration rules might limit certain combinations of
PICs on particular platforms. If a PIC combination is not supported by the software
version that the router is being upgraded from, the upgrade will be aborted. Like-
wise, if a PIC combination is not supported by the software version to which the
router is being upgraded, the in-service software upgrade will abort, even if the PIC

In-Service Software Upgrades | 821

www.it-ebooks.info

http://www.it-ebooks.info/

combination is supported by the software version from which the router is being
upgraded.
Only the master instance supports ISSU. You can expect control and data plane
disruption on nonmaster logical systems during an ISSU.
ISSU is not supported on MX80 routers, nor is it supported in an MX Series virtual
chassis.

ISSU Troubleshooting Tips

ISSU has a lot going on underneath the covers. It’s one of those things you start with
a single command, and then a whole bunch of stuff happens in the background over a
period of 20 to 30 minutes, and then it either works splendidly or it does not. In the
latter case, the most common issue is some type of unexpected control or dataplane
hit. For most of these cases, warnings are issued as part of the ISSU validation check,
with the operator having to confirm a desire to proceed anyway, but such checks are
never perfect. The result is that you should carefully heed all warnings issued, but the
lack of warning in itself does not guarantee ISSU success.

In the other cases, the upgrade process may hang, in which case you can issue a request
system software abort in-service-upgrade on the current master and look for any
error messages that can lead you closer to the root cause of the malfunction. After an
ISSU issue, the show chassis in-service-upgrade command on the new master to con-
firm the status of all FPCs and PICs. Some may have been taken offline during the
process, and new microcode restrictions or other hard-to-predict interactions may keep
them from coming back online.

Other tips and advice for ISSU include the following:

• You should perform a request system snapshot before starting an ISSU. That way
if one of the REs fails to come back, you can reboot to alternate media to perform
another snapshot and recover. Though somewhat rare and not necessarily related
to ISSU, some software upgrades just fail.

• An ISSU is limited by overall success or failure or GRES and NSR. If you see the
same type of failure in a GRES or NSR, then it’s not an ISSU problem. Fix any NSR
or GRES issue first.

• You should preverify ISSU compatibility of the software, hardware, and the con-
figuration with the request system software validate in-service-upgrade com-
mand before scheduling a real ISSU event. There is no point in waiting until a
maintenance window to then find out your system is not ISSU-compatible.

• As with NSR, it’s best to test ISSU behavior under configurations that mimic pro-
duction routers when you have to rely on a virtually hitless ISSU to maintain your
network’s SLA.

• You should have console access to both REs during an ISSU, and you should per-
form such actions during planned maintenance windows whenever possible, es-

822 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

pecially if you have not tested ISSU behavior in your network (see the previous
point).

• Consider performing a request system storage cleanup on both REs before an
ISSU. More disk space is never a bad thing when installing software and storing
large binary objects.

ISSU Summary
ISSU is a great feature, really. But hitless or not, there is a lot of complexity at play.
Complicate this with all the various software releases and that each network is a little
different, and you quickly realize why it’s just not feasible for Juniper to be able to test
all possible ISSU permutations. There will always be the odd case of an ISSU blowing
up, which is what people complain about on Internet forums, and this can cause folks
to be shy of deploying ISSU. With an understanding of the ISSU feature, along with
the underlying GRES/NSR technologies that it relies on, and a little homework, you
can achieve virtually hitless software upgrades too.

As with any complex software feature, it’s best practice to test ISSU in
a lab using test configurations that closely approximate those found in
production routers to ensure you know what to expect when you per-
form an ISSU.

ISSU Lab
This section demonstrates several Junos HA features working together to support an
ISSU. Namely GRES, NSR, and, of course, the ISSU feature itself. Figure 9-17 shows
the modified lab topology for ISSU testing.

ISSU Lab | 823

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-17. ISSU Test Topology.

As R1 has been getting all the attention lately, the plan has R2 being upgraded from its
current 11.4R1.9 to 11.4R2.8. The primary modification, aside from the new Device
under Test (DUT), is the deactivation of the ae1 interface at R1. This is done to force
the Layer 2 traffic in VLAN 100 over the ae0 link, thereby placing R2 into the forwarding
path for both the Layer 2 and Layer 3 traffic. The BGP traffic flows as in the previous
NSR section, but now, VLAN 100 traffic arriving at S1’s xe-0/0/6 interface is sent to
R2 via its ae2 interface. Once there, the traffic is sent to R1 via the ae0 link, where it’s
then sent out R1’s ae2 to reach S2 and the destination tester port; this convoluted
forwarding path is shown on Figure 9-17 via the dashed line. Traffic sourced at S2 takes
a similar path, going out its ae1 to R1, then out R1’s ae0 over to R2, and then out R2’s
ae1 to reach the destination switch S1.

As noted previously, the result is that now both the Layer 2 and Layer 3 test traffic must
transit the ae0 link between R1 and R2. The result is confirmed with a monitor inter
face ae0 command at R1 while all four streams are flowing:

R2-RE0 Seconds: 5 Time: 16:17:03
 Delay: 0/0/35
Interface: ae0, Enabled, Link is Up
Encapsulation: Flexible-Ethernet-Services, Speed: 20000mbps
 Current delta
Traffic statistics: [9869834252]

824 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

 Input bytes: 2703515009418 (13236474712 bps) [9869753182]
 Output bytes: 3216196045130 (13236472096 bps) [83130335]
 Input packets: 22597270063 (13935802 pps) [83129598]
 Output packets: 27193182391 (13935798 pps)
Error statistics: [0]
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Carrier transitions: 0 [0]
 Output errors: 0 [0]
 Output drops: 0

The output confirms the bidirectional symmetry of the flows and that both test streams
are aggregated over the ae0 link, netting a combined rate of approximately 1.39 MPPS.

Verify ISSU Readiness
The DUT must be GRES and NSR-ready before ISSU can succeed. Refer back to the
sections on GRES and NSR as needed for details on how those features work, and how
to know when the DUT is in steady state after completing the requisite synchronization
and replication.

If the GRES and NSR prerequisites are in place, your next step in ISSU validation is to
run the validate in-service-upgrade command to determine if there is any software-,
hardware-, or configuration-related issues that will prevent the DUT from performing
a successful ISSU. As an example, consider the following output:

{master}
jnpr@R2-RE0>request system software validate in-service-upgrade jinstall-11.4R2.8-
 domestic-signed.tgz
Feb 18 16:27:38
Fetching package...
Checking compatibility with configuration
Initializing...
Using jbase-11.4R1.9
Verified manifest signed by PackageProduction_11_4_0
Verified jbase-11.4R1.9 signed by PackageProduction_11_4_0
Using /var/home/jnpr/jinstall-11.4R2.8-domestic-signed.tgz

Verified jinstall-11.4R2.8-domestic.tgz signed by PackageProduction_11_4_0
Using jinstall-11.4R2.8-domestic.tgz
Using jbundle-11.4R2.8-domestic.tgz
Checking jbundle requirements on /
Using jbase-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jbase-11.4R2.8 signed by PackageProduction_11_4_0
Using /var/validate/chroot/tmp/jbundle/jboot-11.4R2.8.tgz
Using jcrypto-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jcrypto-11.4R2.8 signed by PackageProduction_11_4_0
Using jdocs-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jdocs-11.4R2.8 signed by PackageProduction_11_4_0

ISSU Lab | 825

www.it-ebooks.info

http://www.it-ebooks.info/

Using jkernel-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jkernel-11.4R2.8 signed by PackageProduction_11_4_0
Using jpfe-11.4R2.8.tgz
WARNING: jpfe-11.4R2.8.tgz: not a signed package
WARNING: jpfe-common-11.4R2.8.tgz: not a signed package
Verified jpfe-common-11.4R2.8 signed by PackageProduction_11_4_0
WARNING: jpfe-X960-11.4R2.8.tgz: not a signed package
Verified jpfe-X960-11.4R2.8 signed by PackageProduction_11_4_0
Using jroute-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jroute-11.4R2.8 signed by PackageProduction_11_4_0
Using jruntime-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jruntime-11.4R2.8 signed by PackageProduction_11_4_0
Using jservices-11.4R2.8.tgz
Using jservices-crypto-11.4R2.8.tgz
Hardware Database regeneration succeeded
Validating against /config/juniper.conf.gz
mgd: commit complete
Validation succeeded
[edit protocols bgp group int family inet-mvpn]:
NSR is not supported; packet loss is expected
[edit protocols bgp group int family inet-mvpn]:
NSR is not supported; packet loss is expected

In this example, the presence of an unsupported (but NSR-compatible) feature is de-
tected, namely the inet-mvpn MP-BGP family. Here, the user is given a warning to expect
packet loss as the related BGP sessions are expected to flap at GRES/NSR. As of the
11.4R1 release, the inet-mvpn family is considered NSR-compatible, which is not the
same as NSR-supported, as the latter implies hitless operation. In contrast, an incom-
patible feature either prevents you from committing the requisite NSR configuration
or results in an abort of the ISSU process when detected later as part of the ISSU vali-
dation checks. In this example, the inet-mvpn family is deemed to be unnecessary so
the fix is simple; remove it from the configuration (flapping the related BGP sessions,
by the way). Afterwards, the validate process is performed again:

{master}
jnpr@R2-RE0>request system software validate in-service-upgrade jinstall-11.4R2.8-
 domestic-signed.tgz
Feb 18 16:54:05
Fetching package...
Checking compatibility with configuration
Initializing...
Using jbase-11.4R1.9
Verified manifest signed by PackageProduction_11_4_0
Verified jbase-11.4R1.9 signed by PackageProduction_11_4_0
Using /var/home/jnpr/jinstall-11.4R2.8-domestic-signed.tgz
. . .
Using jservices-crypto-11.4R2.8.tgz
Hardware Database regeneration succeeded
Validating against /config/juniper.conf.gz

826 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

mgd: commit complete
Validation succeeded

The output is truncated to save space, but this time it’s clear the process completes
with no warnings or failures. With confirmation of GRES and NSR readiness (shown
in previous sections), and no stumbling blocks toward an ISSU from the current
11.4R1.9 to the planned 11.4R2.8 release, it’s time to try the actual ISSU.

Perform an ISSU
In this section, you perform ISSU to upgrade an MX router from 11.4R1.9 to 11.4R2.8
with minimal disruption.

Before the ISSU is performed, the router tester is restarted, zero traffic loss is confirmed
for all streams, all EBGP sessions are up, and the DUT reports GRES and NSR readiness
via the show system switchover and show task replication commands on the backup
and master, respectively. Though not shown, the desired Junos software package
(jinstall) is copied to R2’s RE0, the current master, using FTP or SCP. Some time
stamps are added to the following ISSU to give a sense of the time scale involved in an
ISSU in the 11.4 release.

To begin, the starting version is confirmed at R2:

{master}
jnpr@R2-RE0>show version
Feb 18 16:57:26
Hostname: R2-RE0
Model: mx240
JUNOS Base OS boot [c]
JUNOS Base OS Software Suite [11.4R1.9]
JUNOS Kernel Software Suite [11.4R1.9]
JUNOS Crypto Software Suite [11.4R1.9]
JUNOS Packet Forwarding Engine Support (M/T Common) [11.4R1.9]
JUNOS Packet Forwarding Engine Support (MX Common) [11.4R1.9
. . .

The in-service-upgrade command takes a few options:

{Master }
jnpr@R2-RE0>request system software in-service-upgrade jinstall-11.4R2.8-
 domestic-signed.tgz ?
Possible completions:
<[Enter]> Execute this command
 no-copy Don't save copies of package files
 no-old-master-upgrade Don't upgrade the old master after switchover
 reboot Reboot system after adding package
 unlink Remove the package after successful installation
 | Pipe through a command
{Master}
jnpr@R2-RE0> request system software in-service-upgrade jinstall-11.4R2.8-
 domestic-signed.tgz

ISSU Lab | 827

www.it-ebooks.info

http://www.it-ebooks.info/

The most useful are the reboot and the no-old-master-upgrade switches. The former
automatically reboots the new BU so it can complete installation of the new software.
The default is for the new BU to wait until the operator instructs it to reboot. This leaves
the new BU running on the old software image pending completion of the new software
installation, which can only complete at reboot. The no-old-master-upgrade switch is
used to only upgrade the current BU/new master. This allows you to perform an ISSU
and test drive the new software without fully committing to it, in that if you find un-
anticipated issues in the new software, you can quickly recover with a NSR/GRES back
to the old master, which is still on the old code. If you omit this switch and upgrade
both REs (the default), only to later wish you had not, then your fastest recovery method
is to reboot to alternate media to perform a new snapshot.

You did remember to snapshot with the old, stable version, prior to the ISSU, right?

And now the actual ISSU begins; in this example, the software package is in the user’s
home directory as opposed to being in /var/tmp, the latter being the preferred practice;
we like to live on the edge here. This example shows the default form of the in-service-
upgrade command, which is to say no optional switches are used.

{master}
jnpr@R2-RE0> request system software in-service-upgrade jinstall-11.4R2.8-
 domestic-signed.tgz
Feb 18 16:59:07
Chassis ISSU Check Done
ISSU: Validating Image
Checking compatibility with configuration
Initializing...
Using jbase-11.4R1.9
Verified manifest signed by PackageProduction_11_4_0
Verified jbase-11.4R1.9 signed by PackageProduction_11_4_0
Using /var/tmp/jinstall-11.4R2.8-domestic-signed.tgz
Verified jinstall-11.4R2.8-domestic.tgz signed by PackageProduction_11_4_0
Using jinstall-11.4R2.8-domestic.tgz
Using jbundle-11.4R2.8-domestic.tgz
Checking jbundle requirements on /
Using jbase-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jbase-11.4R2.8 signed by PackageProduction_11_4_0
Using /var/validate/chroot/tmp/jbundle/jboot-11.4R2.8.tgz
Using jcrypto-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jcrypto-11.4R2.8 signed by PackageProduction_11_4_0
Using jdocs-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jdocs-11.4R2.8 signed by PackageProduction_11_4_0
Using jkernel-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jkernel-11.4R2.8 signed by PackageProduction_11_4_0
Using jpfe-11.4R2.8.tgz
WARNING: jpfe-11.4R2.8.tgz: not a signed package
WARNING: jpfe-common-11.4R2.8.tgz: not a signed package
Verified jpfe-common-11.4R2.8 signed by PackageProduction_11_4_0

828 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

WARNING: jpfe-X960-11.4R2.8.tgz: not a signed package
Verified jpfe-X960-11.4R2.8 signed by PackageProduction_11_4_0
Using jroute-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jroute-11.4R2.8 signed by PackageProduction_11_4_0
Using jruntime-11.4R2.8.tgz
Verified manifest signed by PackageProduction_11_4_0
Verified jruntime-11.4R2.8 signed by PackageProduction_11_4_0
Using jservices-11.4R2.8.tgz
Using jservices-crypto-11.4R2.8.tgz
Hardware Database regeneration succeeded
Validating against /config/juniper.conf.gz
mgd: commit complete
Validation succeeded
ISSU: Preparing Backup RE
Pushing bundle to re1
Installing package '/var/tmp/jinstall-11.4R2.8-domestic-signed.tgz' ...
Verified jinstall-11.4R2.8-domestic.tgz signed by PackageProduction_11_4_0
Adding jinstall...
Verified manifest signed by PackageProduction_11_4_0

WARNING: This package will load JUNOS 11.4R2.8 software.
WARNING: It will save JUNOS configuration files, and SSH keys
WARNING: (if configured), but erase all other files and information
WARNING: stored on this machine. It will attempt to preserve dumps
WARNING: and log files, but this can not be guaranteed. This is the
WARNING: pre-installation stage and all the software is loaded when
WARNING: you reboot the system.

Saving the config files ...
NOTICE: uncommitted changes have been saved in /var/db/config/juniper.conf.pre-install
Installing the bootstrap installer ...

WARNING: A REBOOT IS REQUIRED TO LOAD THIS SOFTWARE CORRECTLY. Use the
WARNING: 'request system reboot' command when software installation is
WARNING: complete. To abort the installation, do not reboot your system,
WARNING: instead use the 'request system software delete jinstall'
WARNING: command as soon as this operation completes.

Saving package file in /var/sw/pkg/jinstall-11.4R2.8-domestic-signed.tgz ...
Saving state for rollback ...
Backup upgrade done
Rebooting Backup RE

At this stage, all validation checks have completed and a copy of the software package
is pushed to the current backup for installation. Part of the installation process of any
jinstall is a reboot:

Rebooting re1
ISSU: Backup RE Prepare Done
Waiting for Backup RE reboot

Meanwhile, the console connection to the BU RE shows that it begins its reboot ap-
proximately 20 minutes after the ISSU process started:

ISSU Lab | 829

www.it-ebooks.info

http://www.it-ebooks.info/

{backup}
jnpr@R2-RE0> request system reboot
Reboot the system ? [yes,no] (no) yes

*** FINAL System shutdown message from jnpr@R2-RE0 ***

System going down IMMEDIATELY
. . . .

Feb 18 17:19:33
Shutdown NOW!
. . .

Back at the master, things proceed with an indication that the BU RE has rebooted and
that GRES synchronization has completed; note this synchronization is between RE0
on the old version and RE1 on the new version:

GRES operational
Initiating Chassis In-Service-Upgrade
Chassis ISSU Started
ISSU: Preparing Daemons
ISSU: Daemons Ready for ISSU
ISSU: Starting Upgrade for FRUs
ISSU: Preparing for Switchover
ISSU: Ready for Switchover
Checking In-Service-Upgrade status
 Item Status Reason
 FPC 1 Online (ISSU)
 FPC 2 Online (ISSU)
Resolving mastership...
Complete. The other routing engine becomes the master.
ISSU: RE switchover Done
. . .

As this stage, the current master has upgraded the PFE components, completing the
second dark window, and has performed the GRES so that RE1, now running the new
software, becomes master. Back on RE1’s console, we see a proof of the new version
and a timestamp as to when the GRES occurred:

--- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
{backup}
regress@R2-RE1> set cli timestamp
Feb 18 17:16:16
CLI timestamp set to: %b %d %T

The GRES occurs.

{master}
regress@R2-RE1> show system uptime
Feb 18 17:17:40
Current time: 2012-02-18 17:17:40 PST
System booted: 2012-02-18 17:12:17 PST (00:05:23 ago)
Protocols started: 2012-02-18 17:13:22 PST (00:04:18 ago)
Last configured: 2012-02-18 17:13:51 PST (00:03:49 ago) by root
 5:17PM up 5 mins, 1 user, load averages: 0.23, 0.26, 0.15

830 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

Back at the RE0, which you recall is now the new BU, we see the local software instal-
lation begin. In this example, the request system software command did not include
the reboot option, so the new BU waits for the reboot command to finish its installation:

ISSU: Upgrading Old Master RE
Installing package '/var/tmp/jinstall-11.4R2.8-domestic-signed.tgz' ...
Verified jinstall-11.4R2.8-domestic.tgz signed by PackageProduction_11_4_0
Adding jinstall...
Verified manifest signed by PackageProduction_11_4_0

WARNING: This package will load JUNOS 11.4R2.8 software.
WARNING: It will save JUNOS configuration files, and SSH keys
WARNING: (if configured), but erase all other files and information
WARNING: stored on this machine. It will attempt to preserve dumps
WARNING: and log files, but this can not be guaranteed. This is the
WARNING: pre-installation stage and all the software is loaded when
WARNING: you reboot the system.

Saving the config files ...
NOTICE: uncommitted changes have been saved in /var/db/config/juniper.conf.pre-install
Installing the bootstrap installer ...

WARNING: A REBOOT IS REQUIRED TO LOAD THIS SOFTWARE CORRECTLY. Use the
WARNING: 'request system reboot' command when software installation is
WARNING: complete. To abort the installation, do not reboot your system,
WARNING: instead use the 'request system software delete jinstall'
WARNING: command as soon as this operation completes.

Saving package file in /var/sw/pkg/jinstall-11.4R2.8-domestic-signed.tgz ...
Saving state for rollback ...
ISSU: Old Master Upgrade Done
ISSU: IDLE

At this state, ISSU has completed its work and so enters the idle state. The operator
completes the upgrade of RE0 with a reboot command. As noted previously, the
reboot switch could have been added to automate this stage of the upgrade, but either
way, RE0 is ready to reboot at approximately 17:19:33. Based on the numbers, this
means that in the JMX lab it took about 20 minutes for ISSU to complete, as the process
started at approximately 16:59, but note you still need to reboot RE0 for software
installation to complete, which adds another 5 to 10 minutes or so.

{backup}
jnpr@R2-RE0>request system reboot
Reboot the system ? [yes,no] (no) yes

*** FINAL System shutdown message from jnpr@R2-RE0 ***

System going down IMMEDIATELY

Feb 18 17:19:33
Shutdown NOW!
Reboot consistency check bypassed - jinstall 11.4R2.8 will complete installation

ISSU Lab | 831

www.it-ebooks.info

http://www.it-ebooks.info/

 upon reboot
[pid 37449]

{backup}
jnpr@R2-RE0>

Sometime later, RE0 is confirmed to boot to the new version, where it continues to
function as BU:

. . .
Database Initialization Utility
RDM Embedded 7 [04-Aug-2006] http://www.birdstep.com
Copyright (c) 1992-2006 Birdstep Technology, Inc. All Rights Reserved.

/var/pdb/profile_db initialized

Profile database initialized
Local package initialization:.
kern.securelevel: −1 -> 1
starting local daemons:
. . .

--- JUNOS 11.4R2.8 built 2012-02-16 22:46:01 UTC
{backup}
regress@R2-RE0>

{backup}
regress@R2-RE0> show system uptime
Current time: 2012-02-18 17:28:32 PST
System booted: 2012-02-18 17:26:41 PST (00:01:51 ago)
Protocols started: 2012-02-18 17:27:47 PST (00:00:45 ago)
Last configured: 2012-02-18 17:27:57 PST (00:00:35 ago) by root
 5:28PM up 2 mins, 1 user, load averages: 0.54, 0.29, 0.12

The uptime at RE0 is used to confirm how long it took to complete its software instal-
lation and begin functioning as a BU RE. It shows that it started protocol processing
at 17:27:47, indicating that the total ISSU process, to include rebooting the new BU,
took about 27 minutes.

Confirm ISSU

The operator is generally among the first to know if an ISSU was “virtually hitless” or
not. In this example, the show chassis in-service-upgrade command is executed on
the new master, where it reports that all FPCs are online post-ISSU, as expected given
R2’s hardware and configuration is ISSU supported.

{master}
regress@R2-RE1>show chassis in-service-upgrade
Feb 18 17:18:58
 Item Status Reason
 FPC 1 Online
 FPC 2 Online

832 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

In addition, the syslog on the new master is searched for any signs of control plane flap.
It’s a good idea to look for any BFD flaps if problems are seen in the control plane, as
BFD is generally the first to go down when things go bad:

{master}
regress@R2-RE1>show log messages | match bfd

Feb 18 17:17:38 R2-RE1 fpc2 PPMAN: bfd conn ready
Feb 18 17:17:41 R2-RE1 fpc1 PPMAN: bfd conn ready
Feb 18 17:17:49 R2-RE1 bfdd[1445]: LIBJSNMP_NS_LOG_INFO:
 INFO: ns_subagent_open_session: NET-SNMP version 5.3.1 AgentX subagent connected

{master}
regress@R2-RE1>show log messages | match bgp

The log does not report any BFD or BGP flap, which jives nicely with the attached
router tester’s view, which in this example shows no BGP connection flap. The control
plane is expected to be stable for NSR/ISSU-supported protocols, so this part checks
out. A small dataplane hit is expected, however, so attention shifts to traffic loss through
the issue and the resulting GRES. Figure 9-18 shows traffic statistics for the ISSU ex-
periment.

Figure 9-18. ISSU Test Results.

As expected, the tester reports some loss in both the Layer 2 and Layer 3 test streams.
Based on the packet rate and number of packets lost, the dark windows can be reverse

ISSU Lab | 833

www.it-ebooks.info

http://www.it-ebooks.info/

engineered. In this example, there was a period of approximately five seconds during
which there was some level of traffic loss during the course of the ISSU. The graph
indicates that the hit was shorter for the Layer 3 traffic, which was impacted first, and
a bit longer for the Layer 2 traffic. It should be stressed that in this lab, the AE0 and
AE1 interfaces at R2 are served by different Trio PFEs. Given that each PFE is upgraded
in sequence, the loss in this experiment represents the effects of two commutative dark
window periods. Therefore, the loss for links that are housed solely within a single PFE
is expected to be half the duration shown in Figure 9-18.

The lack of control plane flap coupled with a small window of loss is in keeping with
the design principles of ISSU and confirms a successful in-service upgrade.

Summary
Junos offers numerous HA features that can significantly improve network reliability
and resiliency. These features are almost mandatory if you want to achieve the much
bandied about “five 9s” reliability. After all, to meet 99.999% uptime, you are only
allowed 5.26 minutes of downtime per year (which works out to only 25.9 seconds/
month or 6.05 seconds/day), and given it takes 20 minutes or longer just to upgrade a
modern Juniper router, the need for ISSU becomes quite apparent.

GRES serves as the foundation for most HA features, as being able to switch to a BU
RE without disrupting the PFE is critical to both the NSF and NSR/NSB building blocks.
Routers that are equipped with a single RE cannot use GRES, or NSR, but you can
always enable graceful restart to provide tolerance to control plane faults and thereby
achieve nonstop forwarding. Those that want state-of-the-art reliability will have re-
dundant REs in their routers, and such users can avail themselves of NSR and ISSU to
get maximum reliability and uptime.

Chapter Review Questions
1. Which HA features work together?

a. NSR

b. NSB

c. GRES

d. GR helper mode

e. All of the above

2. Which of the following is considered a negative test for NSR?

a. Restart routing

b. Request chassis RE master switch on master

c. Request chassis RE master switch on backup

d. Panic the kernel on master RE

834 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

3. Which is false regarding graceful restart?

a. GR will abort if instability is detected

b. GR is hitless to the control plane, but has a slight hit to the dataplane

c. GR and NSR cannot be configured together

d. GR requires protocol extensions and is not transparent to peer routers

4. Which is true regarding GRES?

a. GRES and GR can be used together on machines with a single RE

b. You must run the same Junos version on both REs

c. You must synchronize configurations between REs

d. You must wait at least 240 seconds between each GRES event

e. Both b and c

5. What is true regarding NSR?

a. You can use NSR in conjunction with graceful restart

b. You can enable NSR on machines with a single RE to provide protection from
rpd faults

c. NSR replicates protocols messages which are independently processed on the
BU RE

d. NSR replicates the master RE’s forwarding and routing state (FIB/RIB) to the
backup RE

6. Which command tells you if the backup RE has completed GRES synchronization?

a. Show task replication on master

b. Show task replication on backup

c. Show system switchover on master

d. Show system switchover on backup

7. What command is used to confirm NSR replication?

a. Show task replication on master

b. Show task replication on backup

c. Show system switchover on master

d. Show system switchover on backup

8. What type of session is not handled by PPM when in the (default) distributed mode
with regard to NSR and NSB?

a. Single-hop BFD sessions

b. LACP

c. OSPF hellos

d. BGP keepalives

Chapter Review Questions | 835

www.it-ebooks.info

http://www.it-ebooks.info/

9. What is the minimum setting for an RE-based BFD session to ensure it remains up
through a NSR?

a. 50 ms

b. 150 ms

c. 2,000 ms

d. 2,500 ms

10. Which of the following BFD sessions are RE based on release 11.4?

a. OSPF

b. OSPF3

c. IS-IS Level 1

d. Single-hop EBGP sessions

e. All of the above

11. Which are true regarding ISSU on the MX?

a. Both REs must be on the same ISSU-supported release

b. You must be running NSR and NSB

c. You can expect two brief periods of traffic loss: one affecting RE sourced and
the other impacting all traffic

d. Some protocols or feature may not be supported, resulting in control and da-
taplane hits

e. All of the above.

12. Which is true regarding BFD?

a. The use of BFD and graceful restart together is not recommended

b. BFD sessions are expected to flap during an ISSU due to the dark windows

c. Multihop BFD sessions cannot be used with ISSU

d. BFD is not supported for GRES because fast detection times cannot be main-
tained through a switchover

e. All of the above

Chapter Review Answers
1. Answer: A. All work together. Only GR restart mode is not supported while NSR

is in effect.

2. Answer: A. The JUNOS NSR implementation is not designed to be hitless through
a local routing process restart. GR, in contrast, does work through such a restart,
albeit with control plane disruption. The remaining methods are all viable NSR
failover trigger methods.

836 | Chapter 9: Junos High Availability on MX Routers

www.it-ebooks.info

http://www.it-ebooks.info/

3. Answer: B. When all goes to plan, there should be no dataplane hits in a graceful
restart. This makes B the only false answer.

4. Answer: D. Only D is true. Matched versions and configurations are recom-
mended with GRES and NSR, but are not technically mandated.

5. Answer: C. NSR is based on protocol replication with independent message pro-
cessing on both REs. Using the same messages and processing rules, the backup
RE computes a shadow RIB that is expected to math that on the master RE. The
RIB/FIB state is not simply replicated between the two REs.

6. Answer: D. The show system switchover command is run only on the backup RE,
which is where the ksyncd process runs and reports GRES synchronization status.

7. Answer: A. While various replication commands can be run on both REs, the show
task replication command can only run on the master RE and is the best gauge
of overall system NSR readiness.

8. Answer: D. BGP keepalives are always RE based. All other session types are han-
dled in the PFE by the PPM process.

9. Answer: D. According to the 11.4 documentation, RE-based BFD sessions should
use at least a 2,500 ms detection timer to ensure stability through a GRES event.

10. Answer: B. In the 11.4 release, IPv6 control protocols protected by BFD that use
link local addressing (i.e., OSPF3 uses RE-based BFD session processing). Use at
least a 2,500 ms detection timer for these sessions to ensure stability through an
NSR- or ISSU-based GRES.

11. Answer: E. All options listed must be true to initiate an ISSU.

12. Answer: A. With suitably long detection times, multihop BFD sessions are sup-
ported for NSR, GRES, and ISSU. The temporary negotiation of longer BFD timers
during ISSU prevents disruption due to dark windows. While there is nothing to
prevent committing such a configuration, the simultaneous use of BFD and grace-
ful restart is not a supported feature combination.

Chapter Review Answers | 837

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
(PIM) Protocol Independent Multicast

encapsulation and decapsulation, 621

A
AAA (Authentication, Authorization, and

Accounting), 538
accept, as terminating action, 169
Access Control Lists (ACLs), 154
access mode, interface-mode option, 94
access ports, in Ethernet bridging, 88
ACLs (Access Control Lists), 154
Active-Active, MC-LAG mode, 646, 668–673,

678, 699
Active-Standby, MC-LAG mode, 645, 665–

668
Adapter Card (ADC), MX2020, 65–67
aggregate (logical interface) policer, 192, 200–

206
Aggregate Ethernet (AE)

assignments, master topology for, xix
interfaces

H-CoS modes, 421
Multi-Chassis Aggregated, 699
viewing, 685–686

interfaces H-CoS modes, 421–423
aggregate filters, 198
aggregate-level policer, 278
algorithm version, BGP flow spec, 298
algorithms

leaky bucket, 173–174
token bucket, 174, 176

API (Application Programming Interface),
Junos, in virtual chassis, 538

Application Specific Integrated Circuits
(ASICs), 1

APQ-DWRR, scheduler, variables defining,
393–395

ASICs (Application Specific Integrated
Circuits), 1

Authentication, Authorization, and
Accounting (AAA), 538

B
BA (Behavior Aggregate)-classification, 192,

432
Backup Routing Engine in VC-B (VC-Bb), 539,

553
Backup Routing Engine in VC-L (VC-Lb), 539,

554
Backup Routing Engine in VC-M (VC-Mb),

539, 550
bandwidth

accounting, Trio, 346
Guaranteed rate, 355
guaranteed vs. excess, priority handling and,

345
independent guaranteed weight and, 344
logical policer, 181
policer, 181
priority-based policing and queue, 385
setting using bandwidth-limit keyword,

178
sharing excess, 377–384, 441, 444

Behavior Aggregate (BA)-classification, 192,
432

BFD (Bidirectional Forwarding Detection),
691–694, 770–772, 818–819

BGP address families, NSR-supported, 772

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

839

www.it-ebooks.info

http://www.it-ebooks.info/

BGP flow-spec feature
case study using

DDoS attack in, 306–314
flow-spec topology, 301
initial steps in, 301–306

in mitigating DDoS attacks, 295–301
BGP replication

BU RE functioning as master after failure in
the primary RE, 767

NSR, 794–796, 798–800
TCP connection establishment and, 763–

764
transmit side snooping and replication,

765–766
BGP routing protocol, graceful restart enabled

for, 747
Bidirectional Forwarding Detection (BFD),

691–694, 770–772, 818–819
bit field matching, 160–161
bridge filtering case study

about, 221–222
bridge filtering topology, 221
filter processing in bridged and filtered

environments, 213–214
flood filter in, 226–227
HTTP filter definition in, 223–225
monitoring and troubleshooting filters and

policers, 214–220
policer definition in, 222–223
verifying proper operation in, 227–230

bridge, MC-LAG family support for, 646
bridge-domain

about, 73, 111–112
commands, show, 135–137
forwarding table filter restrictions, 200
learning domains

about, 112
multiple, 114–115
single, 113–114

learning hierarchy of Juniper MX, 112
modes

about, 115–116
all, 118–122
default, 116
dual, 129–131
list, 123–126
none, 116–118
single, 126–129

using Service Provider-style with all,
119

using Service Provider-style with list,
124

options, 131–135
bridged environments, filter processing in

routed and, 213–214
bridging

Enterprise-style interface configuration, 94–
99

IEEE 802.1Q and, 683–685, 687–688
integrated routing and, 141–144
interface configuration for, 80–83
Service Provider-style

domain configuration, 88, 91–93
domain requirements, 107
encapsulation, 87–91
tagging, 83–87

vs. switching, 72
broadcast domain, about, 73
Broadcast, Unknown unicast, and Multicast

(BUM) traffic, 199–200
buffer-size

as variable defining APQ-DWRR scheduler,
393

queue-level 4 configuration option in H-CoS
model, 353

Buffering Block, 26, 29
buffering, trio, 346
BUM (Broadcast, Unknown unicast, and

Multicast) traffic, 199–200
burst size

calculating default, 372
changing network, 371
choosing, 372–375
excess, 185
in queue-level 4 configuration option in H-

CoS model, 352
setting using burst-size--limit keyword, 179
shaper and, 369–372

C
C, trTCM parameter, 187–189
C-VLAN (Customer VLAN), 349
CAC (Connection Admission Control), 356
Canonical Format Indicator (CFI), as

subdivided part of TCI, 75
CAR (Committed Access Rate), 154
cascaded policers, 181–183

840 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

catch-all term, 168, 170, 181–183
CBS (Committed Burst Size)

srTCM parameter, 185
trTCM parameter, 187–189

CCCs (Cross-Connect Circuits), MC-LAG
family support for, 646

CE devices
switches acting as, 674, 687

CFI (Canonical Format Indicator), as
subdivided part of TCI, 75

chaining filters, 198
chassis daemon (chassisd), 9–11
chassis scheduler in Trio, 426
CIR (Committed Information Rate)

about, 349
interfaces operating in PIR/CIR mode, 369,

381, 442
mode

about, 350
configuring change in, 448–527
using per unit scheduler and, 356

srTCM parameter, 185–187
trTCM parameter, 187–189

class of service, basic information about, xviii
(see also CoS (Class of Service), Trio)

classifiers
default routing-engine CoS and DSC, 388
rewrite marker templates and default BA,

432
rewrite rules and MX router support for IRB,

336
Trio PFE default MPLS EXP, 347–348
VCP interface, 578–580

clear policer command, 214
CLI, Junos

insert feature, 169
scheduler priorities, 396–398
ToS mappings, 479

CNLP (Connectionless Network Layer
Protocol), hashing and load
balancing, 342

CNLS (Connectionless Network layer Service),
hashing and load balancing, 342

color modes, TCM, 189
coloring process, 180
commit confirmed command, 238
commit synchronize, using when GRES is in

effect, 728, 729
Committed Access Rate (CAR), 154

Committed Burst Size (CBS)
srTCM parameter, 185
trTCM parameter, 187–189

Committed Information Rate (CIR)
about, 349
interfaces operating in PIR/CIR mode, 369,

381, 442
mode

about, 350
configuring change in, 448–527
using per unit scheduler and, 356

srTCM parameter, 185–187
trTCM parameter, 187–189

Connection Admission Control (CAC), 356
Connectionless Network Layer Protocol

(CNLP), hashing and load balancing,
342

Connectionless Network layer Service (CNLS),
hashing and load balancing, 342

control CoS, on host-generated traffic, 387–
391

control plane depletion, issue of, 272
CoS (Class of Service), Trio

about CoS vs. QoS, 323
aggregated Ethernet interfaces and H-CoS

modes, 421–423
differentiators, 319
flow

about, 330–331
Buffer Block (MQ) stage, 334
hashing and load balancing, 339–344
port and queuing MPC in, 334–339
preclassification and, 331–333

Hierarchical CoS (see H-CoS (Hierarchical
CoS))

key aspects of model, 344–348
lab (see CoS lab)
MX capabilities

about, 319–320
about shell commands, 321
port vs. hierarchical queuing MPCs,

320–323
scale and, 323–330

MX defaults, 430–434
predicting queue throughput

about, 434–437
about ratios, 440
Proof of Concept test lab, 439–441

queues

Index | 841

www.it-ebooks.info

http://www.it-ebooks.info/

APQ-DWRR scheduler variables and,
393–395

configuring H-CoS at level of, 423–430
dropping priorities, 393
priority-based queuing, 396
scheduling stage and, 393
vs. scheduler nodes, 403

queuing, port-level, 403–408
scheduler

chassis, 426
defining at H-CoS hierarchy, 424–425
modes (see scheduler modes of

operation)
priority levels, 395–403

scheduling
about, 393
discipline, 393–395

CoS lab
about, 451–455
adding H-CoS for subscriber access

about, 508–511
configuring H-CosS, 512–516

configuring unidirectional CoS
about, 453–455
applying schedulers and shaping, 471–

473
configuring baseline, 459–465
establish a CoS baseline, 456–458
scheduler block, 465–470
selecting scheduling mode, 470–471

confirming scheduling behavior
about, 494–496
compute queue throughput, 497–498
Layer 3 IFL calculation, 498–507
matching Layer 2 rate to Trio Layer 1

shaping, 496–497
verifying H-CoS, 516–529
verifying unidirectional CoS

checking for any log errors, 488–493
confirming queuing and classification,

474–477
confirming scheduling details, 483–488
using ping to test MF classification, 477–

483
verifying core interface, 473–474

count, nonterminating action, 170
Cross-Connect Circuits (CCCs), MC-LAG

family support for, 646
Cross-connect encapsulation, 87

D
DA (Destination Address), field in Ethernet II

frame, 74
daemons

chassis, 9–11
device control, 9
disabling DDoS, 280
management, 7–8
monolithic kernel architecture and, 2
routing protocol, 8–9

dark windows, ISSU, 818–819
data link layer, in seven-layer, 73
Day One: Securing the Routing Engine (Hank),

237
DCU (Destination Class Usage) information,

199
DDOS case study

about, 287–289
analyzing nature of DDoS threat, 289–293
mitigating DDoS attacks, 294
stages of DDoS policing, 293–294
topology for lab, 236

DDoS protection
BGP flow-spec case study

DDoS attack in, 306–314
case study

about, 271
configuring prevention feature, 279
configuring protocol group properties,

282–283
control plane depletion, 272
default policer settings in, 273, 279, 281
disable policing at FPC level, 280
disabling DDoS daemon, 280
enabling tracing, 281–282
operational overview, 273–279
PPPoE protocol group policing

hierarchies in, 278–279
verifying operation, 283–287

lab topology, 236
mitigating DDoS attacks, 294
updates to DDoS, 287

Deep Packet Inspection (DPI)
about process of, 155
Lookup Block support of, 27

default mode, 350
deficit counter, as variable defining APQ-

DWRR scheduler, 395
delay buffers

842 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

rate of, H-CoS Hierarchy and, 376
shapers and, 375–376

delegate-processing statement, 763
demotion

and promotion, priority, 357
queue-level priority, 358
shaping–based, at nodes, 357

demux (demultiplexing) interfaces, 391
Dense Port Concentrator (DPC) line cards

modular types and, 30
support for, 32
types of, 31
vs. MPC, 166

Dense Queuing Block, 26, 30
Destination Address (DA), field in Ethernet II

frame, 74
Destination Class Usage (DCU) information,

199
destination NAT, 601
device control daemon (dcd), 9
DHCP

using aggregate-level policers, 278
Differentiated Services (DS)

CoS model, 171
policing and, 153–154

disable-fpc statement, 280
disable-routing-engine statement, 280
discard, as terminating action, 169
discard-all filter, 238
disk fail, as GRES option, 729–730
domain bridging

configuration, 91–93
requirements, 107

DPC (Dense Port Concentrator) line cards
modular types and, 30
support for, 32
types of, 31
vs. MPC, 166

DPI (Deep Packet Inspection)
about process of, 155
Lookup Block support of, 27

drop-profile-map
queue-level 4 configuration option in H-CoS

model, 354
DS (Differentiated Services)

CoS model, 171
policing and, 154

DSCP Classifier
default routing-engine CoS and, 388

dscp modifier, nonterminating action, 171
dual routing engines, requirement for MX-VC,

542
dynamic CoS profiles

as CoS differentiator, 319
deploying, 391–392

dynamic priority protection, as CoS
differentiator, 319

dynamic profile
linking, 391
overview, 390–391

E
EBS (Excess Burst Size), srTCM parameter,

185–187
EDMEM (External Data Memory), 28, 163
EF (Expedited Forwarding) traffic, non-EF

traffic and, 168, 192
encapsulation

Ethernet bridging, 88
extended VLAN bridging, 88
flexible-ethernet-services, 89–91, 89–91
IFD, 89–91
IFL, 89–91

enhanced filter mode, 166–167
enhanced hash fields

IPv4 and IPv6, 340
MPLS, 342
multiservice family, 342

Enhanced MX Switch Control Board (SCBE),
58, 60–61

Enhanced Queuing (EQ)
MPC1 and MPC2 with, 41–42
MPC3E and, 38
Trio MPC/MIC interfaces, 339, 346

Enterprise Style
about, 80
vs. Service Provider Style, 80–83

Enterprise-style interface bridge configuration
about, 94
interface-mode options, 94–97
MX vs EX interface configuration cheat

sheet, 95
VLAN rewriting, 97–99

ES-IS routing protocol, graceful restart enabled
for, 747

Ethernet assignments, aggregate, master
topology for, xix

Index | 843

www.it-ebooks.info

http://www.it-ebooks.info/

Ethernet bridging, encapsulation type used in,
88

Ethernet II
frame, fields in, 73–74
in VLANs, 73–75

Ethernet services, providing high-speed, 30
Ethernet switch, in SCB, 48–51
EtherType, field in Ethernet II frame, 74
EX

MX commands applying to, 804
requirements for MX-VC, 542
vs. MX interface configuration cheat sheet,

95
Excess Burst Size (EBS), srTCM parameter,

185–187
excess mode, 350
excess-priority

about, 349
none vs. shaping with exact, 380
queue-level 4 configuration option in H-CoS

model, 353
excess-rate

about, 349
configuring, 381
deviating from calculated default, 381
mode, 381
PIR interface mode and, 381
queue-level 4 configuration option in H-CoS

model, 353
Expedited Forwarding (EF) traffic, non-EF

traffic and, 168, 192
extended-vlan-bridge encapsulation type, 88
extended-vlan-bridge, as Service Provider Style

interface requirement, 80
External Data Memory (EDMEM), 28, 163

F
fabric CoS

intelligent oversubscription and, 331
marking selected traffic types, 386–387

fabric spray
MX960 reordering across MX-SCB and, 56

family bridge, as Enterprise Style interface
requirement, 82

family bridge, TCP flag matching for, 224
family VPLS, MC-LAG family support for, 646
FBF (Filter-Based Forwarding), 154
FIB (Forwarding Information Base)

in Trio PFE filter application points, 195

tracking MAC addresses, 139
updating, 48

filter actions, as stateless filter component,
161

filter application points
aggregate or interface specific, 198
filter

chaining, 198
nesting, 199

forwarding table filter, 199–200
general filter restrictions, 200
input interface filters, 196–197
loopback filters and RE protection, 196
output interface filters, 197

filter matching, as stateless filter component,
159–161

filter processing, in bridged and routed
environments, 213–214

filter terms, as stateless filter component, 157–
158

Filter-Based Forwarding (FBF), 154
filter-evoked logical interface policers, 203–

206
filtering hits to be logged, 171
filters

chaining, 198
discard-all, 238
forwarding table, 199
general restrictions, 200
monitoring and troubleshooting policers

and, 214–220
nesting filters, 199

firewall filters
about policing and, 153–154
applying, 195–200
basic, information about, xviii
BGP flow-spec routes as, 300
bit field matching, 160–161
components of stateless

filter matching, 159–161
filter terms, 157–158
filter types, 155–156
implicit deny-all terms, 158–159
protocol families, 157

enhanced mode, 166–167
filter optimization tips, 165
filter scaling, 163–164
MPC vs. DPC, 166
stateless filter processing

844 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

about, 167–168
filter actions, 169
flow control actions, 172–173
nonterminating actions, 170
terminating actions, 169

stateless vs. stateful, 154–155
vs. routing policy, 161–162

Flexible Port Concentrator (FPC)
disable policing at level of, 280
modular types and, 30
MX240 support of, 18
policers default values from protocol group

properties, 282
slots available for routing engine, 21

flexible-ethernet-services
about, 89–91
illustration of, 90

flexible-vlan-tagging, 86–87
flood filter, in bridge filtering case study, 226–

227
flow control actions, 172
flow-spec feature, BGP

case study using
DDoS attack in, 306–314
flow-spec topology, 301
initial steps in, 301–306

in mitigating DDoS attacks, 295–301
forwarding classes, standard, for VC, 576
Forwarding Information Base (FIB)

in Trio PFE filter application points, 195
tracking MAC addresses, 139
updating, 48

Forwarding Table (FT)
applying per-packet load-balancing policy

to, 343
filters, 199–200

forwarding-class modifier, nonterminating
action, 171

FPC (Flexible Port Concentrator)
disable policing at level of, 280
modular types and, 30
MX-VC formula, 555
policers default values from protocol group

properties, 282
slots available for routing engine, 21

Frame Check Sequence (FCS), 74
FT (Forwarding Table)

applying per-packet load-balancing policy
to, 343

filters, 199–200

G
G-Rate (Guaranteed Rate), 349, 355–420, 356

(see also CIR (Committed Information
Rate))

Generic Routing Encapsulation (GRE), 621
GR (Graceful-Restart)

about, 722, 723–727
BFD and, 771–772
configuring GR for OSPF, 751–752
enabling globally, 751
Junos restart releases support of, 750
NSR and, 784
operation in OSPF network, 741–747
routing protocols and, 747–750
shortcomings of, 740
verifying GR for OSPF, 753–760
working with GRES, 741

Grace-LSAs (Link-State Advertisements), 742–
743, 744, 748

GRES (Graceful Routing Engine Switchover)
about, 722, 723
configuring

about, 728–729
before and after, 736–739
for R2 VCP Interface, 567
options, 729–731
software upgrades and downgrades,

739–740
verifying operation, 731–736

expected results after, 727
/NSR event, statistics kept during, 274
preventing overlapping sessions of, 739
process, 723–727

Guaranteed Rate (G-Rate), 349, 355–420, 356
(see also CIR (Committed Information
Rate))

H
H-CoS (Hierarchical CoS)

aggregated Ethernet modes for, 421–423
configuring queue level of, 423–430
control CoS on host-generated traffic, 387–

391
explicit configuration of queue priority and

rates, 355
fabric CoS, 386–387

Index | 845

www.it-ebooks.info

http://www.it-ebooks.info/

interface modes bandwidth
about, 362–368, 372
choosing burst size, 372–375
delay buffer rate, 376
PIR, 369
shaper and burst size, 369–372
shapers and delay buffers, 375–376
sharing excess bandwidth, 377–384

MX80 and, 323
PIR mode, 369, 440–448
PIR/CIR mode, 369, 442
reference model

about, 350–352
Level 1 IFD, 362
Level 2 IFL-Sets, 358–361
queue-level 4 configuration options,

350–354
queues feeding into level 3, 355

remaining traffic profile, 362–368
terminology, 349

Hanks, Douglas, Day One: Securing the
Routing Engine, 237

hardware priority mapping
scheduler to, 396–398

hashing
about, 339
ISO CNLP/CNLS load balancing and, 342
load balancing and, 339–344

hello packets, OSPF network and, 745–747,
752

hierarchical
policers, 192–195
policing, 277–279

Hierarchical Class of Service (QoS), 16
hierarchical policing, 282–283
hierarchical-based queuing MPCs, 321
hierarchical-scheduler statement, 403, 421
hop-by-hop extension header, MLD and, 261
host-bound traffic classification, 274–276
host-generated traffic, control CoS on, 387
host-outbound-traffic statement, 387, 389–

390
HTTP filter definition, in bridge filtering case

study, 223–225

I
I-CHIP, 30
I-Chip/ADPC CoS differences vs. Trio, 329–

330

ICCP (Inter-Chassis Control Protocol)
about, 648–649
configuring, 652–659, 696–698
configuring guidelines, 659–664
hierarchy, 649–651
topology guidelines, 652
verificaton, 698–699

ICL link configuration, in Active-Active MC-
LAG mode, 669–671

IEEE 802.1AH (MAC-in-MAC) standard, 77
IEEE 802.1p mapping, VCP interface traffic to,

574
IEEE 802.1Q header, VCP interface

encapsulated on, 573
IEEE 802.1Q standard

about, 74–75
bridging and, 683–685
combining with IEEE 802.1Q, 96–97
on VCP Interfaces requirement for MX-VC,

542
IEEE 802.1QinQ (QinQ) standard

about, 75–77
combining with IEEE 802.1Q, 96–97
Enterprise-style interface supporting, 96

IEEE 802.3ad standard
Layer 2 aggregation with IEEE 802.3ad,

541
MC-LAG and, 643–645
node-level redundancy and, 540
viewing aggregated Ethernet interfaces,

685–686, 688–689
IFA (Interface Address), in Junos interface

hierarchy, 78
ifd (ingress interface level filter), 197
IFD (Interface Device)

about, 77
encapsulation of ethernet-bridge, 87
flexible-ethernet-services encapsulation,

89–91
in H-CoS Level 1 model, 362
stacked-vlan-tagging on, 85–86
vlan-tagging to, 84

iff (ingress protocol family filter), 197
IFF (Interface Family), in Junos interface

hierarchy, 78
ifl (ingress logical unit filter), 197
IFL (Interface Logical Level)

associating VLAN IDs to, 84
bridge-domain in vlan-id none and, 117

846 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

bridge-domain mode all and, 119
encapsulation, 89–91
in Junos interface hierarchy, 78
irb IFL MTU, 142–144, 142–144
loopback, in Junos, 628
queues feeding into level 3 of H-CoS model,

355
queues in per-unit mode scheduling for,

414
supporting IEEE 802.1QinQ, 96

IFL (Interface Logical), controlling queues
allocated to, 328

IFL-Sets (Interface Sets)
about, 349
in H-CoS Level 2 model, 358–361

implicit deny-all term, as stateless filter
component, 158–159

In-Service Software Upgrades (ISSU)
about, 722
confirm ISSU

SUB2, 832–834
Junos, 814–823
lab

about, 823–825
perform ISSU, 827–832
verify ISSU readiness, 825–827

ingress interface level filter (ifd), 197
ingress logical unit filter (ifl), 197
ingress protocol family filter (iff), 197
inline IPFIX performance

about, 591–592
configuration of, 592–598
verificaton of, 599–601

inner-tag-protocol-id option
in input-vlan-map, 105
in output-vlan-map, 105

inner-vlan-id option
in input-vlan-map, 105
in output-vlan-map, 105

input interface filters, 196–197
input queuing on Trio, 345
input-vlan-map function

about, 103–105
options, 104–105
vs. output-vlan-map, 106

Integrated Routing and Bridging (IRB), 213,
336

intelligent class aware hierarchical rate limiters,
as CoS differentiator, 319

intelligent oversubscription, 331–333
Inter-Chassis Control Protocol (ICCP)

about, 648–649
configuring, 652–659
configuring guidelines, 659–664
hierarchy, 649–651
topology guidelines, 652

Interface Address (IFA), in Junos interface
hierarchy, 78

Interface Device (IFD)
about, 77
encapsulation of ethernet-bridge, 88
flexible-ethernet-services encapsulation,

89–91
stacked-vlan-tagging on, 85–86
vlan-tagging to, 84

Interface Family (IFF), in Junos interface
hierarchy, 78

Interface Logical Level (IFL)
associating VLAN IDs to, 84
bridge-domain in vlan-id none and, 117
bridge-domain mode all and, 119
encapsulation, 89–91
in Junos interface hierarchy, 78
irb IFL MTU, 142–144
loopback, in Junos, 628–632
queues feeding into level 3 of H-CoS model,

355
queues in per-unit mode scheduling for,

414
supporting IEEE 802.1QinQ, 96

interface modes
about, 368
access mode option, 94
as Enterprise Style interface requirement,

82
burst-size

calculating default, 372
choosing, 372–375

CIR mode
about, 350
configuring change in, 448–527

delay buffer rate and H-CoS Hierarchy,
376

PIR mode, 369, 440–448
PIR/CIR mode, 369
shaper and burst size, 369–372
shapers and delay buffers, 375–376
sharing excess bandwidth, 377–384

Index | 847

www.it-ebooks.info

http://www.it-ebooks.info/

trunk mode option, 95
interface names, master topology for, xix
interface numbering, virtual chassis, 554–557,

566
Interface Set (IFL-Set), 349
interface speed, IRB interface attribute, 142
interface style service sets, 613–618
interface, bridge configuration, 80–83
interface-specific filters, 198
Interfaces Block, 26, 28–30
interior gateway protocol, IS-IS, 689–691
IP Differentiated Services, concepts in Juniper

Enterprise Routing book, 319
IP Tunnel (IPIP), 621
IPFIX performance, inline

about, 591–592
configuration of, 592–598
verificaton of, 592–598

IPv4 (Internet Protocol version 4)
enabling IEEE 802.1Q to support, 79
enhanced hash fields, 341
in bridged and routed environments, 213
master topology addressing, xix
RE protection filter, 236–260

applying filter list, 237
before activating lo0 application, 256–

257
building filter, 240–256
confirming proper operation of filter,

258–260
policy configuration, 238–240
principle behind operation of filter, 237

supported protocol families for filtering,
157

IPv6 (Internet Protocol version 6)
based HTTP, blocking, 224
confirming proper operation of filter, 270–

271
enabling IEEE 802.1Q to support, 79
enhanced hash fields, 341
in bridged and routed environments, 213
master topology addressing, xix
RE protection filter

about, 260–261
sample filter, 262–269

supported protocol families for filtering,
157

IRB (Integrated Routing and Bridging), 213,
336

IS-IS routing protocols
basic information about, xviii
graceful restart enabled for, 748
in MC-LAG case study, 689–691
replication and NSR, 797–798

ISO CNLP/CNLS
hashing and load balancing, 342

iso family, filter and policer and, 209
ISSU (In-Service Software Upgrades)

about, 722
about SUB2, 823–825
Junos, 814–823
lab

confirm ISSU, 832–834
perform ISSU, 827–832
verify ISSU readiness, 825–827

NSR and, 761

J
J-cells

about, 55
flow, 56
format of, 55–56
request and grant process, 57

J-Flow network services
about, 590–591
inline IPFIX performance

about, 591–592
configuration of, 592–598
verificaton of, 599–601

Juniper Enterprise Routing book
IP Differentiated Services, concepts in, 319

Juniper MX architecture, 27, 31, 58
(see also Juniper MX Chassis)
(see also line cards)
(see also SCB (Switch and Control Board))
about, 1–2
Junos, 1

(see also Junos)
about, 1–2
daemons, 6–11
release models, 4
routing sockets, 11–12
routing sockets architecture, 11
single, 3
software architecture, 5–6, 5–6
software architecture diagram, 6
software releases, 3–4

Module Interface Cards

848 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

compatibility chart, 45
high-level architecture of MPCs and, 36
Interface Blocks and release of, 28
modular types and, 31
physical port configurations available

for, 43–45
Trio chipset

about, 25–26
architecture, 26–30

Juniper MX Chassis, 537
(see also MX Virtual Chassis (MX-VC))
about, 13–14
midrange, 17
MX240

about, 18
interface numbering, 18

MX480
about, 20–21
interface numbering, 21

MX80
about, 14–15
FPC and PIC location, 15
H-CoS and, 323
interface numbering, 15

MX80-48T
FPC and PIC location, 15
H-CoS and, 323
interface numbering, 16

MX960
about, 21
craft interface, 10, 24
interface numbering, 23

table of DPC and MPC capacity, 13
Juniper MX Routers

ability to switch, 71–73
about, xvii
basic information about, xviii–xix
Junos CoS capabilities and, 320
supporting IRB classifiers and rewrite rules,

336
Trio CoS defaults, 430–434
vs. traditional switch, 71–73

Juniper MX routers, 537
(see also MX Virtual Chassis (MX-VC))

Juniper MX Routers, Junos high-availability
features on

in-service software upgrades, 814–823
NSB (Nonstop Bridging)

about, 767–768

configuring, 783–785
Layer 2 state and, 768–769
support for, 769
troubleshooting verifying problems,

808–813
verifying, 786–808

NSR (Nonstop Routing)
BFD and, 771–772
BFD support for, 770–772
caution about using, 776–781
configuring, 783–785
debugging tools, 784–785
PIM and, 774–775
RSVP-TE LSPs and, 775–776
support for, 769–770
tips for switchover, 781–782
VRRP and, 776

NSR (Nonstop Routing), verifying, 786–
808

about, 786
BGP replication, 794–796, 798–800
confirm pre-NSR replication state, 793
confirming pre-NSR protocol state, 789–

793
IS-IS replication, 797–798
Layer 2 verification, 800–807
perform NSR, 808
troubleshooting problems, 808–813

Juniper MX series, 1–2
Juniper Networks, about M40, 1
Junos

about, 2
BGP flow-spec feature

case study using, 301–314
in mitigating DDoS attacks, 295–301

daemons
chassis daemon, 9–11
device control, 9
management, 7–8
routing protocol, 8–9

Filter-Based Forwarding, 154
GR supported in releases, 750
handling interfaces, 77
high-availability features (see Junos, high-

availability features)
in-service software upgrades, 814–823
interface hierarchy, 78
policer operation, 178–181
release models, 4

Index | 849

www.it-ebooks.info

http://www.it-ebooks.info/

rich system logging, 220
routing sockets

about, 11–12
architecture, 11

single, 3
software architecture

about, 5–6
diagram of, 6

software releases, 3–4, 5–6
user interface, 7
version requirement for MX-VC, 542

Junos 11.4
BGP address families NSR supported, 773
PIM NSR support, 774–775
policers called from firewall filter, 164
RE and FPC levels of policing, 280
RSVP features not supported for NSR, 775
software licenses enabling use of, 601
strict-high priority queue in, 394
support for NSR/NSB, 769–770
TCP containers support options, 429
virtual chassis as preprovisioned, 566
virtual chassis supported by, 548

Junos 11.4R1
basing queues transmit rate against PIR,

437
ingress queuing and, 337
support for MC-LAG, 646

Junos 11.4R1, support for hierarchical policing,
192–195

Junos 12.3
categories of MPCs, 32

Junos Application Programming Interface (API)
in virtual chassis, 538

Junos CLI
insert feature, 169
scheduler priorities, 396–398
ToS mappings, 479

Junos Enterprise Routing Book, Second Edition
(O'Reilly pub), 155

Junos Enterprise Routing, Second Edition
(O'Reilly pub), 235

Junos Enterprise Switching (Marschke and
Reynolds), 559–560, 573

Junos, high-availability features on MX Routers
about, 721
GR (Graceful-Restart)

about, 722, 723–727
configuring GR for OSPF, 751–752

enabling globally, 751
Junos restart releases support of, 750
operation in OSPF network, 741–747
routing protocols and, 747–750
shortcomings of, 740
verifying GR for OSPF, 753–760
working with GRES, 741

Graceful Restart (GR), 722
GRES (Graceful Routing Engine

Switchover)
about, 723
expected results after, 727
preventing overlapping sessions of, 739
process, 723–727

GRES, configuring
about, 728–729
before and after, 736–739
options, 729–731
software upgrades and downgrades,

739–740
verifying operation, 731–736

in-service software upgrades, 814–823
ISSU (In-Service Software Upgrades), 722
NSB (Nonstop Bridging)

about, 722, 767–768
configuring, 783–785
Layer 2 state and, 768–769
support for, 769
troubleshooting verifying problems,

808–813
verifying, 786–808

NSR (Nonstop Routing)
about, 722
BFD and, 771–772
BFD support for, 770–772
caution about using, 776–781
configuring, 783
debugging tools, 784–785
PIM and, 774–775
RSVP-TE LSPs and, 775–776
support for, 769–770
tips for switchover, 781–782
VRRP and, 776

NSR (Nonstop Routing), verifying, 786–
808

about, 786
BGP replication, 794–796, 798–800
confirm pre-NSR replication state, 793

850 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

confirming pre-NSR protocol state, 789–
793

IS-IS replication, 797–798
Layer 2 verification, 800–807
perform NSR, 808
troubleshooting problems, 808–813

K
kernel synchronization

is GRES process, 723–725
on MX-VC, 544–548

L
l2-learning instance detail, show, 136–137
latency, requirement for MX-VC, 542
Layer 2 families

applying physical interface policer, 207
sharing policer with Layer 3 families, 211

Layer 2 mode
aggregation with IEEE 802.3ad, 541
logical interface (aggregate) policer, 203–

206
Layer 2 networking

about, 73
Ethernet II, 73–74
going to Layer 3, 141–142
going to Layer 3 with integrated routing and

bridging, 141
IEEE 802.1Q standard, 74–75
IEEE 802.1QinQ (QinQ) standard, 75–77
in MC-LAG case study, 676–677

bridging and IEEE 802.1Q, 683–685,
687–688

IEEE 802.3ad, 685–686, 688–689
input feature, 678–680
loop prevention, 677
loop prevention verification, 682
out feature, 680–682
PE routers R1 and R2, 682–683
S1 and S2 as CE devices, 674, 687

master topology for, xix
Layer 2 protocols

ISSU support for, 819
NSR verification of, 800–807
preclassification feature and, 332

Layer 2 state
NSB and, 768–769

Layer 3 families

applying physical interface policer, 207
sharing policer with Layer 2 families, 211

Layer 3 features, in MC-LAG case study
IS-IS routing protocol, 689–691
VRRP, 694–695

Layer 3 features, n MC-LAG case study
bidirectional forwarding detection, 691–

694
Layer 3 protocols

ISSU support for, 819
preclassification feature and, 332

Layer 4 protocols, preclassification feature and,
332

LDP routing protocol, graceful restart enabled
for, 751

leaky bucket algorithm, 173–174
learning domains

about, 72, 112
multiple, 114–115, 114–115
single, 113–114, 113–114

line cards
DDoS Protection on, 274
DPC

modular types and, 30
types of, 31

MPC
about, 32
categories of, 32
caveats with first-generation MX SCB,

58
features matrix, 33
high-level architecture of MICs and, 36
modular types and, 31
MPC-3D-16X10GE-SFPP, 36–37
MPC1, 33, 34–35
MPC2, 33, 35
MPC3E, 33, 37–40

network services, options for, 46–47
packet processing of

MPC1 and MPC2, 41–42
MPC3E, 43

Trio-based, requirement for MX-VC, 541
Link-State Advertisements (LSAs), 748
LLQ (Low-latency Queuing), 394
lo0

application of IPv4 protection filter, before
activating, 256–257

application of IPv6 protection filter, before
activating, 269

Index | 851

www.it-ebooks.info

http://www.it-ebooks.info/

output filters, 196
load balancing

applying per-packet policy to forwarding
table in, 343

hashing and, 339–344
ISO CNLP/CNLS hashing and, 342
symmetry and, 344

log, nonterminating action, 170
logical bandwidth policer, 181
logical interface policers, 200–206
logical interfaces (see IFL (Interface Logical

Level))
logical routers, 238–239
logical tunnels, 621
Lookup Block, 26, 27–28
loop prevention, in MC-LAG, 677
loopback filters, RE protection and, 196
loopback IFL, in Junos, 628
loss-priority modifier, nonterminating action,

171–172
Low-latency Queuing (LLQ), 394
LSAs (Link-State Advertisements)

Grace, 742–743, 744, 748

M
MAC accounting, 139–141
MAC addresses

clearing, 137–139
synchronization in Active-Active MC-LAG

mode, 672–675
MAC tables

limiting size of, 131–135
show bridge mac-table in bridge-domain

commands, 135
management daemons (mgd), Junos, 7–8
Mapping, Service Provider VLAN

bridge-domain requirements, 107
example of push and pop operation, 107–

109
example of swap-push and pop-swap

operation, 109–111
stack data structure, 99–101
stack operations, 100–104
stack operations map, 103
tag count, 106

Marschke, Doug, Junos Enterprise Switching,
560, 573

Master Routing Engine in VC-B (VC-Bm), 539,
545–548, 551–553

Master Routing Engine in VC-L (VC-Lm), 539,
553

Master Routing Engine in VC-M (VC-Mm),
539, 549–550

Maximum Transmission Unit (MTU), IRB
interface attribute, 142–144

MC-AE (Multi-Chassis Aggregated Ethernet)
interfaces, 699

MC-LAG (Multi-Chassis Link Aggregation)
case study

about, 672–675
Layer 3 features, 689–695
logical interfaces and loopback

addressing, 675–676
case study, configuration, 695–707–715

configuring ICCP, 698–699
MC-AE interfaces, 699
R1 and R2, support active-active

configuration, 699–705
R3 and R4., differences in, 705–707

family support, 646
ICCP (Inter-Chassis Control Protocol)

about, 648–649
configuring, 652–659
configuring guidelines, 659–664
hierarchy, 649–651
topology guidelines, 652

IEEE 802.3ad and, 643–645
Layer 2 (see Layer 2 networking)
loop prevention in, 677
modes

Active-Active, 646, 668–673, 678, 699
Active-Standby, 645, 665–668

states, 645–646
vs. MX Virtual-Chassis, 647–648

member ID, unique, in virtual chassis, 562–
563

MF (Multi-Field)-based classification, 192
MICs (Module Interface Cards)

compatibility chart, 45
high-level architecture of MPCs and, 36
Interface Blocks and release of, 28
ISSU support for MX MIC/MPC, 820
modular types and, 31
physical port configurations available for,

43–45
MLD

hop-by-hop extension header and, 261
RFC 3810 for, 261

852 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

modern multiservice routers, 274
Modular Port Concentrator (MPC) line cards

about, 32
categories of, 32
caveats with first-generation MX SCB, 58
CoS feature comparison, 323–324
features matrix, 33
high-level architecture of MICs and, 36
ISSU support for MX MIC/MPC, 820
modular types and, 31
MPC-3D-16X10GE-SFPP, 36–37
MPC1, 33, 34–35
MPC2, 33, 35
MPC3E, 33, 37–40
PIC arrangements for queue distribution on

MPC1-3D-Q, 325–328
port-based, in CoS processing, 334–339
queue and subscriber scaling, 324
queue-based, in CoS processing, 334–339
queues per slot in Trio CoS, 319
restricted queues on Trio, 329
simple filters and, 156
support of per port scheduling and

hierarchical scheduling, 403
vs. DPC, 166

modular types, line cards and, 31
Module Interface Cards (MICs)

compatibility chart, 45
high-level architecture of MPCs and, 36
Interface Blocks and release of, 28
ISSU support for MX MIC/MPC, 820
modular types and, 31
physical port configurations available for,

43–45
monitoring system log for errors, 214
monolithic kernel architecture, daemons and,

2
MPC (Modular Port Concentrator) line cards

about, 32
categories of, 32
caveats with first-generation MX SCB, 58
CoS feature comparison, 323–324
features matrix, 33
high-level architecture of MICs and, 36
ISSU support for MX MIC/MPC, 820
modular types and, 31
MPC-3D-16X10GE-SFPP, 36–37
MPC1, 33, 34–35
MPC2, 33, 35

MPC3E, 33, 37–40
PIC arrangements for queue distribution on

MPC1-3D-Q, 325–328
port-based, in CoS processing, 334
processing stages and Trio chipset, 331
queue and subscriber scaling, 324
queue-based, in CoS processing, 334–339
queues per slot in Trio CoS, 319
restricted queues on Trio, 329
support of per port scheduling and

hierarchical scheduling, 403
vs. DPC, 166

MPLS
enhanced hash fields, 342
on network, rewriting rules to core facing

interfaces, 434
MPLS EXP, classification and rewrite defaults,

347–348
MTU (Maximum Transmission Unit), IRB

interface attribute, 142–144
Multi-Chassis Aggregated Ethernet (MC-AE)

interfaces, 699
Multi-Chassis Link Aggregation (MC-LAG)

case study
about, 672–675
Layer 3 features, 689–695
logical interfaces and loopback

addressing, 675–676
case study, configuration, 695–707–715

configuring ICCP, 698–699
MC-AE interfaces, 699
R1 and R2, support active-active

configuration, 699–705
R3 and R4., differences in, 705–707

family support, 646
ICCP (Inter-Chassis Control Protocol)

about, 648–649
configuring, 652–659
configuring guidelines, 659–664
hierarchy, 649–651
topology guidelines, 652

IEEE 802.3ad and, 643–645
Layer 2 (see Layer 2 networking)
loop prevention in, 677
modes

Active-Active, 646, 668–673, 678, 699
Active-Standby, 645, 665–668

states, 645–646
vs. MX Virtual-Chassis, 647–648

Index | 853

www.it-ebooks.info

http://www.it-ebooks.info/

Multi-Field (MF)-based classification, 192
Multicast VPN (MVPN), 774
multiple learning domains, 114–115
multiservice family, enhanced hash fields, 342
MVPN (Multicast VPN), 774
MX architecture, 31, 58

(see also line cards)
(see also MX Chassis)
(see also SCB (Switch and Control Board))
Junos

daemons, 6–11
release models, 4
routing sockets, 11–12
routing sockets architecture, 11
single, 3
software architecture, 5–6
software architecture diagram, 6
software releases, 3–5

Module Interface Cards
compatibility chart, 45
high-level architecture of MPCs and, 36
Interface Blocks and release of, 28
modular types and, 31
physical port configurations available

for, 43–45
Trio chipset

about, 25–26
architecture, 26–30

MX Chassis, 537
(see also MX Virtual Chassis (MX-VC))
about, 13–14
midrange, 17
MX240

about, 18
interface numbering, 18

MX480
about, 20–21
interface numbering, 21

MX5, 17
MX80

about, 14–15
FPC and PIC location, 15
H-CoS and, 323
interface numbering, 15

MX80-48T
FPC and PIC location, 15
H-CoS and, 323
interface numbering, 16

MX960

about, 21
craft interface, 10, 24
interface numbering, 23

table of DPC and MPC capacity, 13–14
MX CoS capabilities

about, 319–320
about CoS vs. QoS, 323
about shell commands, 321
port versus hierarchical queuing MPCs,

320–323
scale and, 323–330

MX routers, 537
(see also MX Virtual Chassis (MX-VC))
about, xvii, 1–2
basic information about, xviii–xix
Junos CoS capabilities and, 320
supporting IRB classifiers and rewrite rules,

336
Trio CoS defaults, 430–434

MX routers, Juniper
ability to switch, 71–73
vs. traditional switch, 71–73

MX Routers, Junos high-availability features on
in-service software upgrades, 814–823
NSB (Nonstop Bridging)

about, 767–768
configuring, 783–785
Layer 2 state and, 768–769
support for, 769
troubleshooting verifying problems,

808–813
verifying, 786–808

NSR (Nonstop Routing)
BFD and, 771–772
BFD support for, 770–772
caution about using, 776–781
configuring, 783–785
debugging tools, 784–785
PIM and, 774–775
RSVP-TE LSPs and, 775–776
support for, 769–770
tips for switchover, 781–782
VRRP and, 776

NSR (Nonstop Routing), verifying, 786–
808

about, 786
BGP replication, 794–796, 798–800
confirm pre-NSR replication state, 793

854 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

confirming pre-NSR protocol state, 789–
793

IS-IS replication, 797–798
Layer 2 verification, 800–807
perform NSR, 808
troubleshooting problems, 808–813

MX SCB, 56–59
MX scheduling terminology, 349
MX Series, about, 1–2
MX Trio

CoS defaults, 430–434
vs. I-Chip Filter Scale, 164, 166

MX Virtual Chassis (MX-VC)
about, 537–538
architecture, 543–554

about, 543–554
kernel synchronization, 544–548
routing engine failures, 548–554

case for, 540
chassis serial number, 561–562, 568
configuring

about, 561
finding chassis numbers, 566
GRES and NSR on VC, 566–567
on R1, 566–567
VC on R1, 566–567
VC verification, 570–571

deconfiguring, back to standalone, 572–
573

engine terminology, 539
illustration of

interface numbering, 555
VC concept, 543
virtual chassis components, 540
virtual chassis kernel replication, 545

mastership election for VC-M in, 559–560
numbering, 554–557
packet walkthough, 557–558
R1 VCP Interface

configuring R1 on VCP, 563–565
preconfiguring R2 checklist, 567–568

R2 VCP Interface
configuring R2 on VCP, 568–569
preconfigurating checklist for, 567–568

requirements, 541–542
routing engine

apply-groups names for, 568
groups, 564–565
switchover for nonstop routing, 568

terminology, 539–540
topology, 558, 559
types of virtualization, 541
unique member ID, 562–563
VCP class of service

about, 573
classifiers, 578–580
final configuration, 581–583
schedulers assigned to forwarding classes

for VC, 576–578
VCP traffic encapsulation, 573–574
verifying configuration, 583–584
walkthrough, 574–575

vs. MC-LAG, 647–648
MX vs EX interface configuration cheat sheet,

95
MX2020

about, 61
air flow, 64, 65
architecture, 61
line card compatibility of, 65–67
power supply, 63, 64

MX240
about, 18
interface numbering, 18
MX SCBs, 58–59
SCBE, 60
switch fabric planes, 52–53

MX480
about, 20–21
interface numbering, 21
MX SCBs, 58–59
SCBE, 60
switch fabric planes, 52–53

MX5, 17
MX80

about, 14–15
FPC and PIC location, 15
H-CoS and, 323
interface numbering, 15

MX80-48T
FPC and PIC location, 15
interface numbering, 15

MX960
craft interface, 10, 24
interface numbering, 23
MX Chassis, 21
MX SCBs, 59
SCBE, 61

Index | 855

www.it-ebooks.info

http://www.it-ebooks.info/

switch fabric planes, 53–55

N
NAT (Network Address Translation)

about, 601
Destination NAT (DNAT) configuration,

618–621
service sets, NAT

components in creating, 604–605
interface style service sets, 613–618
next-hop style implementation, 605–

613
rules, components in creating, 608
SNAT rule, with interface-style service

sets, 615–617
SNAT rule, with next-hop style service

sets, 608–611
traffic directions, 618

types of, 601
nesting

filters, 198
next-header, as bane of stateless filters, 260–

261
Network Address Translation (NAT)

about, 601
Destination NAT (DNAT) configuration,

618–621
service sets, NAT

components in creating, 604–605
interface style service sets, 613–618
next-hop style implementation, 605–

613
rules, components in creating, 608
SNAT rule, with interface-style service

sets, 615–617
SNAT rule, with next-hop style service

sets, 608–611
traffic directions, 618

services inline interface, 603–604
Network Instruction Set Processor (NISP), 25
network services

line cards and, 46
options for, 46–47

Network-layer Reachability Information
(NLRI), 295

next-header nesting, as bane of stateless filters,
260–261

next-hop-group modifier, nonterminating
action, 172

next-term modifier, flow control action, 172–
173

NISP (Network Instruction Set Processor), 25
NLRI (Network-layer Reachability

Information), 295–296
nonterminating action, 170
NSB (Nonstop Bridging)

about, 722, 741, 767–768
configuring, 783–785
Layer 2 state and, 768–769
support for, 769
troubleshooting verifying problems, 808–

813
verifying, 786–808

NSR (Nonstop Routing)
about, 722, 741
BFD and, 771–772
BFD support for, 770–772
caution about using, 776–781
configuring, 783–785

for R2 VCP Interface, 567
debugging tools, 784–785
/GRES event, statistics kept during, 274
ISSU and, 761
PIM and, 774–775
protocol replication and, 762–767
RSVP-TE LSPs and, 775–776
support for, 769–770
tips for switchover, 781–782
verifying, 786–808

about, 786
BGP replication, 794–796, 798–800
confirm pre-NSR replication state, 793
confirming pre-NSR protocol state, 789–

793
IS-IS replication, 797–798
Layer 2 verification, 800–807
perform NSR, 808
troubleshooting problems, 808–813

VRRP and, 776

O
One Junos, 2
Open Systems Interconnection (OSI) model

seven-layer, Layer 2 network in, 73
operation verification, port-level, 408
Operational and Business Support Systems

(OSS/BSS), virtual chassis and, 538,
540, 543

856 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

OSI (Open Systems Interconnection) model
seven-layer, Layer 2 network in, 73

OSPF routing protocol
and OSPFv3, graceful restart enabled for,

748
basic information about, xviii
configuring GR for, 751–752
GR operation in, 741–747
hello packets, 725, 745–747, 752
verifying GR for, 752–760

OSS/BSS (Operational and Business Support
Systems), virtual chassis and, 538,
543

output interface filters, 197
output-vlan-map function

about, 103–105
options, 105
vs. input-vlan-map, 106

overhead-accounting option, 429–430
oversubscription, intelligent, 331–333

P
packet flow, filter processing and, 213–214
Packet Forwarding Engines (PFEs)

control traffic converging at, 273
in software architecture, 5–6
J-cells and, 55–57
policers default values from protocol group

properties, 282
switch fabric connecting, 52

Packet Loss Priority (PLP)
default routing-engine CoS and and, 388
three-color policer and, 189

packet walkthough, MX-VC, 557–558
payload, field in Ethernet II frame, 74
PBR (Policy Based Routing), 154
PCP (Priority Code Point), as subdivided part

of TCI, 75
PDM (Power Distribution Modules), 63
PE (Provider Equipment)

multiple customers connected on, 83
routers R1 and R2, 751

Peak Burst Size (PBS), trTCM parameter, 187
Peak Information Rate (PIR), 350

(see also shaping-rate)
about, 349
excess rate

excess-rate mode, 381
PIR Mode, 381

PIR/CIR Mode, 381
interfaces operating in

PIR mode, 369, 440–448
PIR/CIR mode, 369, 442

mode, about, 350
trTCM parameter, 187–189

PEM (Power Entry Module), 15
PFEs (Packet Forwarding Engines)

filter application points, Trio, 195
in software architecture, 5–6
input interface filters and, 197
J-cells and, 55–57
output interface filters and, 197
policers default values from protocol group

properties, 282
switch fabric connecting, 52
Trio, 331

physical interface policers, 206–212
PIC arrangements

comparing scheduler parameters by
platform and, 428

for queue distribution on MPC1-3D-Q,
325–328

PIM (Protocol Independent Multicast)
NSR and, 774–775

PIM sparse mode routing protocol, graceful
restart enabled for, 748

PIR (Peak Information Rate), 350
(see also shaping-rate)
about, 349
excess rate

excess-rate mode, 381
PIR Mode, 381
PIR/CIR Mode, 381

interfaces operating in
PIR mode, 369, 440–448
PIR/CIR mode, 369, 442

mode, about, 350
trTCM parameter, 187–189

PLP (Packet Loss Priority), three-color policer
and, 189

PoC (Proof of Concept) test lab, Trio CoS
about, 439
about ratios, 440
CIR mode, configuring change in, 448–527
PIR mode example, 440–448, 442
PIR/CIR mode example, 442

policer modifier, nonterminating action, 171
policers

Index | 857

www.it-ebooks.info

http://www.it-ebooks.info/

aggregate (logical interface), 192, 200–206
application restrictions, 212
applying, 200–212
as term-specific, 206
cascaded, 181–183
color modes for TCM, 189
default settings in DDoS Protection case

study, 273, 279, 281
default values from protocol group

properties for PFE- and FPC-level,
282

DHCP using aggregate-level, 278
disabling RE, 280
filter-evoked logical interface policers, 206
hierarchical, 192–195
logical interface (aggregate), 192, 200–206
monitoring and troubleshooting filters and,

214–220
physical interface, 206–212
single-rate Three-Color Marker (srTCM)

configuring, 189
vs. two-rate Three-Color Marker, 184–

192
srTCM, 186
trTCM, 188
two-rate Three-Color Marker (trTCM),

191–192
policing

about, 173
about firewall filter and, 153–154
bandwidth

policer, 181
setting using bandwidth-limit keyword,

178
basic example of, 180
burst size

setting using burst-size--limit keyword,
179

suggested, 179
classification and, in Trio CoS flow, 336
disable at FPC level, 280
disable policing at FPC level, 280
DS and, 154
hard model, 180
hierarchical, 278–279
Junos policer operation, 178–181
points for PPPoE family, 278
priority-based, 385
shaping vs., 173–177

soft model, 180
Policy Based Routing (PBR), 154
policy, routing vs. firewall filters, 161–162
pop operation

example of push and, 107–109
in stack data structure, 99–101
in stack operations, 100, 101

pop-pop operation, in stack operations, 102
pop-swap operation

example of swap-push and, 109–111
in stack operations, 103

port-based MPCs, in CoS processing, 334–339
port-based queuing, MPCs, 320
port-level

operation verification, 408
queuing, 403–408

port-mirror modifier, nonterminating action,
172

Power Distribution Modules (PDM), 63
Power Entry Module (PEM), 15
power supply

MX2020, 63, 64
MX960, 23

Power Supply Modules (PSM), 63
PPPoE (PPP over Ethernet) protocol group,

DDoS policing hierarchies in, 278–
279

PQ-DWRR (Priority Queue Deficit Weighted
Round Robin) scheduling, 393

preamble, field in Ethernet II frame, 73
preclassification feature, Trio CoS flow and,

331–333
prefix-action modifier, nonterminating action,

172
premium policer rates, in configuring

hierarchical policer, 192
preprovisioned option, in specifying serial

number for each member, 567
Priority Code Point (PCP), as subdivided part

of TCI, 75
priority demotion setting, priority inheritance

scheme and, 358
priority levels scheduler, 395–403
priority promotion and demotion, 357, 402–

403
priority propagation

in scheduler modes, 398–402
in scheduler nodes, 399, 401, 402

858 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

priority variable defining APQ-DWRR
scheduler, 394

priority, queue-level 4 configuration option in
H-CoS model, 353

priority-based
policing, 385
queuing, 396
shaping, 319, 384–385

process failure induced switchovers, as GRES
option, 730–731

promotion and demotion, priority, 357
Proof of Concept (PoC) test lab, Trio CoS

about, 439
about ratios, 440
CIR mode, configuring change in, 448–527
PIR mode example, 440–448, 442
PIR/CIR mode example, 442

protocol families, as stateless filter component,
157

protocol family mode, logical interface
(aggregate) policer, 201–203

protocol group properties, configuring, 282–
283

Protocol Independent Multicast (PIM)
encapsulation and decapsulation, 621
NSR and, 774–775

protocol match condition, matching on
protocol field and, 158–160

protocol replication, NSR and, 762–767
protocol-based profiles, WRED, 339
protocols, with preclassification feature, 332
Provider Equipment (PE)

routers R1 and R2, 751
Provider Equipment (PE), multiple customers

connected on, 83
PSM (Power Supply Modules), 63
push operation

example of pop and, 107–109
in stack data structure, 99–101
in stack operations, 100, 101

push-push operation
in stack operations, 100, 102

Q
QoS vs. CoS, using, 323
quantum variable, defining APQ-DWRR

scheduler, 394
queue bandwidth, priority-based policing and,

385

queue transmit rate, 356
queue-based MPCs, in CoS processing, 334–

339
queue-level 4 configuration options in H-CoS

model, 350–354
queues

allocated to IFL, controlling, 328
APQ-DWRR scheduler variables and, 393–

395
between Interfaces and Buffering Block, 28
configuring H-CoS at level of, 423–430
default mappings for RE-generated traffic,

388
defining priority level for excess traffic, 379
distribution on MPC1-3d-q, PIC

arrangements, 325–328
dropping priorities, 393
for each IFL in per-unit mode scheduling,

414
handling priority promotion and demotion,

357
input queuing on Trio, 345
port-level, 403–408
predicting throughput of

about, 434–437
priority-based, 396
restricted, on Trio MPCs, 329
scaling and subscriber scaling, 324
scheduler node scaling and, 324
scheduling stage and, 393
transmit rate percentage, 415
vs. scheduler nodes, 403
warnings about low, 328

Queuing, Enhanced (EQ)
MPC1 and MPC2 with, 41–42
MPC3E and, 38
Trio MPC/MIC interfaces, 339, 346

R
R1 (Router 1) VCP Interface

configuring GRES and NSR on, 567
configuring R1 on VCP, 563–565
preconfigurating R2 checklist for, 567–568

R2 (Router 2) VCP Interface
configuring R2 on VCP, 568–569
preconfigurating checklist for, 567–568

RADIUS services
in virtual chassis, 538

Rapid Deployment, 541

Index | 859

www.it-ebooks.info

http://www.it-ebooks.info/

rate limiting
about, 173
policing, 176–177
shaping

leaky bucket algorithm, 173–174
token bucket algorithm, 174, 176

ratios, 440
RE (Routing-Engine) protection

case study, 235–236
DDoS Protection case study

disabling RE policers, 280
RE policer rates, 282

IPv4 RE protection filter, 236–260
applying filter list, 237
before activating lo0 application, 256–

257
building filter, 240–256
confirming proper operation of filter,

258–260
policy configuration, 238–240
principle behind operation of filter, 237

IPv6 RE protection filter
about, 260–261
IPv6 RE protection filter, 270–271
sample filter, 262–269

RE (Routing-Engine) switchover, in GRES
process, 725–727

RE protection, loopback filters and, 196
RE-generated traffic

default queue mappings for, 388
default ToS markings for, 388

"Recommendations for Filtering ICMPv6
Messages in Firewalls" (RFC 4890),
262

Reduced-latency Dynamic Random Access
Memory (RLDRAM), 27

reject, as terminating action, 169
Remaining Traffic Profile (RTP), 367–368, 400,

509
remaining, traffic profile, 359, 362–368
Remote Triggered Black Holes (RTBH), BGP-

based, 295
replication mode, as AE interface mode for H-

CoS, 423
restart kernel-replication command, 732
restricted queues, on Trio MPCs, 329
rewrite marker templates, default BA classifiers

and, 432
rewrite rules

creating VCP interfaces, 580–581
Reynolds, Harry, Junos Enterprise Switching,

560, 573
RIB (Routing Information Base)

about, 141–142
and Bridge-Domain Integration, illustration

of, 141
RIP and RIPng routing protocol, graceful restart

enabled for, 749
RLDRAM (Reduced-latency Dynamic Random

Access Memory), 27
routed environments, filter processing in

bridged and, 213
routers

logical, 238–239
modern multiservice, 274
security of, 238

routers, oversubscribed and dropping packets,
29

routing and bridging, integrated, 141–144
Routing and Forwarding Information Bases

(RIB/FIB), 742
routing engine failures, on MX-VC, 548–554
routing engine, virtual chassis

apply-groups names for, 568
groups, 564–565
switchover for nonstop routing, 568

Routing Information Base (RIB)
about, 141–142
and Bridge-Domain Integration, illustration

of, 141
attributes, 142–144

routing policy vs. firewall filters, 161–162
routing protocol daemon (rpd), Junos, 8–9
routing protocols

IS-IS routing protocols
basic, information about, xviii

OSPF routing protocol
basic information about, xviii

type for ToS markings for RE-generated
traffic, 388

routing sockets
about, 11
architecture, 11

RSVP routing protocol
-TE LSPs and, 775–776
graceful restart enabled for, 749–751

rt sockmon command, 12

860 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

RTBH (Remote Triggered Black Holes), BGP-
based, 295

RTP (Remaining Traffic Profile), 367–368,
509

S
S-VLAN, 350
Safari Books Online, xxix
sample modifier, nonterminating action, 172
scalable CoS, highly, as CoS differentiator,

319
scale mode, as AE interface mode for H-CoS,

421–422
SCB (Switch and Control Board)

about, 47–48
components, 47
Enhanced MX, 58, 60–61
Ethernet switch in, 48–51
J-cells

about, 55
flow, 56
format of, 55–56
request and grant process, 57

MX, 56–59
MX-SCB Ethernet switch

connectivity, 48
port assignments, 50

MX240 support of modular routing engine,
18

slots available for routing engine, 21
SCBE (Enhanced MX Switch Control Board),

60–61
scheduler modes of operation, 403–421

per unit scheduler, 414–421
port-level operation verification, 408
port-level queuing, 403
priority propagation, 398–402

scheduler nodes
about, 349
configuring excess bandwidth and, 378–

379
overbooked G-Rates and, 357
priority propagation, 399, 401, 402
queue and scaling, 325
vs. queues, 403

scheduler-maps, 425
schedulers

about, 350

assigning to forwarding classes for VC, 576–
578

CLI priorities, 396–398
comparing parameters by PIC/platform,

428
defining at H-CoS hierarchy, 424–425
handling priority promotion and demotion,

357
priority levels, 395–403
variables defining APQ-DWRR, 393–395

scheduling
about, 393
discipline, 393–395
in CoS lab

applying schedulers and shaping, 471–
473

scheduler block, 465–470
selecting scheduling mode, 470–471

per port, 403–408
scheduling hierarchy

three-level, 361
two-level, 359–361

Secure Shell (SSH), in virtual chassis, 538
service filter, stateless filter type, 156
Service Level Agreements (SLAs), 173
Service Provider-style bridging

about, 80
domain configuration, 91–93
interface bridge configuration

encapsulation, 87–91
tagging, 83–87

using in bridge domain mode all, 119
VLAN mapping

default bridge domain and, 107
example of push and pop operation,

107–109
example of swap-push and pop-swap

operation, 109–111
stack data structure, 99–101
stack operations, 100–104, 100–104
stack operations map, 103
tag count, 106

vs. Enterprise Style, 80–83
Service Provider’s network, VLAN IDs

operating inside of, 75–77
service sets, NAT

components in creating, 604–605
interface style service sets, 613–618
next-hop style implementation, 605–613

Index | 861

www.it-ebooks.info

http://www.it-ebooks.info/

rules, components in creating, 608
SNAT rule

with interface-style service sets, 615–
617

with next-hop style service sets, 608–
611

traffic directions, 618
services-load balancing load balancing

statement, 340
set task accounting command

in routing protocol daemon, 9
SFB (Switch Fabric Board), MX2020, 62–63
SFD (Start Frame Delimiter), field in Ethernet II

frame, 73
SFW device, 155
shaper

burst size and, 369–372
delay buffers and, 375–376
granularity, Trio, 346–347
use of, 369

shaping
priority-based, 319, 384–385
vs. policing, 173–177
with exact vs excess priority none, 380

shaping-rate, 350
(see also PIR (Peak Information Rate))
about, 350
queue-level 4 configuration option in H-CoS

model, 352
shaping–based demotion, at nodes, 357
show bridge-domain commands, 135–137
show chassis hardware command, 321, 561–

562, 736
show family bridge, TCP flag matching for,

224
simple filters, stateless filter type, 156
Simple Network Management Protocol

(SNMP), 538
single learning domain, 112
Single System Image (SSI), 537
single-rate Three-Color Marker (srTCM)

about, 180
as bandwidth policer, 181
color modes for, 189
policers, 186, 189–190
support of, 178
traffic parameters, 185–187
vs. two-rate Three-Color Marker, 184–192

SLAs (Service Level Agreements), 173

SNAT rule, NAT
with interface-style service sets, 615–617
with next-hop style service sets, 608–611

SNMP (Simple Network Management
Protocol), 538

Source Address (SA), field in Ethernet II frame,
74

source NAT, 601
spanning tree, information about, xvii–xviii
SSH (Secure Shell), in virtual chassis, 538
SSI (Single System Image), 537
stack

about, 99
data structure, 99–101
operations

about, 100–104
map, 103
tag count, 106

stack operation option
in input-vlan-map, 105
in output-vlan-map, 105

stacked-vlan-tagging, on IFD, 85–86
stacking devices vs. virtual chassis, 537, 560
Start Frame Delimiter (SFD), 73–74
stateless firewall filters

about policing and, 153
bit field matching, 160–161
components of

filter matching, 159–161
filter terms, 157–158
filter types, 155–156
implicit deny-all terms, 158–159
protocol families, 157

filter processing
about, 167–168
filter actions, 168
flow control actions, 172–173
nonterminating actions, 170
terminating actions, 169

filters and fragments, 257
IPv4 RE protection filter

about, 237
applying filter list, 237
before activating lo0 application, 256–

257
building filter, 240–256
confirming proper operation of filter,

258–260
policy configuration, 238–240

862 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

principle behind operation of filter, 237
IPv6 RE protection filter

about, 260–261
sample filter, 262–269

stateless firewall filters
confirming proper operation of filter,

270–271
vs. stateful, 154–155

statistics, show bridge, 136
storage media failures, 730
strict priority, about, 393
strict-high priority queues, 394
subscriber scaling

queue scaling and, 324
swap operation

in stack data structure, 99–101
in stack operations, 100, 101

swap-push operation
example of pop-swap and, 109–111
in stack operations, 102, 103

swap-swap operation
in stack operations, 102

Switch and Control Board (SCB)
about, 47–48
components, 47
Enhanced MX, 58, 60–61
Ethernet switch in, 48–51
J-cells

about, 55
flow, 56
format of, 55–56
request and grant process, 57

MX, 56–59
MX-SCB Ethernet switch

connectivity, 48
port assignments, 50

MX240 support of modular routing engine,
18

slots available for routing engine, 21
Switch Fabric Board (SFB), MX2020, 62–63
switch fabric planes

about, 52
MX240 and MX480, 52–53
MX960, 53–55

switch fabric ports
traffic received from, 332

switch fabric priorities, mapping to, 331–333
switches, acting as CE devices, 674, 687
switching vs. bridging, 72

switchover tips for NSR, 781–782
symmetry, load balancing and, 344
synchronization, in GRES process, 723–725
syslog modifier, nonterminating action, 170
system log for errors, monitoring, 220

T
TACACS+ services, in virtual chassis, 538
Tag Control Identifier (TCI), subdivided parts

of, 75
tag count, in stack operations, 106
Tag Protocol Identifier (TPID), IEEE 802.1Q

standard and, 75
tag-protocol-id option

in input-vlan-map, 105
in output-vlan-map, 105

tagging
types of VLAN tagging with Service Provider

Style interface, 84–87
TCI (Tag Control Identifier), subdivided parts

of, 75
TCPs (Traffic Control Profiles)

about, 350
applying to H-CoS hierarchy, 423–430
connection establishment and BGP

replication, 763–764
container options, 429
flag matching for family bridge, 224
overhead-accounting in option, 429–430
policers and, 173, 179
protocol

in filter tests, 158
match to destination port, 223–224

term-order keyword, 296
terminating actions, 169
Three-Color Marker (srTCM), single-rate

about, 180
as bandwidth policer, 181
color modes for, 189
policers, 186
support of, 178
traffic parameters, 185–187
vs. two-rate Three-Color Marker, 184–192

Three-Color Marker (trTCM), two-rate
color modes for, 189
policers, 191–192
support, 178
traffic parameters, 187–189

Index | 863

www.it-ebooks.info

http://www.it-ebooks.info/

vs. single-rate Three-Color Marker
(srTCM), 184–192

three-color-policer modifier, nonterminating
action, 172

token bucket algorithm, 174, 176
ToS mappings, useful CLI, 479
ToS markings

RE-generated traffic default, 388
resetting or normalization of, 433

TPID (Tag Protocol Identifier), IEEE 802.1Q
standard and, 75

tracing, enabling, 281–282
traditional switch vs. MX routers, 71–73
traffic

BUM, 199–200
conditioner, 177
congestion management using WRED, 171,

176
EF traffic and non-EF, 168, 192
policing, 176–177, 176

(see also policing)
shaping, 173–176
using shaper for smoothing, 369

Traffic Control Profiles (TCPs)
about, 350
applying to H-CoS hierarchy, 423–430
container options, 429
flag matching for family bridge, 224
overhead-accounting in option, 429–430
policers and, 173, 179
protocol

match to destination port, 223–224
traffic encapsulation, VCP interface, 573–574
traffic-class modifier, nonterminating action,

172
transmit rate percentage, of queues, 415
transmit-rate, queue-level 4 configuration

option in H-CoS model, 352
Trio bandwidth

MPCs and, 33
Trio chipset

about, 25
architecture

about, 25–26
Buffering Block, 26, 28–30
building blocks diagram, 26
Dense Queuing Block, 30
Lookup Block, 27–28

inline IPFIX performance implemented
through, 591–592

processing stages and, 331
Trio Class of Service (CoS)

about CoS vs. QoS, 323
aggregated Ethernet modes for H-CoS, 421–

423
differentiators, 319
flow

about, 330–331
Buffer Block (MQ) stage, 334
hashing and load balancing, 339–344
port and queuing MPC in, 334–339
preclassification feature and, 331–333

Hierarchical CoS (see H-CoS (Hierarchical
CoS))

key aspects of model, 344–348
MX capabilities

about, 319–320
about shell commands, 321
port vs. hierarchical queuing MPCs,

320–323
scale and, 323–330

MX defaults, 430–434
predicting queue throughput

about, 434–437
about ratios, 440
Proof of Concept test lab, 439–441

queues
APQ-DWRR scheduler variables and,

393–395
configuring H-CoS at level of, 423–430
dropping priorities, 393
priority-based queuing, 396
scheduling stage and, 393
vs. scheduler nodes, 403

queuing, port-level, 403–408
scheduler

chassis, 426
defining at H-CoS hierarchy, 424–425
modes (see scheduler modes of

operation)
priority levels, 395–403

scheduling
about, 393
discipline, 393–395

Trio CoS differentiators, 319
Trio inline services

about, 589–590

864 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

J-Flow network services
about, 590–591
inline IPFIX performance, 601

Network Address Translation (see Network
Address Translation (NAT))

port mirroring, 632–639
tunnel services

about, 621–622
case study, 623–632
enabling, 622–623

Trio MPCs, restricted queues on, 329
Trio PFE

CoS processing and, 331
default MPLS EXP classifier or rewrite rule

in effect, 347–348
supporting priority-based MDWRR, 395,

396
to alter packet’s FC, 171

Trio PFE filter application points, 195
Trio-based line cards, as requirement for MX-

VC, 542
trunk mode, interface-mode option, 94, 95
tunnel services

about, 621–622
case study, 623–632
enabling, 622–623

twice NAT, 601–603
Two-Color Marker (srTC), support of, 178–

181
two-rate Three-Color Marker (trTCM)

color modes for, 189
policers, 191–192
support of, 178
traffic parameters, 187–189
vs. single-rate Three-Color Marker

(srTCM), 184–192

U
unidirectional CoS

configuring
about, 453–455
applying schedulers and shaping, 471–

473
configuring baseline, 459–465
establish a CoS baseline, 456–458
scheduler block, 465–470
selecting scheduling mode, 470–471

verifying
checking for any log errors, 488–493

confirming scheduling details, 483–488
unit, as Service Provider Style interface

requirement, 80
untagged interfaces, 88
User Interface (UI), Junos, 7

V
variable, based on request, type for ToS

markings for RE-generated traffic,
389

VC (Virtual Chassis), 539
VC-B (Virtual Chassis Backup)

about, 539
illustration of

interface numbering with, 555
virtual chassis components with, 540
virtual chassis kernel replication with,

545
kernel synchronization and, 544–547

VC-Bb (Backup Routing Engine in VC-B), 539,
553

VC-Bm (Master Routing Engine in VC-B), 539,
545–548, 551–553

VC-L (Virtual Chassis Line Card)
about, 539
illustration of

interface numbering with, 555
virtual chassis components with, 540
virtual chassis kernel replication with,

545
kernel synchronization and, 544–547

VC-Lb (Backup Routing Engine in VC-L), 539,
554

VC-Lm (Master Routing Engine in VC-L), 539,
553

VC-M (Virtual Chassis Master)
about, 539
illustration of

interface numbering with, 555
virtual chassis components with, 540
virtual chassis kernel replication with,

545
kernel synchronization and, 544–547
mastership election for, 559–560

VC-Mb (Backup Routing Engine in VC-M),
539, 545–548, 550

VC-Mm (Master Routing Engine in VC-M),
539, 549–550

Index | 865

www.it-ebooks.info

http://www.it-ebooks.info/

VCCP (Virtual Chassis Control Protocol), 539,
559, 563, 568

VCP (Virtual Chassis Port) interfaces
about, 537, 539
class of service

about, 573
classifiers, 578–580
final configuration, 581–583
forwarding classes, 574–576
schedulers assigned to forwarding classes

for VC, 576–578
traffic encapsulation, 573–574
walkthrough, 574–575

configuring on R1 on, 563–565
configuring on R2 on, 568–569
interface speed requirement for MX-VC,

542
VID (VLAN Identifier), as subdivided part of

TCI, 75
Virtual Chassis (MX-VC), MX

about, 537–538
architecture, 543–554, 543–554

about, 543–554
kernel synchronization, 544–548
routing engine failures, 548–554

case for, 540
chassis serial number, 561–562, 568
configuring

about, 561
finding chassis numbers, 566
GRES and NSR on VC, 566–567
on R1, 566–567
VC on R1, 566–567
VC verification, 570–571

deconfiguring, back to standalone, 572–
573

engine terminology, 539
illustration of

interface numbering, 555
VC concept, 543
virtual chassis components, 540
virtual chassis kernel replication, 545

interface numbering, 554–557
mastership election for VC-M in, 559–560
packet walkthough, 557–558
R1 VCP Interface

configuring R1 on VCP, 563–565
preconfiguring R2 checklist, 567–568

R2 VCP Interface

configuring R2 on VCP, 568–569
preconfigurating checklist for, 567–568

requirements, 541–542
routing engine

apply-groups names for, 568
groups, 564–565
switchover for nonstop routing, 568

terminology, 539–540
topology, 558, 559
types of virtualization, 541
unique member ID, 562–563
VCP class of service

about, 573
classifiers, 578–580
final configuration, 581–583
schedulers assigned to forwarding classes

for VC, 576–578
VCP traffic encapsulation, 573–574
verifying configuration, 583–584
walkthrough, 574–575

Virtual Chassis (VC), 539
Virtual Chassis Backup (VC-B)

about, 539
illustration of

interface numbering with, 555
virtual chassis components with, 540
virtual chassis kernel replication with,

545
kernel synchronization and, 544–547

Virtual Chassis Control Protocol (VCCP), 539,
559

Virtual Chassis Line Card (VC-L)
about, 539
illustration of

interface numbering with, 555
virtual chassis components with, 540
virtual chassis kernel replication with,

545
kernel synchronization and, 544–547

Virtual Chassis Master (VC-M)
about, 539
illustration of

interface numbering with, 555
virtual chassis components with, 540
virtual chassis kernel replication with,

545
kernel synchronization and, 544–547
mastership election for, 559–560

Virtual Chassis Port (VCP) interfaces

866 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

about, 537, 539
class of service

about, 573
classifiers, 578–580
final configuration, 581–583
schedulers assigned to forwarding classes

for VC, 576–578
VCP traffic encapsulation, 573–574
verifying configuration, 583–584
walkthrough, 574–575

configuring on R1 on, 563–565
configuring on R2 on, 568–569
interface speed requirement for MX-VC,

542
Virtual Router Redundancy Protocol (VRRP),

646, 694–695
virtual switch

about, 144
configuration, 145–149
hierarchy, 145

virtualization, about, 72
VLAN bridging, extended, 88
VLAN Identifier (VID), as subdivided part of

TCI, 75
VLAN IDs

associating to IFL, 84
bridge-domain modes using (see bridge-

domain)
operating inside of Service Provider’s

network, 75–77
rewriting, 97–99

VLAN normalization or rewriting, 93
vlan-id

as Enterprise Style interface requirement,
82

bridge-domain modes using (see bridge-
domain)

option, 105
in output-vlan-map, 105

setting in access mode, 95
vlan-id-range, 84, 122
vlan-tagging

as Service Provider Style interface
requirement, 80

to IFD, 84–87
VLANs (Virtual Local Area Networks)

Ethernet II in, 74–75
about, 73
IEEE 802.1Q standard and, 74–75

rewriting, 97–99
Service Provider mapping of

bridge-domain requirements, 107
example of push and pop operation,

107–109
example of swap-push and pop-swap

operation, 109–111
stack data structure, 99–101
stack operations, 100–104
stack operations map, 103

tagging types of Service Provider-style
interface, 84–87

VPLS encapsulation, 87
VPLS family, MC-LAG family support for, 646
VRRP (Virtual Router Redundancy Protocol),

646, 694–695, 776

W
WAN interface

egress packet processing and, 43
ingress packet processing and, 43
MPC1 and MPC2 with enhanced queuing

and, 41–42
of Buffering Block, 30

WAN ports, prioritizing network control traffic
received over, 331–333

WRED
congestion management using, 176
drop-profiles

as queue-level 4 configuration option in
H-CoS model, 354

configuring, 426–428
inTrio

profile, 338
protocol-based profiles, 339

loss-priority modifier for making decisions
related to, 171

purpose of, 338

Index | 867

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon
The animal on the cover of Juniper MX Series is the tawny-shouldered podargus (Po-
dargus humeralis), a type of bird found throughout the Australian mainland, Tasmania,
and southern New Guinea. These birds are often mistaken for owls and have yellow
eyes and a wide beak topped with a tuft of bristly feathers. They make loud clacking
sounds with their beaks and emit a reverberating, booming call.

These birds hunt at night and spend the day roosting on a dead log or tree branch close
to the tree trunk. Their camouflage is excellent—staying very still and upright, they
look just like part of the branch. The tawny-shouldered podargus is almost exclusively
insectivorous, feeding rarely on frogs and other small prey. They catch their prey with
their beaks rather than with their talons, and sometimes drop from their perch onto
the prey on the ground. The bird's large eyes and excellent hearing aid in nocturnal
hunting.

Tawny-shouldered podargus pairs stay together until one of the pair dies. After mating,
the female lays two or three eggs onto a lining of green leaves in the nest. Both male
and female take turns sitting on the eggs to incubate them until they hatch about 25
days later, and both parents help feed the chicks.

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC Ga-
ramond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	About the Authors
	About the Lead Technical Reviewers
	About the Technical Reviewers
	Proof of Concept Laboratory

	Preface
	No Apologies
	Book Topology
	Interface Names
	Aggregate Ethernet Assignments
	Layer 2
	IPv4 Addressing
	IPv6 Addressing

	What’s in This Book?
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Juniper MX Architecture
	Junos
	One Junos
	Software Releases
	Three Release Cadence
	Software Architecture
	Daemons
	Management Daemon
	Routing Protocol Daemon
	Device Control Daemon
	Chassis Daemon (and Friends)

	Routing Sockets

	Juniper MX Chassis
	MX80
	MX80 Interface Numbering
	MX80-48T Interface Numbering

	Midrange
	MX240
	Interface Numbering
	Full Redundancy
	No Redundancy

	MX480
	Interface Numbering

	MX960
	Interface Numbering
	Full Redundancy

	Trio
	Trio Architecture
	Buffering Block
	Lookup Block
	Interfaces Block
	Dense Queuing Block

	Line Cards and Modules
	Dense Port Concentrator
	Modular Port Concentrator
	MPC1
	MPC2
	MPC-3D-16X10GE-SFPP
	MPC3E
	Multiple Lookup Block Architecture
	Source MAC Learning
	Destination MAC Learning
	Policing

	Packet Walkthrough
	MPC1 and MPC2 with Enhanced Queuing
	MPC3E

	Modular Interface Card
	Network Services

	Switch and Control Board
	Ethernet Switch
	Switch Fabric
	MX240 and MX480 Fabric Planes
	MX960 Fabric Planes

	J-Cell
	J-Cell Format
	J-Cell Flow
	Request and Grant

	MX Switch Control Board
	MX SCB and MPC Caveats
	MX240 and MX480
	MX960

	Enhanced MX Switch Control Board
	MX240 and MX480
	MX960

	MX2020
	Architecture
	Switch Fabric Board
	Power Supply
	Air Flow
	Line Card Compatibility

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 2. Bridging, VLAN Mapping, IRB, and Virtual Switches
	Isn’t the MX a Router?
	Layer 2 Networking
	Ethernet II
	IEEE 802.1Q
	IEEE 802.1QinQ

	Junos Interfaces
	Interface Bridge Configuration
	Basic Comparison of Service Provider versus Enterprise Style
	Service Provider Style
	Enterprise Style

	Service Provider Interface Bridge Configuration
	Tagging
	VLAN Tagging
	vlan-id-range

	Stacked VLAN Tagging
	Flexible VLAN Tagging

	Encapsulation
	Ethernet Bridge
	Extended VLAN Bridge
	Flexible Ethernet Services

	Service Provider Bridge Domain Configuration

	Enterprise Interface Bridge Configuration
	Interface Mode
	Access
	Trunk
	IEEE 802.1QinQ
	IEEE 802.1Q and 802.1QinQ Combined

	VLAN Rewrite

	Service Provider VLAN Mapping
	Stack Data Structure
	Stack Operations
	Stack Operations Map
	input-vlan-map
	output-vlan-map

	Tag Count
	Bridge Domain Requirements
	Example: Push and Pop
	Example: Swap-Push and Pop-Swap

	Bridge Domains
	Learning Domain
	Single Learning Domain
	Multiple Learning Domains

	Bridge Domain Modes
	Default
	None
	All
	List
	Single
	Dual

	Bridge Domain Options
	MAC Table Size
	Global
	Bridge domain

	No MAC learning
	Interface

	Show Bridge Domain Commands
	show bridge domain
	show bridge mac-table
	show bridge statistics
	show l2-learning instance detail

	Clear MAC Addresses
	Specific MAC Address
	Entire Bridge-Domain

	MAC Accounting

	Integrated Routing and Bridging
	IRB Attributes

	Virtual Switch
	Configuration

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 3. Stateless Filters, Hierarchical Policing, and Tri-Color
 Marking
	Firewall Filter and Policer Overview
	Stateless versus Stateful
	Stateless
	Stateful

	Stateless Filter Components
	Stateless Filter Types
	Protocol Families
	Filter Terms
	The Implicit Deny-All Term

	Filter Matching
	A Word on Bit Field Matching

	Filter Actions

	Filters versus Routing Policy
	Filter Scaling
	Filter Optimization Tips

	Filtering Differences for MPC versus DPC
	Enhanced Filter Mode

	Filter Operation
	Stateless Filter Processing
	Filter Actions
	Terminating Actions
	Nonterminating Actions
	Flow Control Actions

	Policing
	Rate Limiting: Shaping or Policing?
	Shaping
	The Leaky Bucket Algorithm
	The Token Bucket Algorithm

	Policing

	Junos Policer Operation
	Policer Parameters
	A Suggested Burst Size

	Policer Actions

	Basic Policer Example
	Bandwidth Policer
	Logical Bandwidth Policer

	Cascaded Policers
	Single and Two-Rate Three-Color Policers
	TCM Traffic Parameters
	Single-Rate Traffic Parameters
	Two-Rate Traffic Parameters

	Color Modes for Three-Color Policers
	Configure Single-Rate Three-Color Policers
	srTCM Nonconformance

	Configure Two-Rate Three-Color Policers
	trTCM Nonconformance

	Hierarchical Policers
	Hierarchical Policer Example

	Applying Filters and Policers
	Filter Application Points
	Loopback Filters and RE Protection
	Input Interface Filters
	Output Interface Filters
	Aggregate or Interface Specific
	Filter Chaining
	Filter Nesting
	Forwarding Table Filters
	General Filter Restrictions

	Applying Policers
	Logical Interface Policers
	Physical Interface Policers
	Filter-Evoked Logical Interface Policers

	Policer Application Restrictions

	Bridge Filtering Case Study
	Filter Processing in Bridged and Routed Environments
	Monitor and Troubleshoot Filters and Policers
	Monitor System Log for Errors

	Bridge Family Filter and Policing Case Study
	Policer Definition
	HTTP Filter Definition
	Flood Filter
	Verify Proper Operation

	Summary

	Chapter Review Questions
	Chapter Review Answers

	Chapter 4. Routing Engine Protection and DDoS
 Prevention
	RE Protection Case Study
	IPv4 RE Protection Filter
	IPv6 RE Protection Filter
	Next-Header Nesting, the Bane of Stateless Filters
	The Sample IPv6 Filter

	DDoS Protection Case Study
	The Issue of Control Plane Depletion
	DDoS Operational Overview
	Host-Bound Traffic Classification
	A Gauntlet of Policers

	Configuration and Operational Verification
	Disabling and Tracing
	Configure Protocol Group Properties
	Verify DDoS Operation

	Late Breaking DDoS Updates

	DDoS Case Study
	The Attack Has Begun!
	Analyze the Nature of the DDoS Threat

	Mitigate DDoS Attacks
	BGP Flow-Specification to the Rescue
	Configure Local Flow-Spec Routes
	Validating Flow Routes
	Flow-Spec Algorithm Version
	Limit Flow-Spec Resource Usage

	Summary

	BGP Flow-Specification Case Study
	Let the Attack Begin!
	Determine Attack Details and Define Flow Route

	Summary

	Chapter Review Questions
	Chapter Review Answers

	Chapter 5. Trio Class of Service
	MX CoS Capabilities
	Port versus Hierarchical Queuing MPCs
	H-CoS and the MX80

	CoS Capabilities and Scale
	Queue and Scheduler Scaling
	How Many Queues per Port?
	Configure Four- or Eight-Queue Mode
	Low Queue Warnings

	Trio versus I-Chip/ADPC CoS Differences

	Trio CoS Flow
	Intelligent Oversubscription
	The Remaining CoS Packet Flow
	CoS Processing: Port- and Queue-Based MPCs
	Switch Fabric Priority
	Classification and Policing
	Classification and Rewrite on IRB Interfaces

	Egress Processing
	Egress Queuing: Port or Dense Capable?
	WRED

	Trio Hashing and Load Balancing
	A Forwarding Table Per-Packet Policy Is Needed
	Load Balancing and Symmetry

	Key Aspects of the Trio CoS Model
	Independent Guaranteed Bandwidth and Weight
	Guaranteed versus Excess Bandwidth and Priority Handling
	Input Queuing on Trio
	Trio Buffering
	Trio Drop Profiles
	Trio Bandwidth Accounting
	Trio Shaping Granularity
	Trio MPLS EXP Classification and Rewrite Defaults

	Trio CoS Processing Summary

	Hierarchical CoS
	The H-CoS Reference Model
	Level 4: Queues
	Explicit Configuration of Queue Priority and Rates

	Level 3: IFL
	The Guaranteed Rate
	Priority Demotion and Promotion
	G-Rate Based Priority Handling at Nodes
	Per Priority Shaping–Based Demotion at Nodes

	Level 2: IFL-Sets
	Remaining Traffic Profiles
	Forcing a Two-Level Scheduling Hierarchy

	Level 1: IFD
	Remaining
	Remaining Example

	Interface Modes and Excess Bandwidth Sharing
	
	Shaper Burst Sizes
	PIR Characteristics
	PIR/CIR Characteristics
	Calculating the Default Burst Size
	Choosing the Actual Burst Size
	Burst Size Example

	Shapers and Delay Buffers
	Delay Buffer Rate and the H-CoS Hierarchy

	Sharing Excess Bandwidth
	Scheduler Nodes
	Queues
	Excess None
	Excess Handling Defaults
	Excess Rate and PIR Interface Mode
	Excess Sharing Example

	Priority-Based Shaping
	Fabric CoS
	Control CoS on Host-Generated Traffic
	Default Routing Engine CoS
	Dynamic Profile Overview
	Dynamic CoS
	Dynamic Profile Linking

	H-CoS Summary

	Trio Scheduling and Queuing
	Scheduling Discipline
	Scheduler Priority Levels
	Scheduler to Hardware Priority Mapping
	Priority Propagation
	Priority Promotion and Demotion

	Scheduler Modes
	Port-Level Queuing
	Operation Verification: Port Level

	Per Unit Scheduler

	H-CoS and Aggregated Ethernet Interfaces
	Aggregated Ethernet H-CoS Modes
	Hierarchical Scheduler

	Schedulers, Scheduler Maps, and TCPs
	Scheduler Maps
	Configure WRED Drop Profiles

	Scheduler Feature Support
	Traffic Control Profiles
	Overhead Accounting on Trio

	Trio Scheduling and Priority Summary

	MX Trio CoS Defaults
	Four Forwarding Classes, but Only Two Queues
	Default BA and Rewrite Marker Templates
	MX Trio CoS Defaults Summary

	Predicting Queue Throughput
	Where to Start?
	Trio CoS Proof-of-Concept Test Lab
	A Word on Ratios
	Example 1: PIR Mode
	Example 2: CIR/PIR Mode
	Example 3: Make a Small, “Wafer-thin” Configuration Change

	Predicting Queue Throughput Summary

	CoS Lab
	Configure Unidirectional CoS
	Establish a CoS Baseline
	Baseline Configuration
	The Scheduler Block

	Select a Scheduling Mode
	Apply Schedulers and Shaping

	Verify Unidirectional CoS
	Confirm Queuing and Classification
	Use Ping to Test MF Classification

	Confirm Scheduling Details
	Check for Any Log Errors

	Confirm Scheduling Behavior
	Match Tester’s Layer 2 Rate to Trio Layer 1 Shaping
	Compute Queue Throughput: L3
	The Layer 3 IFL Calculation: Maximum
	The Layer 3 IFL Calculation: Actual Throughput

	Add H-CoS for Subscriber Access
	Configure H-CoS
	Verify H-CoS
	Verify H-CoS in the Data Plane

	Trio CoS Summary

	Chapter Review Questions
	Chapter Review Answers

	Chapter 6. MX Virtual Chassis
	What is Virtual Chassis?
	MX-VC Terminology
	MX-VC Use Case
	MX-VC Requirements
	MX-VC Architecture
	MX-VC Kernel Synchronization
	MX-VC Routing Engine Failures
	VC-Mm failure
	VC-Mb failure
	VC-Bm failure
	VC-Bb failure
	VC-Lm failure

	MX-VC Interface Numbering
	MX-VC Packet Walkthrough
	Virtual Chassis Topology
	Mastership Election
	Summary

	MX-VC Configuration
	Chassis Serial Number
	Member ID
	R1 VCP Interface
	Routing Engine Groups
	Virtual Chassis Configuration
	GRES and NSR

	R2 VCP Interface
	Virtual Chassis Verification
	Virtual Chassis Topology

	Revert to Standalone
	Summary

	VCP Interface Class of Service
	VCP Traffic Encapsulation
	VCP Class of Service Walkthrough
	Forwarding Classes
	Schedulers
	Classifiers
	Rewrite Rules
	Final Configuration
	Verification

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 7. Trio Inline Services
	What are Trio Inline Services?
	J-Flow
	J-Flow Evolution
	Inline IPFIX Performance
	Inline IPFIX Configuration
	Chassis Configuration
	Flow Monitoring
	Sampling Instance
	Firewall Filter

	Inline IPFIX Verification
	IPFIX Summary

	Network Address Translation
	Types of NAT
	Services Inline Interface
	Service Sets
	Next-Hop Style Service Sets
	Interface Style Service Sets
	Traffic Directions

	Destination NAT Configuration
	Network Address Translation Summary

	Tunnel Services
	Enabling Tunnel Services
	Tunnel Services Case Study
	Tunnel Services Case Study Final Verification

	Tunnel Services Summary

	Port Mirroring
	Port Mirror Case Study
	Configuration

	Port Mirror Summary

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 8. Multi-Chassis Link Aggregation
	Multi-Chassis Link Aggregation
	MC-LAG State Overview
	MC-LAG Active-Standby
	MC-LAG Active-Active
	MC-LAG State Summary

	MC-LAG Family Support
	Multi-Chassis Link Aggregation versus MX Virtual-Chassis
	MC-LAG Summary

	Inter-Chassis Control Protocol
	ICCP Hierarchy
	ICCP Topology Guidelines
	How to Configure ICCP
	ICCP Configuration Guidelines
	Valid Configurations
	Invalid Configurations

	ICCP Split Brain
	ICCP Summary

	MC-LAG Modes
	Active-Standby
	Active-Active
	ICL Configuration
	MAC Address Synchronization

	MC-LAG Modes Summary

	Case Study
	Logical Interfaces and Loopback Addressing
	Layer 2
	Loop Prevention
	Input Feature
	Output Feature

	R1 and R2
	Loop Prevention Verification
	Bridging and IEEE 802.1Q
	IEEE 802.3ad

	S1 and S2
	Bridging and IEEE 802.1Q
	IEEE 802.3ad

	Layer 3
	Interior Gateway Protocol—IS-IS
	Bidirectional Forwarding Detection
	Virtual Router Redundancy Protocol

	MC-LAG Configuration
	ICCP
	R1 and R2
	R3 and R4
	ICCP Verification

	Multi-Chassis Aggregated Ethernet Interfaces
	R1 and R2
	R3 and R4

	Connectivity Verification
	Intradata Center Verification
	Interdata Center Verification

	Case Study Summary

	Summary
	Chapter Review Questions
	Chapter Review Answers

	Chapter 9. Junos High Availability on MX Routers
	Junos High-Availability Feature Overview
	Graceful Routing Engine Switchover
	The GRES Process
	Synchronization
	Routing Engine Switchover
	What Can I Expect after a GRES?

	Configure GRES
	GRES Options
	Disk Fail
	Process Failure Induced Switchovers

	Verify GRES Operation
	GRES, Before and After

	GRES and Software Upgrade/Downgrades

	GRES Summary

	Graceful Restart
	GR Shortcomings
	Graceful Restart Operation: OSPF
	Restarting Router
	Grace LSA

	Helper Router
	Aborting GR
	A Graceful Restart, at Last
	A Fly in the Ointment—And an Improved GR for OSPF
	OSPF Restart Signaling RFCs 4811, 4812, and 4813

	Graceful Restart and other Routing Protocols
	Junos GR Support by Release

	Configure and Verify OSPF GR
	Enable Graceful-Restart Globally
	OSPF GR Options
	Verify OSPF GR
	An Ungraceful Restart
	A Graceful Restart

	Graceful Restart Summary

	Nonstop Routing and Bridging
	Replication, the Magic That Keeps Protocols Running
	Nonstop Bridging
	NSB Only Replicates Layer 2 State
	NSB and Other Layer 2 Functions

	Current NSR/NSB Support
	BFD and NSR/GRES Support
	BFD Scaling with NSR
	BFD and GR—They Don’t Play Well Together

	NSR and BGP
	NSR and PIM
	PIM Supported Features
	PIM Unsupported Features

	NSR and RSVP-TE LSPs
	PIM Incompatible Features

	NSR and VRRP

	This NSR Thing Sounds Cool; So What Can Go Wrong?
	NSR, the good . . .
	. . . And the bad

	Practicing Safe NSRs
	The Preferred Way to Induce Switchovers
	Other Switchover Methods

	Tips for a Hitless (and Happy) Switchover

	Configure NSR and NSB
	NSR and Graceful Restart: Not like Peanut Butter and Chocolate
	General NSR Debugging Tips

	Verify NSR and NSB
	Confirm Pre-NSR Protocol State
	Confirm Pre-NSR Replication State
	BGP Replication
	IS-IS Replication
	Confirm BFD Replication
	Layer 2 NSB Verification

	Perform a NSR
	Troubleshoot a NSR/NSB Problem

	NSR Summary

	In-Service Software Upgrades
	ISSU Operation
	ISSU Dark Windows
	BFD and the Dark Window

	ISSU Layer 3 Protocol Support
	ISSU Layer 2 Support
	MX MIC/MPC ISSU Support
	ISSU: A Double-Edged Knife
	ISSU Restrictions
	ISSU Troubleshooting Tips

	ISSU Summary

	ISSU Lab
	Verify ISSU Readiness
	Perform an ISSU
	Confirm ISSU

	Summary

	Chapter Review Questions
	Chapter Review Answers

	Index

